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ABSTRACT OF THE DISSERTATION 

 

Impulsivity or Aversion to Ambiguity? 

Decision-Making under Uncertainty in Stimulant Use Disorder 

 

by 

 

Zoe Rebecca Guttman 

Doctor of Philosophy in Neuroscience 

University of California, Los Angeles, 2021 

Professor Edythe D. London, Chair 

 

  Stimulant misuse and dependence contribute substantially to the global burden of disease. 

A major component of Stimulant Use Disorder (SUD) is maladaptive decision-making, whereby 

individuals persist in risky choices that are harmful to themselves and those around them. 

Decision-making is a complex process that requires an individual to determine which options are 

worth pursuing. To that aim, the values of possible rewards and costs must be calculated and 

compared. As most decisions encountered in everyday life present incomplete information about 

the outcomes of possible choices, individuals have to operate on this uncertainty, which can cause 

distortions in choice. Individuals with SUD may be especially susceptible to choice biases related 
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to ambiguity, which arouses negative feelings that can motivate drug use. However, the neural 

basis of how uncertainty influences decision-making in SUD remains unknown. 

  The goal of the studies presented in this dissertation was to address this question by 

combining neuroimaging with computational modeling of decision-making tasks. Studies were 

performed to compare the behavior and neural function of healthy control participants and those 

who chronically used stimulants on four decision-making tasks paired with brain imaging. The 

Balloon Analogue Risk Task (BART), a naturalistic decision-making task, was performed by 

participants with Methamphetamine Use Disorder (MUD) during functional magnetic resonance 

imaging (fMRI). A different subset of participants who performed the BART underwent positron 

emission tomography (PET) for estimation of dopamine D2-type (D2 and D3) receptor binding 

potential (BPND). Participants with SUD (cocaine and methamphetamine) performed the Loss 

Aversion Task (LAT) and also received PET scans. Some participants with SUD also performed 

the Choice under Risk and Ambiguity (CRA) task to compare aversion to risk (known outcome 

probabilities) and ambiguity (unknown outcome probabilities), and received fMRI scans for 

assessment of resting-state functional connectivity (RSFC). Lastly, a delay discounting task (DDT) 

was performed by participants who performed the CRA task to determine the contribution of risk 

and ambiguity to intertemporal choice. 

  The first two chapters present background and methods. Chapter 1 provides a general 

overview of the neurobiology of addiction and decision-making, with a focus on value 

computation and how it can be biased. Chapter 2 outlines the tasks, computational models, 

estimation procedures, and behavioral statistics used in the studies. Brain imaging methods are 

described in the chapter in which they were used. 
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  Chapter 3 presents the results of using a cognitive model to decompose performance on the 

BART and associate the resulting parameters with neural function. We found a marked impairment 

in behavioral updating and adaptive risk-taking in participants with MUD. Risk-taking was 

negatively correlated with dopamine D2-type BPND in the striatum and midbrain only in healthy 

control participants, who also showed nonlinear associations between updating rate and dopamine 

D2-type BPND in the insula and medial OFC. No significant relationships between behavioral 

parameters and dopamine D2-type BPND were exhibited by MUD participants. However, 

behavioral updating was correlated with modulation of activation by risk in the dorsolateral 

prefrontal cortex in both groups, and in the anterior insula only in MUD participants. These 

findings linked cortical activity and D2-type binding potential to updating behavior during 

advantageous risk-taking in healthy control participants. In MUD, impairments in adaptive risk-

taking and behavioral updating and their lack of association with striatal or cortical dopamine D2-

type BPND suggest D2-type receptor-related deficits in accurately updating behavior under 

uncertain conditions.  

  Chapter 4 presents two studies related to loss aversion. The first tested the hypothesis that 

prefrontal cortical thickness would mediate age-related changes in loss aversion in healthy control 

participants. The relationship between age and loss aversion followed a quadratic function that 

was mediated by thickness of the posterior cingulate cortex. The U-shaped function reached a 

minimum around age 35 before increasing across middle-age, following the developmental 

trajectory of the cortex and suggesting that thinning of the posterior cingulate cortex may emerge 

as a contributing factor to loss aversion only once cortical thinning is underway. The second study 

tested whether loss aversion differed between healthy control and SUD participants and was 

related to striatal or amygdala D2-type binding potential. In SUD but not in healthy control 
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participants, loss aversion and risk tolerance were positively related to striatal D2-type BPND, 

establishing a role for D2-type signaling in risky decisions involving loss in SUD, perhaps through 

neuroadaptations related to drug use. 

  Chapter 5 introduces ambiguity aversion as an important yet underexplored factor in SUD. 

Participants with SUD who were in inpatient treatment were more extreme in their aversion to 

ambiguity but not to risk, and ambiguity aversion was associated with stimulant 

(methamphetamine or cocaine) use in the 30 days prior to entering treatment. Ambiguity aversion 

in SUD participants was correlated positively with cortico-amygdalar RSFC and negatively with 

frontostriatal RSFC. To obtain an accurate assessment of differences in delay discounting between 

SUD and healthy control participants, a DDT was given in tandem with the CRA task. Group 

differences in delay discounting were eliminated when accounting for risk aversion. Further, 

ambiguity aversion and delay discounting showed a correlation that disappeared when risk 

tolerance was taken into account. These findings suggest that ambiguity aversion—and not the 

desire for immediate gratification—underlies delay discounting in SUD and that ambiguity 

aversion is related to frontostriatal function and cortico-amygdalar connectivity. 

  Taken together, these studies suggest that people with SUD have an impairment in 

advantageous risk-taking under uncertainty, perhaps due to a difficulty estimating ambiguous risk 

and an exaggerated response to ambiguity. Our methods demonstrate the advantages of pairing a 

visceral, naturalistic risk-taking task with computational modeling and economic choice tasks. In 

combination with brain imaging, these methods can clarify the neural substrates of complex 

behavior, including those that drive maladaptive choices in addiction. Characterizing the behavior 

of individuals who use drugs provides a stronger foundation for therapeutic strategies that address 

decision-making, for instance by introducing ambiguity aversion as a novel target. While 
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clarifying suboptimal decision-making can refine policy toward addiction, understanding 

behavioral biases can be applied broadly to improve choices made in everyday life.  
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Neural Underpinnings of Maladaptive Decision-Making in Addictions 
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1.1 Addiction and Decision-Making 

Substance use disorders have been linked with the propensity to make maladaptive decisions, 

and individuals with addictions persist in harmful and even destructive behaviors despite negative 

consequences, often against their own desires to resist. Suboptimal choices can reflect problems 

in decision-making, which requires the integration of various neural functions 1. Of particular 

interest is reward valuation, a process by which an individual computes and compares the values 

of alternatives in order to select the most advantageous option 2. Reward valuation is subject to 

modulation by various factors, such as the timing of reward receipt 3, the risk and uncertainty 

involved 4, internal signals, including autonomic 5 and affective responses 6, environmental cues 

7, and social influences 8. These factors produce predictable choice biases in healthy individuals 9, 

but subjective valuation and how it guides choice is disordered in addiction 10,11. This chapter 

focuses on departures from normative choice behavior in individuals with addictions, and how 

these problems are linked to abnormalities in brain function.  

The chapter begins with an overview of the neurobiology of reward-based decision-making, 

focusing on mesocorticolimbic and corticostriatal circuitry, and then presents a description of three 

general paradigms that are used in addiction research to assess decision-making. The rest is 

organized around specific modulators of reward value: uncertainty, temporal delay, and internal 

and external factors. Each section briefly presents certain relevant tasks, information regarding 

how individuals with substance abuse disorders perform on these tasks, and the brain structures 

and neural circuitry involved. Although there is a wealth of preclinical literature on this topic, the 

present chapter is limited to human neuroimaging research on decision-making. Finally, the 

implications and potential future directions of these areas of exploration are discussed. 
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1.2 Neurobiology of Decision-Making 

Value-based decision-making involves a distributed network of cortical and subcortical areas. 

Abnormalities in brain structure and neural circuitry related to performance of addicted individuals 

on choice tasks have been identified. The focus has been on frontolimbic systems, specifically 

mesocorticolimbic and corticostriatal circuitry 12,13. 

 

1.2.1 Reward processing 

Behaviors that increase evolutionary fitness tend to be repeated, and therefore function as 

rewards 14. Because natural rewards and drugs of abuse act on the reward circuitry of the brain in 

similar ways 15, drugs can exert powerful effects that bias behavior. Central to this action is the 

mesolimbic dopamine system, which has long been implicated in reward processing 16-19 and plays 

a crucial role in habitual and goal-directed behaviors 20. Within this system, midbrain dopamine 

neurons project to the ventral striatum, other limbic regions, such as the amygdala and 

hippocampus, and the prefrontal cortex (PFC) 21. All drugs of abuse, whether directly or indirectly, 

increase synaptic dopamine in the ventral striatum, and modulation of dopaminergic signaling in 

the mesocorticolimbic pathway is likely a central mechanism by which decision-making is biased 

in addiction 22,23.  

 

1.2.2 Reward valuation 

Economists have long reasoned that, in order for different options to be compared, their 

values must be represented on a common scale. These subjective values should be encoded in the 

brain, and functional magnetic resonance imaging (fMRI) has identified brain regions where 

activation, indicated by the blood-oxygen level dependent (BOLD) signal, scales with subjective 
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or objective reward values. The brain regions most consistently activated during the encoding of 

value are the ventral striatum and medial PFC, including the orbitofrontal cortex (OFC) 24-26. The 

ventral striatum projects to the medial PFC, and activity in both regions scales with the magnitude 

and probability of expected rewards 27,28. The OFC, densely connected with the basolateral 

amygdala and nucleus accumbens, is implicated in addiction through its role in evaluation of 

economic value, associative learning, and habit formation 29-31. 

 

1.2.3 Reward-based choice 

A distributed network of cortical and subcortical regions contributes to reward-based 

decision-making (Fig. 1.1). Reward valuation in the ventral striatum and medial PFC is modulated 

by uncertainty, which involves processing in the anterior cingulate cortex (ACC) and insula 32,33. 

The ACC and insula share bidirectional connections 34 and are implicated in a variety of functions 

related to decision-making, such as risk and error awareness 35,36, performance monitoring and 

model updating 37,38, and, through connections with the ventromedial PFC, the integration of 

visceral and affective information into choice 39,40. Cognitive control tends to rely on the 

dorsolateral PFC 41,42, which is crucial for the maintenance of goal values 43. The influence of the 

dorsolateral PFC on valuation is especially relevant for addictions because of its hypothesized role 

in self-control 44.  

Much of this frontoparietal circuitry operates inefficiently in addiction 12,45, and research 

participants with drug use disorders exhibit structural differences in this circuitry compared to 

healthy control participants 46-48. This chapter focuses on the neural circuitry of reward valuation; 

brain function related to choice selection and learning is not covered, although both have 

implications for addiction. Very generally, acting upon the appropriate choice is thought to involve 
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the lateral PFC and areas of the parietal cortex 1,2, and the updating of values through learning, 

such as through prediction errors 49, relies on dopaminergic function in the ventral striatum and 

midbrain 50.  

 

Figure 1.1. Decision-making circuitry. Decision-making relies on a converging network of 

cortical and subcortical regions. Blue areas: reward valuation is primarily associated with the 

ventral striatum, ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex (OFC), and 

posterior cingulate cortex (PCC). Red areas: the amygdala, insula, and anterior cingulate cortex 

(ACC) are involved in processing uncertainty and emotional inputs into choice. Green areas: the 

dorsolateral cortex (dlPFC) and posterior parietal cortex (PPC) are involved in executive control 

considerations and choice selection.  

 

1.3 Decision-Making Paradigms in Addiction 

Choice tasks relevant to addictions can be broadly grouped into three categories: (1) those that 

present direct choices for real drug, such as self-administration paradigms, (2) those that present 

choices for hypothetical drug rewards or drug-related cues, and (3) those that test behaviors 
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considered intricately linked to the risk of developing and/or maintaining addictions, including 

risk-taking and decision-making in the face of uncertainty. The present review briefly covers these 

three general paradigms and then continues with a consideration of modulators of value.  

 

1.3.1 Drug Choice 

Drug choice procedures use self-administration in the laboratory to present competition 

between actual drug and alternative reinforcers, such as money or food 51. Notably, the choice to 

self-administer a substance is modulated by complex interactions 52, especially motivational 

contexts such as craving 53, which should be considered. Drug choice procedures have been paired 

with neuroimaging to investigate the neural factors that influence drug choice, and have been used 

to evaluate a potential dopaminergic deficit. 

While a deficit in striatal D2-type dopamine receptor availability, observed using positron 

emission tomography (PET), is a general finding across substance use disorders 54, striatal D2-type 

dopamine receptor availability is not associated with heightened cocaine choice over monetary 

reward in the laboratory 55. However, in cocaine-dependent participants, amphetamine-induced 

dopamine release does show a negative relationship with the preference to self-administer cocaine 

rather than monetary reward 56. Thus, the choice to self-administer cocaine is apparently associated 

with phasic striatal dopamine release. Although no difference in striatal D1 receptor availability 

has been observed between healthy control participants and those who use cocaine controls, D1 

receptor availability in the ventral striatum is negatively associated with the choice to self-

administer cocaine 57. Compared to healthy controls, people who misuse heroin also display lower 

striatal D2-type receptor availability and less dopamine release, measured after methylphenidate 

administration, although neither is predictive of choice to self-administer heroin 58. These results, 
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which point to a dopaminergic deficit related to drug choice, link low dopamine release with the 

preference to self-administer cocaine. 

 

1.3.2 Drug-related choice 

Similar paradigms that use virtual rewards or drug-related stimuli can be highly 

informative, especially because drug-related cues can intensify decision-making deficits 59. These 

paradigms offer an advantage over actual drug procedures, which are ethically not possible when 

participants are in treatment or long-term abstinence. For example, in the drug-picture procedure, 

participants choose between viewing cocaine-related or affectively positive, negative, and neutral 

pictures 60. Choice to view drug-related pictures is related to both current and future drug use, 

especially when outcomes are probabilistic rather than certain 61. A role of dopamine in this 

paradigm is inferred from the finding that people who misuse cocaine and are carriers of the 9R-

allele of the dopamine transporter gene (DAT1) are more reactive to drug-related reinforcement, 

measured by event-related potentials, self-reported valence and arousal, simulated cocaine choice, 

and fMRI during exposure to cocaine-related and unrelated stimuli 62. Compared with the 10R-

allele, the 9R-allele is related to greater expression of the dopamine transporter in the striatum 63, 

presumably leading to a shorter half-life of extracellular dopamine, and less activity at presynaptic 

dopamine D2-type receptors (autoreceptors) that inhibit phasic dopamine release 64. Greater phasic 

dopamine release in the striatum may explain why 9R-allele carriers show heightened cue-

reactivity to drug-related reinforcement.  

The authors are aware of few other paradigms that use hypothetical drug rewards as 

alternatives in choice tasks. Some studies using delay discounting tasks, which are described 

below, also have used hypothetical drug rewards as options 65-67. The main results point to steeper 
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discounting of hypothetical drug rewards than monetary rewards, as would be expected. 

