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Fixed-smoothing Asymptotics in a Two-step GMM Framework

Yixiao Sun�

Department of Economics,
University of California, San Diego

July 12, 2013, First version: December 2011

Abstract

The paper develops the �xed-smoothing asymptotics in a two-step GMM framework. Un-
der this type of asymptotics, the weighting matrix in the second-step GMM criterion function
converges weakly to a random matrix and the two-step GMM estimator is asymptotically
mixed normal. Nevertheless, the Wald statistic, the GMM criterion function statistic and the
LM statistic remain asymptotically pivotal. It is shown that critical values from the �xed-
smoothing asymptotic distribution are high order correct under the conventional increasing-
smoothing asymptotics. When an orthonormal series covariance estimator is used, the critical
values can be approximated very well by the quantiles of a noncentral F distribution. A sim-
ulation study shows that the new statistical tests based on the �xed-smoothing critical values
are much more accurate in size than the conventional chi-square test.

JEL Classi�cation: C12, C32

Keywords: F-distribution, Fixed-smoothing Asymptotics, Heteroskedasticity and Autocorre-
lation Robust, Increasing-smoothing Asymptotics, Noncentral F Test, Two-step GMM Esti-
mation

1 Introduction

Recent research on heteroskedasticity and autocorrelation robust (HAR) inference has been fo-
cusing on developing distributional approximations that are more accurate than the conventional
chi-square approximation or the normal approximation. To a great extent and from a broad
perspective, this development is line with many other areas of research in econometrics where
more accurate distributional approximations are the focus of interest. A common theme for com-
ing up with a new approximation is to embed the �nite sample situation in a di¤erent limiting
thought experiment. In the case of HAR inference, the conventional limiting thought experiment
assumes that the amount of smoothing increases with the sample size but a slower rate. The new
limiting thought experiment assumes that the amount of smoothing is held �xed as the sample

�Email: yisun@ucsd.edu. For helpful comments, the author thanks Jungbin Hwang, David Kaplan, and Min
Seong Kim. The author gratefully acknowledges partial research support from NSF under Grant No. SES-0752443.
Correspondence to: Department of Economics, University of California, San Diego, 9500 Gilman Drive, La Jolla,
CA 92093-0508.
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size increases. This leads to two types of asymptotics: the conventional increasing-smoothing
asymptotics and the more recent �xed-smoothing asymptotics. Sun (2012) coins these two in-
clusive terms so that they are applicable to di¤erent HAR variance estimators, including both
kernel HAR variance estimators and orthonormal series (OS) HAR variance estimators.

There is a large and growing literature on the �xed-smoothing asymptotics. For kernel HAR
variance estimators, the �xed-smoothing asymptotics is the so-called the �xed-b asymptotics
�rst studied by Kiefer and Vogelsang (2002a, 2002b, 2005, KV hereafter) in the econometrics
literature. For other studies, see for example Jansson (2004), Sun, Phillips, Jin (2008), Sun and
Phillips (2009), Gonçlaves and Vogelsang (2011) in the time series setting, Bester, Conley, Hansen
and Vogelsang (2011, BCHV hereafter) and Sun and Kim (2012b) in the spatial setting, and
Gonçalves (2011), Kim and Sun (2012), and Vogelsang (2012) in the panel data setting. For OS
HAR variance estimators, the �xed-smoothing asymptotics is the so-called �xed-K asymptotics.
For its theoretical development and related simulation evidence, see for example Phillips (2005),
Müller (2007), and Sun (2011, 2013). The approximation approaches in some other papers can
also be regarded as special cases of the �xed-smoothing asymptotics. This includes, among others,
Ibragimov and Müller (2010), Shao (2010) and Bester, Hansen and Conley (2011).

All of the recent developments on the �xed-smoothing asymptotics have been devoted to
�rst-step GMM estimation and inference. In this paper, we establish the �xed-smoothing asymp-
totics in a general two-step GMM framework. For two-step estimation and inference, the HAR
variance estimator not only appears in the covariance estimator but also plays the role of the
optimal weighting matrix in the second-step GMM criterion function. Under the �xed-smoothing
asymptotics, the weighting matrix converges to a random matrix. As a result, the second-step
GMM estimator is not asymptotically normal but rather asymptotically mixed normal. On one
hand, the asymptotic mixed normality captures the estimation uncertainty of the GMM weight-
ing matrix and is expected to be closer to the �nite sample distribution of the second-step GMM
estimator. On the other hand, the lack of asymptotic normality posts a challenge for pivotal
inference. It is far from obvious that the Wald statistic is still asymptotically pivotal under the
new asymptotics. To confront this challenge, we have to judicially rotate and transform the as-
ymptotic distribution and show that it is equivalent to a distribution that is nuisance parameter
free.

The �xed-smoothing asymptotic distribution not only depends on the kernel or basis function
and the smoothing parameter, which is the same as in the one-step GMM framework, but also
depends on the degree of over-identi�cation, which is di¤erent from existing results. In general,
the degree of over-identi�cation or the number of moment conditions remains in the asymptotic
distribution only under the so-called many-instruments or many-moments asymptotics. Here the
number of moment conditions and hence the degree of over-identi�cation are �nite and �xed.
Intuitively, the degree of over-identi�cation remains in the asymptotic distribution because it is
indicative of the dimension of the limiting random weighting matrix.

In the case of OS HAR variance estimation, the �xed-smoothing asymptotic distribution is
a mixed noncentral F distribution � a noncentral F distribution with a random noncentrality
parameter. This is an intriguing result, as a noncentral F distribution is not expected under the
null hypothesis. It is reassuring that the random noncentrality parameter becomes degenerate
as the amount of smoothing increases. Replacing the random noncentrality parameter by its
mean, we show that the mixed noncentral F distribution can be approximated extremely well by
a noncentral F distribution. The noncentral F-distribution is implemented in standard program-
ming languages and packages such as the R language, MATLAB, Mathematica and STATA, so
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critical values are readily available. No computation intensive simulation is needed. This can be
regarded as an advantage of using the OS HAR variance estimator.

In the case of kernel HAR variance estimation, the �xed-smoothing asymptotic distribution
is a mixed chi-square distribution � a chi-square distribution scaled by an independent and
positive random variable. This resembles an F distribution except that the random denominator
has a complicated distribution. Nevertheless, we are able to show that critical values from the
�xed-smoothing asymptotic distribution are high order correct under the conventional increasing-
smoothing asymptotics. This result is established on the basis of two distributional expansions.
The �rst expansion is the expansion of the �xed-smoothing asymptotic distribution as the amount
of smoothing increases, and the second one is the high order Edgeworth expansion established in
Sun and Phillips (2009). We arrive at the two expansions via completely di¤erent routes, yet at
the end some of the terms in the two expansions are exactly the same.

Our framework for establishing the �xed-smoothing asymptotics is general enough to accom-
modate both the kernel HAR variance estimators and the OS HAR variance estimators. The
�xed-smoothing asymptotics is established under weaker conditions than what are typically as-
sumed in the literature. More speci�cally, instead of maintaining a functional CLT assumption,
we make use of a regular CLT, which is weaker than an FCLT. Our method of proof is also novel.
It applies directly to both smooth and nonsmooth kernel functions. There is no need to give a
separate treatment to non-smooth kernels such as the Bartlett kernel. The uni�ed method of
proof leads to a uni�ed representation of the �xed-smoothing asymptotic distribution.

The �xed-smoothing asymptotics is established for three commonly used test statistics in the
GMM framework: the Wald statistic, the GMM criterion function statistic, and the score type
statistic or the LM statistic. As in the conventional increasing-smoothing asymptotic framework,
we show that these three test statistics are asymptotically equivalent and converge to the same
limiting distribution.

In the Monte Carlo simulations, we examine the accuracy of the �xed-smoothing approxima-
tion. We �nd that the tests based on the new �xed-smoothing approximation have much more
accurate size than the conventional chi-square tests. This is especially true when the degree of
over-identi�cation is large. When the model is over-identi�ed, the �xed-smoothing approxima-
tion that accounts for the randomness of the GMM weighting matrix is also more accurate than
the �xed-smoothing approximation that ignores the randomness. When the OS HAR variance
estimator is used, the convenient noncentral F test has almost identical size properties as the
nonstandard test whose critical values have to be simulated.

The rest of the paper is organized as follows. Section 2 describes the estimation and testing
problems at hand. Section 3 establishes the �xed-smoothing asymptotics for the covariance
estimators and the associated test statistics. Section 4 gives di¤erent representations of the �xed-
smoothing asymptotic distribution. In the case of OS HAR variance estimation, a noncentral F
distribution is shown to be a very accurate approximation to the nonstandard �xed-smoothing
asymptotic distribution. In the case of kernel HAR variance estimation, the �xed-smoothing
approximation is shown to provide a high order re�nement over the chi-square approximation.
The next section reports simulation evidence on the performance of the new approximation. The
last section provides some concluding discussion. Proofs of the main results are given in the
Appendix.

A word on notation: we use Fp;K�p�q+1
�
�2
�
to denote a random variable that follows the

noncentral F distribution with degrees of freedom (p;K � p� q + 1) and noncentrality parameter
�2: We use Fp;K�p�q+1

�
z; �2

�
to denote the CDF of the noncentral F distribution.
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2 Two-step GMM Estimation and Testing

We are interested in a d � 1 vector of parameters � 2 � � Rd: Let vt 2 Rdv denote a vector of
observations at time t: Let �0 denote the true value and assume that �0 is an interior point of �:
The moment conditions

Ef (vt; �) = 0; t = 1; 2; :::; T (1)

hold if and only if � = �0 where f (�) is an m� 1 vector of continuously di¤erentiable functions.
The process f (vt; �0) may exhibit autocorrelation of unknown forms. We assume that m � d
and rank E

�
@f (vt; �0) =@�

0� = d: That is, we consider a model that is possibly over-identi�ed
with the degree of over-identi�cation q = m� d:

De�ne

gt (�) =
1

T

tX
j=1

f(vj ; �);

then the GMM estimator of �0 is given by

�̂GMM = argmin
�2�

gT (�)
0W�1

T gT (�)

where WT is a positive de�nite weighting matrix.
To obtain an initial �rst step estimator, we often choose a simple weighting matrix Wo that

does not depend on model parameters, leading to

~�T = argmin
�2�

gT (�)
0W�1

o gT (�) :

As an example, we may set Wo = Im in the general GMM setting. In the IV regression, we may
set Wo = Z

0Z=T where Z is the data matrix for the instruments. We assume that

Wo
p!Wo;1;

a matrix that is positive de�nite almost surely.
According to Hansen (1982), the optimal weighting matrix WT is the asymptotic variance

matrix of
p
TgT (�0) : On the basis of the �rst step estimate ~�T ; we can use ~ut := f(vt; ~�T ) to

estimate the asymptotic variance matrix. Many nonparametric estimators of the variance matrix
are available in the literature. In this paper, we consider a class of quadratic variance estimators,
which includes the conventional kernel variance estimators of Andrews (1991), Newey and West
(1987), Politis (2011), sharp and steep kernel variance estimators of Phillips, Sun and Jin (2006,
2007), and the orthonormal series (OS) variance estimators of Phillips (2005), Müller (2007), and
Sun (2011, 2013) as special cases. Following Phillips, Sun and Jin (2006, 2007), we refer to the
conventional kernel estimators as contracted kernel estimators and the sharp and steep kernel
estimators as exponentiated kernel estimators.

The quadratic HAR variance estimator is given by

~WT

�
~�T

�
=
1

T

TX
t=1

TX
s=1

Qh

�
t

T
;
s

T

� 
~ut �

1

T

TX
�=1

~u�

! 
~us �

1

T

TX
�=1

~u�

!0
(2)

where Qh (r; s) is a weighting function that depends on the smoothing parameter h: For con-
ventional kernel estimators, Qh (r; s) = k ((r � s) =b) and we take h = 1=b: For the sharp kernel
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estimator, Qh (r; s) = (1� jr � sj)� 1 fjr � sj < 1g and we take h = �: For steep quadratic ker-
nel estimators, Qh (r; s) = k� (r � s) and we take h = p

�: For the OS estimators Qh (r; s) =
K�1PK

j=1 �j (r)�j (s) and we take h = K; where
�
�j (r)

	
are orthonormal basis functions on

L2[0; 1] satisfying
R 1
0 �j (r) dr = 0: A prewhitened version of the above estimators can also be

used. See, for example, Andrews and Monahan (1992) and Xiao and Linton (2002).
For our theoretical development below, we use an asymptotically equivalent estimatorWT (~�T )

de�ned by

WT (�) =
1

T

TX
t=1

TX
s=1

Q�h

�
t

T
;
s

T

�
f (vt; �) [f (vs; �)]

0 (3)

where

Q�h (r; s) = Qh (r; s)�
Z 1

0
Qh (� ; s) d� �

Z 1

0
Qh (r; �) d� +

Z 1

0

Z 1

0
Qh (�1; �2) d�1d�2

is the centered version of Qh (r; s) satisfying
R 1
0 Q

�
h (r; �) dr =

R 1
0 Q

�
h (� ; s) ds = 0 for any � : For OS

HAR variance estimators, centering is not necessary as Q�h (r; s) = Qh (r; s) : With the variance
estimator WT (~�T ); the two-step GMM estimator is:

�̂T = argmin
�2�

gT (�)
0W�1

T (~�T )gT (�) :

Suppose we want to test the linear null hypothesis H0 : R�0 = r against H0 : R�0 6= r where
R is a p� d matrix with full row rank. Nonlinear restrictions can be converted to linear ones by
the delta method. We consider three types of test statistics. The �rst type is the conventional
Wald statistic. The normalized Wald statistic is

WT :=WT (�̂T ) = T (R�̂T � r)0
�
R
h
GT (�̂T )

0W�1
T (�̂T )GT (�̂T )

i�1
R0
��1

(R�̂T � r)=p;

where

GT (�) =
@gT (�)

@�0
:

When p = 1 and for one-sided alternative hypotheses, we can construct the t statistic tT = tT (�̂T )
where tT (�T ) is de�ned to be

tT (�T ) =

p
T (R�T � r)n

R
�
GT (�T )0W

�1
T (�T )GT (�T )

��1
R0
o1=2 :

The second type of test statistic is based on the likelihood ratio principle. Let �̂T;R be the
restricted second-step GMM estimator:

�̂T;R = argmin
�2�

gT (�)
0W�1

T (~�T )gT (�) s:t: R� = r:

The likelihood ratio principle suggests the GMM distance statistic (or GMM criterion function
statistic) given by

DT :=
h
TgT (�̂T )

0W�1
T (��T )gT (�̂T )� TgT (�̂T;R)0W�1

T (��T )gT (�̂T;R)
i
=p
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where ��T is a
p
T -consistent estimator of �0; i.e. ��T � �0 = Op(1=

p
T ): Typically, we take ��T to

be ~�T ; the unrestricted �rst-step estimator. To ensure that DT � 0; we use the same W�1
T (��T )

in computing the restricted and unrestricted GMM criterion functions.
The third type of test statistic is the GMM counterpart of the score statistic or Lagrange

Multiplier (LM) statistic. It is based on the score or gradient of the GMM criterion function, i.e.
�T (�) = G

0
T (�)W

�1
T (��T )gT (�). The test statistic is given by

ST = T
h
�T (�̂T;R)

i0 h
G0T (�̂T;R)W

�1
T (��T )GT (�̂T;R)

i�1
�T (�̂T;R)=p

where as before ��T is a
p
T -consistent estimator of �0:

Under the usual asymptotics where h ! 1 but at a slower rate than the sample size T; all
three statistics WT ; DT and ST are asymptotically distributed as �2p=p, and the t-statistic tT is
asymptotically normal under the null. The question is, what are the limiting distributions ofWT ;
DT ; ST and tT when h is held �xed as T !1? The rationale of considering this type of thought
experiment is that it may deliver asymptotic approximations that are more accurate than the
chi-square or normal approximation in �nite samples.

When h is �xed, that is, b; � or K is �xed, the variance matrix estimator involves a �xed
amount of smoothing in that it is approximately equal to an average of a �xed number of quan-
tities from a frequency domain perspective. The �xed-b, �xed-� or �xed-K asymptotics may be
collectively referred to as the �xed-smoothing asymptotics. Correspondingly, the conventional
asymptotics under which h ! 1, T ! 1 jointly is referred to as the increasing-smoothing
asymptotics. In view of the de�nition of h for each HAR variance estimator, the magnitude of h
indicates the amount or level of smoothing in each case.

3 The Fixed-smoothing Asymptotics

3.1 Fixed-smoothing asymptotics for the variance estimator

To establish the �xed-smoothing asymptotics, we maintain Assumption 1 on the kernel function
and basis functions.