 

1.3.3 Decision tasks 

Other tasks that do not directly involve choices for drug or drug-related stimuli investigate 

components of decision-making that contribute to the development and maintenance of addictive 

disorders. These include tasks that assess risk-taking and advantageous decision-making. The 

following sections consider these types of choice tasks, and how varying the costs of rewards 

affects the computation of value, and therefore choice. 

 

1.4 Choice under Uncertainty 

Because choices in daily life rarely contain complete information about potential costs and 

benefits, most choices involve a balance between risk and reward. This balance is skewed in 

individuals with substance abuse disorders, who engage in risky behaviors related to drug-taking 

and make disadvantageous choices under uncertainty in the laboratory 68. A “risky” decision 

typically connotes one that involves danger or a high probability of negative outcome, but this 

definition of risk may differ from those used in the laboratory 69. Economists define a choice 

containing risk as one between options with different distributions of known outcomes, and 

laboratory tasks can distinguish between uncertainty due to risk, with known outcome 

probabilities, from uncertainty due to ambiguity, with unknown outcome probabilities. Decisions 

under uncertainty are especially relevant because they go against traditional decision theories that 

state that knowledge of probabilities should not change stated preferences 32,70. These decisions 

are also notoriously aversive: people make choices that go against their own benefit just to reduce 

uncertainty 71. 
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This section provides an overview of brain function relevant to decision-making under risk and 

ambiguity in individuals with drug use disorders. Decision-making under ambiguity is discussed 

by focusing on two of the most commonly used uncertainty tasks: the Iowa Gambling Task (IGT) 

72 and the Balloon Analog Risk Task (BART) 73 and then tasks that present clear outcome 

contingencies are reviewed. These typically take the form of probabilistic gambling tasks and 

assess uncertainty due purely to risk, following the relatively recent merging of neuroscience with 

behavioral economics 74. Finally, studies that directly compare uncertainty under conditions of risk 

and ambiguity are discussed.  

 

1.4.1 Decision-making under ambiguity 

Both the IGT and the BART incorporate elements of reward, punishment, learning, and 

adaptive risk-taking. On the IGT, participants progress through trials by picking cards from four 

different decks. Healthy participants typically learn to identify decks that deliver small immediate 

gains and small losses as leading to higher average gain, and they alter their behavior to sample 

more from the advantageous decks. The IGT is thought to measure choice under ambiguity at the 

start of the task when stimulus-outcome contingencies are still being learned, but to involve risk 

alone after the contingencies have been learned 75. The ventromedial PFC is especially implicated 

in this sort of adaptive decision-making, as people with ventromedial PFC lesions show 

impairment on the task 72, as do many people who misuse substances 76 and at-risk populations 77.  

Findings from studies of region cerebral blood flow, measured using PET and 15O-water, 

suggest that in individuals with substance abuse disorder performing the IGT, dysregulated striatal 

and ventromedial PFC/OFC activity is likely related to reward anticipation/valuation, while lower 

dorsolateral PFC activity contributes to dysregulated executive control inputs into reward 
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valuation. In healthy control participants, decision-making accompanies activation in the OFC, 

dorsolateral PFC, ACC, insula, inferior parietal cortex, and thalamus predominantly in the right 

hemisphere, and the cerebellum predominantly in the left 77. Individuals who chronically use 

marijuana perform worse than controls on a variant of the IGT that focuses on punishment, and 

exhibit stronger activation than controls in the ventromedial PFC during the standard IGT 78. 

People who misuse cocaine also exhibit performance below control levels and greater activity than 

controls in the putamen and OFC, but less activity in the dorsolateral and medial PFC, during 

choice 79. A similar pattern has been observed in abstinent marijuana users, who exhibit less 

activation in the lateral OFC and dorsolateral PFC compared to control participants 80.  

Certain fMRI studies have investigated brain activity in response to wins and losses on the 

IGT  and have the potential to elucidate differences in approach and avoidance behavior related to 

rewards 81. People who chronically use marijuana may be less sensitive to negative feedback, as 

they exhibit weaker responses to losses in the ACC and medial frontal cortex compared to controls, 

and do not show a correlation between task performance and activity in the ACC, ventromedial 

PFC, and rostral PFC, as is demonstrated in controls 82. In response to wins, people who chronically 

use marijuana also respond more strongly in the right OFC, superior temporal gyrus, and insula 

than controls, and superior temporal gyrus activity is correlated with higher marijuana use in the 

6 months following testing 83. These observations of dysregulated responses to outcomes suggest 

that individuals with substance abuse disorders may have increased approach and decreased 

avoidance behaviors that could translate to enhanced reward-seeking and reduced sensitivity to 

negative outcomes. 

Similar deficits are seen in the brain function of individuals with substance abuse 

performing the BART, in which the participant makes a series of choices either to pump a virtual 
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balloon to increase monetary reward or to stop pumping and “cash out”, retaining the earnings 

from the trial. If the balloon pops, the rewards accrued on the trial are lost. Risk, defined as 

probability of explosion, increases with each pump, and participants effectively set the level of 

risk as they pump. In this way, risk preferences are determined in a naturalistic setting, which is 

enhanced by the visceral states surrounding the repeated pumping of the balloon and threat of 

explosion 69. Risk on the BART differs from that on the IGT, in which risk is defined by stimulus-

outcome contingencies. The task has shown evidence of ecological validity in some studies: the 

average number of pumps correlates with self-reports of substance use, drinking, and smoking 

84,85, although in some cases, substance users take less risk on the BART than controls 86-88. 

When participants take risk on the BART during fMRI, risk level parametrically modulates 

activation in a set of mesolimbic-frontal regions, including the midbrain, striatum, anterior insula, 

dorsolateral PFC, and ACC/medial frontal cortex 89. Moreover, in healthy controls, striatal 

dopamine D2-type receptor binding potential is correlated positively with modulation of activity 

in the ventral striatum when participants decide to cash out (take reward), but negatively with 

modulation of dorsolateral PFC activation during pumping (risk-taking) 90. Moreover, fractional 

anisotropy of the white-matter pathways connecting the PFC, insula, and midbrain to the striatum 

is positively correlated with risk-taking and task performance, and with parametric modulation of 

activation in the anterior insula, putamen, ACC, and right medial frontal gyrus by risk 91. These 

results demonstrate the importance of optimal striatal dopaminergic function and efficient 

mesocorticolimbic circuitry in modulating striatal and prefrontal activity for advantageous 

decision-making on the BART. 

The BART has also been used to investigate corticostriatal circuitry in individuals who use 

methamphetamine. Compared to control participants, individuals with Methamphetamine 

http://topics.sciencedirect.com/topics/page/Mesolimbic_pathway
http://topics.sciencedirect.com/topics/page/Midbrain
http://topics.sciencedirect.com/topics/page/Frontal_lobe
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Dependence exhibit greater modulation of ventral striatal activation, but less modulation of 

dorsolateral PFC activation, by risk and reward 86. They also exhibit stronger resting-state 

functional connectivity (RSFC) of the midbrain with the putamen, amygdala, and hippocampus, 

and midbrain connectivity is inversely related to dorsolateral PFC sensitivity to risk during the 

BART 86. This enhanced connectivity of mesostriatal and mesolimbic pathways associated with 

diminished sensitivity of the dorsolateral PFC is not observed in control participants. However, 

modulation of dorsolateral PFC activation by risk is positively related to RSFC of the dorsolateral 

PFC with the striatum in control participants, a pattern that is not observed in Methamphetamine 

Dependence 86. In contrast, RSFC of the midbrain with the striatum, OFC, and insula is negatively 

related to striatal dopamine D2-type receptor availability in participants with Methamphetamine 

Dependence, a pattern opposite to that seen in control participants 92. RSFC of the midbrain and 

ventral striatum also is positively related to cognitive impulsivity in those with Methamphetamine 

Dependence, but negatively related in control participants 92. Thus, mesostriatal and mesolimbic 

circuitry may function adaptively in control participants, but maladaptively in those with 

Methamphetamine Dependence. 

In sum, converging evidence from the IGT and BART suggests that impaired brain 

function in mesolimbic-frontal regions in substance abuse contributes to aberrant decision-making 

under uncertainty. IGT performance points to dysregulated reward sensitivity in the striatum and 

ventromedial PFC/OFC and hypofunction of the dorsolateral PFC, which is less active during 

choice, compared to activity in healthy controls 78-80. Findings obtained with the BART reveal 

hypersensitivity to risk and reward in the ventral striatum and hyposensitivity in the dorsolateral 

PFC of individuals with substance abuse disorders; these sensitivities are associated with baseline 

function of mesocorticostriatal striatal circuitry, which functions adaptively in healthy controls and 



 13 

 

 

exhibits abnormalities in those who misuse drugs 86. The associations between striatal dopamine 

D2-type receptor availability, mesocorticostriatal circuitry, and measures of impulsivity 92-94 

underscore the crucial role of dopamine D2-type receptor signaling in advantageous decision-

making and the importance of dopamine functions in dysregulated mesocorticostriatal circuitry to 

influence choice under ambiguity.  

 

1.4.2 Decision-making under risk, without ambiguity 

Tasks in which outcome probabilities are known typically take the form of probabilistic 

gambling tasks, such as lottery choice tasks that present choices between options with different 

probabilities of gains and/or losses. As trials are independent, there is no opportunity for learning, 

and other confounding functions, such as cognitive flexibility, working memory, reinforcement, 

and loss and gain sensitivity 69,95, can be avoided. These types of procedures can be based on 

economic theory and decomposed into specific constructs, such as risk, which can be 

parametrically varied to isolate their influence on decision-making. 

It can be beneficial to investigate the neurological markers of specific risk preferences for 

their role in the development and maintenance of addiction. In particular, the ACC and insula have 

been implicated in risk tendencies that depart from classical risk neutrality. That ACC error-

likelihood and expected risk signals are seen in risk-averse, but not risk-tolerant individuals, 

suggests that people more tolerant to risk may be less sensitive to error predictors 96. Risk-takers 

may also be less motivated by safer options than risk-averters, as neural activity in frontal, medial 

temporal, and striatal areas is positively correlated with risk in risk-seekers, but with expected 

value in risk-averters 97. A role of the ACC and insula in non-normative decision-making is further 

supported by the tracking of activity in these regions with reward probabilities, and also the 
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correlation of activity in these regions with specific “irrational” risk tendencies. Specifically, 

activity in the ACC and insula correlates with the nonlinear transformation of probabilities 98, 

which refers to larger risk-seeking in situations with a low probability of success and risk-

avoidance in situations with a high probability of success  9. 

Neural activity in the ACC and insula is associated with avoiding loss and risk 36,99,100, and 

activation in these regions during decision-making under risk in is impaired substance users. While 

playing a monetary game called “Chicken,” in which trials offer either guaranteed reward or 

conflict between increasing reward and risk of penalty, patients diagnosed with both alcohol and 

cocaine dependence exhibit less ACC activity than controls on trials that include risk 101. Young 

adults who occasionally use stimulants, and who therefore may be at risk for future substance 

abuse, exhibit less activity in the ACC, PFC, insula, and dorsal striatum during a risky gambling 

task compared to control participants, and the attenuation in ACC activity is inversely related to 

past drug use 102. 

Activity in the ACC and insula may play a role in thwarting maladaptive risky behavior, 

and these signals may malfunction in substance abuse. Findings from a study of current and former 

users of both opiates and amphetamines show that lower ACC activity is related to greater risk 

propensity during performance of the Cambridge Risk Task 103; this is true as well for abstinent 

polydrug users performing the Rogers Decision-Making Task 104. During the Risky Gains Task, 

individuals with Methamphetamine Dependence exhibit less ACC activity and are more likely to 

make risky decisions following losses compared to controls 105. Activity in the ACC and insula is 

related to propensity to avoid risk following loss in healthy controls during the Cambridge Risk 

Task, but this relationship is absent in those who use opiates, who also show abnormal OFC 

activity associated with risk preferences 106. These studies demonstrate potentially deficient 
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signaling, especially in the ACC, to inhibit risk in substance abuse. Such signaling may be 

necessary to prevent disadvantageous behavior by biasing choices to minimize cost and maximize 

gain 107. 

Findings from longitudinal studies suggest that individuals with Methamphetamine 

Dependence have an impaired ability to discriminate between safe and risky decisions, which may 

reflect altered insula signaling. For example, participants with Methamphetamine Dependence 

who later relapsed displayed lower activation in the bilateral striatum, bilateral insula, left inferior 

frontal gyrus, and left ACC in response to winning and negative feedback on a reinforcement 

learning task, compared to their non-relapsing counterparts 108. Those with Methamphetamine 

Dependence who remained abstinent 1 year after testing displayed lower insula activation during 

safe decisions compared to risky decisions on the Risky Gains Task, whereas those participants 

who relapsed displayed similar insula activation during both safe and risky choices 109. 

 

1.4.3 Risk versus ambiguity 

Certain studies have directly compared the neural circuitry involved in decisions under 

ambiguity and risk. Preference for choices containing ambiguity can be predicted by lateral PFC 

activity 4, and greater activity in the OFC and amygdala is exhibited during ambiguous decisions 

than decisions with only risk 110. In contrast, activity in the posterior parietal cortex predicts 

preference for choices involving risk 4, and activity in the dorsal striatum is higher for these choices 

than for ambiguous choice trials 110. Whether ambiguous choices are just a more complicated 

version of risky choices, or whether these two forms of uncertainty reflect distinct processes, is 

still an open question. However, subjective value is correlated with activation in the striatum, 

medial PFC, posterior parietal cortex, and amygdala during ambiguous as well as during risk trials 
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(although the trend in the posterior parietal cortex did not reach significance for risk trials) 111. 

These findings suggest that, at least at the level of value representation, both types of uncertainty 

are represented by a unified system.  

There is evidence that individual with substance abuse disorders have dysregulated 

circuitry involved in mediating between uncertainty due to risk and ambiguity. The learning of 

reward contingencies necessary to transition from ambiguous to risky choice on the IGT is delayed 

in alcohol-dependent patients, and this effect may be due to an impairment in properly estimating 

the probability distributions of alternative choices 112. Individuals who chronically use marijuana 

and were deprived of marijuana value uncertain rewards less than healthy controls on the Reward 

Uncertainty Decision-Making Task, and this uncertainty aversion is positively correlated with 

marijuana use 113. That participants with Methamphetamine Dependence have also been shown to 

be risk averse on the BART 86 implicates uncertainty aversion as a potential factor in decision-

making abnormalities exhibited in addiction. 

 

1.5 Intertemporal Choice 

The delay to receipt is a consistent modulator of reward value 114. Options received sooner in 

time are naturally valued more than those that are delayed, and the extent of such delay discounting 

differs among individuals 3. Contrary to predictions from traditional exponential discounting 

models 115, people tend to overvalue immediate rewards (Kahneman & Tversky, 1979) and reverse 

their preferences depending on the specific temporal dynamics 116. Asked to choose between $15 

immediately or $16 tomorrow, most people would choose $15; asked to choose between $15 in 99 

days or $16 in 100 days, most would change their answer to the later option 117,118. This time 

inconsistency may arise from competition between two distinct decision-making systems, an 
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“impulsive” limbic and “executive” prefrontal system 119,120, although evidence points to a unified 

system 44,121-123, in which inputs that differentially contribute to valuation feed into a final estimate 

of value 2,124. Preference reversals are especially relevant for addictions, which feature the breaking 

of resolutions to abstain from addictive behaviors 125. 

 

1.5.1 Delay discounting in addictions 

Discounting is exaggerated in individuals with addictions, whether to alcohol, drugs, food, 

or gambling 126. The ventral striatum and frontoparietal regions, specifically the medial PFC and 

posterior cingulate cortex, have been consistently implicated in intertemporal choice 123,127. 

Notably, brain function differs between healthy control participants and those with substance abuse 

during delay discounting tasks. In sober alcoholics, discounting correlates negatively with activity 

in the lateral OFC and positively with activity in the dorsal PFC and posterior parietal cortex 128. 

Alcohol use severity, however, correlates with steepness of discounting and activity in the 

supplementary motor cortex, insula, OFC, inferior frontal gyrus, and precuneus 129. Participants 

with Methamphetamine Dependence exhibit less activity than control participants in the 

precuneus, right caudate, ACC, and dorsolateral PFC during decision-making on a delay 

discounting task, and exhibit a positive correlation between discounting and activity in the 

dorsolateral PFC, posterior parietal cortex, posterior cingulate cortex, and amygdala 130. Control 

participants show significantly greater activation in the left dorsolateral PFC and right intraparietal 

sulcus on hard trials than on easy trials (i.e. large versus small differences in subjective value of 

alternatives), but participants with Methamphetamine Dependence show as much activation on 

easy trials as on hard trials, suggesting that cortical processing related to intertemporal choice may 

be less efficient in participants with Methamphetamine Dependence than controls 131. Activity in 
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the dorsolateral PFC may thus be crucial for mediating decisions between more difficult 

alternatives, and may be impaired in individuals with addictions. Indeed, in what can be assumed 

to be a difficult choice, participants who chronically use cocaine exhibit greater activity in the 

dorsolateral PFC when choosing future monetary reward over immediate cocaine 67.   

Differences in delay discounting are also related to indices of dopaminergic function. Both 

discounting behavior and dorsal PFC and posterior parietal cortex activation during task 

performance can be predicted by variation in the Val158Met polymorphism of the catechol-O-

methyltransferase gene, which influences dopamine metabolism 128. In addition, lower striatal D2-

type receptor availability, measured with PET, is related to steeper discounting in participants with 

Methamphetamine Dependence 132 and pathological gamblers 133. These findings demonstrate that, 

in controls, greater dopamine metabolism by COMT, which should reduce dopamine levels 

primarily in the PFC 134, and low striatal D2-type receptor availability in Methamphetamine 

Dependence contribute to steeper delay discounting. Thus, optimal dopamine function is likely 

necessary for maintaining value in the face of delay cost. 

 

1.5.2 Vulnerability to addiction and therapeutic outcome 

That delay discounting is a common feature across addictions suggests that it may represent 

an intrinsic feature of addiction and thus be a tractable therapeutic target—although, imprecisions 

in how delay discounting is estimated raises questions as to the motivations behind heightened 

preferences for immediacy. For instance, the uncertainty inherent to the delay is often not taken 

into account and can substantially alter interpretation of results 135-139.  

A natural question that arises is whether steep discounting precedes or results from 

addiction. Chronic drug use likely affects the rate of discounting [e.g., Yi, Johnson, Giordano, 
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Landes, Badger and Bickel (140)], but converging evidence indicates that individual differences 

in delay discounting also predict subsequent drug use [e.g., Sheffer, Christensen, Landes, Carter, 

Jackson and Bickel (141)]. Notably, various behavioral approaches 142, including working memory 

training 143, visualization of near future episodic events 144, and orientation to the future by forward 

planning 145, reduce preference for immediate rewards. It would be important to continue 

investigating the extent to which reduction of delay discounting by such methods can alter 

therapeutic outcome. 

 

1.6 Internal Influences on Choice 

Internal signals, including autonomic, affective, and self-reflective processes, can alter 

valuation and thereby influence choice. Autonomic responses exert reciprocal influences on 

decision-making; cognitive processes influence bodily states, which in turn alter cognitive 

processes and generate interoceptive signals that contribute to affective feeling states and decision-

making 5. These internal signals are necessary for self-monitoring and self-awareness, which are 

crucial for adaptive decision-making 146. As discussed below, the integration of autonomic and 

affective processes with cognitive factors to influence decision-making is disrupted in individuals 

with addictions. 

 

1.6.1 Bodily states 

Physiological responses to emotional signals are necessary for adaptive choice 147. They 

are likely integrated with cognitive information through the insula, ACC, amygdala, and 

somatosensory cortex 40, and integration in all these areas relies on activity in the ventromedial 

PFC 72. During decision-making, abstinent drug users perform below control levels on gambling 
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and decision-making tasks, and have lower skin conductance and smaller heart rate responses 

while performing both tasks 148. 

Indeed, individuals who use substances have been characterized on the basis of 

physiological responses while performing the IGT. Some are unimpaired on the task, while others 

display deficits as severe as those of patients with ventromedial PFC lesions 76. Of those with 

deficits, some seem insensitive to positive as well as negative outcomes, as they exhibit blunted 

anticipatory skin conductance responses to both reward and punishment 149; others seem 

hypersensitive to reward, as they perform normally with regard to punishment, but display 

heightened physiological responses to reward magnitude 150. These results demonstrate that faulty 

physiological responses, associated with dysfunction in the ventromedial PFC, are related to 

aberrant decision-making by individuals who use drugs.  

Integration of visceral experiences also relies on amygdala function 151. Abstinent 

alcoholics with diminished IGT performance have smaller amygdala volume than controls 152, and 

adolescents at risk for substance abuse have less amygdala, insula, and ACC activation on the 

BART compared to controls 153. These differences in activity may reflect emotional responses to 

the visceral motivations of the task. Integration of somatic and visceral states into the decision-

making process could thus be altered and may underlie decision-making impairments seen in 

addiction, from reductions in sensing risk 147 to overvaluation of visceral motivations 154. 

The insula has been implicated in interoception and the influence of autonomic functions 

on cognition 39. Disruption of interoceptive signals is considered central to decision-making 

deficits observed in addictions 155,156, especially in relation to approach and avoidance behaviors 

157. It has been proposed that an insula-dependent system integrates experience and recall of 
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conscious pleasure derived from the interoceptive effects of drug use into the decision-making 

process 158. 

Studies of individuals with Methamphetamine Dependence have provided supporting data. 

When making decisions on a task with a positive interoceptive component, participants with 

Methamphetamine Dependence exhibit less anterior insula, dorsal striatum, and thalamus activity 

than controls, and the correlation between anterior insula activity and reaction time is positive in 

controls, but negative in Methamphetamine Dependence 159. Those with Methamphetamine 

Dependence also exhibit less posterior insula and ACC activity than controls during a choice task 

with an aversive interoceptive experience (breathing load); that attenuation of neural activity is 

exhibited across trials, regardless of error and reward rates, suggests that they are related to the 

interoceptive component of decision-making on the task 160. Thus, ineffective processing of 

interception, particularly in regions of the insula, may underlie an inability to integrate 

interoceptive information into decisions, especially in response to negative experiences.  

 

1.6.2 Affective states and emotion regulation 

Affective states are widely considered to be linked with addictive behavior, both for 

conferring risk and for contributing to the maintenance of drug use 161. Emotionally biased 

decisions represent one of the “irrationalities” observed in behavioral economics 154 and may be 

exaggerated in addictions through impairment of neural circuitry that mediates emotional 

contributions to choice. For instance, choice behaviors can be associated with specific affective 

states, such as sadness, which enhances preference for risk 162. The influence of affect could thus 

be enhanced in addictions. 
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Individuals who use drugs display difficulties with emotion regulation, which relies on 

activity in the dorsal inferior frontal gyrus and amygdala 163. Compared to control participants, 

those with Methamphetamine Dependence exhibit higher trait anxiety and attenuated anterior 

insula and inferior frontal gyrus activity during a choice task, and attenuation in the anterior insula 

and inferior frontal gyrus is negatively correlated with trait anxiety 160. Thus, anxiety in 

Methamphetamine Dependence seems related to a diminished allocation of cognitive resources to 

the decision-making process. If executive functions related to emotional choices are disrupted, the 

impact of moods, emotions, or an immediate affective state on decision-making could be 

strengthened. Participants with Methamphetamine Dependence also have impaired emotional 

recognition and processing that is linked to dopamine D2-type receptor availability in the ACC 

and anterior insula 164. Further, emotion dysregulation is related to dopamine D2-type receptor 

availability in the amygdala of both control participants and those with Methamphetamine 

Dependence 165. This association suggests that dopaminergic function contributes to individual 

differences in susceptibility to emotional influences during decision-making. 

 

1.6.3 Insight 

The disconnection between perception and reality frequently observed in addiction, 

perhaps most clear in the tendency to underestimate addiction severity, negative consequences, 

and the need for treatment, can bias choices towards the maintenance of destructive behaviors 

166,167. Insight necessitates an awareness of cognitive processes and involves functions such as 

behavior monitoring and error recognition, which are crucial for appropriate decision-making and 

are impaired in those who use drugs 168-170. These processes are intrinsically linked with bodily 
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states and interoceptive awareness, as autonomic responses must be integrated with conscious self-

monitoring for relevant functions, such as error recognition 5. 

Converging evidence indicates that dysfunction in the ACC of individuals with substance 

use disorders contributes to poor insight. Activity in the ACC and insula related to error recognition 

is absent in participants who chronically use opiates 169 and cannabis 168. Compared to control 

participants and those with Cocaine Use Disorder with intact insight, participants with Cocaine 

Use Disorder who have difficulty in self-monitoring also have less emotional awareness, less error-

induced activity in the rostral ACC during an inhibitory control task, and less gray matter within 

the rostral ACC 171. Denial, measured by the precontemplation scale of the University of Rhode 

Island Change Assessment Scale (URICA), which assesses the degree to which an individual is 

ready to change problematic behavior, is inversely related to the strength of connectivity between 

the rostral ACC and frontal, limbic, and occipital areas in Methamphetamine Dependence 167. 

Thus, impairment in a network of brain areas, including the ACC, may contribute to impairment 

of insight in substance abuse.  

 

1.7 External Influences on Choice 

Context has a powerful and ubiquitous impact on decision-making 172. Context dependence 

produces violations of rational economic models, in which preferences should be independent, 

regardless of irrelevant alternatives 173 or how they are framed 174. Instead, preferences change 

depending on the availability of other options and past options, and on the framing of options 

175,176. Contextual appraisal also applies to cues in the immediate environment and the social 

domain, and a rich body of literature has explored both in relation to addiction.  

 



 24 

 

 

1.7.1 Reference dependence 

Contrary to the principles of rational choice theories, preferences for options that present 

risk change according to whether options are framed as gains or losses, even when the subjective 

values remain constant 9. This phenomenon arises from decisions being considered in relation to a 

reference point and leads to systematic and predictable biases 177. In studies in which value changes 

as a function of alternative options and distractors 178, context-dependent neural activity related to 

reward valuation has been observed in the ventral striatum and parietal cortex 179. 

Certain tasks compare choices consistent and inconsistent with the effects of framing put 

forth by prospect theory 9, and find that activity in the amygdala is related to decisions consistent 

with framing effects and ACC activity is related to decisions that are inconsistent with framing 

effects 180. Risk signals observed in the anterior insula during positively-framed messages on the 

IGT also have been correlated with how much the message improves choice behavior 181. While 

previously hypothesized to result from emotional biases 180,182, framing effects may also be related 

to cognitive control and engagement 183. Supporting this view is the observation that activity in the 

dorsolateral PFC correlates with advantageous decision-making on the framing version of the IGT 

181. 

The gain/loss asymmetry of framing and the reference dependence of normalizing to the 

status quo could represent biologically separate systems of approach and withdrawal 184, which 

could influence vulnerability for addiction 81. Susceptibility to framing effects correlates with 

activity in the medial and orbital PFC 180 and the ACC 185, and is linked with emotions 186. 

Moreover, a study using the IGT indicated that better performance in the positively-framed 

condition is associated with activity in the ACC and insula in both healthy control participants and 

those who use substances, whereas substance users perform worse than controls during negatively 
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framed IGT conditions. Their performance also reflects lower risk-aversion signals in the anterior 

insula, and  a correlation between advantageous decision-making and risk-related activity in the 

ACC across decisions is only observed in healthy controls 187. Thus, impaired risk signals in the 

ACC and insula of participants who use substances, especially related to negatively-framed 

messages, appear to contribute to disadvantageous decision-making.  

The susceptibility to framing effects has therapeutic applications. For instance, conscious 

perspective shifts can alter value-related neural activity, as evidenced by the modification of 

cortical activations related to reward value and choice selection by instruction to frame food 

choices in terms of health or taste 188. Similarly, framing effects can bias preferences on delay 

discounting tasks 144,189. Neural activity in the medial PFC also can predict behavioral changes in 

the week following persuasive messages 190. Framing effects and reference dependence warrant 

further investigation as related to addictions, especially considering that the status quo in 

addictions can be constantly shifting, causing inconsistency in decisions 191. 

 

1.7.2 Environmental cues 

Contextual cues can have major effects on drug-related choices 192-194. For instance, 

conditioned stimuli with enhanced salience can bias towards drug-seeking behavior 195. Thus, 

environmental stimuli can alter the value of certain options and induce a state of craving that 

heightens the value of drug-related choices compared to alternatives. Studies on the neural basis 

of cue-induced craving have shown greater activity in mesocorticolimbic regions 7,196,197 in 

response to drug-related compared to neutral cues. A role of the insula has been emphasized; insula 

activity correlates with cue-induced drug craving in individuals who smoke cigarettes 198, use 

cocaine 199, and use opiates 200, and RSFC of the right insula with prefrontal networks is greater in 

those who use cocaine than controls 201. Smoking addiction is disrupted by changes in cigarette 
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craving after lesions to the insula, reinforcing its role in conscious cue-induced drug craving and, 

perhaps, in the pleasure derived from the bodily effects of smoking 158. 

Interestingly, suppression of craving during cigarette cues is linked to activations in limbic 

brain regions, specifically the left dorsal ACC, posterior cingulate cortex, and precuneus, and 

deactivations in primary sensory and motor cortices, specifically the cuneus, left lateral occipital 

gyrus, and right postcentral gyrus 198. Individuals who use cocaine also exhibit decreases in right 

ventral striatum and right OFC activity when instructed to inhibit cravings, compared to trials with 

no instruction to inhibit craving, and the decreases in activity are linked to increased activity in the 

lateral PFC 202. Similar results have been found in smokers 203. Thus, modulation by the lateral 

PFC appears to be crucial for resisting craving, which is likely mediated by activity in the ventral 

striatum and OFC, as well as limbic areas. 