Assumption 1 (i) For kernel HAR variance estimators, the kernel function k (�) satis�es the
following condition: for any b 2 (0; 1] and � � 1, kb (x) and k� (x) are symmetric, continuous,
piecewise monotonic, and piecewise continuously di¤erentiable on [�1; 1]. (ii) For the OS HAR
variance estimator, the basis functions �j (�) are piecewise monotonic, continuously di¤erentiable
and orthonormal in L2[0; 1] and

R 1
0 �j (x) dx = 0:

Assumption 1 on the kernel function is very mild. It includes many commonly used kernel
functions such as the Bartlett kernel, Parzen kernel, QS kernel, Daniel kernel and Tukey-Hanning
kernel. Under Assumption 1, we can use the Fourier series expansion to show that Q�h (r; s) has
the following uni�ed representation for all the HAR variance estimators we consider:

Q�h (r; s) =
1X
j=1

�j�j (r) �j (s) ; (4)

where f�j (r)g is a sequence of continuously di¤erentiable functions satisfying
R 1
0 �j (r) dr = 0.

The right hand side of (4) converges absolutely and uniformly over (r; s) 2 [0; 1] � [0; 1]: For
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positive semi-de�nite kernels k (�), the above representation also follows from Mercer�s theorem,
in which case �j is the eigenvalue and �j (r) is the corresponding orthonormal eigen function for
the Fredholm operator with kernel Q�h (r; s) : Alternatively, the representation can be regarded
as a spectral decomposition of this Fredholm operator, which can be shown to be compact. This
representation enables us to give a uni�ed proof for the contracted kernel HAR estimator, the
exponentiated kernel HAR estimator and the OS HAR estimator. For kernel HAR estimation,
there is no need to single out non-smooth kernels such as the Bartlett kernel and treat them
di¤erently as in KV (2005).

De�ne

Gt(�) =
@gt (�)

@�0
=
1

T

tX
j=1

@f(vj ; �)

@�0
for t � 1 and G0 (�) = 0:

Let ut = f(vt; �0) and
�0 (t) = 1; et s iidN(0; Im):

We make the following four assumptions on the GMM estimators and the data generating process.

Assumption 2 plimT!1�̂T = �0; plimT!1�̂T;R = �0; plimT!1~�T = �0 for an interior point
�0 2 �:

Assumption 3
P1
j=�1 k�jk <1 where �j = Eutu0t�j.

Assumption 4 For any �T = �0 + op (1) ; plimT!1G[rT ] (�T ) = rG uniformly in r where G =
G(�0) and G(�) = E@f(vt; �)=@�0.

Assumption 5 (i) T�1=2
PT
t=1�j (t=T )ut converges weakly to a continuous distribution, jointly

over j = 0; 1; :::; J for every �xed J:
(ii) The following holds:

P

 
1p
T

TX
t=1

�j

�
t

T

�
ut � x for j = 0; 1; :::; J

!

= P

 
�
1p
T

TX
t=1

�j

�
t

T

�
et � x for j = 0; 1; :::; J

!
+ o (1) as T !1

for every �xed J where x 2 Rp and � is the matrix square root of 
; i.e. ��0 = 
 :=
P1
j=�1 �j :

Assumptions 2�4 are standard assumptions in the literature on the �xed-smoothing asymp-
totics. They are the same as those in Kiefer and Vogelsang (2005), Sun and Kim (2012a), among
others. Assumption 5 is a variant of the standard multivariate CLT. If Assumption 1 holds and

T 1=2g[rT ](�0) =
1p
T

[rT ]X
t=1

ut
d! �Bm(r)

where Bm(r) is a standard Brownian motion, then Assumption 5 holds. So Assumption 5 is
weaker than the above FCLT, which is typically assumed in the literature on the �xed-smoothing
asymptotics.

A great advantage of maintaining only the CLT assumption is that our results can be eas-
ily generalized to the case of higher dimensional dependence, such as spatial dependence and
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spatial-temporal dependence. In fact, Sun and Kim (2012b) have established the �xed-smoothing
asymptotics in the spatial setting using only the CLT assumption. They avoid the more restric-
tive FCLT assumption maintained in BCHV (2011). With some minor notational change and a
small change in Assumption 4 as in Sun and Kim (2012b), our results remain valid in the spatial
setting.

Assumption 5 only assumes that the approximation error is o(1); which is enough for our
�rst order �xed-smoothing asymptotics. However, it is useful to discuss the composition of the
approximation error. Let 	J (t) = (�0 (t) ;�1 (t) ; :::;�J (t))

0 and aJ 2 RJ+1 be a vector of
the same dimension. It follows from Lemma 1 in Taniguchi and Puri (1996) that under some
additional conditions:

P

 
a0J

1p
T

TX
t=1

	J

�
t

T

�
ut � x

!
= P

 
a0J�

1p
T

TX
t=1

	J

�
t

T

�
et � x

!
+
c(x)p
T
+O

�
1

T

�
for some function c(x). In the above Edgeworth expansion, the approximation error of order
c(x)=

p
T captures the skewness of ut. When ut is Gaussian or has a symmetric distribution, this

term disappears. Part of the approximation error of order O(1=T ) comes from the stochastic
dependence of ut: If we replace the iid Gaussian process f�etg by a dependent Gaussian process�
uNt
	
that has the same covariance structure as futg, then we can remove this part of the

approximation error.
To present Assumption 5 more compactly, we introduce the notion of asymptotic equivalence

in distribution. Consider two stochastically bounded sequences of random vectors �T 2 Rp and
�T 2 Rp, we say that they are asymptotically equivalent in distribution and write �T

as �T if and
only if Ef (�T ) = Ef (�T ) + o (1) as T ! 1 for all bounded and continuous functions f (�) on
Rp: According to Lemma 3 in the appendix, Assumption 5 is equivalent to

1p
T

TX
t=1

�j

�
t

T

�
ut

as �
1p
T

TX
t=1

�j

�
t

T

�
et

jointly over j = 0; 1; :::; J .
Let


j (�) =

"
1p
T

TX
t=1

�j

�
t

T

�
f (vt; �)

#"
1p
T

TX
t=1

�j

�
t

T

�
f (vt; �)

#0
:

Using the uniform series representation in (4), we can write

WT (�) =

1X
j=1

�j
j (�) ;

which is an in�nite weighted sum of outer-products. To establish the �xed-smoothing asymptotic
distribution of WT (�) under Assumption 5, we split WT (�) into a �nite sum part and the
remainder part: WT (�) =

PJ
j=1 �j
j (�) +

P1
j=J+1 �j
j (�). For each �xed J; we can use

Assumptions 2�5 to obtain the asymptotically equivalent distribution for the �rst term. However,
for the second term to vanish, we require J !1: To close the gap in our argument, we use Lemma
1 below, which is similar to Lemma 2 in Kim and Sun (2012b). The lemma puts our proof on a
rigorous footing and may be of independent interest.
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Lemma 1 Suppose !T = �T;J + �T;J and !T does not depend on J: Assume that there exist �
�
T;J

and �T such that
(i) P

�
�T;J < �

�
� P

�
��T;J < �

�
= o(1) for each �xed J and each � 2 R as T !1;

(ii) P
�
��T;J < �

�
� P (�T < �) = o(1) uniformly over su¢ ciently large T for each � 2 R as

J !1;
(iii) the CDF of �T is equicontinuous on R when T is su¢ ciently large, and
(iv) �T;J

p! 0 uniformly in T as J !1: Then

P (!T < �) = P (�T < �) + o(1) for each � 2 R as T !1:

Lemma 1 allows us to approximate the distribution of !T by that of �T : Using this lemma,
we can prove the lemma below.

Lemma 2 Let Assumptions 1-5 hold, then for any
p
T -consistent estimator ��T and for a �xed

h,
(a) WT (��T ) =WT (�0) + op (1) ;

(b) WT (��T )
asWeT := �T

�1PT
t=1

PT
�=1Q

�
h (t=T; �=T ) ete

0
��

0;

(c) WT (��T )
d!W1 with W1 = � ~W1�0 where

~W1 =

Z 1

0

Z 1

0
Q�h(r; s)dBm(r)dBm(s)

0:

Lemmas 2(a) and (b) show that the estimation uncertainty in ��T does not matter asymptoti-
cally. It is well known that this type of result holds under the conventional increasing-smoothing
asymptotics. The same result holds under the �xed-smoothing asymptotics as long as the weight-
ing function has been centered. Lemma 2(c) gives a uni�ed representation of the limiting dis-
tribution. The presentation applies to smooth kernels as well as nonsmooth kernels such as the
Bartlett kernel.

Although we do not make the FCLT assumption, the limiting distribution of WT (��T ) can still
be represented by a functional of Brownian motion as in Lemma 2(c). This representation serves
two purposes. First, it gives an explicit representation of the limiting distribution. It is standard
practice to obtain the limiting distribution in order to conduct asymptotically valid inference.
However, this is not necessary, as we can simply use the asymptotically equivalent distribution
in Lemma 2(b). Second, the representation in Lemma 2(c) enables us to compare the results we
obtain here with existing results. It is reassuring that the limiting distribution W1 is the same
as that obtained by Kiefer and Vogelsang (2005), Phillips, Sun and Jin (2006, 2007), and Sun
and Kim (2012a), among others.

3.2 Fixed-smoothing asymptotics for the test statistics

We now establish the asymptotic distributions of WT ;DT ;ST and tT when h is �xed. For kernel
covariance estimators, we focus on the case that k (�) is positive de�nite, as otherwise the two-
step estimator may not even be consistent. In this case, we can show that, for all the covariance
estimators we consider, W1 is nonsingular with probability one. Hence, using Lemma 2 and
Lemma 4 in the appendix, we have WT (~�T )

�1 as W�1
eT : Using this result and Assumptions 1-5,
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we have
p
T
�
�̂T � �0

�
= �

h
G0WT (~�T )

�1G
i�1

G0WT (~�T )
�1pTgT (�0) + op (1)

as �
�
G0W�1

eT G
��1

G0W�1
eT

1p
T

TX
t=1

�et (5)

d! �
�
G0W�1

1 G
��1

G0W�1
1 �Bm (1) :

So �̂T is not asymptotically normal but rather asymptotically mixed normal. More speci�cally,
W�1
1 is independent of Bm(1); so conditional on W�1

1 ; the limiting distribution is normal with
the conditional variance depending on W�1

1 : Due to the asymptotic mixed-normality, it is not
straightforward to derive the �xed-smoothing asymptotics of the test statistics WT ;DT ;ST and
tT .

Using (5) and Lemma 4 in the appendix, we have WT
as FeT and WT

d! F1 where

FeT =

"
R
�
G0W�1

eT G
��1

G0W�1
eT �

1p
T

TX
t=1

et

#0 h
R
�
G0W�1

eT G
��1

R0
i�1

�
"
R
�
G0W�1

eT G
��1

G0W�1
eT �

1p
T

TX
t=1

et

#
=p;

and

F1 =
h
R
�
G0W�1

1 G
��1

G0W�1
1 �Bm(1)

i0 h
R
�
G0W�1

1 G
��1

R0
i�1

�
h
R
�
G0W�1

1 G
��1

G0W�1
1 �Bm(1)

i
=p:

To show that FeT and F1 are pivotal, we let et := (e0t;p; e
0
t;d�p; e

0
t;q)

0. The subscripts p, d� p;
and q on e indicate not only the dimensions of the random vectors and but also distinguish them
so that, for example, et;p is di¤erent and independent from et;q for all values of p and q: Denote

Cp;T =
1p
T

TX
t=1

et;p, Cq;T =
1p
T

TX
t=1

et;q

and

Cpp;T =
1

T

TX
t=1

TX
�=1

Q�h(
t

T
;
�

T
)et;pe

0
�;p; Cpq;T =

1

T

TX
t=1

TX
�=1

Q�h(
t

T
;
�

T
)et;pe

0
�;q (6)

Cqq;T =
1

T

TX
t=1

TX
�=1

Q�h(
t

T
;
�

T
)et;qe

0
�;q; Dpp;T = Cpp;T � Cpq;TC�1qq;TC

0
pq;T :

Similarly let
Bm(r) :=

�
B0p(r); B

0
d�p(r); B

0
q(r)

�0
where Bp(r); Bd�p(r) and Bq(r) are independent standard Brownian motion processes of dimen-
sions p, d� p; and q; respectively. Denote

Cpp =

Z 1

0

Z 1

0
Q�h(r; s)dBp(r)dBp(s)

0; Cpq =

Z 1

0

Z 1

0
Q�h(r; s)dBp(r)dBq(s)

0 (7)

Cqq =

Z 1

0

Z 1

0
Q�h(r; s)dBq(r)dBq(s)

0; Dpp = Cpp � CpqC�1qq C 0pq:
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Then with ingenious use of some theory of multivariate statistics, we obtain the following theorem.

Theorem 1 Let Assumptions 1-5 hold. Assume that k (�) used in the kernel HAR variance
estimation is positive de�nite. Then, for a �xed h;

(a) WT (�̂T )
as FT :=

h
Cp;T � Cpq;TC�1qq;TCq;T

i0
D�1pp;T

h
Cp;T � Cpq;TC�1qq;TCq;T

i
=p;

(b) WT (�̂T )
d! F1 :=

�
Bp (1)� CpqC�1qq Bq (1)

�0
D�1pp

�
Bp (1)� CpqC�1qq Bq (1)

�
=p;

(c) tT (�̂T )
as
h
Cp;T � Cpq;TC�1qq;TCq;T

i
=
p
Dpp;T ;

(d) tT (�̂T )
d! t1 :=

�
Bp (1)� CpqC�1qq Bq (1)

�
=
p
Dpp;

where (C 0p;T ; C
0
q;T )

0 is independent of Cpq;TC
�1
qq;T and Dpp;T ; and

�
Bp (1)

0 ,Bq (1)
0�0 is independent

of CpqC�1qq and Dpp:

Remark 1 Theorem 1 shows that both the asymptotically equivalent distribution FT and the
limiting distribution F1 are pivotal. In particular, they do not depend on the long run variance

: Both FT and F1 are nonstandard but can be simulated. It is easier to simulate FT ; as it
involves only T iid standard normal vectors.

Remark 2 LetWT (~�T ) be the Wald statistic based on the �rst-step GMM estimator ~�T . WT (~�T )

is constructed in the same way as WT (�̂T ): It is easy to see that WT (~�T )
d! Bp (1)

0C�1pp Bp (1) =p:
See KV (2005) for contracted kernel HAR variance estimators, Phillips, Sun and Jin (2006,2007)
for exponentiated kernel HAR variance estimators, and Sun (2013) for OS HAR variance esti-
mators. Comparing the limit Bp (1)

0C�1pp Bp (1) =p with F1 given in Theorem 1, we can see that
F1 contains additional adjustment terms.

Remark 3 When the model is exactly identi�ed, we have q = 0. In this case,

F1 = Bp (1)
0C�1pp Bp (1) =p:

This limit is the same as that in the one-step GMM framework. This is not surprising, as when
the model is exactly identi�ed, the GMM weighting matrix becomes irrelevant and the two-step
estimator is numerically identical to the one-step estimator.

Remark 4 It is interesting to see that the limiting distribution F1 (and the asymptotically equiv-
alent distribution) depends on the degree of over-identi�cation. Typically such a dependence shows
up only when the number of moment conditions is assumed to grow with the sample size. Here the
number of moment conditions is �xed. It remains in the limiting distribution because it contains
information on the dimension of the random limiting matrix ~W1:

Theorem 2 Let Assumptions 1-5 hold. Then, for a �xed h;

DT =WT + op (1) and ST =WT + op (1) :

It follows from Theorem 2 that all three statistics are asymptotically equivalent in distribution
to the same distribution FT de�ned in Theorem 1(a). They also have the same limiting distrib-
ution F1: So the asymptotic equivalence of the three statistics under the increasing-smoothing
asymptotics remains valid under the �xed-smoothing asymptotics.

Careful inspection of the proofs of Theorems 1 and 2 shows that the two theorems hold
regardless of which

p
T -consistent estimator of �0 we use in estimating WT (�0) and GT (�0) in

DT and ST : However, it may make a di¤erence to high orders. We leave this for future research.

11



4 Representation and Approximation of the Fixed-smoothing
Asymptotic Distribution

In this section, we establish di¤erent representations of the �xed-smoothing limiting distribu-
tion. These representations highlight the connection and di¤erence between the nonstandard
approximation and the standard �2 or normal approximation.