 

1.7.3 Social factors and peer influence 

Decisions made in a social environment integrate personal goals with the well-being of 

others, while taking into account drives such as conformity, altruism, and punishment 204,205. These 

drives affect the value of different options 206. Specific economic tasks, such as game theory tasks 

207, developed to investigate social decision-making have revealed that social decision-making 

processes share many neural substrates with reinforcement learning and reward valuation 208,209 

and are associated with dopamine signaling 210. 

Addiction often is accompanied by disruptions in processes necessary for social decision-

making, from understanding the self 170 to recognizing the emotions of others 211 and social 

functioning 212,213. Compared to healthy control participants, those with Methamphetamine 

Dependence exhibit abnormal frontoparietal activity that may reflect difficulty integrating the 
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emotional components of social information 163,214. Indeed, affective responses, which are 

impaired in those with addictions 149, can influence social decision-making 215. All of these factors 

could contribute to the development and maintenance of addictions, especially during adolescence, 

the most common time for the onset of addiction 216, when social functioning is of particular 

significance 217,218. While peer influences on performance in delay discounting tasks have been 

demonstrated 219, the authors are aware of no studies that have yet investigated brain function 

during game theory tasks in participants with substance use disorders.  

Neural activity during decision-making tasks with a social component have demonstrated 

different patterns of striatal activity in young adults who use marijuana compared to healthy 

controls when participants are integrating social information into decisions 220. The neural 

underpinnings of social conformity are particularly relevant, especially considering the impact of 

peer influences on addictions, risk-taking, and decision-making 221,222. Young adults who use 

marijuana take more time than controls to resist group choices, and reaction times are correlated 

with greater frontal activation 223. Self-reported susceptibility to group influence is associated with 

caudate activity in both groups, with the marijuana group exhibiting greater caudate activation 

than controls when presented with social influence 223. Both groups exhibit activation in the ventral 

ACC, PFC, and insula during social exclusion, but young adults who use marijuana have lower 

insula signaling 224. This result is in line with evidence that insula activity is related to group 

conformity 225. These studies suggest that, during decision-making, individuals who use drugs may 

process social information differently in striatal and frontal regions, especially in the insula.  

 

 

1.8 Conclusions and Future Directions 
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Maladaptive decision-making may arise from disruptions in the effective computation of 

reward values. Clarification of how factors such as temporal delay, uncertainty, and internal and 

external states influence reward valuation, and how subjective value guides choice, can help 

explain suboptimal choice selection in addiction. “Irrational” choice behavior can reflect 

inconsistent judgement of delays 117,118 and uncertainty 70, or the influence of emotion 154 and 

reference 9 on evaluating utility. These biases may be exaggerated in addictions, providing a 

mechanism by which the underlying neurobiological processes can be better understood.  

Consistent with the general consensus of a central role for dopamine in choice and in 

addictions, many of the findings previously covered are related to the dopaminergic system 

56,57,62,90,92,128,132,164,165. The complexity of the dopaminergic system with respect to localization and 

function of different dopamine receptor subtypes and mechanisms of dopamine release, and the 

inconsistency of results 226, necessitates clarification of how dopamine functions to modulate 

decision-making, especially in addictions. Undoubtedly, while not presently covered, the roles of 

other neurotransmitter systems warrant further investigation 227. 

Limitations in the study of decision-making and addiction can arise from methodological 

variation. As choice behavior likely varies as a function of reward type, the use of different types 

of rewards complicate generalization across studies 228. Decision-making impairments and neural 

activity can also differ according to the type of addiction 106,229, although there is evidence of 

consistency across addictions to different types of drugs 103. Further, that it can be difficult to 

determine whether neural responses interpreted as value signals are not related instead to other 

cognitive functions, such as attention or coding of outcome identity 230, can potentially confound 

results. Similarly, the imprecise definitions of constructs such as risk and impulsivity necessitate 

caution in the generalization of results 69,231. For instance, delay discounting tasks capture an 
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underlying and constant feature of addictive disorders, and still resist generalization past the 

quantification of the preference for an immediate over a larger delayed reward.  

The present chapter is by no means comprehensive and focuses on findings in humans related 

to the neurobiology of valuation in addictions. Components that alter subjective value are explored 

in the subsequent chapters.  
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CHAPTER TWO 

Behavioral Methods 
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2.1 Behavioral Tasks 

2.1.1 One-balloon version of the Balloon Analogue Risk Task (BART) 

The Balloon Analogue Risk Task (BART) is a risky-decision-making task that provides a 

naturalistic assessment of risk-taking 73. A virtual balloon appeared on a computer screen and the 

participant was told that they would receive $0.25 for each pump of the balloon, which they 

selected by pressing a key (Fig. 2.1). With each pump, the balloon either increased in size or 

exploded, and the probability of explosion increased as the balloon inflated. Participants were told 

that pumping was associated with reward ($0.25), but were not told that the number of pumps 

before explosion was predetermined from a uniform probability distribution. Thus, the participant 

made a series of choices ─ to pump (taking risk) or to cash out and retain the earnings up to that 

point in the trial. If the balloon exploded before the 

participant cashed out, the earnings from that trial were lost. 

The precise number of trials varied between participants 

based on their pace of pumping, but the one-balloon version 

of the BART was faster in than the fMRI version explained 

below. The mean (SD) of total trials across groups was 

28.98 (0.755), with 27.19 (1.512) for the healthy control 

(HC) and 30.0 (0.772) for the Stimulant Use Disorder 

(SUD) group.  

After testing completed, participants received their earnings from the task in the form of 

cash, gift cards, or vouchers. The traditional outcome measure of the BART is known as adjusted 

pumps: the average number of pumps before cashing out (i.e., on non-explosion trials). In addition 

Figure 2.1 One-balloon version of 

the Balloon Analogue Risk Task. 

Example view of the task screen. 
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to this measure, a cognitive parameterization model was used to decompose decision-making into 

precise parameters.  

 

2.1.2 Two-balloon version of the Balloon Analogue Risk Task (BART) 

Participants performed two 10-min runs of an event-related fMRI version of the BART 

86,232,233. Each pump was followed either by an image of 

the balloon increasing in size, or a 2-second video of the 

of the balloon exploding and the message “Total = 

$0.00,” at which point the balloon was reset and another 

trial began (Fig. 2.2). A trial included each pump before 

either explosion or cashing out and earnings were 

displayed for 2 seconds after each trial. Three types of 

balloons were presented: blue, red, and white. 

Participants were told that red and blue balloons were 

associated with reward ($0.25), but were not told that the 

number of pumps before explosion was predetermined 

from a uniform probability distribution (1-8 for red and 1-12 for blue balloons). Participants 

received the instruction to pump the white balloons until the trial ended, but that this activity would 

not be associated with any monetary reward. The number of white control balloons varied from 1-

12 based on a uniform distribution. The precise number of trials varied between participants based 

on their pace of pumping. The mean (SD) of total trials across groups was 33.07 (5.962), with 

33.31 (5.734) for the HC group and 32.49 (6.443) for the SUD group. The interstimulus interval 

Figure 2.2 Two-balloon version of 

the Balloon Analogue Risk Task. 

Example trials ending in  either 

explode (A) or cash out (B). 
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between balloons was 1-3 seconds and the intertrial interval was 1-14 seconds, with a mean of 4 

seconds.  

 

2.1.3 Loss Aversion Task (LAT) 

The Loss Aversion Task (LAT) consisted of 128 sequential 

monetary choices to accept or reject a mixed gamble offering a 50/50 

chance of winning a certain amount of money and losing a different 

amount of money (e.g., gaining $30 or losing $7) 234. On each trial, an image representing a 50/50 

choice was presented on the screen, and the participants indicated whether they strongly accepted, 

weakly accepted, weakly rejected, or strongly rejected the choice (Fig. 2.3). Four options were 

provided instead of two (i.e., accept or reject) to discourage reliance on rule-based choice (e.g., 

always accepting when the loss exceeded $5). The probability of winning or losing was kept 

constant at 50%, and the alternative to accepting the gamble was always to remain at the status 

quo (i.e., win and lose nothing). The gains ranged from $10-$40 in increments of $2, and the losses 

ranged from $5-$20 in increments of $1. Once the participant decided, the next choice was 

presented without showing the outcome of the previous choice; if no selection was made within 3 

seconds, the next gamble appeared on the screen. The task was presented using MATLAB 

(Mathworks, Natick, MA) and the Psychtoolbox (www.psychtoolbox.org) on an Apple PowerMac 

laptop computer running Mac OSX (Apple Computers, Cupertino, CA), with most of the code the 

same as used previously 234. Participants responded using the 1, 2, 3, and 4 keys on the keyboard. 

A subset of participants also performed 22 extra “gain-only” trials that presented choices between 

a sure win of $5 or a 50% chance of winning a variable amount that varied from $4-$50.  

Figure 2.3 Loss 

Aversion Task. 

Example trial. 



 34 

 

 

Before testing, participants received thorough instruction on how to perform the task. 

Instructions were read aloud, and the participant was encouraged to ask questions while viewing 

training slides and performing 5-10 practice trials. To ensure that participants were motivated on 

the task, they were told that one of their choices would be randomly selected to be paid out at the 

end of testing. This incentive-compatible technique tried to ensure that participants were making 

choices that reflect their “true” preferences. They also were told that losses would be deducted 

from their earnings from participation in the study, but losses were not actually deducted. 

 

2.1.4 Choice under Risk and Ambiguity Task 

The Choice Under Risk and Ambiguity (CRA) Task was administered to isolate and 

measure risk-taking under ambiguous and unambiguous conditions 111. Participants choose 

between accepting a sure amount of money ($5) or gambling on a lottery for the chance to win 

more than $5, with reward amounts and probabilities systematically varied. Participants were told 

that each visual stimulus (Fig. 2.4A) represented a stack of poker chips and were shown 6 physical 

bags that contained the number of red/blue chips corresponding to all 6 visual stimuli (3 levels of 

risk + 3 levels of ambiguity = 6 bags). They were told that each 

trial represented picking from the corresponding bag, with the 

potential to win the amount of money written next to the 

appropriate color (i.e., in Fig. 2.4A., picking a red chip results 

in winning $66, and picking a blue chip in winning nothing). In 

half of the trials, the entire stack of chips was visible and thus 

the probability of drawing each color was known (risk, Fig. 

2.4B). These proportions were obscured to a varying degree by 

Figure 2.4 The Choice Under 

Risk and Ambiguity Task. A. 

Example stimulus. B. All 

possible stimuli for risk trials 

(top row) and ambiguity trials 

(bottom row). 
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a grey box in ambiguous trials so that the exact probability of picking each color was unknown 

(ambiguity, Fig. 2.4B). The task did not involve “betting” on a red or blue chip, but rather deciding 

whether to accept the gamble (i.e., pick from the bag) or receive $5.  

At the end of the experiment, one of the trials was randomly chosen and played out for real 

money. The possible rewards ranged from $5 to $50 and the three outcome probabilities for 

unambiguous risk trials were 0.25, 0.50, and 0.75. Throughout the task, participants were reminded 

of the $5 sure option, which was held constant so that unambiguous and ambiguous trials were 

comparable. Trials were presented in 4 blocks of 30, with rest periods in between (120 total trials). 

The task included checks for active attention/participation, choice consistency/randomness, and 

rule-based choosing 235. The outcome measures of the task wre parameters for risk-taking under 

ambiguous and unambiguous conditions, which were calculated by fitting models that are 

described below. 

 

2.1.5 Delay Discounting Task (DDT) 

Each trial of the delay discounting task presented a choice between monetary rewards that 

varied in magnitude and delay 236. The task was incentivized, with one trial selected for payout, 

and all transaction costs related to receiving the money were minimized. Participants indicated 

their preference between a smaller reward available in the near future and a larger reward available 

with a longer delay. The reward magnitudes ranged from $6 to $50. The amount and delay of 

reward were varied to construct the participant’s discount function, and the steepness of the 

discount function described how strongly a participant discounted future rewards. 
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2.2 Computational Modeling 

2.2.1 Balloon Analogue Risk Task 

Decision-making on the BART was decomposed using a re-parameterized model of the 4-

parameter model described in detail in Wallsten, Pleskac and Lejuez (237) and reparameterized by 

Park, Yang, Vassileva and Ahn (238). Briefly, the model assumes that the participant begins the 

task with a prior belief about the probability of the balloon bursting (𝑝𝑏𝑒𝑙𝑖𝑒𝑓). This prior belief is 

updated as the participant pumps on each trial:  

𝑝𝑘
𝑏𝑒𝑙𝑖𝑒𝑓

= 1 −
𝜙 + 𝜂 ∗ ∑ 𝑛𝑖

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑘−1
𝑖=0

1 + 𝜂 ∗ ∑ 𝑛𝑖
𝑝𝑢𝑚𝑝𝑠𝑘−1

𝑖=0

,    0 < 𝜙 < 1,   𝜂 > 0, 

where ∑ 𝑛𝑖
𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑘−1

𝑖=0  refers to the sum of all successful (non-bursting) pumps up until trial 𝑘 − 1 

and ∑ 𝑛𝑖
𝑝𝑢𝑚𝑝𝑠𝑘−1

𝑖=0  to the sum of the total number of pumps up to trial 𝑘 − 1. The value of 𝜙 

represents the prior belief that pumping the balloon will not make it explode, and 𝜂 represents the 

updating rate of the participant. At the beginning of the task, the prior belief about the probability 

of the balloon bursting (𝑝𝑘
𝑏𝑒𝑙𝑖𝑒𝑓

) is equal to 1 − 𝜙. As the participant progresses through the trials, 

the rate at which they update their belief based on observed data is given by the updating rate 𝜂. 

Lower values of 𝜂 indicate that more data is needed to update the participant’s belief: when 𝜂 = 0, 

the belief about the balloon bursting (𝑝𝑏𝑒𝑙𝑖𝑒𝑓) is unaffected by observed data and equals 1 − 𝜙, or 

the prior belief. At large values of 𝜂, 𝑝𝑏𝑒𝑙𝑖𝑒𝑓  approaches the observed probabilities.  

The probability that the participant will pump the balloon was calculated using prospect 

theory 9, and elaborated by Park, Yang, Vassileva and Ahn (238). The formula for expected utility 

is given by 𝑈𝑘𝑙, where l is the number of pumps on trial k: 

𝑈𝑘𝑙 = (1 − 𝑝𝑘
𝑏𝑒𝑙𝑖𝑒𝑓

)𝑙(𝑙𝑟)𝛾, 𝛾 ≥ 0, 
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where r is the amount of reward for each pump, and 𝛾 represents the risk-taking parameter. Setting 

the first derivative of 𝑈𝑘𝑙 for l equal to zero can then be used to calculate the optimal number of 

pumps, 𝑣𝑘: 

𝑣𝑘 =
−𝛾

log(1 − 𝑝𝑘
𝑏𝑒𝑙𝑖𝑒𝑓

)
, 𝛾 ≥ 0, 

 

Thus, the probability that the participant will pump on trial k for pump l is: 

𝑝𝑘𝑙
𝑝𝑢𝑚𝑝

=
−𝛾

1 + 𝑒𝜏(𝑙−𝑣𝑘)
, 𝜏 ≥ 0  

where 𝜏 is the inverse temperature that represents the consistency of participants’ choices. Now 

the probability of the data given the parameters can be represented by the likelihood function: 

𝑝(𝐷|𝜙, 𝜂, 𝛾, 𝜏) = ∏
𝑘𝑙𝑎𝑠𝑡

𝑘=1
∏ 𝑝𝑘𝑙

𝑝𝑢𝑚𝑝 (1 − 𝑝
𝑘,𝑙𝑘

𝑙𝑎𝑠𝑡+1

𝑝𝑢𝑚𝑝 )𝑑𝑘

𝑙𝑘
𝑙𝑎𝑠𝑡

𝑙=1
, 

where 𝑘𝑙𝑎𝑠𝑡 is the final number of trials, 𝑙𝑘
𝑙𝑎𝑠𝑡 is the final number of pumps taken on that last trial 

k, and 𝑑𝑘 is the outcome of that last trial k (𝑑𝑘 = 0 if balloon explodes, 𝑑𝑘 = 1 if the participant 

cashes out).  

The cognitive parameters of risk-taking (𝛾), updating rate (𝜂), and consistency (𝜏) were 

estimated using hierarchical Bayesian analysis as described below.  

 

2.2.2 Loss Aversion Task 

Data from the Loss Aversion Task were estimated in two ways. First, a logistic regression 

was fit to each participant’s data with the amounts of gain and loss as independent variables and 

the participant’s choice as the dependent variable. The responses “strongly accept” and “weakly 

accept” were both treated as accepting the gamble, and both “strongly reject” and “weakly reject” 
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were treated as rejecting the gamble.  Loss aversion (𝜆) was then taken as the ratio of the coefficient 

for the loss amount to the coefficient of the gain amount (𝜆 =  𝛽𝑙𝑜𝑠𝑠/𝛽𝑔𝑎𝑖𝑛).  

Full utility functions were fit to choices of the subset of participants who also performed 

the Choice under Risk and Ambiguity task (see next section). The trials that presented a 50% 

probability level and no ambiguity were included as “gain-only” trials to isolate risk preferences 

from loss aversion. This second analysis was performed using a multi-parameter utility function 

239 that represents subjective value (Equation 1) based on original prospect theory 9,240: 

𝑆𝑉(𝑥) =  {
              𝑥𝜌 , 𝑥 ≥ 0
𝜆 ∗ (−𝑥)𝜌 , 𝑥 < 0

 

The subjective value (𝑆𝑉) of the gamble is estimated using the objective magnitudes of 

gain (𝑥) and loss (−𝑥) given in each choice and the parameters of loss aversion (lambda; 𝜆) and 

risk attitude (rho; 𝜌). The sensitivity to potential loss relative to potential gain is represented by 𝜆. 

If 𝜆 =  1, the participant values gains and losses equally. When 𝜆 > 1, the participant is considered 

loss averse and assigns more weight to losses than to gains of equal magnitude. When 𝜆 < 1, the 

participant is considered gain-seeking, and overvalues gains compared to losses. Rho (𝜌) describes 

the curvature of the utility function and represents attitude towards risk. If 𝜌 = 1, the participant’s 

preferences can be modeled by a linear utility function, which signifies that each incremental 

increase in reward has equal utility. Values for 𝜌 other than 1 indicate that the preferences of the 

participant can be described by a utility function that shows diminishing marginal utility. When 

𝜌 < 1, the participant is risk-seeking for losses (more likely to take a gamble over a sure loss) and 

risk-averse for gains (more likely to choose a sure gain over a riskier prospect). The opposite is 

true when 𝜌 > 1. The subjective values were then inserted into a logit (softmax) function that 

estimates the probability of accepting the gamble based on the difference in subjective values 

between the lottery (50/50 choice or 𝑆𝑉𝑔𝑎𝑚𝑏𝑙𝑒) and the fixed amount ($0 or 𝑆𝑉𝑐𝑒𝑟𝑡𝑎𝑖𝑛): 
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𝑝(𝐴𝑐𝑐𝑒𝑝𝑡 𝐺𝑎𝑚𝑏𝑙𝑒) = [1 + exp (−𝜏 ∗ 𝑆𝑉𝑔𝑎𝑚𝑏𝑙𝑒 − 𝑆𝑉𝑐𝑒𝑟𝑡𝑎𝑖𝑛)]−1 

Tau (𝜏) is the logit sensitivity or inverse temperature and represents choice consistency, or the 

sensitivity of the participant to the difference in utility between the certain amount and the gamble. 

When 𝜏 = 0, choices would be completely random, whereas an infinite 𝜏 would be a step function 

and participants would be changing their behavior completely as if based on a calculation. 

To determine whether parameter values were misestimated when the task did not include 

trials to isolate risk from loss, the full utility was also fit to the larger subset of participants who 

performed the LAT without an explicit measurement of risk attitudes. 

 

2.2.3 Choice Under Risk and Ambiguity Task  

To estimate the parameters of risk () and ambiguity () for each individual, the subjective 

value of each option was modeled, while taking into account the reward magnitude, outcome 

probability, level of ambiguity, and individual attitudes towards risk/ambiguity. This was achieved 

using a power function 9 that incorporated the influence of ambiguity 241: 

𝑆𝑉 = [𝑝 −  𝛽 (
𝐴

2
)] ∗ 𝑀𝛼 

where SV is the subjective value, p is the objective reward probability, A is the level of ambiguity, 

and M is the reward magnitude. 

When 𝛼 = 1, the objective and subjective values of the reward are the same (risk-neutral,  

𝑀𝛼 = 𝑀1 = 𝑀). As 𝛼 increases, the participant is considered more risk-seeking, as they value 

money more; as 𝛼 decreases, the participant is less risk-seeking, or more risk-averse, as they value 

money less. When 𝛽 = 0, that component of the equation above disappears and the participant is 

considered ambiguity-neutral (𝑆𝑉 = [𝑝 −  0 ∗ (
𝐴

2
)] ∗ 𝑀𝛼  𝑆𝑉 = [𝑝] ∗ 𝑀𝛼). As 𝛽 increases, the 
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effect of ambiguity becomes stronger and the subjective value is considered less than the objective 

probability, so the participant is considered ambiguity-averse; as 𝛽 decreases, the effect of 

ambiguity becomes weaker, the subjective value is considered higher, and the participant more 

ambiguity-tolerant. 

To model the probability of each participant choosing the lottery over the safe option, the 

choice data of each participant was fit to a logistic function. This model assumes that task 

performance depends on the difference in subjective values of the sure bet and the risky option 

(either risk or ambiguity, depending on trial type), as well as an identically distributed error term. 

Pr(𝐶ℎ𝑜𝑜𝑠𝑒𝑅𝑖𝑠𝑘𝑦) =
1

1 + 𝑒𝛾(𝑆𝑉𝑆−𝑆𝑉𝐿)
 

with SVS as the subjective value of the safe option, SVL as that of the lottery, and 𝛾 as the slope of 

the logistic function, a subject-specific parameter. 

 

2.2.4 Delay Discounting Task 

Delay discounting was assessed using two approaches for comparison. For an option that 

presents a reward of magnitude M at a delay (d), the subjective value (SV) is a function of the 

discount factor (D) and the utility of the reward magnitude, U(M):  

𝑆𝑉 = 𝐷(𝑑) ∗  𝑈(𝑀) 

The discount factor (D) is a function of the delay (d) and the discount rate parameter (k), which 

represents the rate at which utility (or the SV of the reward) is discounted by time:  

𝐷 =
1

1 + 𝑘𝑑
 

Based on the choices of each subject, the point at which each participant is indifferent between the 

sooner and later amount (indifference point) was used to estimate the best-fit k value. A higher k 
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value signified that rewards were devalued fairly quickly as they moved farther into the future, 

resulting in a greater preference for smaller-sooner rewards.  

A hyperbolic model 242 was fit to the data twice. The first model assumed linear utility, 

meaning that utility was equal to the reward magnitude (𝑈 = 𝑀). This assumption means that 

individuals are assumed to be risk-neutral. When 𝑈 = 𝑀, the model becomes the classic delay 

discounting equation: 

𝑆𝑉 =
𝑀

1 + 𝑘𝑑
 

The second model included a separate estimate of utility curvature, obtained from the 

Choice under Risk and Ambiguity Task.  Instead of estimating k values through calculating the 

point at which a participant is indifferent between a sooner and later amount, this model calculates 

the point at which the utility of receiving the sooner and later amounts, given by 𝑈(𝑀), would be 

equal. This is accomplished by raising the magnitude of the reward 𝑀 to the power of the risk 

aversion parameter (𝛼): 

𝑈(𝑀) =
𝑀𝛼

1 + 𝑘𝑑
 

Models were fit using the hierarchical Bayesian modeling described in the following 

section. 

 

2.2.5 Hierarchical Bayesian Analysis 

Parameter values were estimated using hierarchical Bayesian analysis implemented in the 

“hBayesDM” package in R 243, which allows the joint estimation of individual and group 

parameters and robustly identifies individual differences in decision-making 244. Posterior 
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inference was performed with Markov Chain Monte Carlo (MCMC) sampling using Stan 245 and 

RStan (http://mc-stan.org/interfaces/rstan).  

The healthy control and Stimulant Use Disorder groups were modeled separately, as groups 

are assumed to be homogeneous in Bayesian analysis 246,247. The models specified 2000 samples 

drawn after 1000 burn-on samples for 4 chains for a total of 8000 samples.  

 

2.2.6 Model Quality Assessment 

Convergence of Markov Chain Monte Carlo (MCMC) chains was assessed using the 

Gelman-Rubin test 248 by examining the rhat (𝑅̂) values. 𝑅̂ values close to 1.00 indicate that chains 

converged to stationary target distributions. 𝑅̂ statistics for all models were at or below 1.00, with 

one 𝑅̂ = 1.01. Trace plots were also visually inspected to determine whether MCMC samples were 

mixed and converged well. Models were validated by using the posterior distribution to generate 

data and visually inspecting whether the generated data corresponded to the underlying 

distribution.  

 

2.2.7 Data Quality Assessment 

The data were assessed for quality and cleaned in three ways: (1) trials with implausible 

reaction times (i.e., < 200 ms) were excluded; (2) data were excluded for any participant whose 

preferences were random, erratic, or inconsistent with trends predicted by our structural models 

(i.e., they were not more likely to accept the gamble for increasing magnitude of gain, decreasing 

magnitude of loss, or increasing expected value); (3) Simulated data generated by the models were 

fit to the data and then visually inspected to determine whether they were similar to the original 

data (known as “posterior predictive checks” 246). 

http://mc-stan.org/interfaces/rstan
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2.3 Behavioral Statistics 

Statistical analyses were performed using RStudio version 1.1.456. Analysis of variance 

(ANOVA) or correlation, as appropriate, was used to determine whether SUD and HC groups 

significantly differed in age, biological sex, race/ethnicity, estimated IQ [using the Wechsler Test 

of Adult Reading (WTAR) 249], years of education of the participant’s mother (as a proxy for 

socioeconomic status), or cigarette smoking status. The same potential variables were analyzed for 

association with choice parameters when controlling for group. 

To assess trial-by-trial behavior on the BART, we used a linear mixed model with trial number, 

outcome of the previous trial, and group as fixed effects, subject as the random effect, and number 

of pumps per trial as the dependent variable. The mean number of pumps on trials where the 

participant chose to cash out (non-explode trials) was calculated and this measure of mean adjusted 

pumps was tested for association with the demographic measures listed above as well as for group 

differences. Trial-by-trial behavior on choice tasks was assessed by visual inspection of the 

probability of choosing to gamble based on the expected value, reward magnitude, and/or loss 

magnitude of options. 

For computational parameters, two analysis methods were used. As is recommended in 

Bayesian analysis 246, the posterior distribution of group mean differences were compared by 

computing the 95% Highest Density Interval (HDI) using the hBayesDM package 250. For this 

method, if the HDI does not include a value of zero, the groups can be considered to be statistically 

different. However, in order to account for group differences in covariates and/or association 

between dependent variables and covariates, the posterior means of choice parameters from each 

task were used in generalized linear models (GLMs) to test for group differences. GLMs were used 
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to test for association between outcome measures and stimulant use (cocaine or methamphetamine) 

in 30 days prior to entering treatment. 
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CHAPTER THREE 

Naturalistic Decision-Making under Uncertainty 
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3.1 Introduction 

Real-world behavior 251-256 and performance on laboratory tests 10-12 indicate that individuals 

with Methamphetamine Use Disorder (MUD) exhibit maladaptive decision-making. Decision-

making is a complex process by which an individual must calculate and compare different 

alternatives to determine which options are worth pursuing, while taking into account the possible 

rewards and costs 1. Feedback from the environment after choice selection is then integrated to 

guide future decisions 257,258. Most situations present incomplete information about the 

probabilities of possible rewards, and this uncertainty can causes distortions in choice 9,259. 

Individuals with addictions may be especially susceptible to distortions related to uncertainty 

10,193,260, and clarifying the cognitive and neural processes involved in decision-making under 

uncertainty is thus a logical goal.  

The Balloon Analogue Risk Task (BART) is a risky-decision-making task that has been 

employed in the study of addictions 86-88,261-264. Participants must decide between pumping a virtual 

balloon for reward or “cashing out” to receive the earnings accrued on the trial. After a certain 

number of pumps, the balloon explodes and the earnings from that trial are lost. Some studies have 

shown that individuals with addictions take less risk (i.e., pump less) on the task than healthy 

control participants 86,87,263,265. Although the BART provides a naturalistic assessment of risk-

taking during uncertainty 73, interpretation of performance is complicated by overlapping cognitive 

processes, including risk-taking, attitude toward ambiguity, reaction to loss, and learning 69,75,95,266.  

Using a computational model to decompose behavior on the BART can help identify the 

underlying cognitive and neural processes, including those that may drive differences between 

healthy control (HC) volunteers and those with MUD 267,268. The cognitive model used here to 

analyze performance of the BART enabled the distinct analysis of risk-taking and behavioral 
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updating (Section 2.3). Formulized by Wallsten, Pleskac and Lejuez (237) and re-parameterized 

by Park, Yang, Vassileva and Ahn (238), the model assumes that the participant begins the task 

with a prior belief about the probability of the balloon bursting, and that the prior belief is updated 

as the participant pumps and receives feedback on each trial. Prospect theory calculations of 

expected utility were used to evaluate the probability that the participant would pump the balloon 

9.  

The updating rate is of particular relevance to addiction, which is characterized by persisting 

in actions with negative consequences, even if the positive outcomes of those actions have all but 

ceased 23,195,269. This phenomenon may reflect deficits in estimating and updating outcome 

contingencies and cause individuals to revert to actions that were rewarding in the past 23,260. Since 

individuals diagnosed with Stimulant Dependence show impairments in cognitive flexibility and 

learning 45,270-273, we hypothesized that MUD participants would show an impairment in updating 

rate on the BART. 

Decision-making on the BART produces activation in a network of striatal and cortical brain 

regions, including the dorsolateral prefrontal cortex (DLPFC) and anterior insula 86,89,90,232,233,274. 