4.1 The case of series HAR variance estimation

To obtain a new representation of F1; we consider the matrix

K

�
Cpp Cpq
C 0pq Cqq

�
d
=

Z 1

0

Z 1

0
Q�h (r; s) dBp+q (r) dB

0
p+q(s)

=
KX
j=1

�Z 1

0
�j (r) dBp+q (r)

� �Z 1

0
�j (r) dBp+q (r)

�0
where Bp+q (r) is the standard Brownian motion of dimension p + q: Since f�j (r)g are ortho-
normal,

R 1
0 �j (r) dBp+q (r)

ds iidN(0; Ip+q) and the above matrix follows a standard Wishart
distribution Wp+q (K; Ip+q) : A well known property of a Wishart random matrix is that Dpp =
Cpp � CpqC�1qq C 0pq s Wp (K � q; Ip) and is independent of both Cpq and Cqq: This implies that
Dpp is independent of Bp (1)�CpqC�1qq Bq (1), and that F1 is equal in distribution to a quadratic
form with an independent Wishart matrix as the (inverse) weighting matrix.

This brings F1 close to Hotelling�s T 2 distribution, which is the same as a standard F distri-
bution after some multiplicative adjustment. The only di¤erence is that Bp (1)�CpqC�1qq Bq (1) is
not normal and hence

Bp (1)� CpqC�1qq Bq (1)2 does not follow a chi-square distribution. How-
ever, conditional on CpqC�1qq Bq (1) ; jjBp (1)�CpqC�1qq Bq (1) jj2 follows a noncentral �2p distribution
with noncentrality parameter

�2 = jjCpqC�1qq Bq (1) jj2:

It then follows that F1 is conditionally distributed as a noncentral F distribution. Let

� =
K

(K � p� q + 1) ; �
2 = E�2 =

pq

K � q � 1 :

The following theorem presents this result formally.

Theorem 3 For series HAR variance estimation, we have
(a) ��1F1

d
= Fp;K�p�q+1

�
�2
�
; a mixed noncentral F random variable with random noncen-

trality parameter �2;
(b) P (��1F1 < z) = Fp;K�p�q+1

�
z; �2

�
+ o

�
K�1� as K !1;

(c) P (pF1 < z) = Gp (z)� G0p (z) z
�
p+2q�1
K

�
+ G00p (z) z2 1K + o

�
1
K

�
as K ! 1; where Gp (z)

is the CDF of the chi-square distribution �2p:

Remark 5 According to part (a),

F1
d
=

�2p
�
�2
�
=p

�2K�p�q+1=K

12



where �2p
�
�2
�
is independent of �2K�p�q+1. It is easy to see that

�2p
�
�2
� d
= jjCp�1 � Cp�KC 0q�K

�
Cq�KC

0
q�K

��1
Cq�1jj2

where each Cm�n is anm�n matrix (vector) with iid standard normal elements and Cp�1; Cp�K ; Cq�K
and Cq�1 are mutually independent. This provides a simple way to simulate F1:

Remark 6 Parts (a) and (b) of Theorem 3 are intriguing in that the limiting distribution under
the null is approximated by a noncentral F distribution, although the noncentrality parameter
goes to zero as K !1.

Remark 7 When q = 0; that is, when the model is just identi�ed, we have �2 = �2 = 0 and so

K � p+ 1
K

F1
d
= Fp;K�p+1:

This result is the same as that obtained by Sun (2013). So an advantage of using orthonormal
series HAR variance estimator is that the �xed-smoothing asymptotics is exactly a standard F
distribution for just identi�ed models.

Remark 8 The asymptotics obtained under the speci�cation that K is �xed and then letting
K !1 is a sequential asymptotics. As K !1; we may show that

��1F1 =
�2p=p

�2K�p�q+1= (K � p� q + 1) + op (1) = �
2
p=p+ op (1) :

To the �rst order, the �xed-smoothing asymptotic distribution reduces to the distribution of �2p=p.
As a result, if �rst order asymptotics are used in both steps in the sequential asymptotic theory,
then the sequential asymptotic distribution is the same as the conventional joint asymptotic dis-
tribution. However, Theorem 3 is not based on the �rst order asymptotics but rather a high order
asymptotics. The high order sequential asymptotics can be regarded as a convenient way to obtain
an asymptotic approximation that better re�ects the �nite sample distribution of the test statistic
DT ; ST or WT :

Remark 9 Instead of approximations via asymptotic expansions, all three types of approxima-
tions are distributional approximations. More speci�cally, the �nite sample distributions of DT ;
ST ; and WT are approximated by the distributions of

�2p
p
;
�2p
�
�2
�
=p

�2K�p�q+1=K
; and

�2p
�
�2
�
=p

�2K�p�q+1=K
(8)

respectively under the conventional joint asymptotics, the �xed-smoothing asymptotics, and the
higher order sequential asymptotics. An advantage of using distributional approximations is that
they hold uniformly over their supports (by Pólya�s Lemma).

Remark 10 Theorem 3(c) gives a �rst order distributional expansion of F1: It is clear that the
di¤erence between pF1 and �2p depends on K; p and q: Let �

1��
p = G�1p (1� �) be the (1� �)

quantile of Gp(z); then

P
�
pF1 � �1��p

�
= �+ G0p

�
�1��p

�
�1��p

�
p+ 2q � 1

K

�
� G00p

�
�1��p

� �
�1��p

�2 1
K
+ o

�
1

K

�
:
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For a typical critical value �1��p ; G0p(�1��p ) > 0 and G00p (�1��p ) < 0; so we expect P (F1 �
�1��p =p) > �; at least when K is large. So the critical value from F1 is expected to be larger than
�1��p =p: For given p and large K; the di¤erence between P (F1 � �1��p =p) and � increases with q;
the degree of over-identi�cation. A practical implication of Theorem 3(c) is that when the degree
of over-identi�cation is large, using the chi-square critical value rather than the critical value
from F1 may lead to the �nding of a statistically signi�cant relationship that does not actually
exist.
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Figure 1: 95% quantitle of the nonstandard distribution and its noncentral F approximation

Figure 1 reports 95% critical values from the two approximations: the noncentral (scaled)
Fp;K�p�q+1

�
�; �2

�
approximation and the nonstandard F1 approximation, for di¤erent combina-

tions of p and q. The nonstandard F1 distribution is simulated according to the representation in
Remark 5 and the nonstandard critical values are based on 10000 simulation replications. Since
the noncentral F distribution appears naturally in power analysis, it has been implemented in
standard statistical and programming packages. So critical values from the noncentral F dis-
tribution can be obtained easily. Let NCF 1�� := F1��p;K�p�q+1

�
�2
�
be the (1� �) quantile of

the noncentral Fp;K�p�q+1
�
�; �2

�
distribution, then �NCF 1�� corresponds to F1��1 ; the (1� �)

quantile of the nonstandard F1 distribution. Figure 1 graphs �NCF 1�� and F1��1 against dif-
ferent K values. The �gure exhibits several patterns, all of which are consistent with Theorem
3(c). First, the noncentral F critical values are remarkably close to the nonstandard critical
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values. So approximating �2 by its mean �2 does not incur much approximation error. Second,
the noncentral F and nonstandard critical values increase with the degree of over-identi�cation
q. The increase is more signi�cant when K is smaller. This is expected as both the noncen-
trality parameter �2 and the multiplicative factor � increase with q: In addition, as q increases,
the denominators in the noncentral F and nonstandard distributions become more random. All
these e¤ects shift the probability mass to the right as q increases. Third, for any given p and
q combination, the noncentral F and nonstandard critical values decrease monotonically as K
increases and approach the corresponding critical values from the chi-square distribution.

In parallel with Theorem 3, we can represent and approximate t1 as follows:

Theorem 4 Let � = K=(K � q): For series HAR variance estimation, we have
(a) t1=

p
�

d
= tK�q (�) ; a mixed noncentral t random variable with random noncentrality

parameter � = C1qC�1qq Bq (1) ;
(b) P (t1=

p
� < z) = 1

2 + sgn(z)
1
2F1;K�q

�
z2; �2

�
+ o

�
K�1� as K ! 1; where �2 = q

K�q�1
and sgn(�) is the sign function;

(c) P (t1 < z) = � (z)�jzj�(z)
�
z2 + (4q + 1)

�
=(4K)+o

�
K�1� as K !1; where � (z) and

� (z) are the CDF and pdf of the standard normal distribution.

Theorem 4(a) is similar to Theorem 3(a). With a scale adjustment, the �xed-smoothing
asymptotic distribution of the t statistic is a mixed noncentral t distribution. The random non-

centrality parameter can be simulated according to � d
= C1�KC

0
q�K(Cq�KC

0
q�K)

�1Cq�1 where
each matrix Cm�n is anm�n matrix (vector) with iid standard normal elements and C1�K ; Cq�K
and Cq�1 are mutually independent. So the �xed-smoothing asymptotic distribution t1 can be
simulated easily.

According to Theorem 4(b), we can approximate the quantile of t1 by that of a noncentral
F distribution. More speci�cally, let t1��1 be the (1� �) quantile of t1; then

t1��1 _=

8<:
q
�F1�2�1;K�q(�

2); � < 0:5

�
q
�F2��11;K�q(�

2); � � 0:5

where F1�2�1;K�q(�
2) is the (1� 2�) quantile of the noncentral F distribution. As in the case of

quantile approximation for F1; the above approximation is remarkably accurate. Figure 2, which
is similar to Figure 1, illustrates this. The �gure graphs t1��1 and its approximation against the
values of K for di¤erent degrees of over-identi�cation and for � = 0:05 and 0:95: As K increases,
the quantiles approach the normal quantiles �1:645. However when K is small or q is large, there
is a signi�cant di¤erence between the normal quantiles and the corresponding quantiles from t1:
This is consistent with Theorem 4(c). For a given small K, the absolute di¤erence increases with
the degree of over-identi�cation q. For a given q; the absolute di¤erence decreases with K:

Figure 2 and Theorem 4(c) suggest that the quantile of t1 is larger than the corresponding
normal quantile in absolute value. So the test based on the normal approximation rejects the
null more often than the test based on the �xed-smoothing approximation. This provides an
explanation of the large size distortion of the asymptotic normal test.

4.2 The case of kernel HAR variance estimation

In the case of kernel HAR variance estimation, Dpp = Cpp � CpqC�1qq C 0pq is not independent of
Cpq or Cqq: It is not as easy to simplify the nonstandard distribution as in the case of series HAR
variance estimation. Di¤erent proofs are needed.
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Figure 2: 5% and 95% quantitles of the nonstandard distribution t1 and their noncentral F
approximation

Let

�1 =

Z 1

0
Q�h (r; r) dr and �2 =

Z 1

0

Z 1

0
[Q�h (r; s)]

2 drds:

In Lemma 5 in the appendix, we show that �1 � 1 � 1=h and �2 � 1=h where \a � b�indicates
that a and b are of the same order of magnitude.

Theorem 5 For kernel HAR variance estimation, we have
(a) pF1

d
= �2p=�

2 where �2p is independent of �
2,

�2
d
=

e0p
�
Ip + CpqC

�1
qq C

�1
qq C

0
pq

�
ep

e0p
�
Ip + CpqC

�1
qq C

�1
qq C 0pq

� �
Cpp � CpqC�1qq C 0pq

��1 �
Ip + CpqC

�1
qq C

�1
qq C 0pq

�
ep

and ep = (1; 0; :::; 0)
0 2 Rp.

(b) As h!1; we have �2 p! 1 and

P (pF1 < z) = Gp (z) + G0p (z) z
�
(�1 � 1)�

�2
�1
(p+ 2q � 1)

�
+ G00p (z) z2�2 + o (�2)

where as before Gp (z) is the CDF of the chi-square distribution �2p:
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Remark 11 Theorem 5(a) shows that pF1 follows a scale-mixed chi-square distribution. Since
�2 !p 1 as h!1; the sequential limit of pWT is the usual chi-square distribution. The result is
the same as in the series HAR variance estimation. The virtue of Theorem 5(a) is that it gives
an explicit characterization of the random scaling factor �2:

Remark 12 Using Theorem 5(a), we have P (pF1 < z) = EGp
�
z�2
�
: Theorem 5(b) follows by

taking a Taylor expansion of Gp
�
z�2
�
around Gp (z) and approximating the moments of �2: In

the case of the contracted kernel HAR variance estimation, Sun (2012) establishes an expansion
of the asymptotic distribution for FT (~�T ), which is based on the one-step GMM estimator ~�T :
Using the notation in this paper, it is shown that

P
�
Bp (1)

0C�1pp Bp (1) < z
�
= Gp (z) + G0p (z) z

�
(�1 � 1)�

�2
�1
(p� 1)

�
+ G00p (z) z2�2 + o (�2) :

So up to the order O(�2); the two expansions agree except that there is an additional term in
Theorem 5(b) that re�ects the degree of over-identi�cation. If we use the chi-square distribution
or the �xed smoothing asymptotic distribution Bp (1)

0C�1pp Bp (1) as the reference distribution, then
the probability of over-rejection increases with q, at least when �2 is small.

We now focus on the case of contracted kernel HAR variance estimation. As h ! 1; i.e.
b! 0; we can show that

�1 = 1� bc1 + o(b) and �2 = bc2 + o (b) (9)

where

c1 =

Z 1

�1
k (x) dx; c2 =

Z 1

�1
k2 (x) dx:

Using Theorem 5(b) and the identity that �G0
�
z2
� �
z2 + 1

�
= 2G00

�
z2
�
z2; we have, for p = 1 :

P
�
F1 < z2

�
= G

�
z2
�
� c1G0

�
z2
�
z2b� c2

2

�
z4 + (4q + 1) z2

�
G0
�
z2
�
b+ o(b) (10)

where G
�
z2
�
= G1

�
z2
�
:

The above expansion is related to the high order Edgeworth expansion established in Sun and
Phillips (2009) for linear IV regressions. Sun and Phillips (2009) consider the conventional joint
limit under which b! 0 and T !1 jointly and show that

P (jtT (�̂T )j < z) = �(z)�� (�z)

�
�
c1z +

1

2
c2
�
z3 + z (4q + 1)

��
b�(z) + (bT )�g �1;1z�(z) + s:o: (11)

where (bT )�g �1;1z captures the nonparametric bias of the kernel HAR variance estimator, and
�s.o.� stands for smaller order terms. Here g is the order of the kernel used and the explicit
expression for �1;1 is not important here but is given in Sun and Phillips (2009). Observing that
�(z)�� (�z) = G

�
z2
�
; we have �(z) = G0

�
z2
�
z and �0(z) = G0

�
z2
�
+2z2G00

�
z2
�
: Using these

equations, we can represent the high order expansion in (11) as

P (jtT (�̂T )j2 < z2) = P (WT < z
2) (12)

= G
�
z2
�
� c1G0

�
z2
�
z2b� c2

2

�
z4 + (4q + 1) z2

�
G0
�
z2
�
b+ (bT )�g �1;1G0

�
z2
�
z2 + s:o:
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Comparing this with (10), the terms of order O(b) are seen to be exactly the same across the two
expansions.

Let z2 = F1��1 be the (1� �) quantile from the distribution of F1; i.e. P
�
F1 < F1��1

�
=

1� �: Then

G
�
F1��1

�
� c1G0

�
F1��1

�
F1��1 b� c2

2

h�
F1��1

�2
+ (4q + 1)F1��1

i
G0
�
F1��1

�
b = 1� �+ o(b)

and so
P (WT < F1��1 ) = 1� �+ (bT )�g �1;1G0

�
F1��1

�
F1��1 + s:o:

That is, using the critical value F1��1 eliminates a term in the higher order distributional ex-
pansion of WT under the conventional asymptotics. The nonstandard critical value F1��1 is
thus high order correct under the conventional asymptotics. In other words, the nonstandard
approximation provides a high order re�nement over the conventional chi-square approximation.

Although the high order re�nement is established for the case of p = 1 and linear IV regres-
sions, we expect it to be true more generally and for all three types of HAR variance estimators.
All we need is a higher order Edgeworth expansion for the Wald statistic in a general GMM set-
ting. In view of Sun and Phillips (2009), this is not di¢ cult conceptually but can be technically
very tedious.

5 Simulation Evidence

In this section, we study the �nite sample performance of the �xed-smoothing approximations.
We consider the following data generating process:

yt = x0;t�+ x1;t�1 + x2;t�2 + x3;t�3 + "y;t

where x0;t � 1 and x1;t, x2;t and x3;t are scalar regressors that are correlated with "y;t: The
dimension of the unknown parameter � = (�; �1; �2; �3)

0 is d = 4: We have m instruments
z0;t; z1;t; :::; zm�1;t with z0;t � 1. The reduced-form equations for x1;t, x2;t and x3;t are given by

xj;t = zj;t +

m�1X
i=d�1

zi;t + "xj ;t for j = 1; 2; 3:

We assume that zi;t for i � 1 follows either an AR(1) process

zi;t = �zi;t�1 +
p
1� �2ezi;t;

or an MA(1) process
zi;t = �ezi;t�1 +

p
1� �2ezi;t;

where

ezi;t =
eizt + e

0
ztp

2

and et = [e0zt; e
1
zt; :::; e

m�1
zt ]0 s iidN(0; Im): By construction, the variance of zit for any i =

1; 2; :::;m � 1 is 1: Due to the presence of the common shocks e0zt; the correlation coe¢ cient
between the non-constant zi;t and zj;t for i 6= j is 0:5: The DGP for "t = ("yt; "x1t; "x2t; "x3t)

0
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is the same as that for (z1;t; :::; zm�1;t) except the dimensionality di¤erence. The two vector
processes "t and (z1;t; :::; zm�1;t) are independent from each other.