The DLPFC also shows functional differences during decision-making on the BART between 

healthy control and MUD participants, as well as between adolescents who do and do not smoke 

cigarettes 86,232. DLPFC activations have also been related to the updating of value 275,276. Level of 

risk on the BART modulated activation in the anterior insula 93, and insula activity can act as a 

risk-aversion signal 99,277-279 and encode risk prediction errors 35. Risk aversion signals in the 

anterior insula may influence performance by MUD participants, in whom risk-related signaling 

in the insula is impaired 102,105,106,109,280. The anterior insula participates in integrating arousal and 

interoceptive inputs into choice processes 25,39, and a major component of risk-taking on the BART 
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is the visceral sensation associated with pumping the balloon. Thus, we hypothesized that updating 

rate would be related to risk-related activity in the DLPFC and anterior insula that would differ 

between HC and MUD groups. 

Goal-directed behavior and reward-related learning rely on striatal and cortical dopaminergic 

function 281-286. We therefore questioned whether striatal and cortical dopamine D2-type (D2-type) 

receptors play a role in risk-taking and behavioral updating on the BART. Striatal dopamine D2-

type receptors have long been implicated in risk-taking in studies of primates 273,287-291 and rodents 

292-295. Dopamine D2-type receptors in the medial and lateral OFC and the insula mediate reward-

related decision-making, learning, and behavioral flexibility 29,286,296-298. The insula and OFC 

receive dopaminergic innervation and are reciprocally connected 299,300, and activation in both 

regions was modulated by risk (and reward) on the BART 93. We therefore hypothesized that 

behavioral updating would be related to D2-type receptors in these regions.  

Participants were tested on the two-balloon version of the BART 73 during fMRI. Parametric 

modulation of activation in the DLPFC and anterior insula by risk and reward (indexed by pump 

number) was assessed. Since sensitivity to loss plays a role in performance but is not explicitly 

measured on the BART, a subset of participants also performed the Loss Aversion Task (LAT) to 

elucidate motivations for continuing to pump (i.e., take risk) versus cashing out (i.e., take reward). 

The version of the BART with one balloon was given to a different sample of participants who 

had [18F]fallypride positron emission tomography (PET) scans to measure dopamine D2-type 

availability (binding potential, BPND). D2-type BPND was analyzed in striatal subregions and the 

midbrain for association with risk-taking, and the medial and lateral OFC and insula for association 

with updating rate. The complexity and antagonistic nature of the dopaminergic system suggests 

that nonlinear relationships between D1 and D2-type dopamine receptors and cognitive functions 
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may be more common than strictly linear associations 93,297,301-305. Thus, we tested for nonlinear 

associations between dopamine receptor binding and updating rate on the BART.  

 

3.2 Methods  

3.2.1 Participants 

All participants provided written informed consent, as approved by the UCLA Institutional 

Review Board. They were fluent in English and in good physical and neurological health, as 

assessed by clinical history and physical examination. All Axis I psychiatric diagnoses were 

exclusionary, other than Methamphetamine Dependence in the MUD participants and Tobacco 

Dependence in both groups, as determined by the Structured Clinical Interview for DSM-IV 306.  

The two-balloon version of the BART was performed during fMRI by 69 HC (31 women) 

and 30 MUD (15 women) participants (Table 3.1). The LAT was also performed by 17 HC and 

18 MUD volunteers (Table 3.2). In the MUD group (aged 22-52 years), 15 participants were not 

seeking or receiving treatment for their addiction, and had abstained from methamphetamine use 

for a mean (SD) of 7.82 (4.35) days before testing. Fifteen volunteers participated while receiving 

behavioral residential treatment and were abstinent from methamphetamine use for a mean (SD) 

of 7.25 (0.96) days before scanning. MRI and behavioral data from these participants have been 

published in other reports 86,90,91,93,307.  

The one-balloon version of the BART was performed by 16 HC and 28 MUD participants 

(Table 3.3) who also received [18F]fallypride PET scans. MUD participants participated while 

receiving behavioral residential treatment and were abstinent from methamphetamine use for a 

mean (SD) of 11.75 (1.71) days.  
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On all study days, participants provided a urine sample that was negative for cocaine, 

methamphetamine, benzodiazepines, opiates, and cannabinoids. Participants who smoked 

cigarettes were allowed to smoke until 15 min before testing to avoid effects of nicotine 

withdrawal. They were compensated with cash, gift cards, or vouchers. 

 

 

Table 3.1. Demographics of participants who performed the two-balloon BART during fMRI 

 

 

Table 3.2. Demographics of participants who performed the two-balloon BART during 

fMRI 

 

Variable 
Healthy Controls 

(HC; n=69) 

Participants with 

Methamphetamine Use 

Disorder (MUD; n=30) 

Statistics 

Age, yearsa 25.67 (1.28) 36.50 (1.51) t(97) = -4.97, p < 0.001*** 

Biological sex 

    female/male (n) 
31/39 15/15 c2(1) = 0.094, p > 0.05 

IQ estimate 

    standard scorea 
109.0 (2.57) 101.4 (2.61) t(33) = - 2.03, p > 0.05 

Mother’s Education, yearsa 3.957 (0.179) 3.481 (0.322) t(94) = 1.36, p > 0.05 

Race/Ethnicity (n)   H(5) = 4.78, p > 0.05 

    White 22 13  

    African American 7 1  

    Hispanic/Latinx 17 7  

    Asian/Pacific Islander 15 4  

    Other 8 5  

Cigarette smoking, n 36 19 c2(1) = 6.79, p < 0.01** 

Days of substance use in 

the previous 30 days 
   

    Alcohol  4.875 (0.795) 3.593 (1.23) t(89) = 0.878, p > 0.05 

    Marijuana 0.4878 (0.175) 1.926 (0.667) t(29.62) = -2.09, p < 0.046* 

    Tobacco 20.69 (2.10) 22.81 (2.36) t(66) = -0.651, p > 0.05 

        No. who smoked 36 55 t(89) = -2.96, p < 0.005** 

    Methamphetamine   22.5 (1.59)  
aValues are means (SE) 

IQ estimate = Weschler Test of Adult Reading 
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Table 3.2. Demographics of participants who performed the Loss Aversion Task and the two-

balloon BART 

 

Table 3.3. Characteristics for participants who performed the Loss Aversion Task and the 

two-balloon BART 

 

Variable 
Healthy Controls 

(HC; n=17) 

Participants with 

Methamphetamine Use 

Disorder (MUD; n=18) 

Statistics 

Age, yearsa 37.38 (2.45) 34.50 (1.49) t(33) = 1.28, p > 0.05 

Biological sex 

    female/male (n) 
4/13 7/11 c2(1) = 0.377, p > 0.05 

IQ estimate 

    standard scorea 
109.6 (2.54) 102.5 (2.88) t(24) = 1.81, p > 0.05 

Mother’s Education, yearsa 13.18 (0.73) 12.59 (0.80) t(32) = 0.544, p > 0.05 

Race/Ethnicity (n)   H(4) = 4.62, p > 0.05 

    White 10 5  

    African American 0 1  

    Hispanic/Latinx 4 5  

    Asian/Pacific Islander 1 4  

    Other 2 3  

Days of substance use in 

the previous 30 days 
   

    Alcohol  4.56 (1.43) 2.07 (0.67) t(32) = 0.447, p > 0.05 

    Marijuana 0.0 (0.0) 1.87 (0.99) t(26) = 1.29, p > 0.05 

    Tobacco 22.45 (3.79) 19.53 (3.40) t(31) = -0.310, p > 0.05 

        No. who smoked 12 13 c2(1) = 0.448, p > 0.05 

    Methamphetamine   22.33 (1.96)  
aValues are means (SE) 

IQ estimate = Weschler Test of Adult Reading 
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Table 3.3. Demographics of participants who performed the one-balloon BART 

 

3.2.2 fMRI methods 

3.2.2.1 MRI data acquisition 

Imaging was performed on a 3-T Siemens Trio MRI system, with 302 functional task-

based and 152 resting-state T2*-weighted echoplanar images (EPI) acquired (slice thickness = 4 

mm; 34 slices; repetition time = 2 seconds; echo time = 30 milliseconds; flip angle = 90°; matrix 

= 64 × 64; field of view = 200 mm). High-resolution, T2- weighted matched-bandwidth scans were 

collected in the same plane as the EPI data. The orientation for these scans were oblique axial to 

maximize brain coverage and optimize signal from ventromedial prefrontal cortex (PFC). T1-

Chapter 3: Decision-Making Under Uncertainty 

 

Table 3.1. Demographics of participants who performed the one-balloon BART  

 

Variable 
Healthy Controls 

(HC; n=16) 

Participants with 

Methamphetamine Use 

Disorder (MUD; n=28) 

Statistics 

Age, yearsa 31.44 (2.14) 35.43 (1.87) t(42) = -1.35, p > 0.05 

Biological sex 

    female/male (n) 
10/6 14/14 c2(1) = 0.237, p > 0.05 

IQ estimatea 108 (9) 102.3 (3.90) t(4) = 0.715, p > 0.05 

Mother’s Education, yearsa 14 (0.606) 12.75 (0.623) t(38) = 1.37, p > 0.05 

Race/Ethnicity (n)   H(5) = 1.12, p > 0.05 

    White 10 15  

    African American 0 1  

    Hispanic/Latinx 3 6  

    Asian/Pacific Islander 1 2  

    American Indian/Alaska  

    Native 
1 1  

    Other 1 3  

Days of substance use in 

the previous 30 days 
   

    Alcohol  7.4 (2.42) 5.964 (1.41) t(41) =  0.550, p > 0.05 

    Marijuana 5.583 (3.02) 2.423 (1.25) t(14.9) = 0.966, p > 0.05 

    Tobacco 21 (3.94) 24.37 (2.23) t(37) = -0.793, p > 0.05 

        No. who smoked 6 27 c2(1) = 14.4, p < 0.001 *** 

    Methamphetamine   20.93 (1.50)  
aValues are means (SE) 

IQ estimate = Weschler Test of Adult Reading 
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weighted magnetization-prepared rapid-acquisition gradient echo (MPRAGE) scans were also 

acquired. 

 

3.2.2.2 MRI data pre-processing 

ROIs were selected based on prior literature showing the role of the dorsolateral prefrontal 

cortex (DLPFC) and anterior insula in BART performance 89,233, as well as differences between 

MUD and HC groups 86. The DLPFC ROI was defined from a contrast of parametric modulation 

of pumps for HC vs. MUD groups, as shown in 86. To define the right anterior insula (Fig. 3.1), 

we compared anatomical landmarks from a probabilistic atlas 308 to functional connectivity-based 

parcellations of the insula 309,310. Based on these studies, we used the precentral sulcus to segment 

the anterior from the posterior insula. Using this landmark, we manually determined the 

anterior/posterior insula subdivisions from the MNI152 template. 

Image analysis was performed using FSL 5.0.2.1 (http://www.fmrib.ox.ac.uk/fsl). Images 

were realigned to compensate for motion 311 and high-pass temporal filtering was applied (100 s 

cut-off). Data were skull stripped and spatially smoothed (5-mm full-width-at-half-maximum 

gaussian kernel). The echoplanar images were registered to the matched-bandwidth image, then to 

the high-resolution MPRAGE image, and finally into standard Montreal Neurological Institute 

space using 12-parameter affine transformation and FMRIB’s nonlinear image registration tool 

312. 



 54 

 

 

 

Figure 3.1. Dorsolateral prefrontal cortex and anterior insula regions of interest. A priori-

defined regions of interest (ROIs) for the fMRI BART analysis. The right dorsal lateral prefrontal 

cortex (rDLPFC) ROI (yellow) was defined through a contrast of parametric modulation of 

activation by pump number for HC vs. MUD groups, as shown in Kohno, Morales, Ghahremani, 

Hellemann and London (86). Shown are slices that intersect MNI coordinates x=40, y=38, z=22. 

The right anterior insula ROI (teal) was anatomically defined as described in the methods. Shown 

are slices that intersect MNI coordinates x=38, y=12, z=-6. 

 

3.2.2.3 Task-based fMRI data analysis 

Parametric modulation of activation was tested as the linear relationship between pump 

number and activation, as described in previous reports 86. Pump number reflects the increasing 

risk and reward of each pump. Four types of events were included in the general linear model: 

pumps on active balloons, cash outs, balloon explosions, and pumps on control balloons. Two 

regressors for each of the 4 types of events were included to obtain estimates of parametric 

modulation 313 of activation by pump number and of mean activation for each event type. 

Regressors estimating the mean activation for each event did not include increasing risk by pump. 

The contrast of interest to check for modulation of activation with risk and reward levels was 

parametric pump events. 
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Regressors were created by convolving a set of delta functions, representing onset times of 

each event with a canonical (double-gamma) hemodynamic response function. The first temporal 

derivatives of the 8 task-related regressors were included to capture variance associated with the 

temporal lag of the hemodynamic response along with 6 motion parameters estimated during 

motion correction. Fixed-effects analyses were conducted for each imaging run of data from each 

participant and again to combine contrast images across both runs. All analyses included sex and 

age as nuisance covariates.  

Parameter estimates (average of β values) corresponding to modulation of activation by 

pump number were extracted from each ROI and used as dependent variables in Generalized 

Linear Models (GLMs) with dependent variables of age, biological sex, and computational 

parameters of risk-taking (𝛾) or updating rate (𝜂). First, the interaction of participant group with 

the associations between computational parameters and modulation of activation was tested. 

Subsequently, the relationship between computational parameters and modulation of activation 

during decision making was examined within each group. 

 

3.2.3. PET procedures and analysis 

3.2.3.1.PET acquisition 

PET scans were acquired by the 16 HC and 28 MUD participants who performed the one-

balloon version of the BART. PET scanning was conducted using [18F]fallypride, which was 

prepared as reported, using [18F]fluoride ion 314. [18F]Fallypride is not selective for D2 receptors 

and has approximately equal affinity for D2 and D3 receptors 315, but its affinity for D2-type 

receptors is adequate for imaging in extrastriatal as well as striatal regions 314.  
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Scans were acquired on a Siemens EXACT HR+ scanner with in-plane resolution full-

width at half-maximum (FWHM) 4.6 mm, axial FWHM = 3.5 mm, axial field of view = 15.52 cm, 

in 3D mode. After a 7-min transmission scan acquired using a rotating 68Ge/68Ga rod source for 

attenuation correction, PET dynamic data acquisition was initiated. Participants were free to open 

and shut their eyes. [18F]fallypride (5 mCi ± 10%) was injected as an intravenous bolus. Dynamic 

scanning was conducted in two 80-min blocks separated by a 10-20 min break. Data were corrected 

for decay, attenuation, and scatter, and were reconstructed using ordered subset expectation 

maximum (OSEM; 3 iterations, 16 subsets) with ECAT v7.3 software (CTI PET Systems Inc.).  