In the notation of this paper, we have f(vt; �) = zt (yt � x0t�) where vt = [y0t; x
0
t; z

0
t]
0, xt =

(1; x1t; x2t; x3t)
0 , zt = (1; z1t; :::; zm�1;t)0. We take � = �0:8;�0:5; 0:0; 0:5; 0:8 and 0:9. We

consider m = 4; 5; 6 and the corresponding degrees of over-identi�cation are q = 0; 1; 2: The null
hypotheses of interest are

H01 : �1 = 0;

H02 : �1 = �2 = 0;

H03 : �1 = �2 = �3 = 0

where p = 1; 2 and 3 respectively. The corresponding matrix R is the 2 : p+1 rows of the identity
matrix Id: We consider two signi�cance levels � = 5% and � = 10% and two di¤erent sample
sizes T = 100; 200: The number of simulation replications is 10000.

We �rst examine the �nite sample size accuracy of di¤erent tests based on the OS HAR
variance estimator. The tests are based on the same Wald test statistic, so they have the same
size-adjusted power. The di¤erence lies in the reference distributions or critical values used.
We employ the following critical values: �1��p =p, K

K�p+1F
1��
p;K�p+1;

K
K�p�q+1F

1��
p;K�p�q+1

�
�2
�
with

�2 = pq=(K�q+1); and F1��1 ; leading to the �2 test, the CF (central F) test, the NCF (noncentral
F) test and the nonstandard F1 test. The �2 test uses the conventional chi-square approximation.
The CF test uses the �xed-smoothing approximation for the Wald statistic based on a �rst-step
GMM estimator. Alternatively, the CF test uses the �xed-smoothing approximation with q = 0:
The NCF test uses the noncentral F approximation given in Theorem 3. The F1 test uses the
nonstandard limiting distribution F1 with simulated critical values. For each test, the initial
�rst step estimator is the IV estimator with weight matrix Wo = (Z

0Z=T ) where Z is the matrix
of the observed instruments.

To speed up the computation, we assume thatK is even and use the basis functions �2j�1(x) =p
2 cos 2j�x, �2j(x) =

p
2 sin 2j�x, j = 1; :::;K=2: In this case, the OS HAR variance estimator

can be computed using discrete Fourier transforms. The OS HAR estimator is a simple average of
periodogram. We select K based on the AMSE criterion implemented using the VAR(1) plug-in
procedure in Phillips (2005). For completeness, we reproduce the MSE optimal formula for K
here:

KMSE = 2�
&
0:5

�
tr [(Im2 +Kmm) (

 
)]

4vec(B)0vec(B)

�1=5
T 4=5

'
;

where d�e is the ceiling function, Kmm is the m2 �m2 commutation matrix and

B = ��
2

6

1X
j=�1

j2Ef(vt; �0)f(vt�j ; �0)
0: (13)

Table 1 gives the empirical size of the di¤erent tests for the AR(1) case with sample size
T = 100. The nominal size of the tests is � = 5%: First, as it is clear from the table, the
chi-square test can have a large size distortion. The size distortion can be very severe. For
example, when � = 0:9, p = 3 and q = 2, the empirical size of the chi-square test can be as high
as 71.2%, which is far from 5%, the nominal size of the test. Second, the size distortion of the
CF test is substantially smaller than the chi-square test when the degree of over-identi�cation
is small. This is because the CF test employs the asymptotic approximation that partially
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captures the estimation uncertainty of the HAR variance estimator. Third, the empirical size
of the NCF test is nearly the same as that of the nonstandard F1 test. This is consistent with
Figure 1. This result provides further evidence that the noncentral F distribution approximates
the nonstandard F1 distribution very well. Finally, among the four tests, the NCF and F1
tests have the most accurate size. For the two-step GMM estimator, the HAR variance estimator
appears in two di¤erent places and plays two di¤erent roles � �rst as the inverse of the optimal
weighting matrix and then as part of the asymptotic variance estimator for the GMM estimator.
The nonstandard F1 approximation and the noncentral F approximation attempt to capture
the estimation uncertainty of the HAR variance estimator in both places. In contrast, a crucial
step underlying the central F approximation is that the HAR variance estimator is consistent
when it acts as the optimal weighting matrix. As a result, the central F approximation does not
adequately capture the estimation uncertainty of the HAR variance estimator. This explains why
the NCF and F1 tests have more accurate size than the CF test.

Table 2 presents the simulated empirical size for the MA(1) case. The qualitative observations
for the AR(1) case remain valid. The chi-square test is most size distorted. The NCF and F1
tests are least size distorted. The CF test is in between. As before, the size distortion increases
with the serial dependence, the number of joint hypotheses, and the degree of over-identi�cation.
This table provides further evidence that the noncentral F distribution and the nonstandard
F1 distribution provide more accurate approximations to the sampling distribution of the Wald
statistic.

Tables 3 and 4 report results for the case when the sample size is 200. Compared to the cases
with sample size 100, all tests become more accurate in size. This is well expected. In terms of
the size accuracy, the NCF test and the F1 test are close to each other. They dominate the CF
test, which in turn dominates the chi-square test.

Next, we consider the empirical size of di¤erent tests based on kernel HAR variance estimators.
Both the contracted kernel approach and the exponentiated kernel approach are considered, but
we report only the commonly-used contracted kernel approach as the results are qualitatively
similar. We employ three kernels: the Bartlett, Parzen and QS kernels. These three kernels are
positive (semi) de�nite. For each kernel, we use the data-driven AMSE optimal bandwidth and
its VAR(1) plug-in implementation from Andrews (1991). For each Wald statistic, three critical
values are used: �1��p =p, F1��1 (0) ; and F1��1 (q) where F1��1 (q) is the (1� �) quantile from
the nonstandard F1 distribution with degree of over-identi�cation q: F1��1 (0) coincides with
the critical value from the �xed-smoothing asymptotics distribution derived for the �rst-step IV
estimator.

To save space, we only report the results for the Parzen kernel. Tables 5�8 correspond
to Tables 1�4. It is clear that the qualitative results exhibited in Tables 1�4 continue to apply.
According to the size accuracy, the F1 (q) test dominates the F1 (0) test, which in turn dominates
the conventional �2 test.

6 Conclusion

The paper has developed the �xed-smoothing asymptotics for heteroskedasticity and autocorre-
lation robust inference in a two-step GMM framework. We have shown that the conventional
chi-square test that ignores the estimation uncertainty of the GMM weighting matrix and the
covariance estimator can have very large size distortion. This is especially true when the number
of joint hypotheses being tested and the degree of over-identi�cation are high or the underlying
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processes are persistent. The test based on our new �xed-smoothing approximation reduces the
size distortion substantially and is thus recommended for practical use.

There are a number of interesting extensions. First, given that our proof uses only a CLT,
the results of the paper can be extended easily to the spatial setting, spatial-temporal setting or
panel data setting. See Kim and Sun (2012) for an extension along this line. Second, in the Monte
Carlo experiments, we use the conventional MSE criterion to select the smoothing parameters.
We could have used the methods proposed in Sun and Phillips (2009), Sun, Phillips and Jin
(2008) or Sun (2012) that are tailored towards con�dence interval construction or hypothesis
testing. But in their present forms these methods are either available only for the t-test or
work only in the �rst-step GMM framework. It will be interesting to extend them to more
general tests in the two-step GMM framework. Third, we can use the asymptotically equivalent
distribution to conduct asymptotically valid inferences. Simulation results not reported here show
that the size di¤erence between using the asymptotically equivalent distribution and the limiting
distribution is negligible. However, it is easy to replace the iid process in the asymptotically
equivalent distribution FeT by a dependent process that mimics the degree of autocorrelation in
the moment process. Such a replacement may lead to even more accurate tests and is similar
in spirit to Zhang and Shao (2013) who have shown the high order re�nement of a Gaussian
bootstrap procedure under the �xed-smoothing asymptotics. Finally, the general results of the
paper can be extended to a nonparametric sieve GMM framework. See Chen, Liao and Sun
(2012) for a recent development on autocorrelation robust sieve inference for time series models.

Table 1: Empirical size of the �2 test, F test, noncentral F test and nonstandard F1 test based
on the series LRV estimator for the AR(1) case with T = 100
� �2 CF NCF F1 �2 CF NCF F1 �2 CF NCF F1

p = 1; q = 0 p = 2; q = 0 p = 3; q = 0
-0.8 0.114 0.072 0.072 0.073 0.197 0.087 0.087 0.084 0.310 0.109 0.109 0.111
-0.5 0.081 0.060 0.060 0.059 0.117 0.066 0.066 0.066 0.174 0.077 0.077 0.078
0.0 0.063 0.051 0.051 0.050 0.083 0.052 0.052 0.053 0.112 0.060 0.060 0.062
0.5 0.094 0.063 0.063 0.063 0.142 0.065 0.065 0.065 0.222 0.077 0.077 0.078
0.8 0.134 0.086 0.086 0.088 0.229 0.100 0.100 0.097 0.355 0.119 0.119 0.122
0.9 0.166 0.117 0.117 0.120 0.290 0.150 0.150 0.146 0.437 0.181 0.181 0.184

p = 1; q = 1 p = 2; q = 1 p = 3; q = 1
-0.8 0.186 0.129 0.081 0.077 0.307 0.153 0.088 0.087 0.457 0.193 0.107 0.113
-0.5 0.113 0.086 0.065 0.065 0.175 0.099 0.069 0.068 0.247 0.116 0.079 0.080
0.0 0.081 0.065 0.053 0.052 0.113 0.075 0.057 0.056 0.155 0.085 0.060 0.060
0.5 0.128 0.091 0.064 0.063 0.204 0.110 0.073 0.072 0.308 0.130 0.079 0.080
0.8 0.196 0.140 0.089 0.086 0.331 0.172 0.101 0.099 0.489 0.209 0.112 0.118
0.9 0.252 0.184 0.126 0.123 0.420 0.242 0.155 0.153 0.589 0.301 0.183 0.192

p = 1; q = 2 p = 2; q = 2 p = 3; q = 2
-0.8 0.260 0.190 0.080 0.079 0.425 0.256 0.090 0.083 0.602 0.318 0.100 0.097
-0.5 0.154 0.117 0.061 0.062 0.244 0.146 0.065 0.061 0.351 0.175 0.074 0.073
0.0 0.104 0.085 0.055 0.055 0.148 0.101 0.062 0.058 0.211 0.119 0.065 0.063
0.5 0.171 0.129 0.065 0.066 0.279 0.165 0.065 0.061 0.415 0.200 0.073 0.072
0.8 0.268 0.199 0.085 0.082 0.449 0.269 0.090 0.082 0.623 0.330 0.100 0.097
0.9 0.332 0.257 0.124 0.121 0.529 0.358 0.148 0.137 0.712 0.433 0.160 0.157
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Table 2: Empirical size of the �2 test, F test, noncentral F test and nonstandard F1 test based
on the series LRV estimator for the MA(1) case with T = 100
� �2 CF NCF F1 �2 CF NCF F1 �2 CF NCF F1

p = 1; q = 0 p = 2; q = 0 p = 3; q = 0
-0.8 0.072 0.055 0.055 0.055 0.106 0.058 0.058 0.058 0.153 0.069 0.069 0.070
-0.5 0.074 0.055 0.055 0.055 0.101 0.058 0.058 0.059 0.144 0.069 0.069 0.070
0.0 0.063 0.051 0.051 0.050 0.083 0.052 0.052 0.053 0.112 0.060 0.060 0.062
0.5 0.078 0.054 0.054 0.054 0.119 0.060 0.060 0.061 0.182 0.071 0.071 0.072
0.8 0.081 0.056 0.056 0.056 0.125 0.060 0.060 0.062 0.195 0.071 0.071 0.071
0.9 0.077 0.055 0.055 0.055 0.114 0.059 0.059 0.060 0.170 0.070 0.070 0.070

p = 1; q = 1 p = 2; q = 1 p = 3; q = 1
-0.8 0.099 0.074 0.057 0.056 0.160 0.090 0.061 0.060 0.223 0.099 0.067 0.068
-0.5 0.097 0.075 0.057 0.057 0.150 0.088 0.061 0.060 0.207 0.096 0.068 0.068
0.0 0.081 0.065 0.053 0.052 0.113 0.075 0.057 0.056 0.155 0.085 0.060 0.060
0.5 0.108 0.078 0.057 0.056 0.171 0.093 0.062 0.062 0.253 0.107 0.068 0.068
0.8 0.116 0.082 0.057 0.057 0.185 0.097 0.062 0.062 0.274 0.115 0.069 0.070
0.9 0.107 0.077 0.058 0.057 0.163 0.093 0.063 0.062 0.239 0.107 0.070 0.071

p = 1; q = 2 p = 2; q = 2 p = 3; q = 2
-0.8 0.137 0.105 0.054 0.054 0.216 0.133 0.058 0.056 0.305 0.153 0.066 0.066
-0.5 0.131 0.100 0.055 0.055 0.204 0.128 0.063 0.060 0.284 0.146 0.066 0.065
0.0 0.104 0.085 0.055 0.055 0.148 0.101 0.062 0.058 0.211 0.119 0.065 0.063
0.5 0.143 0.109 0.060 0.061 0.231 0.138 0.063 0.060 0.339 0.168 0.067 0.067
0.8 0.153 0.115 0.060 0.061 0.247 0.146 0.062 0.059 0.366 0.177 0.067 0.066
0.9 0.137 0.105 0.058 0.059 0.218 0.134 0.061 0.059 0.316 0.159 0.070 0.070

Table 3: Empirical size of the �2 test, F test, noncentral F test and nonstandard F1 test based
on the series LRV estimator for the AR(1) case with T = 200
� �2 CF NCF F1 �2 CF NCF F1 �2 CF NCF F1

p = 1; q = 0 p = 2; q = 0 p = 3; q = 0
-0.8 0.102 0.071 0.071 0.071 0.150 0.073 0.073 0.073 0.234 0.091 0.091 0.091
-0.5 0.070 0.058 0.058 0.058 0.088 0.062 0.062 0.063 0.117 0.071 0.071 0.072
0.0 0.060 0.054 0.054 0.054 0.065 0.052 0.052 0.052 0.081 0.059 0.059 0.057
0.50 0.079 0.063 0.063 0.063 0.104 0.063 0.063 0.064 0.144 0.066 0.066 0.070
0.8 0.114 0.072 0.072 0.073 0.187 0.079 0.079 0.078 0.283 0.092 0.092 0.093
0.9 0.140 0.091 0.091 0.094 0.243 0.107 0.107 0.104 0.366 0.124 0.124 0.128

p = 1; q = 1 p = 2; q = 1 p = 3; q = 1
-0.8 0.147 0.107 0.072 0.072 0.234 0.126 0.080 0.081 0.348 0.147 0.092 0.094
-0.5 0.083 0.070 0.058 0.057 0.117 0.081 0.066 0.065 0.154 0.094 0.073 0.072
0.0 0.069 0.060 0.053 0.053 0.081 0.064 0.058 0.058 0.100 0.071 0.062 0.061
0.5 0.099 0.080 0.062 0.061 0.139 0.088 0.065 0.062 0.182 0.092 0.070 0.072
0.8 0.164 0.112 0.076 0.073 0.270 0.138 0.083 0.083 0.394 0.159 0.087 0.090
0.9 0.205 0.145 0.095 0.090 0.347 0.178 0.110 0.108 0.498 0.219 0.121 0.127

p = 1; q = 2 p = 2; q = 2 p = 3; q = 2
-0.8 0.195 0.148 0.071 0.073 0.319 0.192 0.075 0.070 0.460 0.233 0.083 0.082
-0.5 0.101 0.082 0.060 0.060 0.144 0.098 0.066 0.063 0.190 0.116 0.069 0.070
0.0 0.074 0.066 0.053 0.054 0.096 0.074 0.056 0.057 0.117 0.083 0.059 0.060
0.5 0.113 0.091 0.056 0.056 0.166 0.107 0.064 0.059 0.234 0.129 0.070 0.069
0.8 0.225 0.170 0.072 0.073 0.371 0.216 0.075 0.070 0.539 0.264 0.081 0.078
0.9 0.276 0.210 0.090 0.088 0.460 0.280 0.099 0.090 0.639 0.349 0.106 0.103
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Table 4: Empirical size of the �2 test, F test, noncentral F test and nonstandard F1 test based
on the series LRV estimator for the MA(1) case with T = 200
� �2 CF NCF F1 �2 CF NCF F1 �2 CF NCF F1