 

3.2.3.2.PET data analysis 

Reconstructed PET data were corrected for head motion using FSL MCFLIRT. MRI-to-

PET coregistration was performed using FSL FLIRT (FMRIB Software Library) 311. Volumes of 

interest (VOIs) were the bilateral midbrain, bilateral medial and lateral OFC, bilateral insula, and 

striatal subdivisions of the nucleus accumbens, caudate, and putamen (all bilateral). VOIs were 

defined on each MPRAGE scan from the Harvard-Oxford atlases transformed into individual 

native space, or using FSL FIRST 316. VOIs of striatal functional divisions 317 were transformed to 

native space using FSL FNIRT. Cerebellar VOIs were manually drawn bilaterally in MNI152 

space and transformed to the corresponding individual structural MRI. 

Time-radioactivity data were extracted and imported into PMOD 3.2 for kinetic modeling 

(PMOD Technologies Ltd.). Time-radioactivity curves were fit using the simplified reference-

tissue model (SRTM) 318 to estimate k2′, the rate constant for transfer of the tracer from the 

reference region to plasma. A cerebellar VOI was used as a reference region, and a volume-

weighted average of k2′ estimates from high-radioactivity regions (caudate + putamen) computed. 
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The time-radioactivity curves were refit using the SRTM2 model 319. BPND was calculated by 

subtracting 1.0 from the product of tracer delivery (R1) and tracer washout (k2′/k2a). 

Separate independent t-tests were used to check for group differences in BPND of all VOIs, 

as well as their relationship to covariates when accounting for group. BPND in the ventral 

tegmental area/substantia nigra (VTA/SN) and the whole nucleus accumbens, caudate, and 

putamen were analyzed for their association with the risk-taking parameter from the BART 

cognitive model. Cortical D2-type BPND was analyzed in the medial and lateral orbitofrontal 

cortex (OFC) and insula for association with the updating rate parameter. We tested for quadratic 

associations between cortical BPND and behavioral parameters because prior research had 

demonstrated nonlinear relationships between dopamine function and cognitive function and 

decision-making 93,297,301-305.  

 

3.3. Results  

3.3.1. Demographic factors  

Demographics for participants who performed the one-balloon version of the BART are 

shown in Table 3.1. Cigarette smoking status was the only variable that differed significantly 

between groups and was thus included in statistical analyses. All regions aside from the VTA/SN 

and insula showed group differences in binding potential (ps < 0.0001). Age was correlated with 

dopamine D2-type BPND in the putamen, caudate nucleus, and all cortical regions. There were 

significant differences in dopamine D2-type BPND in the VTA/SN and medial OFC by biological 

sex. No demographic variables were significant when accounting for group. 

For the cohort that performed the two-balloon version of the BART during fMRI (Table 

3.2), age and smoking status significantly differed between HC and MUD groups. The HC group 
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(aged 17-54 years) included 36 and the MUD group (aged 22-52 years) included 19 participants 

who smoked cigarettes.  

Characteristics of the participants who performed both the two-balloon BART and the LAT 

are shown in Table 3.3. There were no significant group differences in any demographic variables.  

 

3.3.2. Traditional analysis of the BART 

On both versions of the task, HC and MUD groups pumped significantly more as the task 

progressed, and there were no interactions between group and trial number or outcome of the 

previous trial. When controlling for group, mean adjusted pumps (i.e., the number of pumps on 

trials that did not end in an explosion) was not significantly associated with any demographic 

variable. There were no group differences in mean adjusted pumps, whether or not smoking status 

was controlled.  

 

3.3.3. Computational analysis of behavior of the BART 

One-balloon BART. When controlling for group, updating rate (𝜂) was not significantly 

associated with any demographic variable. The parameter of risk-taking (𝛾), however, differed 

significantly by biological sex, as women look less risk than men [𝛽 − 0.385 , 𝑡(41) =

−3.37, 𝑝 < 0.01]. When controlling for group, the parameter 𝜂 was not associated with 𝛾 or with 

mean adjusted pumps, but 𝛾 was significantly associated with mean adjusted pumps [𝛽 =

0.018, 𝑡(41) = 4.4, 𝑝 < 0.0001]. 

Posterior distributions of computational parameters are shown in Fig. 3.2A and Fig. 3.2C. 

The posterior distribution of group mean differences is shown in Fig. 3.2E. MUD participants 

were very close to displaying credibly lower updating rates than HC participants, with 92.7% of 



 59 

 

 

posterior samples below zero (95% HDI of group difference: -0.0047 – 0.0004). When accounting 

for the group difference in smoking status, a GLM revealed that MUD participants were significantly 

slower to update their behavior [𝛽 = −0.00275, 𝑡(40) = −5.195, 𝑝 < 0.0001] than the HC 

group, but there were no differences in the risk-taking parameter, including when controlling for 

biological sex and/or smoking status (Fig. 3.3A). There were no group differences in 𝜏.  

 

Two-balloon BART. The parameter of risk-taking (𝛾) was associated with ethnicity, age, 

and smoking status. Updating rate (𝜂) was associated with IQ. Just as on the one-balloon task, the 

parameter 𝛾 was significantly associated with mean adjusted pumps [𝛽 = 0.015, 𝑡(97) =

10.1, 𝑝 < 0.0001]. However, when controlling for group, 𝜂 also was associated with both 𝛾 and 

mean adjusted pumps. Due to the large group difference in 𝜂, Pearson’s correlations were 

calculated separately for each group. In HC participants, there were significant negative 

correlations for 𝜂 with 𝛾 [𝑟(68) = −0.50, 𝑝 < 0.0001] and mean adjusted pumps [𝑟(68) =

−0.39, 𝑝 = 0.00078]. In MUD participants, there was only a correlation between 𝜂 with 𝛾 

[𝑟(28) = −0.45, 𝑝 = 0.01]. 

Posterior distributions of computational parameters are shown in Fig. 3.2B and Fig. 3.2D. 

MUD participants were very close to displaying credibly lower updating rates than HC 

participants, with 92.7% of posterior samples below zero (95% HDI of group difference: -0.0064 

– 0.0008) (Fig. 3.2F). MUD participants also were close to displaying credibly lower risk-taking 

parameters than HC participants, with 95.4% of posterior samples below zero (95% HDI of group 

difference: -0.29-0.018).  

When accounting for the group difference in age and smoking status, a GLM revealed that the 

MUD group had a lower propensity towards risk-taking [𝛽 = −0.227, 𝑡(86) = −4.02, 𝑝 =
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0.0124] and were slower to learn from their behavior [𝛽 = −0.00292, 𝑡(86) = −16.5, 𝑝 <

0.0001] than the HC group (Fig. 3.3B). There were no group differences in 𝜏. 

 

Drug Use Measures. There were no associations between any of the behavioral measures 

from either task and drug use in the 30 days prior to testing. 

 

 

Figure 3.2. Posterior distributions of computational parameters from the BART. Parameters 

were estimated using hierarchical Bayesian analysis separately for healthy control (HC) (yellow) 

and Methamphetamine Use Disorder (MUD) (red) groups who performed the one-balloon (left 
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column; A, C, E) or two-balloon (right column; B, D, F) versions of the BART (A, B, C, D) The 

posterior distributions (i.e., group parameter estimates) of each parameter are plotted. Higher 

values of 𝛾 and 𝜂 indicate higher risk-taking and updating rate, respectively. The inverse 

temperature 𝜏 represents choice consistency. (E) Posterior distributions of group mean differences 

are plotted with the 95% Highest Density Interval (HDI) indicated in red for 𝛾 (−0.20 − 0.24), 

𝜂 (−0.0047 − 0.0004), and 𝜏 (−0.045 − 0.027). Group differences are considered credible if 

the HDI does not contain zero. For the updating rate (𝜂), 92.7% of posterior samples were below 

zero. (F) Posterior distributions of group mean differences were plotted with 95% Highest Density 

Interval (HDI) is indicated in red for 𝛾 (−0.29 − 0.018), 𝜂 (−0.0064 − 0.0008), and 

𝜏 (−0.097 − 0.065). For the updating rate (𝜂), 92.7% of posterior samples were below zero. For 

the risk-taking parameter (𝛾), 95.4% of posterior samples were below zero. 

 

Figure 3.3. Estimated marginal effects of 

group on computational parameters 

from the BART. The posterior means of 

choices parameters were used in 

generalized linear models (GLMs) to 

account for group differences and 

covariates. (A) Estimated marginal effects 

of parameters from the one-balloon BART 

on group are plotted while accounting for 

smoking status and biological sex. The 

MUD group was significantly slower to 

learn from their behavior than the HC group 

(p < 0.0001), but there were no differences 

in the risk-taking parameter or inverse 

temperature. (B) The posterior means of 

choices parameters from the two-balloon 

BART performed during fMRI were used in 

generalized linear models (GLMs) to 

account for group differences in smoking 

status and age. Estimated marginal effects 

of parameters on group are plotted while 

accounting for smoking status and age. The 

MUD group had a lower proclivity towards risk-taking (p = 0.0124) and were slower to learn from 

their behavior (p < 0.0001) than the HC group. 
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3.3.4. Relationships between risk-taking on the BART and loss aversion on the LAT  

In the subsample that performed both the LAT and BART, the interaction of group and age 

on loss aversion (𝜆) was significant [𝛽 = 0.146, 𝑡(31) = 3.465, 𝑝 = 0.00172]. The updating rate 

parameter from the BART (𝜂) was negatively associated with estimated IQ in MUD participants 

[𝛽 = −0.0000298, 𝑡(10) = −2.353, 𝑝 = 0.0404]. Age was thus included as a covariate in 

analyses of loss aversion and estimated IQ in analyses of updating rate. 

There were no significant associations between parameters from the BART and loss 

aversion. Results were unchanged when the interaction term was included. 

 

3.3.5. Associations between updating rate and parametric modulation of activation in the 

DLPFC and anterior insula by level of risk 

There were main effects of group and updating rate (𝜂) on parametric modulation of the 

right DLPFC activation by risk (indexed by pump number). MUD participants showed less 

modulation compared to the HC group [𝛽 = 55.6, 𝑡(85) = 3.87, 𝑝 = 0.000212] and updating 

rate was negatively correlated with rDLPFC sensitivity to risk in both groups [𝛽 =

−13200, 𝑡(85) = −3.08, 𝑝 = 0.00276] (Fig. 3.4A). There was no interaction between group and 

modulation of DLPFC activation by risk on updating rate. 

In the right anterior insula, the interaction of group and modulation of activation by risk 

showed a nonsignificant trend [𝛽 = 22700, 𝑡(85) = 1.67, 𝑝 = 0.0986], and the simple effect of 

updating rate was significant [𝛽 = −26200, 𝑡(85) = −2.027, 𝑝 = 0.0459] (Fig. 3.4B). Thus, 

only the MUD group exhibited a negative correlation between updating rate and parametric 

modulation of the right anterior insula during the decision to take risk; there was no relationship 

in HC participants. 
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Figure 3.4. Updating rate and parametric 

modulation of activation in the right DLPFC 

and right anterior insula by risk during 

decision-making on the BART.(A) There was a 

main effect of group on parametric modulation of 

the right dorsolateral prefrontal cortex (rDLPFC) 

activation by risk (indexed by pump number), 

where HC participants had greater rDLPFC 

sensitivity to risk (p = 0.00021). Both groups 

exhibited a negative relationship between 

updating rate and parametric modulation of the 

rDLPFC activation by risk (p = 0.0028). (B) 

However, the interaction between group and 

modulation on updating rate was trending in the 

right anterior insula (rAntIns) (p = 0.099), where 

only the MUD group exhibited a negative 

correlation between updating rate and parametric 

modulation of the rAntIns during the decision to 

take risk; there was no relationship in HC 

participants. Age and biological sex were 

included as covariates. Shaded grey regions 

indicate standard errors. 

 

 

3.3.6. Relationship between risk-taking on the BART and striatal dopamine D2-type 

BPND 

Individual GLMs were used to determine whether the risk-taking parameter 𝛾 was related 

to dopamine D2-type BPND and the interaction of group and BPND on 𝛾. Dopamine D2-type BPND 

in striatal subregions and the VTA/SN were significantly associated with risk-taking on the BART, 

where there was a negative relationship in the HC but not the MUD group (Fig. 3.5A-D). Because 

the results differed when smoking status (Table 3.4) and/or biological sex (Table 3.5) were 

included in the model, both are presented. There were no associations between 𝛾 and BPND in 

cortical regions. 
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3.3.7. Relationships between updating rate on the BART and dopamine D2-type BPND in 

the insula and medial OFC  

Dopamine D2-type BPND was not related linearly to the updating rate parameter 𝜂 in any 

of the cortical or striatal ROIs. However, there was a U-shaped relationship between 𝜂 and BPND 

in the insula, and an inverted U-shaped relationship between 𝜂 and BPND in the medial OFC 

(Table 3.6; Fig. 3.5E-F). 
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Figure 3.5. Striatal and cortical dopamine D2/D3 BPND and computational BART 

parameters. (A, B, C, D) Main effects of group and region were significant for all regions. 

Depending on the covariates, the interaction of group and region on the risk-taking parameter were 

significant in the putamen and ventral tegmental area/substantia nigra (VTA/SN). Full statistics 

are presented in Table 3.3 and 3.4. (E, F) Dopamine D2-type (D2/D3) receptor binding potential 

(BPND) was not related linearly to 𝜂 in any of the cortical or striatal ROIs. However, when the 

quadratic of region was tested, there were simple effects region and region2 in the medial 

orbitofrontal cortex (OFC), lateral OFC, and insula. The interaction between group and region was 

significant in the medial OFC and insula, where there was a U-shaped relationship between 𝜂 and 

BPND in the insula, and an inverted U-shaped relationship between 𝜂 and BPND in the medial 

OFC. Full statistics are presented in Table 3.5. Grey shading indicates standard error of the mean. 
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Table 3.4. Association between risk-taking from the one-balloon BART and dopamine D2-

type BPND with the covariate of smoking status 

 

 

Table 3.5. Association between risk-taking from the one-balloon BART and dopamine D2-

type BPND with the covariates of smoking status and biological sex 

 

  

Table 3.6. Association between updating rate from the one-balloon BART and dopamine D2-

type BPND 

 

 

3.4. Discussion 

We used a computational model to leverage the naturalistic elements of the Balloon 

Analogue Risk Task (BART) and elucidate differences in choice behavior between MUD and HC 

participants. The MUD group showed a marked deficiency in behavioral updating and 

advantageous risk-taking compared to the control group. When paired with neuroimaging, 

Table 3.4. Association between risk-taking from the one-balloon BART and dopamine D2-

type BPND with the covariate of smoking status 

 

 Region Group Smoking Status Region * Group 

Putamen 0.0045*** 0.023**     0.80     0.048** 

Caudate 0.019** 0.04** 0.55 0.072 

Nucleus Accumbens 0.026** 0.04** 0.67 0.057 

VTA/SN 0.0082*** 0.04** 0.48 0.079 

Values denote beta estimates determined using Generalized Linear Models. Asterisks denote statistical significance. 