p = 1; q = 0 p = 2; q = 0 p = 3; q = 0
-0.8 0.066 0.054 0.054 0.053 0.082 0.056 0.056 0.056 0.106 0.062 0.062 0.064
-0.5 0.066 0.056 0.056 0.055 0.079 0.054 0.054 0.056 0.103 0.061 0.061 0.064
0.0 0.060 0.054 0.054 0.054 0.065 0.052 0.052 0.052 0.081 0.059 0.059 0.057
0.5 0.070 0.058 0.058 0.057 0.089 0.057 0.057 0.057 0.120 0.060 0.060 0.063
0.8 0.072 0.057 0.057 0.057 0.091 0.058 0.058 0.058 0.130 0.060 0.060 0.063
0.9 0.069 0.056 0.056 0.056 0.084 0.057 0.057 0.057 0.114 0.061 0.061 0.063

p = 1; q = 1 p = 2; q = 1 p = 3; q = 1
-0.8 0.080 0.066 0.055 0.055 0.105 0.075 0.063 0.061 0.141 0.084 0.069 0.068
-0.5 0.077 0.065 0.056 0.056 0.102 0.076 0.064 0.062 0.134 0.082 0.066 0.066
0.0 0.069 0.060 0.053 0.053 0.081 0.064 0.058 0.058 0.100 0.071 0.062 0.061
0.5 0.085 0.071 0.058 0.057 0.115 0.077 0.060 0.058 0.152 0.083 0.064 0.063
0.8 0.089 0.072 0.057 0.056 0.123 0.077 0.058 0.057 0.164 0.085 0.064 0.065
0.9 0.080 0.067 0.057 0.056 0.110 0.074 0.059 0.058 0.142 0.084 0.066 0.065

p = 1; q = 2 p = 2; q = 2 p = 3; q = 2
-0.8 0.096 0.080 0.056 0.056 0.130 0.090 0.059 0.058 0.177 0.109 0.067 0.066
-0.5 0.095 0.079 0.055 0.057 0.123 0.089 0.060 0.060 0.165 0.106 0.065 0.064
0.0 0.074 0.066 0.053 0.054 0.096 0.074 0.056 0.057 0.117 0.083 0.059 0.060
0.5 0.100 0.080 0.054 0.055 0.136 0.094 0.059 0.058 0.184 0.110 0.065 0.066
0.8 0.103 0.083 0.054 0.055 0.146 0.096 0.059 0.056 0.202 0.113 0.063 0.063
0.9 0.093 0.079 0.055 0.056 0.131 0.093 0.059 0.058 0.172 0.105 0.065 0.065

Table 5: Empirical size of the �2 test, the F1(0) test and the F1(q) test based on the Parzen
kernel LRV estimator for the AR(1) case with T = 100

� �2 F1(0) F1(q) �2 F1(0) F1(q) �2 F1(0) F1(q)
p = 1; q = 0 p = 2; q = 0 p = 3; q = 0

-0.8 0.132 0.091 0.091 0.215 0.112 0.112 0.326 0.153 0.153
-0.5 0.085 0.073 0.073 0.116 0.082 0.082 0.160 0.100 0.100
0.0 0.063 0.059 0.059 0.071 0.058 0.058 0.093 0.070 0.070
0.5 0.093 0.074 0.074 0.131 0.076 0.076 0.182 0.096 0.096
0.8 0.164 0.102 0.102 0.273 0.126 0.126 0.408 0.154 0.154
0.9 0.216 0.124 0.124 0.382 0.164 0.164 0.559 0.212 0.212

p = 1; q = 1 p = 2; q = 1 p = 3; q = 1
-0.8 0.197 0.145 0.110 0.313 0.174 0.127 0.443 0.224 0.164
-0.5 0.105 0.091 0.076 0.150 0.104 0.088 0.201 0.126 0.104
0.0 0.073 0.067 0.059 0.096 0.077 0.067 0.121 0.084 0.074
0.5 0.117 0.095 0.079 0.169 0.111 0.090 0.236 0.132 0.104
0.8 0.223 0.151 0.110 0.362 0.189 0.132 0.521 0.230 0.160
0.9 0.315 0.204 0.145 0.521 0.271 0.182 0.704 0.329 0.226

p = 1; q = 2 p = 2; q = 2 p = 3; q = 2
-0.8 0.257 0.195 0.115 0.406 0.242 0.139 0.555 0.305 0.166
-0.5 0.128 0.110 0.078 0.188 0.131 0.091 0.248 0.155 0.103
0.0 0.086 0.079 0.060 0.114 0.091 0.070 0.150 0.108 0.080
0.5 0.139 0.115 0.081 0.210 0.140 0.088 0.291 0.167 0.105
0.8 0.282 0.201 0.113 0.456 0.260 0.135 0.613 0.319 0.157
0.9 0.384 0.269 0.144 0.605 0.365 0.190 0.774 0.438 0.221
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Table 6: Empirical size of the �2 test, the F1(0) test and the F1(q) test based on the Parzen
kernel LRV estimator for the MA(1) case with T = 100

� �2 F1(0) F1(q) �2 F1(0) F1(q) �2 F1(0) F1(q)
p = 1; q = 0 p = 2; q = 0 p = 3; q = 0

-0.8 0.075 0.065 0.065 0.101 0.070 0.070 0.133 0.086 0.086
-0.5 0.073 0.065 0.065 0.096 0.070 0.070 0.126 0.085 0.085
0.0 0.063 0.059 0.059 0.071 0.058 0.058 0.093 0.070 0.070
0.5 0.079 0.064 0.064 0.107 0.069 0.069 0.150 0.084 0.084
0.8 0.081 0.066 0.066 0.113 0.070 0.070 0.160 0.086 0.086
0.9 0.076 0.063 0.063 0.103 0.070 0.070 0.140 0.082 0.082

p = 1; q = 1 p = 2; q = 1 p = 3; q = 1
-0.8 0.091 0.079 0.067 0.133 0.094 0.078 0.173 0.108 0.088
-0.5 0.086 0.076 0.067 0.126 0.094 0.078 0.162 0.106 0.087
0.0 0.073 0.067 0.059 0.096 0.077 0.067 0.121 0.084 0.074
0.5 0.097 0.081 0.070 0.140 0.094 0.077 0.191 0.111 0.088
0.8 0.104 0.083 0.069 0.149 0.097 0.077 0.203 0.116 0.090
0.9 0.095 0.081 0.069 0.134 0.092 0.075 0.181 0.108 0.091

p = 1; q = 2 p = 2; q = 2 p = 3; q = 2
-0.8 0.114 0.099 0.072 0.169 0.118 0.083 0.215 0.139 0.093
-0.5 0.110 0.096 0.069 0.157 0.114 0.081 0.201 0.133 0.091
0.0 0.086 0.079 0.060 0.114 0.091 0.070 0.150 0.108 0.080
0.5 0.120 0.100 0.071 0.168 0.117 0.083 0.229 0.138 0.092
0.8 0.125 0.105 0.072 0.181 0.122 0.081 0.249 0.144 0.091
0.9 0.113 0.098 0.071 0.160 0.114 0.081 0.216 0.133 0.091

Table 7: Empirical size of the �2 test, the F1(0) test and the F1(q) test based on the Parzen
kernel LRV estimator for the AR(1) case with T = 200

� �2 F1(0) F1(q) �2 F1(0) F1(q) �2 F1(0) F1(q)
p = 1; q = 0 p = 2; q = 0 p = 3; q = 0

-0.8 0.110 0.090 0.090 0.150 0.098 0.098 0.218 0.123 0.123
-0.5 0.075 0.073 0.073 0.090 0.078 0.078 0.114 0.093 0.093
0.0 0.059 0.061 0.061 0.061 0.058 0.058 0.074 0.070 0.070
0.5 0.080 0.073 0.073 0.096 0.075 0.075 0.126 0.086 0.086
0.8 0.124 0.091 0.091 0.186 0.102 0.102 0.261 0.122 0.122
0.9 0.170 0.105 0.105 0.286 0.129 0.129 0.421 0.161 0.161

p = 1; q = 1 p = 2; q = 1 p = 3; q = 1
-0.8 0.143 0.117 0.096 0.208 0.136 0.110 0.293 0.166 0.134
-0.5 0.083 0.079 0.071 0.108 0.091 0.083 0.137 0.109 0.100
0.0 0.063 0.064 0.061 0.074 0.070 0.066 0.086 0.079 0.075
0.5 0.091 0.085 0.074 0.117 0.091 0.079 0.147 0.102 0.088
0.8 0.155 0.118 0.094 0.239 0.142 0.110 0.328 0.167 0.127
0.9 0.235 0.160 0.116 0.391 0.199 0.140 0.542 0.243 0.170

p = 1; q = 2 p = 2; q = 2 p = 3; q = 2
-0.8 0.168 0.138 0.094 0.257 0.174 0.114 0.349 0.213 0.137
-0.5 0.092 0.087 0.073 0.124 0.103 0.083 0.149 0.116 0.095
0.0 0.066 0.067 0.061 0.078 0.074 0.065 0.092 0.084 0.074
0.5 0.098 0.090 0.071 0.131 0.103 0.079 0.172 0.121 0.092
0.8 0.193 0.154 0.096 0.295 0.185 0.113 0.415 0.230 0.129
0.9 0.296 0.215 0.121 0.469 0.275 0.147 0.637 0.338 0.173
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Table 8: Empirical size of the �2 test, the F1(0) test and the F1(q) test based on the Parzen
kernel LRV estimator for the MA(1) case with T = 200

� �2 F1(0) F1(q) �2 F1(0) F1(q) �2 F1(0) F1(q)
p = 1; q = 0 p = 2; q = 0 p = 3; q = 0

-0.8 0.065 0.064 0.064 0.077 0.068 0.068 0.098 0.077 0.077
-0.5 0.065 0.065 0.065 0.075 0.067 0.067 0.093 0.077 0.077
0.0 0.059 0.061 0.061 0.061 0.058 0.058 0.074 0.070 0.070
0.5 0.070 0.066 0.066 0.082 0.066 0.066 0.104 0.074 0.074
0.8 0.071 0.066 0.066 0.085 0.066 0.066 0.111 0.075 0.075
0.9 0.069 0.066 0.066 0.079 0.065 0.065 0.101 0.076 0.076

p = 1; q = 1 p = 2; q = 1 p = 3; q = 1
-0.8 0.076 0.074 0.065 0.095 0.082 0.074 0.118 0.093 0.085
-0.5 0.074 0.073 0.066 0.091 0.082 0.074 0.113 0.093 0.086
0.0 0.063 0.064 0.061 0.074 0.070 0.066 0.086 0.079 0.075
0.5 0.077 0.074 0.066 0.097 0.080 0.070 0.118 0.089 0.080
0.8 0.081 0.076 0.066 0.102 0.081 0.071 0.126 0.090 0.078
0.9 0.075 0.072 0.064 0.095 0.078 0.069 0.114 0.089 0.080

p = 1; q = 2 p = 2; q = 2 p = 3; q = 2
-0.8 0.087 0.083 0.069 0.107 0.092 0.073 0.135 0.108 0.089
-0.5 0.085 0.083 0.069 0.104 0.088 0.072 0.131 0.106 0.086
0.0 0.066 0.067 0.061 0.078 0.074 0.065 0.092 0.084 0.074
0.5 0.085 0.082 0.066 0.111 0.092 0.072 0.137 0.104 0.083
0.8 0.089 0.083 0.065 0.118 0.094 0.072 0.145 0.107 0.082
0.9 0.083 0.081 0.066 0.108 0.090 0.071 0.132 0.102 0.085
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7 Appendix of Proofs

Consider two stochastically bounded sequences of random variables
�
�1;T 2 Rp

	
and

�
�2;T 2 Rp

	
.

Since
�
�1;T

	
is stochastically bounded, there exists a subsequence f�1;s1(T ) : T = 1; 2; :::g of�

�1;T : T = 1; 2; :::
	
such that �1;s1(T )

d! �1;1 for some random variable �1;1: Note that the
subsequence f�2;s1(T )g is also stochastically bounded, so there exists a subsequence f�2;s2(s1(T ))g of
f�2;s1(T )g such that �2;s2(s1(T ))

d! �2;1 for some random variable �2;1: De�ne s(T ) = s2 (s1(T )) ;

then �1;s(T )
d! �1;1 and �2;s(T )

d! �2;1: Let C
�
�1;1; �2;1

�
be the set of points at which the

CDFs of �1;1 and �2;1 are continuous. The following lemma uses the de�nitions of s(T ) and
C
�
�1;1; �2;1

�
: The proof is similar to that for the Lévy-Cramér continuity theorem and is omitted

here.

Lemma 3 The following two statements are equivalent:
(i) P (�1;s(T ) � x) = P (�2;s(T ) � x) + o (1) for all x 2 C (�11; �21) :
(ii) For any f 2 BC, Ef(�1;s(T )) � Ef(�2;s(T )) ! 0 as T ! 1 where BC is the class of

bounded, continuous and real valued functions on Rp.

Lemma 4 If (�1T ; �1T ) converges weakly to (�; �) and

P (�1T � x; �1T � y) = P (�2T � x; �2T � y) + o (1) as T !1 (14)

for all continuity point (x; y) of the CDF of (�; �); then

g(�1T ; �1T )
as g(�2T ; �2T );

where g (�; �) is continuous on a set C such that P ((�; �) 2 C) = 1:

Proof of Lemma 4. Since (�1T ; �1T ) converges weakly, we can apply Lemma 3 with s(T ) = T:
It follows from the condition in (14) that Ef(�1T ; �1T )�Ef(�2T ; �2T )! 0 for any f 2 BC. But
Ef(�1T ; �1T )! Ef(�; �) and so Ef(�2T ; �2T )! Ef(�; �) for any f 2 BC. That is, (�2T ; �2T ) also
converges weakly to (�; �) : Using the same proof for proving the continuous mapping theorem, we
have Ef (g(�1T ; �1T ))�Ef (g(�2T ; �2T ))! 0 for any f 2 BC: Therefore g(�1T ; �1T )

as g(�2T ; �2T ):

Proof of Lemma 1. Let " > 0: Under condition (iii), we can �nd � > 0 such that for some
integer Tmin > 0

P (� � � � �T < � + �) � "
for all T � Tmin: Here Tmin does not depend on � or ": Under condition (iv), we can �nd a Jmin
that does not depend on � or " such that

P
����T;J �� > �� � "

for all J � Jmin and all T: From condition (ii), we can �nd J 0min � Jmin and T 0min � Tmin such
that ��P ���T;J < ��� P (�T < �)�� � "
for all J � J 0min and all T � T 0min: It follows from condition (i) that for any �xed J0 � J 0min; there
exists a T 00min(J0) � T 0min � Tmin such that��P ��T;J0 < � + ��� P ���T;J0 < � + ���� � "��P ��T;J0 < � � ��� P ���T;J0 < � � ���� � "
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for T � T 00min(J0):
When T � T 00min(J0); we have

P (!T � �) = P
�
�T;J0 + �T;J0 � �

�
� P

�
�T;J0 � � + �

�
+ P

����T;J0�� > ��
� P

�
��T;J0 � � + �

�
+ 2" � P (�T < � + �) + 3"

� P (�T < �) + 4":

Similarly,

P (!T � �) = P
�
�T;J0 + �T;J0 � �

�
� P (�T;J0 � � � �)� P

����T;J0�� � ��
� P (��T;J0 � � � �)� 2" � P (�T � � � �)� 3"
� P (�T � �)� 4":

Since the above two inequalities hold for all " > 0; we must have P (!T < �) = P (�T < �) + o(1)
as T !1:

Proof of Lemma 2. Part (a). For some ���T between ��T and �0; we have

WT (��T ) =
1

T

TX
t=1

TX
�=1

Q�h

�
t

T
;
�

T

��
ut +

@f(vt; ��
�
T )

@�0

�
��T � �0

���
u� +

@f(v� ; ��
�
T )

@�0

�
��T � �0

��0
=WT (�0) + I1 + I

0
1 + I2; (15)

where

I1 =
1

T

TX
�=1

TX
t=1

Q�h

�
t

T
;
�

T

�
@f(vt; ��

�
T )

@�0

�
��T � �0

�
u0� ;

I2 =
1

T 2

TX
t=1

TX
�=1

Q�h

�
t

T
;
�

T

��
@f(vt; ��

�
T )

@�0

�
��T � �0

�� �@f(v� ; ���T )
@�0

�
��T � �0

��0
:

Here ���T in the matrix
@f(vt;��

�
T )

@�0
can be di¤erent for di¤erent rows. For notational economy, we do

not make this explicit.
For a sequence of vectors or matrices fCtg ; de�ne S0 (C) = 0 and St (C) = T�1

Pt
�=1C� :

Using summation by parts, we obtain, for two sequence of matrices fAtg and fBtg :

1

T 2

TX
�=1

TX
t=1

Q�h

�
t

T
;
�

T

�
AtB

0
�

=
T�1X
�=1

T�1X
t=1

rQ�h
�
t

T
;
�

T

�
St (A)S 0� (B)

+
T�1X
t=1

�
Q�h

�
t

T
; 1

�
�Q�h

�
t+ 1

T
; 1

��
St (A)S 0T (B)

+

T�1X
�=1

�
Q�h

�
1;
�

T

�
�Q�h

�
1;
� + 1

T

��
ST (A)S 0� (B) +Q�h (1; 1)ST (A)S 0T (B) :
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where

rQ�h
�
t

T
;
�

T

�
:= Q�h

�
t

T
;
�

T

�
�Q�h

�
t+ 1

T
;
�

T

�
�Q�h

�
t

T
;
� + 1

T

�
+Q�h

�
t+ 1

T
;
� + 1

T

�
:

Plugging At =
@f(vt;��

�
T )

@�0

�
��T � �0

�
= Gt(��

�
T )
�
��T � �0

�
and Bt = ut into the above expression

and letting �t = Gt(��
�
T )� t

TG; we obtain a new representation of I1 :

I1 = T
T�1X
�=1

T�1X
t=1

rQ�h
�
t

T
;
�

T

��
t

T
G+ �t

��
��T � �0

�
S 0� (u)

+ T
T�1X
t=1

�
Q�h

�
t

T
; 1

�
�Q�h

�
t+ 1

T
; 1

���
t

T
G+ �t

��
��T � �0

�
S 0T (u)

+ T
T�1X
�=1

�
Q�h

�
1;
�

T

�
�Q�h

�
1;
� + 1

T

��
(G+ �T )

�
��T � �0

�
S 0� (u)

+ TQ�h (1; 1) (G+ �T )
�
��T � �0

�
S 0T (u)

= T

T�1X
�=1

T�1X
t=1

rQ�h
�
t

T
;
�

T

�
�t

�
��T � �0

�
S 0� (u)

+ T
T�1X
t=1

�
Q�h

�
t

T
; 1

�
�Q�h

�
t+ 1

T
; 1

��
�t

�
��T � �0

�
S 0T (u)

+ T
T�1X
�=1

�
Q�h

�
1;
�

T

�
�Q�h

�
1;
� + 1

T

��
�T

�
��T � �0

�
S 0� (u)

+ TQ�h (1; 1) �T
�
��T � �0

�
S 0T (u) +G

�
��T � �0

� 1
T

TX
�=1

TX
t=1

Q�h

�
t

T
;
�

T

�
u0�

:= I11 + I12 + I13 + I14 + I15

where �t satis�es supt k�tk = op (1) by Assumption 4.
We now show that each of the �ve terms in the above expression is op (1) : It is easy to see

that

I15 = G
�
��T � �0

� 1
T

TX
�=1

TX
t=1

Q�h

�
t

T
;
�

T

�
u0�

= G
p
T
�
��T � �0

� 1p
T

TX
�=1

"
1

T

TX
t=1

Q�h

�
t

T
;
�

T

�#
u0�

= G
p
T
�
��T � �0

� 1p
T

TX
�=1

�Z 1

0
Q�h

�
t;
�

T

�
dt+O

�
1

T

��
u0�

= G
p
T
�
��T � �0

� 1p
T

TX
�=1

�
O

�
1

T

��
u0� = op (1) ;
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I14 = TQ�h (1; 1) �T
�
��T � �0

�
S 0T (u)

= Q�h (1; 1) �T
p
T
�
��T � �0

�p
TS 0T (u) = op (1) ;

and

I13 = T
T�1X
�=1

�
Q�h

�
1;
�

T

�
�Q�h

�
1;
� + 1

T

��
�T

�
��T � �0

�
S 0� (u)

= �T

hp
T
�
��T � �0

�i" 1p
T

TX
�=1

Q�h

�
1;
�

T

�
u�

#
+�T

hp
T
�
��T � �0

�i
Q�h (1; 1)

hp
TST (u)

i
= op (1) :

To show that I12 = op (1), we note that under the piecewise monotonicity condition in As-
sumption 1, Q�h (t=T; 1) is piecewise monotonic in t=T: So for some �nite J we can partition the
set f1; 2; :::; Tg into J maximal non-overlapping subsets [Jj=1Ij such that Q�h (t=T; 1) is monotonic
on each Ij := fIjL; :::; IjUg : Now

T�1X
t=1

�
Q�h

�
t

T
; 1

�
�Q�h

�
t+ 1

T
; 1

��
�t


�


JX
j=1

X
t2Ij

�
Q�h

�
t

T
; 1

�
�Q�h

�
t+ 1

T
; 1

��
�t

+ op (1)
�

JX
j=1

X
t2Ij

����Q�h� tT ; 1
�
�Q�h

�
t+ 1

T
; 1

����� sup
s
k�sk+ op (1)

=

JX
j=1

(�)j
X
t2Ij

�
Q�h

�
t+ 1

T
; 1

�
�Q�h

�
t

T
; 1

��
sup
s
k�sk+ op (1)

=
JX
j=1

�����Q�h�IjUT ; 1

�
�Q�h

�
IjL
T
; 1

������ sup
s
k�sk+ op (1)

= O (1) sup
s
k�sk+ op (1) = op (1)

where the op (1) term in the �rst inequality re�ects the case when t and t + 1 belong to di¤er-
ent partitions and �(�)j� takes �+�or ���depending on whether Q�h (t=T; 1) is increasing or
decreasing on the interval [IjL; IjU ]: As a result,

kI12k =
T

T�1X
t=1

�
Q�h

�
t

T
; 1

�
�Q�h

�
t+ 1

T
; 1

��
�t

�
��T � �0

�
S 0T (u)


�


T�1X
t=1

�
Q�h

�
t

T
; 1

�
�Q�h

�
t+ 1

T
; 1

��
�t

pT ���T � �0�pTS 0T (u) = op (1) : (16)

To show that I11 = op (1) ; we use a similar argument. Under the piecewise monotonicity
condition, we can partition the set of lattice points f(i; j) : i; j = 1; 2; :::; Tg into a �nite number
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of maximal non-overlapping subsets

I` = f(i; j) : I�`1L � i � I�`1U ; I�`2L � j � I�`2Ug

for ` = 1; :::; `max such that rQ�h (i=T; j=T ) have the same sign for all (i; j) 2 I`: Now

kI11k =

T�1X
�=1

T�1X
t=1

rQ�h
�
t

T
;
�

T

�
�t

hp
T
�
��T � �0

�i hp
TS 0� (u)

i
=


`maxX
`=1

X
(i;j)2I`

rQ�h
�
i

T
;
j

T

�
�i

hp
T
�
��T � �0

�i hp
TS 0j (u)

i
=


`maxX
`=1

(�)`
X

(i;j)2I`

rQ�h
�
i

T
;
j

T

� supt k�tk �
pT ���T � �0�� �sup

�

pTS 0� (u)�

=

`maxX
`=1

����Q�h�I�`1LT ;
I�`2L
T

�
�Q�h

�
I�`1U
T
;
I�`2L
T

�
�Q�h

�
I�`1L
T
;
I�`2U
T

�
+Q�h

�
I�`1U
T
;
I�`2U
T

������ op (1)
= op (1) :

We have therefore proved that I1 = op (1).
We can use similar arguments to show that I2 = op (1). Details are omitted. This completes

the proof of Part (a).
Parts (b) and (c). We start by establishing the series representation of the weighting

function as given in (4). The representation trivially holds with �j (�) = �j (�) for the OS-HAR
variance estimator. It remains to show that it also holds for the contracted kernel kb (�) and the
exponentiated kernel k� (�) : We focus on the former as the proof for the latter is similar. Under
Assumption 1(a), kb (x) has a Fourier cosine series expansion

kb (x) = c+
1X
j=1

~�j cos j�x (17)

where c is the constant term in the expansion,
P1
j=1

���~�j��� <1, and the right hand side converges
uniformly over x 2 [�1; 1]: This implies that

kb (r � s) = c+
1X
j=1

~�j cos j�r cos j�s+

1X
j=1

~�j sin j�r sin j�s

and the right hand side converges uniformly over (r; s) 2 [0; 1]� [0; 1]: Now

k�h (r; s) = kb (r; s)�
Z 1

0
kb (� � s) d� �

Z 1

0
kb (r � �) d� +

Z 1

0
kb (�1 � �2) d�1d�2 (18)

=
1X
j=1

~�j cos j�r cos j�s+
1X
j=1

~�j

�
sin j�r �

Z 1

0
sin j��d�

��
sin j�s�

Z 1

0
sin j��d�

�

:=

1X
j=1

�j�j (r) �j (s)
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by taking

�j (r) =

�
cos
�
1
2�jr

�
; j is even

sin
�
1
2� (j + 1) r

�
�
R 1
0

�
sin 12� (j + 1) �

�
d� ; j is odd

and

�j =

�
~�j=2; j is even
~�(j+1)=2; j is odd

:

Obviously �j (r) is continuously di¤erentiable and satis�es
R 1
0 �j (r) dr = 0 for all j: The uni-

form convergence of
P1
j=1 �j�j (r) �j(s) to k

�
h (r; s) inherits from the uniform convergence of the

Fourier series in (17).
In view of part (a), it su¢ ces to show that WT (�0)

as WeT : Using the Cramér-Wold device,
it su¢ ces to show that

tr [WT (�0)A]
as tr [WeTA]

for any conformable symmetry matrix A. Note that

tr [WT (�0)A] =
1

T

TX
t=1

TX
�=1

Q�h

�
t

T
;
�

T

�
u0tAu�

tr (WeTA) =
1

T

TX
t=1

TX
�=1

Q�h

�
t

T
;
�

T

�
(�et)

0A (�et) :

We write tr [WT (�0)A] as

tr [WT (�0)A] =

1X
j=1

�j

 
1p
T

TX
t=1

�j

�
t

T

�
ut

!0
A
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T
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t=1

�j

�
t

T

�
ut

!
:= �T;J + �T;J

where

�T;J =

JX
j=1

�j

"
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T

TX
t=1

�j

�
t
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�
ut

#0
A

"
1p
T

TX
t=1

�j

�
t
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�
ut

#
;

�T;J =
1X

j=J+1

�j

"
1p
T

TX
t=1

�j

�
t

T

�
ut

#0
A

"
1p
T

TX
t=1

�j

�
t

T

�
ut

#
:

We proceed to apply Lemma 1 by verifying the four conditions. First, it follows from Assumption
5 that for every J �xed,

�T;J
as ��T;J :=

JX
j=1

�j

"
1p
T

TX
t=1

�j

�
t

T

�
�et

#0
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"
1p
T

TX
t=1

�j

�
t

T

�
�et

#
(19)

as T !1: Second, let

�T =

1X
j=1

�j

"
1p
T

TX
t=1

�j

�
t

T

�
�et

#0
A

"
1p
T
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t=1
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�
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�
�et

#
= tr (W �

TA)
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and A =
Pm
`=1 �`a`a

0
` be the spectral decomposition of A: Then

�T � ��T;J =
1X

j=J+1

�j

mX
`=1

�`

"
1p
T

TX
t=1

�j

�
t

T

�
a0`�et

#2
:

So

E
���T � ��T;J �� � C 1X

j=J+1

j�j j
1

T

TX
t=1

�2j

�
t

T

�
� C

1X
j=J+1

j�j j

for some constant C that does not depend on T: That is, E
���T � ��T;J �� ! 0 uniformly in T as

J !1: So for any � > 0 and " > 0, there exists a J0 that does not depend on T such that

P
����T � ��T;J �� � �� � E ���T � ��T;J �� =� � "

for all J � J0 and all T: It then follows that there exists a T0 which does not depend on J0 such
that

P
�
��T;J < �

�
= P

�
�T +

�
��T;J � �T

�
< �
�

� P (�T < � + �) + P
����T � ��T;J �� � ��

� P (�T < � + �) + " � P (�T < �) + 2"

for J � J0 and T � T0: Here we have used the equicontinuity of the CDF of �T when T is
su¢ ciently large. This is veri�ed below. Similarly, we can show that for J � J0 and T � T0 we
have

P
�
��T;J < �

�
� P (�T < �)� 2":

Since the above two inequalities hold for all " > 0; it must be true that P
�
��T;J < �

�
�P (�T < �) =

o(1) uniformly over su¢ ciently large T as J !1:
Third, we can use Lemma 1 to show that �T converges in distribution to �1 where

�1 =
1X
j=1

�j

�Z 1

0
�j (r) �dBm (r)

�0
A

�Z 1

0
�j (s) �dBm (s)

�

=

Z 1

0

Z 1

0
Q�h (r; s) [�dBm (r)]

0A�dBm (s) :

Details are omitted here. So for any � and �; we have

P (� � � � �T < � + �) = P (� � � � �1 < � + �) + o (1)

as T !1: Given the continuity of the CDF of �1; for any " > 0; we can �nd a � > 0 such that
P (� � � � �T < � + �) � " for all T when T is su¢ ciently large. We have thus veri�ed Condition
(iii) in Lemma 1. Finally, for any x 2 R, we have

P
����T;J �� > x� � P

0@ 1X
j=J+1

j�j j
mX
`=1

j�`j
"
1p
T

TX
t=1

�j

�
t

T

�
a0`ut

#2
> x

1A
� x�1
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`=1

j�`jE
1X

j=J+1

j�j j
"
1p
T

TX
t=1

�j

�
t

T

�
a0`ut

#2
:
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But by Assumption 3,

E
1X

j=J+1

j�j j
"
1p
T

TX
t=1

�j

�
t

T

�
a0`ut

#2

=
1X

j=J+1

j�j j
1

T

TX
t=1

�2j

�
t

T

�
E
�
a0`ut

�2
+

1X
j=J+1

j�j j
1

T

X
t6=s

�j

�
t

T

�
�j

� s
T

�
Ea0`utu

0
sa`

� C
1X

j=J+1

j�j j+
1X

j=J+1

j�j j
1

T

X
t6=s

��a0`�t�sa`�� = O
0@ 1X
j=J+1

j�j j

1A = o(1)

uniformly over T; as J !1: So we have proved that �T;J = op(1) uniformly over T; as J !1:
Combining the above steps, we have

tr [WT (�0)A]
as �T = tr (WeTA) ;

and

tr (WeTA)
d!
Z 1

0

Z 1

0
Q�h (r; s) [�dBm (r)]

0A�dBm (s) = tr(W1A):

As a consequence,

WT

�
��T

�
asWeT

d!W1

as desired.

Proof of Theorem 1. We prove part (b) only as the proofs for other parts are similar. Let
G� = �

�1G be an m� d matrix, then

F1 =

�
R
h
G0� ~W

�1
1 G�

i�1
G0� ~W

�1
1 Bm(1)

�0�
R
h
G0� ~W

�1
1 G�

i�1
R0
��1

�
�
R
h
G0� ~W

�1
1 G�

i�1
G0� ~W

�1
1 Bm(1)

�
=p:

Let G� = Um�m�m�dV
0
d�d be the singular value decomposition of G�: By de�nition, U

0U =
UU 0 = Im, V V 0 = V 0V = Id and

� =

�
Ad�d
Oq�d

�
;

where A is a diagonal matrix with singular values on the main diagonal and O is a matrix of
zeros. Then

R
h
G0� ~W

�1
1 G�

i�1
G0� ~W

�1
1 Bm(1) = R

h
V �0U 0 ~W�1

1 U�V 0
i�1

V �0U 0 ~W�1
1 Bm(1)

= RV
h
�0U 0 ~W�1

1 U�
i�1

�0U 0 ~W�1
1 Bm(1) = RV

h
�0U 0 ~W�1

1 U�
i�1

�0
h
U 0 ~W�1

1 U
i �
U 0Bm(1)

�
d
= RV

h
�0 ~W�1

1 �
i�1

�0 ~W�1
1 Bm(1);

and
R
h
G0� ~W

�1
1 G�

i�1
R0 = R

h
V �0U 0 ~W�1

1 U�V 0
i�1

R0
d
= RV

h
�0 ~W�1

1 �
i�1

V 0R0;
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where we have used the distributional equivalence of [ ~W�1
1 ; Bm(1)] and [U 0 ~W�1

1 U; U 0Bm(1)]: Let

~W1 =

�
C11 C12
C21 C22

�
and ~W�1

1 =

�
C11 C12

C21 C22

�
where C11 and C11 are d�dmatrices, C22 and C22 are q�q matrices, and C12 = C 021; C12 = (C21)0.
By de�nition

C11 =

Z 1

0

Z 1

0
Q�h(r; s)dBd(r)dBd(s)

0 =

�
Cpp Cp;d�p
C 0p;d�p Cd�p;d�p

�
(20)

C12 =

Z 1

0

Z 1

0
Q�h(r; s)dBd(r)dBq(s)

0 =

�
Cpq
Cd�p;q

�
(21)

C22 =

Z 1

0

Z 1

0
Q�h(r; s)dBq(r)dBq(s)

0 = Cqq (22)

where Cpp; Cpq; and Cqq are de�ned in (7); and Cd�p;d�p; Cp;d�p and Cd�p;q are similarly de�ned.
It follows from the partitioned inverse formula that

C11 =
�
C11 � C12C�122 C21

��1
, C12 = �C11C12C�122 :

With the above partition of ~W�1
1 ; we have

h
�0 ~W�1

1 �
i�1

=

��
A0 O0

�� C11 C12

C21 C22

��
A
O

���1
=
�
A0C11A

��1
= A�1

�
C11

��1 �
A0
��1

and so

RV
h
�0 ~W�1

1 �
i�1

�0 ~W�1
1

= RV A�1
�
C11

��1 �
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��1 �

A0 O0
�� C11 C12

C21 C22

�
= RV A�1

�
C11

��1 �
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��1

A0
�
C11 C12

�
= RV A�1

�
Id;

�
C11

��1
C12

�
; (23)

and
RV

h
�0 ~W�1

1 �
i�1

V 0R0 = RV A�1
�
C11

��1 �
A0
��1

V 0R0:

As a result,

F1
d
=
h
RV A�1

�
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�
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��1
C12

�
Bm(1)

i0 �
RV A�1

�
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V 0R0
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�
h
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�
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�
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�
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i
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�
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�
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�
Bm(1)
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�
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��1 �
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V 0R0
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�
�
RV A�1

�
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�
Bm(1)

�
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Let Bm(1) = [B0d (1) ; B
0
q (1)]

0 and

RV A�1 = ~Up�p ~�p�d ~V
0
d�d

be the SVD of RV A�1; where

~�p�d =
�
~Ap�p; ~Op�(d�p)

�
:

Then

F1
d
=
n
~U ~�~V 0

�
Bd (1)� C12C�122 Bq (1)

�o0 �
~U ~�~V 0

�
C11

��1 ~V ~�0 ~U 0��1
� ~U ~�~V 0

�
Bd (1)� C12C�122 Bq (1)

�
=p

=
n
~�~V 0

�
Bd (1)� C12C�122 Bq (1)

�o0 �
~�~V 0C�111

~V ~�0
��1

� ~�~V 0
�
Bd (1)� C12C�122 Bq (1)

�
=p

=
n
~�
h
~V 0Bd (1)� ~V 0C12C

�1
22 Bq (1)

io0 �
~�~V 0

�
C11

��1 ~V ~�0��1
� ~�

h
~V 0Bd (1)� ~V 0C12C

�1
22 Bq (1)

i
:

Noting that the joint distribution of
h
~V 0Bd (1) ; ~V

0C12; C22; ~V 0
�
C11

��1 ~V i is invariant to the
orthonormal matrix ~V 0; we have

F1
d
=
n
~�
�
Bd (1)� C12C�122 Bq (1)

�o0 �
~�
�
C11

��1 ~�0��1
� ~�

�
Bd (1)� C12C�122 Bq (1)

�
=p

=
��

~A; ~O
� �
Bd (1)� C12C�122 Bq (1)

�	0
�
��

~A; ~O
� �
C11

��1 � ~A; ~O
�0��1

�
��

~A; ~O
� �
Bd (1)� C12C�122 Bq (1)

�	
=p:

Writing �
C11

��1
= C11 � C12C�122 C21 =

�
Dpp D12

D21 D22

�
whereDpp = Cpp�CpqC�1qq C 0pq andD22 is a (d� p)�(d� p)matrix and using equations (20)�(22),
we have

F1
d
=
�
Bp (1)� CpqC�1qq Bq (1)

�0
D�1pp

�
Bp (1)� CpqC�1qq Bq (1)

�
=p:

Proof of Theorem 2. Let �T be the p� 1 vector of Lagrange multipliers for the constrained
GMM estimation. The �rst order conditions for �̂T;R are

@g0T

�
�̂T;R

�
@�

W�1
T (~�T )gT

�
�̂T;R

�
+R0T�T = 0 and R�̂T;R = r: (24)
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Linearizing the �rst set of conditions and using Assumption 4, we have the following system of
equations:�

~	 R0

Rp�d 0p�p

� p
T
�
�̂T;R � �0

�
p
T�T

!
=

�
�G0W�1

T (~�T )
p
TgT (�0)

0p�1

�
+ op (1)

where ~	 := ~	
�
~�T

�
= G0W�1

T (~�T )G. From this, we get

p
T
�
�̂T;R � �0

�
= �~	�1G0W�1
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p
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R~	�1R0
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T (~�T )
p
TgT (�0) + op (1) (25)

and p
T�T = �

n
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T (~�T )
p
TgT (�0) + op (1) : (26)

Combining (5) with (25), we have

p
T
�
�̂T � �̂T;R

�
= ~	�1R0

n
R~	�1R0

o�1
R~	�1G0W�1

T (~�T )
p
TgT (�0) + op (1) (27)

which implies that
p
T
�
�̂T � �̂T;R

�
= Op (1) : So

gT

�
�̂T

�
= gT

�
�̂T;R

�
+GT (�̂T )

�
�̂T � �̂T;R

�
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�
1=
p
T
�
:

Using this and the �rst order conditions for �̂T : g0T
�
�̂T

�
W�1
T (~�T )GT (�̂T ) = 0; we have

DT = T
�
�̂T � �̂T;R

�0
G0T (�̂T )W

�1
T (��T )GT (�̂T )

�
�̂T � �̂T;R

�
=p

+ 2Tg0T

�
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�
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T (��T )G(�̂T )

�
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=p+ op (1)
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G0T (�̂T )W

�1
T (��T )GT (�̂T )

�
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�
=p+ op (1) : (28)

Invoking Lemma 2(a), we obtain

DT = T
�
�̂T � �̂T;R

�0
~	
�
�̂T � �̂T;R

�
=p+ op (1) : (29)

Plugging (27) into (29) and simplifying the resulting expression, we have
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n
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p
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�
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p
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�
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�
=p+ op (1)

=WT + op (1) : (30)
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Next, we prove the second result in the theorem. In view of the �rst order conditions in (24)
and equation (26), we have

p
T�T

�
�̂T;R

�
=
@g0T

�
�̂T;R

�
@�

W�1
T (~�T )

p
TgT

�
�̂T;R

�
+ op (1) = �

p
TR0�T + op (1)

= R0
n
R~	�1R0

o�1
R~	�1G0W�1

T (~�T )
p
TgT (�0) + op (1)

= ~	
p
T
�
�̂T � �̂T;R

�
+ op (1) ;

and so

ST = T
�
�̂T � �̂T;R

�0
~	
�
�̂T � �̂T;R

�
=p+ op (1)

= DT + op (1) =WT + op (1) :

Proof of Theorem 3. Part (a). Let

H =

 
Bp (1)� CpqC�1qq Bq (1)Bp (1)� CpqC�1qq Bq (1) ; �H

!

be an orthonormal matrix, then

F1 =
Bp (1)� CpqC�1qq Bq (1)2

"
Bp (1)� CpqC�1qq Bq (1)Bp (1)� CpqC�1qq Bq (1)

#0
H

�H 0D�1pp HH
0

"
Bp (1)� CpqC�1qq Bq (1)Bp (1)� CpqC�1qq Bq (1)

#
=p

=
Bp (1)� CpqC�1qq Bq (1)2 e0p �H 0D�1pp H

�
ep=p;

where ep = (1; 0; 0; :::; 0)0 2 Rp: But H 0D�1pp H has the same distribution as D�1pp and Dpp is
independent of Bp (1)� CpqC�1qq Bq (1) : So

F1
d
=

Bp (1)� CpqC�1qq Bq (1)2 =p�
e0pD

�1
pp ep

��1 : (31)

That is, F1 is equal in distribution to a ratio of two independent random variables.
It is easy to see that

�
e0pD

�1
pp ep

��1 d
=

"
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�Z 1
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Z 1

0
Q�h (r; s) dBp+q (r) dB

0
p+q(s)

��1
ep+q

#�1
d
=
1

K
�2K�p�q+1

where ep+q = (1; 0; :::; 0)
0 2 Rp+q: With this, we can now represent F1 as

F1
d
=

�2p
�
�2
�
=p

�2K�p�q+1=K
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and so

��1F1 =
�2p
�
�2
�
=p

�2K�p�q+1= (K � p� q + 1)
d
= Fp;K�p�q+1

�
�2
�
: (33)

Part (b). Since the numerator and the denominator in (33) are independent, ��1F1 is
distributed as a noncentral F distribution, conditional on �2: More speci�cally, we have

P
�
��1F1 < z

�
= P

�
Fp;K�p�q+1

�
�2
�
< z
�
= EFp;K�p�q+1

�
z;�2

�
where Fp;K�p�q+1 (z; �) is the CDF of the noncentral F distribution with degrees of freedom
(p;K � p� q + 1) and noncentrality parameter �; and Fp;K�p�q+1 (�) is a random variable with
CDF Fp;K�p�q+1 (z; �) :

We proceed to compute the mean of �2. Let

�j =

Z 1

0
�j (r) dBp(r) s iidN(0; Ip) and �j =

Z 1

0
�j (r) dBq(r) s iidN(0; Iq):

Then we can represent Cpq and Cqq as

Cpq = K
�1

KX
j=1

�j�
0
j and Cqq = K

�1
KX
j=1

�j�
0
j : (34)

So
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0
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where � :=
�PK

j=1 �j�
0
j

��1
follows an inverse-Wishart distribution and

E (�) =
Iq

K � q � 1

for K large enough. Therefore E�2 = pq
K�q�1 = �

2:

Next we compute the variance of �2: It follows from the law of total variance that
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�
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�
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�
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��
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:

Note that Bq (1) is independent of C�1qq C
0
pqCpqC
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qq : So conditional on C
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qq C

0
pqCpqC
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qq ; �

2 is a
quadratic form in standard normals. Hence the conditional variance of �2 is
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�
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�
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0
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�1
qq C

0
pqCpqC

�1
qq

�
:
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Using the representation in (34), we have

Etr
�
C�1qq C

0
pqCpqC

�1
qq C

�1
qq C

0
pqCpqC

�1
qq

�
= Etr

0@ 1

K

KX
j=1

�j�
0
j

1A0@ 1

K

KX
j=1

�j�
0
j

1AC�2qq
0@ 1

K

KX
j=1

�j�
0
j

1A0@ 1

K

KX
j=1

�j�
0
j

1AC�2qq
= Etr

24 1

K4

KX
j1=1

KX
i1=1

�j1
�
�0j1�i1

�
�0i1C

�2
qq

KX
j2=1

KX
i2=1

�j2
�
�0j2�i2

�
�0i2C

�2
qq

35
= Etr

24 1

K4

KX
j1=1

KX
i1=1

KX
j2=1

KX
i2=1

�j1�
0
i1C

�2
qq �j2�

0
i2C

�2
qq E

�
�0j1�i1

� �
�0j2�i2

�35 :
Since

E
�
�0j1�i1

� �
�0j2�i2

�
=

8>>>><>>>>:
p2; j1 = i1; j2 = i2; and j1 6= j2;
p; j1 = j2; i1 = i2; and j1 6= i1;
p j1 = i2; i1 = j2; and j1 6= i1;
p2 + 2p; j1 = j2 = i1 = i2;
0; otherwise,

we have

Etr
�
C�1qq C

0
pqCpqC

�1
qq C

�1
qq C

0
pqCpqC

�1
qq

�
= Etr

24 1

K4

KX
j1=1

KX
j2=1

�j1�
0
j1C

�2
qq �j2�

0
j2C

�2
qq

35 p2 + Etr
24 1

K4

KX
j1=1

KX
i1=1

�j1
�
�0i1C

�2
qq �j1

�
�0i1C

�2
qq

35 p
+ Etr

24 1

K4

KX
j1=1

KX
i1=1

�j1
�
�0i1C

�2
qq �i1

�
�0j1C

�2
qq

35 p
= Etr

0@ KX
`1=1

�`1�
0
`1

1A�2 �p2 + p�+ Etr
24 1

K2

KX
j1=1

�j1�
0
j1C

�2
qq

35 tr " 1
K2

KX
i1=1

�0i1C
�2
qq �i1

#
p

= E
�
tr
�
�2
�� �
p2 + p

�
+ E [tr (�)]2 p

=

0@ qX
i=1

qX
j=1

E�2ij

1A�p2 + p�+ E qX
i=1

�ii

!2
p:

It follows from Theorem 5.2.2 of Press (2005, pp. 119, using the notation here) that

E�2ij =
(K � q + 1) �ij + (K � q � 1)

(K � q) (K � q � 1)2 (K � q � 3)
+

�ij

[K � q � 1]2
= O(

1

K2
)

and for i 6= j;

E�ii�jj =
2

(K � q) (K � q � 1)2 (K � q � 3)
+

1

[K � q � 1]2
= O(

1

K2
):

Hence
Etr

�
C�1qq C

0
pqCpqC

�1
qq C

�1
qq C

0
pqCpqC

�1
qq

�
= O(

1

K2
): (35)
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Next

var
��
tr
�
C�1qq C

0
pqCpqC

�1
qq

���
� E

�
tr
�
C�1qq C

0
pqCpqC

�1
qq

�
tr
�
C�1qq C

0
pqCpqC

�1
qq

��
= Etr

240@ 1

K

KX
j=1

�j�
0
j

1A0@ 1

K

KX
j=1

�j�
0
j

1AC�2qq
35 tr

240@ 1

K

KX
j=1

�j�
0
j

1A0@ 1

K

KX
j=1

�j�
0
j

1AC�2qq
35

= Etr

24 1
K

KX
i1=1

KX
j1=1

�i1
�
�0i1�j1

�
�0j1C

�2
qq

35 tr
24 1
K

KX
i2=1

KX
j2=1

�i2
�
�0i2�j2

�
�0j2C

�2
qq

35
= E

1

K2

KX
i1=1

KX
j1=1

KX
i2=1

KX
j2=1

tr
�
�i1�

0
j1C

�2
qq

�
tr
�
�i2�

0
j2C

�2
qq

�
E
��
�0i1�j1

� �
�0i2�j2

��
= E [tr (�)]2 p2 + E

1

K2

KX
i1=1

KX
j1=1

tr
�
C�2qq �j1�

0
j1C

�2
qq �i1�

0
i1

�
2p

= E [tr (�)]2 p2 + Etr
�
�2
�
2p:

Using the same formulae from Press (2005), we can show that the last term is of order O
�
K�2� :

This, combined with (35), leads to var
�
�2
�
= O(K�2):

Taking a Taylor expansion and using the mean and variance of �2; we have

P
�
��1F1 < z

�
= EFp;K�p�q+1

�
z;�2

�
= EFp;K�p�q+1

�
z; �2

�
+ E

@Fp;K�p�q+1
�
z; �2

�
@�

�
�2 � �2

�
+ E

@2Fp;K�p�q+1
�
z; ~�

2
�

@�2
�
�2 � �2

�2
(36)

= EFp;K�p�q+1
�
z; �2

�
+ E

@2Fp;K�p�q+1
�
z; ~�

2
�

@�2
�
�2 � �2

�2
for some ~�2 between �2 and �2: By de�nition,

Fp;K�p�q+1 (z; �) = P

0@�2p (�)
p

"
�2K�p�q+1

K � p� q + 1

#�1
< z

1A
= EGp

 
pz

"
�2K�p�q+1

K � p� q + 1

#
; �

!
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where Gp (z; �) is the CDF of the noncentral chi-square distribution �2p (�) with noncentrality
parameter �: In view of the relationship Gp (z; �) = exp

�
��
2

�P1
j=0

(�=2)j

j! Gp+2j (z) ; we have

@Fp;K�p�q+1 (z; �)

@�

=

1X
j=0

@

@�

"
exp

�
��
2

�
(�=2)j

j!

#
EGp+2j

 
pz

"
�2K�p�q+1

K � p� q + 1

#!

= �1
2
exp

�
��
2

� 1X
j=0

(�=2)j

j!
EGp+2j

 
pz

"
�2K�p�q+1

K � p� q + 1

#!

+
1

2
exp

�
��
2

� 1X
j=0

(�=2)j

j!
EGp+2+2j

 
pz

"
�2K�p�q+1

K � p� q + 1

#!

=
1

2

1X
j=0

exp

�
��
2

�
(�=2)j

j!
E

"
Gp+2+2j

 
pz

"
�2K�p�q+1

K � p� q + 1

#!
� Gp+2j

 
pz

"
�2K�p�q+1

K � p� q + 1

#!#

and so ����@2Fp;K�p�q+1 (z; �)@�2

���� � 1

2

1X
j=0

����� @@�
"
exp

�
��
2

�
(�=2)j

j!

#�����
� 1

4

1X
j=0

exp

�
��
2

�
(�=2)j

j!
+
1

4

1X
j=1

exp

�
��
2

�
(�=2)(j�1)

(j � 1)!

� 1

4
+
1

4
=
1

2

for all z and �: Combining the boundedness of @2Fp;K�p�q+1 (z; �) =@�2 with (36) yields

P
�
��1F1 < z

�
= Fp;K�p�q+1

�
z; �2

�
+O

�
var(�2)

�
= Fp;K�p�q+1

�
z; �2

�
+O

�
1

K2

�
= Fp;K�p�q+1

�
z; �2

�
+ o

�
1

K

�
:

Part (c). It follows from Part (b) that

P (pF1 < z) = EGp

 
z�2K�p�q+1

K
; �2

!
+ o

�
1

K

�

= EGp

 
z�2K�p�q+1

K
; 0

!
+ E

@

@�
Gp

 
z�2K�p�q+1

K
; 0

!
�2 + o

�
1

K

�

+ E

"
@2

@�2
Gp

 
z�2K�p�q+1

K
; ~�
2

!#
�4; (37)

where ~�
2
is between 0 and �2: As in the proof of Part (b), we can show that

��� @2
@�2
Gp (z; �)

��� � 1.
As a result,

E

"
@2

@�2
Gp

 
z�2K�p�q+1

K
; ~�
2

!#
�4 = O(

1

K2
) = o(

1

K
): (38)
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Consequently,

P (pF1 < z) = EGp

 
z�2K�p�q+1

K
; 0

!
+ E

@

@�
Gp

 
z�2K�p�q+1

K
; 0

!
�2 + o(

1

K
):

By direct calculations, it is easy to show that

@

@�
Gp (z; 0) = �

1

2
[Gp (z)� Gp+2 (z)] = �

1

p

zp=2e�z=2

2p=2�
�p
2

� = �1
p
G0p (z) z: (39)

Therefore,

P (pF1 < z)

= EGp

 
z�2K�p�q+1

K

!
� 1
p
EG0p

 
z�2K�p�q+1

K

!
z�2K�p�q+1

K
�2 + o

�
1

K

�

= Gp (z) + G0p (z) zE
 
�2K�p�q+1

K
� 1
!
+
1

2
G00p (z) z2var

 
�2K�p�q+1

K

!
� �

2

p
G0p (z) z + o

�
1

K

�
= Gp (z) + G0p (z) z

�p� q + 1
K

+ G00p (z) z2
K � p� q + 1

K2
� q

K � q � 1G
0
p (z) z

= Gp (z)� G0p (z) z
�
p+ 2q � 1

K

�
+ G00p (z) z2

1

K
+ o

�
1

K

�
:

Proof of Theorem 4. Part (a). Using the same argument for proving Theorem 3(a), we have

t1
d
=
B1 (1)� C1qC�1qq Bq (1)q

�2K�q=K
(40)

and so
t1p
�

d
=
B1 (1)� C1qC�1qq Bq (1)q

�2K�q= (K � q)
d
= tK�q (�) :

Part (b). Since the distribution of t1 is symmetric about 0; we have for any z 2 R+:

P

�
t1p
�
< z

�
=
1

2
+
1

2
P (jt1=

p
�j < jzj) = 1

2
+
1

2
P (t21=� < z

2)

=
1

2
+
1

2
F1;K�q

�
z2; �2

�
+ o(

1

K
)

where the second last equality follows from Theorem 3(b). When z 2 R�; we have

P

�
t1p
�
< z

�
=
1

2
� 1
2
P (jt1=

p
�j < jzj) = 1

2
� 1
2
P (t21=� < z

2)

=
1

2
� 1
2
F1;K�q

�
z2; �2

�
+ o(

1

K
):
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Therefore

P

�
t1p
�
< z

�
=
1

2
+
1

2
sgn(z)F1;K�q

�
z2; �2

�
+ o(

1

K
):

Part (c). Using Theorem 3(c) and the symmetry of the distribution of t1 about 0; we have
for any z 2 R+:

P (t1 < z) =
1

2
+
1

2
P (jt1j < jzj) =

1

2
+
1

2
P (t21 < z2)

=
1

2
+
1

2
G
�
z2
�
� G0

�
z2
�
z2
� q
K

�
+
1

2
G00
�
z2
�
z4
1

K
+ o

�
1

K

�
:

Using the relationships that
1

2
+
1

2
G
�
z2
�
= �(z);

and
�G0

�
z2
�
z2
� q
K

�
+
1

2
G00
�
z2
�
z4
1

K
= � 1

4K
�(z)

�
z3 + z(4q + 1)

�
;

we have
P (t1 < z) = �(z)� 1

4K
z�(z)

�
z2 + (4q + 1)

�
+ o(

1

K
):

Similarly when z 2 R�; we have

P (t1 < z) = �(z) +
1

4K
z�(z)

�
z2 + (4q + 1)

�
+ o(

1

K
):

Therefore
P (t1 < z) = �(z)� 1

4K
jzj�(z)

�
z2 + (4q + 1)

�
+ o(

1

K
):

Before proving Theorem 5, we present a technical lemma. Part (i) of the lemma is proved in
Sun (2012). Parts (ii) and (iii) of the lemma are proved in Sun, Phillips and Jin (2011)

De�ne g = limx!0 [1� k (x)] =xq0 , q0 is the Parzen exponent of the kernel function, c1 =R1
�1 k (x) dx; c2 =

R1
�1 k

2 (x) dx:

Lemma 5 (i) For conventional kernel HAR variance estimators, we have, as h!1;
(a) �1 = 1� bc1 +O(b2);
(b) �2 = bc2 +O(b

2).
(ii) For sharp kernel HAR variance estimators, we have, as h!1;
(a) �1 = 1� 2

�+2 ;

(b) �2 =
1
�+1 +O

�
1
�2

�
:

(iii) For steep kernel HAR variance estimator, we have, as h!1;
(a) �1 = 1�

�
�
�g

�1=2
+O

�
1
�

�
;

(b) �2 =
�
�
2�g

�1=2
+O

�
1
�

�
:
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Proof of Theorem 5. Part (a). Recall

pF1 =
�
Bp (1)� CpqC�1qq Bq (1)

�0
D�1pp

�
Bp (1)� CpqC�1qq Bq (1)

�
:

Conditional on (Cpq; Cqq; Cpp) ; Bp (1)�CpqC�1qq Bq (1) is normal with mean zero and variance Ip+
CpqC

�1
qq C

�1
qq C

0
pq: Let L be the lower triangular matrix such that LL

0 is the Choleski decomposition
of Ip+CpqC�1qq C

�1
qq C

0
pq: Then the conditional distribution of � := L

�1 �Bp (1)� CpqC�1qq Bq (1)� is
N(0; Ip): Since the conditional distribution does not depend on (Cpq; Cqq; Cpp) ; we can conclude
that � is independent of (Cpq; Cqq; Cpp) : So we can write

pF1
d
= � 0A�

where A = L0D�1pp L. Given that A is a function of (Cpq; Cqq; Cpp) ; we know that � and A are

independent. As a result, � 0A� d
= � 0 (OAO0) � for any orthonormal matrix O that is independent

of �:

Let H =
�
�= k�k ; ~H

�
be an orthonormal matrix with �rst column �= k�k : We choose H to

be independent of A: This is possible as � and A are independent. Then

pF1
d
= k�k2 � 0

k�k
�
OAO0

� �

k�k = k�k
2

�
� 0

k�kH
�
H 0 �OAO0�H �H 0 �

k�k

�
= k�k2 e0p

�
H 0OAO0H

�
ep

where ep = (1; 0; :::; 0)
0 is the �rst basis vector in Rp: Since k�k2 ;H and A are mutually indepen-

dent from each other, we can write

pF1
d
= k�k2 e0p

�
H0O0AOH

�
ep

for any orthonormal matrix H that is independent of both � and A: Letting O = H0; we obtain:

pF1
d
= k�k2

�
e0pAep

�
=

k�k2�
e0pAep

��1 d
=

k�k2�
e0pL

0D�1pp Lep
��1 :

Since Lep is the �rst column of L; we have, using the de�nition of the Choleski decomposition:

Lep =

�
Ip + CpqC

�1
qq C

�1
qq C

0
pq

�
epq

e0p
�
Ip + CpqC

�1
qq C

�1
qq C 0pq

�
ep

:

As a result,

pF1
d
=
k�k2

�2

where

�2 =
�
e0pL

0D�1pp Lep
��1

=
e0p
�
Ip + CpqC

�1
qq C

�1
qq C

0
pq

�
ep

e0p
�
Ip + CpqC

�1
qq C

�1
qq C 0pq

�
D�1pp

�
Ip + CpqC

�1
qq C

�1
qq C 0pq

�
ep
:

Part (b). It is easy to show that

ECqq = �1Iq and var [vec (Cqq)] = �2 (Iqq +Kqq)
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where

�1 =

Z 1

0
Q�h (r; r) dr; �2 =

Z 1

0

Z 1

0
[Q�h (r; s)]

2 drds;

Iqq is the q2�q2 identity matrix, and Kqq is the q2�q2 commutation matrix. So Cqq = �1Iq+op (1)
and C�1qq = �

�1
1 Iq + op (1) : Similarly, Cpp = �1Ip + op (1) and C

�1
pp = �

�1
1 Ip + op (1) : In addition,

using the same argument, we can show that Cpq = op (1) : Therefore

�2 =
e0p
�
Ip + CpqC

0
pq=�

2
1

�
ep

e0p
�
Ip + CpqC 0pq=�

2
1

� �
Ip � CpqC 0pq=�21

��1 �
Ip + CpqC 0pq=�

2
1

�
ep
(1 + op (1))

= 1 + op (1)

That is, �2 !p 1:
We proceed to prove the distributional expansion. The (i; j)-th elements Cpp(i; j), Cpq(i; j)

and Cqq(i; j) of Cpp; Cpq and Cqq are equal to either
R 1
0

R 1
0 Q

�
h (r; s) dB(r)dB(s) or

R 1
0

R 1
0 Q

�
h (r; s) dB(r)d

~B(s)

where B(�) and ~B (�) are independent standard Brownian motion processes. By direct calcula-
tions, we have, for any & 2 (0; 3=8);

P (jCef (i; j)� ECef (i; j)j > �&2) �
E jCef (i; j)� ECef (i; j)j8

�8&2
= O

�
�42
�8&2

�
= o(�2)

where e; f = p or q: De�ne the event E as

E = f! : jCef (i; j)� ECef (i; j)j � �&2 for all i; j and all e and fg ;

then the complement Ec of E satis�es P (Ec) = o(�2) as h!1: Let ~E be another event, then

P
�
~E
�

= P
�
~E \ E

�
+ P

�
~E \ Ec

�
= P

�
~E \ E

�
+ o(�2)

= P ( ~EjE)P (E) + o(�2) = P ( ~EjE) (1� o(�2)) + o(�2)
= P ( ~EjE) + o (�2) :

That is, up to an error of order o(�2); P
�
~E
�
; P
�
~E \ E

�
and P ( ~EjE) are equivalent. So for the

purpose of proving the theorem, it is innocuous to condition on E or remove the conditioning, if
needed.

Now conditioning E , the numerator of �2 satis�es:

e0p
�
Ip + CpqC

�1
qq C

�1
qq C

0
pq

�
ep

= 1 +
1

�21
e0pCpq

�
Iq +

Cqq � ECqq
�1

��1 �
Iq +

Cqq � ECqq
�1

��1
C 0pqep

= 1 +
1

�21
e0pCpq (Iq �Mqq) (Iq �Mqq)C

0
pqep

= 1 +
1

�21
e0pCpq ~MqqC

0
pqep

where Mqq is a matrix with elements Mqq (i; j) satisfying jMqq (i; j)j = O (�&2) conditional on E ,
and ~Mqq is a matrix satisfying

��� ~Mqq (i; j)� 1 fi = jg
��� = O (�&2) conditional on E .
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Let

Cp+q;p+q =

�
Cpp Cpq
C 0pq Cqq

�
and eq+q;p be the matrix consisting of the p columns of the identity matrix Ip+q: To evaluate the
denominator of �2; we note that

D�1pp =
1

�1
e0q+q;p

�
Ip+q +

Cp+q;p+q � ECp+q;p+q
�1

��1
eq+q;p

=
1

�1
e0q+q;p

�
Ip+q �

Cp+q;p+q � ECp+q;p+q
�1

�
eq+q;p

+e0q+q;p

�
[Cp+q;p+q � ECp+q;p+q] [Cp+q;p+q � ECp+q;p+q]

�21

�
eq+q;p +Mpp

=
1

�1

�
Ip �

Cpp � ECpp
�1

+
[Cpp � ECpp] [Cpp � ECpp] + CpqC 0pq

�21

�
+Mpp

where Mpp is a matrix with elements Mpp (i; j) satisfying jMpp (i; j)j = O
�
�3&2
�
= o(�2) for

& > 1=3 conditional on E .
For the purpose of proving our result, Mpp can be ignored as its presence generates an ap-

proximation error of order o (�2) ; which is the same as the order of the approximation error given
in the theorem. More speci�cally, let

~Cpp =
Cpq ~MqqC

0
pq

�21
; ~D�pp =

�
Ip �

Cpp � ECpp
�1

+
[Cpp � ECpp] [Cpp � ECpp] + CpqC 0pq

�21

�
and

~�2 := ~�2( ~Cpp; ~D
�
pp) =

�1

�
1 + e0p ~Cppep

�
e0p

�
Ip + ~Cpp

�
~D�pp

�
Ip + ~Cpp

�
ep
;

then
P (pF1 < z) = EGp

�
�2z
�
= EGp

�
~�2z
�
+ o (�2) :

Note that for any q � q matrix Lqq; we have

ECpqLqqC
0
pq = E

Z 1

0

Z 1

0
Q�h(r1; s1)Q

�
h(r2; s2)dBp(r1)dBq(s1)

0LqqdBq(s2)dBp(r1)
0

= E

Z 1

0

Z 1

0
Q�h(r1; s1)Q

�
h(r2; s2)dBp(r1)dBp(r1)

0tr
�
dBq(s2)dBq(s1)

0Lqq
�

= tr (Lqq)

Z 1

0

Z 1

0
[Q�h(r; s)]

2 drdrIp = tr (Lqq)�2Ip: (41)

Taking an expansion of ~�2( ~Cpp; ~D�pp) around ~Cpp = q�2=�
2
1Ip and ~D

�
pp = Ip; we obtain

~�2 = �20 + err

where err is the approximation error and

�20 = �1 �
2q�2
�1

+ e0p [Cpp � ECpp] ep �
e0p [Cpp � ECpp] [Cpp � ECpp] ep

�1
+

�
e0p [Cpp � ECpp] ep

	2
�1

:
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We keep enough terms in �20 so that EGp
�
~�2z
�
= EGp

�
�20z
�
+ o (�2) :

Now we write

P (pF1 < z) = EGp(�20z) + o (�2)

= Gp (z) + G0p (z) z
�
E�20 � 1

�
+
1

2
G00p (z) z2E(�20 � 1)2 + o (�2) :

In view of

E�20 � 1 = (�1 � 1)�
2q�2
�1

� 1

�1
Ee0p [Cpp � ECpp] [Cpp � ECpp] ep + E

�
e0p [Cpp � ECpp] ep

	2
�1

= (�1 � 1)�
2q�2
�1

� �2
�1
(p+ 1) +

2�2
�1

= (�1 � 1)�
2q�2
�1

� �2
�1
(p� 1)

and

E(�20 � 1)2

= E

�
�1 � 1�

2q�2
�1

+ e0p [Cpp � ECpp] ep
�2
+ o (�2)

= E
�
e0p [Cpp � ECpp] ep

	2
+ (�1 � 1)2 + o (�2)

= 2�2 + (�1 � 1)2 + o (�2) ;

we have

P (pF1 < z)

= Gp (z) + G0p (z) z
�
(�1 � 1)�

2q�2
�1

� �2
�1
(p� 1)

�
+ G00p (z) z2�2 + o (�2)

= Gp (z) + G0p (z) z
�
(�1 � 1)�

�2
�1
(p+ 2q � 1)

�
+ G00p (z) z2�2 + o (�2) : (42)
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