****p < 0.0001 ***p < 0.001 **p < 0.01 *p < 0.05. 

 

 

 

Table 3.5. Association between risk-taking from the one-balloon BART and dopamine D2-

type BPND with the covariates of smoking status and biological sex 

 

 Region Group Smoking Status Biological Sex Region * Group 

Putamen 0.014** 0.032** 0.61 0.045** 0.072 

Caudate 0.032** 0.028** 0.74 0.021** 0.053 

Nucleus Accumbens 0.082 0.086 0.69 0.042** 0.13 

VTA/SN 0.017** 0.013** 0.18 0.03** 0.035** 

Values denote beta estimates determined using Generalized Linear Models. Asterisks denote statistical significance. 

****p < 0.0001 ***p < 0.001 **p < 0.01 *p < 0.05. 

 

 

 

Table 3.6. Association between updating rate from the one-balloon BART and dopamine 

D2-type BPND 

 

 Region Region2 Group Smoking Status Region * Group Region2 * Group 

Medial OFC 0.032* -0.026** 0.0069 0.00018 -0.033* 0.026* 

Lateral OFC 0.039* -0.040* 0.0062 0.00014 -0.038 0.039 

Insula -0.057*** 0.022*** -0.038*** 0.000088 0.059*** -0.023*** 

Values denote beta estimates determined using Generalized Linear Models. Asterisks denote statistical significance. 

****p < 0.0001 ***p < 0.001 **p < 0.01 *p < 0.05. 

 

 

 

  

Table 3.4. Association between risk-taking from the one-balloon BART and dopamine D2-

type BPND with the covariate of smoking status 

 

 Region Group Smoking Status Region * Group 

Putamen 0.0045*** 0.023**     0.80     0.048** 

Caudate 0.019** 0.04** 0.55 0.072 

Nucleus Accumbens 0.026** 0.04** 0.67 0.057 

VTA/SN 0.0082*** 0.04** 0.48 0.079 

Values denote beta estimates determined using Generalized Linear Models. Asterisks denote statistical significance. 

****p < 0.0001 ***p < 0.001 **p < 0.01 *p < 0.05. 

 

 

 

Table 3.5. Association between risk-taking from the one-balloon BART and dopamine D2-

type BPND with the covariates of smoking status and biological sex 

 

 Region Group Smoking Status Biological Sex Region * Group 

Putamen 0.014** 0.032** 0.61 0.045** 0.072 

Caudate 0.032** 0.028** 0.74 0.021** 0.053 

Nucleus Accumbens 0.082 0.086 0.69 0.042** 0.13 

VTA/SN 0.017** 0.013** 0.18 0.03** 0.035** 

Values denote beta estimates determined using Generalized Linear Models. Asterisks denote statistical significance. 

****p < 0.0001 ***p < 0.001 **p < 0.01 *p < 0.05. 

 

 

 

Table 3.6. Association between updating rate from the one-balloon BART and dopamine 

D2-type BPND 

 

 Region Region2 Group Smoking Status Region * Group Region2 * Group 

Medial OFC 0.032* -0.026** 0.0069 0.00018 -0.033* 0.026* 

Lateral OFC 0.039* -0.040* 0.0062 0.00014 -0.038 0.039 

Insula -0.057*** 0.022*** -0.038*** 0.000088 0.059*** -0.023*** 

Values denote beta estimates determined using Generalized Linear Models. Asterisks denote statistical significance. 

****p < 0.0001 ***p < 0.001 **p < 0.01 *p < 0.05. 

 

 

 

  

Table 3.4. Association between risk-taking from the one-balloon BART and dopamine D2-

type BPND with the covariate of smoking status 

 

 Region Group Smoking Status Region * Group 

Putamen 0.0045*** 0.023**     0.80     0.048** 

Caudate 0.019** 0.04** 0.55 0.072 

Nucleus Accumbens 0.026** 0.04** 0.67 0.057 

VTA/SN 0.0082*** 0.04** 0.48 0.079 

Values denote beta estimates determined using Generalized Linear Models. Asterisks denote statistical significance. 

****p < 0.0001 ***p < 0.001 **p < 0.01 *p < 0.05. 

 

 

 

Table 3.5. Association between risk-taking from the one-balloon BART and dopamine D2-

type BPND with the covariates of smoking status and biological sex 

 

 Region Group Smoking Status Biological Sex Region * Group 

Putamen 0.014** 0.032** 0.61 0.045** 0.072 

Caudate 0.032** 0.028** 0.74 0.021** 0.053 

Nucleus Accumbens 0.082 0.086 0.69 0.042** 0.13 

VTA/SN 0.017** 0.013** 0.18 0.03** 0.035** 

Values denote beta estimates determined using Generalized Linear Models. Asterisks denote statistical significance. 

****p < 0.0001 ***p < 0.001 **p < 0.01 *p < 0.05. 

 

 

 

Table 3.6. Association between updating rate from the one-balloon BART and dopamine 

D2-type BPND 

 

 Region Region2 Group Smoking Status Region * Group Region2 * Group 

Medial OFC 0.032* -0.026** 0.0069 0.00018 -0.033* 0.026* 

Lateral OFC 0.039* -0.040* 0.0062 0.00014 -0.038 0.039 

Insula -0.057*** 0.022*** -0.038*** 0.000088 0.059*** -0.023*** 

Values denote beta estimates determined using Generalized Linear Models. Asterisks denote statistical significance. 

****p < 0.0001 ***p < 0.001 **p < 0.01 *p < 0.05. 

 

 

 

  



 67 

 

 

dopamine D2-type receptor availability in the striatum and midbrain was associated with risk-

taking; dopamine D2-type receptor availability in the insula and medial orbitofrontal cortex (OFC) 

was associated with behavioral updating. These findings demonstrate the advantages of pairing 

naturalistic risk tasks with computational modeling and neuroimaging to identify deficits in 

decision-making.  

 

3.4.1. Risk-taking on the BART 

While real-world examples suggest that individuals who suffer from substance use 

disorders engage in risky behaviors, studies of propensity towards “risk” in the laboratory largely 

depend on which definitions and tasks are used 69,266. The BART is a complex task that presents 

circumstances in which taking risk is adaptive: mean adjusted pumps is directly correlated with 

total earnings on the task, and increased pumping secures more earnings overall. Thus, through 

feedback on the task, participants should update their estimation that the balloon will burst and 

learn that pumping is the optimal strategy. 

That the risk-taking parameter (𝛾) from the BART was correlated with mean adjusted 

pumps confirms the accuracy of our model in capturing risk-seeking on the task. Risk-taking was 

lower in participants with MUD—a phenomenon also found in alcohol dependence 263 and 

adolescents who smoke cigarettes 87. Women also took less risk than men, in line with previous 

findings 320-323. Since MUD participants had slower updating rates than controls, their lower risk-

taking may reflect impairments in estimating and updating outcome contingencies in uncertain 

circumstances 112. Outcomes are more ambiguous in early trials of the BART when the participant 

has not yet received adequate feedback 75, and MUD participants may have particular difficulty 

estimating the probability of outcomes under uncertain conditions.  
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Although beyond the scope of the current analyses, control participants also may have 

taken a more broad frame of sequential choices 324; since pumping over time resulted in net gains, 

and they had significantly higher updating rates than MUD participants, control participants may 

have learned that taking risk yielded greater reward 325. MUD participants, on the other hand, may 

have had a more myopic perspective 326,327, viewing each pump as a potential reward that could be 

lost by risking an explosion 325. Thus, the smaller immediate reward earned by cashing out may 

have more value than the larger but uncertain reward 132,150,328. 

This valuation process may have been biased in part by the visceral responses to the balloon 

bursting 154,329, as individuals with addictions can have exaggerated responses to arousal 157,330. 

Individuals with MUD also may be more sensitive to reward 132,150,328, but the rewards on the 

BART are also probabilistic, adding complexity to the computational process. Differing attitudes 

towards uncertainty in healthy control participants and those with substance use disorders 113,331-

334 could manifest as an increased preference for taking the smaller immediate reward on the BART 

(see Chapter 5). 

 

3.4.2. The dopaminergic system and goal-directed behaviors 

Markers of dopamine in the brain, including striatal D2-type receptor availability 307 and 

polymorphisms in genes related to dopamine function 93,291, have been related to behavior on the 

BART. Here, dopamine D2-type BPND in the striatum and midbrain was associated with risk-

taking but not behavioral updating. The relationship between updating rate and dopamine D2-type 

BPND in the insula followed a U-shaped function, and an inverted U-shaped function in the medial 

OFC. None of the associations were exhibited by MUD participants.  
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The ways in which dopamine receptors mediate goal-directed behavior is complex due to 

both cooperative and antagonistic activity 281,283. Dopaminergic cell bodies in the midbrain 

innervate the brain through three main pathways: nigrostriatal projections from the substantia nigra 

(SN) pars compacta to the caudate nucleus and putamen, mesolimbic projections from the ventral 

tegmental area (VTA) to the nucleus accumbens and the olfactory tubercle, and mesocortical 

connections from the VTA to prefrontal cortical areas. Dopaminergic neurons have two patterns 

of firing: phasic burst activation in response to stimuli, and tonic spontaneous release 335,336. At 

rest, the baseline activity of dopaminergic neurons causes small concentrations of dopamine to 

leak from the synapse into the extracellular space 337. Such tonic dopamine release is thought to 

reflect the total number of active VTA neurons and responsiveness of the system to dopamine 

293,337,338.  

While tonic dopamine can activate high-affinity presynaptic D2-type receptors that inhibit 

the amplitude of phasic burst firing 339,340, postsynaptic D2-type receptors are associated with 

signaling via the indirect pathway through the basal ganglia and thalamus to the cortex 341,342. 

Phasic burst firing releases large concentrations of dopamine that act on excitatory D1 receptors 

337,343 to signal through the direct pathway 341,342. Phasic and tonic release are regulated by different 

inputs, namely glutamatergic and cholinergic inputs into the VTA and presynaptic limbic and PFC 

glutamatergic connections, respectively 344. 

Signaling at D1 receptors is associated with reward and salience, including reward 

prediction error and other aspects of reinforcement learning and decision-making 49,285, whereas 

D2-type receptor signaling is associated with behavioral inhibition and negative reinforcement 

297,345,346. In addition to dopamine D1 and D2 receptors, dopamine D3 receptors are hypothesized 

to be involved in cognition and motivation, including related to drug-seeking 347. In contrast to the 
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deficiency in signaling at D2 receptors observed across addictions 348, individuals who use 

stimulants show upregulation of D3 receptors 349, particularly in the substantia nigra, where D3 

receptor availability was correlated risky decision-making and behavioral impulsivity in 

individuals with Cocaine Dependence 350. 

 

3.4.3. Striatal and midbrain dopamine D2-type receptors and risk-taking 

Dopamine D2-type BPND in the striatum and midbrain was associated negatively with risk-

taking in HC participants. Risk-taking propensity has been negatively associated with dopamine 

D2-type signaling in rodents 292-295. Humans also show this association 273,288,289, and carriers of 

polymorphisms in the dopamine transporter gene (DAT1) that is thought to cause lower striatal 

dopamine availability took more risk on the BART 291. The inverse relationship of risk-taking with 

striatal and midbrain dopamine D2-type BPND may reflect enhanced behavioral inhibition through 

the indirect pathway, perhaps in response to aversive outcomes on the task 341,342. 

Aside from postsynaptic effects, higher concentrations of D2-type autoreceptors could 

result in greater dopamine tone and/or more inhibition of phasic release 64. With higher dopamine 

tone, the influence of inputs into the striatum, including corticostriatal circuitry that directs reward-

seeking 282,283,345,351,352, may be diminished 293. Presynaptic D2-type receptors on corticostriatal 

terminals inhibit glutamate release 353 and preferentially modulate corticostriatal inputs 282. Since 

HC participants with higher D2-type BPND took less risk, it may be through inhibition of 

corticostriatal afferents necessary for goal-directed behavior. 

Healthy control participants with higher D2-type BPND also may be more sensitive to the 

option for immediate reward on the BART and thus take less risk in favor of the immediate reward. 

In HC participants, striatal D2-type BPND was correlated positively with task-based activation in 
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the ventral striatum when participants were choosing to take reward on the BART (i.e., cash out), 

and with risk-taking following cash-out choices 90. Increases in risk-taking in participants 

administered dopamine D2-type receptor antagonists stemmed from increased sensitivity to 

reward magnitude 288, and animals administered D2-type antagonists or agonists had increased and 

decreased reward sensitivity on a probabilistic discounting task, respectively 354. Thus, the negative 

association of risk-taking with striatal and midbrain D2-type receptor availability may be related 

to a sensitivity to reward.  

If cashing out on the BART is compared to taking a smaller, sooner reward on a delay 

discounting task, then a relationship between higher D2-type BPND and a preference for cashing 

out seemingly goes against prior findings 126. However, studies testing the direct relationship 

between dopamine receptors and delay discounting have found mixed results 355-357, and many 

suggest nonlinear relationship between delay discounting and dopamine function 260,302,358.  

 

3.4.4. Updating rate and cortical activity 

That participants with MUD have lower updating rates on the BART may reflect a deficit 

in estimating ambiguous risk as well as somewhat rigid decision tendencies characteristic of 

addiction 23,195,260. The updating rate is not a learning parameter but describes how beliefs about 

the probability of the balloon bursting change from experience on the task. Behavioral updating 

drives behavioral change through the integration of distinct and overlapping cognitive processes, 

from behavioral flexibility to reward-related learning. Previous research from our lab and others 

have demonstrated impairments in reversal learning 270,271 and compromised reward learning 

circuits 271,359-363 in people with addictions, including MUD. It may be that chronic stimulant use 

disrupts learning and updating signals related to corticostriatal dopamine function 361-364. 
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The relationship between updating rate and modulation of activation in the anterior insula 

by risk and potential reward differed by group and may be related to impairments in updating rate 

in MUD. Insula activity is associated with aversion to and prediction of risk 35,99,277-279, and risk 

sensitivity of the anterior insula was negatively correlated with updating rate in MUD in the present 

study. Thus, activity in the insula may be biasing MUD participants away from taking adaptive 

risk on the BART by integrating arousal and the affective components of choice 25,39, including 

interoceptive sensations provoked by pumping (i.e., taking risk), with past perceptions of risk 365. 

Such inputs may bias MUD participants by assigning too much value to the visceral loss provoked 

by the balloon exploding 158 and thus overestimating the probability of the balloon bursting. 

Contrary to our hypothesis, there was no group difference in the association between 

updating rate and modulation of DLPFC activation by risk and potential reward (indexed by pump 

number). That the HC group did have greater modulation of DLPFC activation by risk than the 

SUD group, as reported previously 86, suggests that there are group differences in DLPFC function 

during risk-taking but not in the relationship of that function to behavioral updating. Aside from 

its hypothesized role in self-control 44, the DLPFC is involved in reversal learning 275, and neurons 

in primate DLPFC reflect the updating of value 276. Together with the BPND results, these findings 

suggest an abnormality in MUD related to how the insula, DLPFC, and medial orbitofrontal cortex 

(OFC) work together to update behavior on the BART. The DLPFC shares reciprocal connections 

with the medial OFC 366 and both regions were associated with inflexible and habitual responding 

in MUD 367. Repetitive transcranial magnetic stimulation (rTMS) of the DLPFC caused dopamine 

release in the medial OFC 368, where dopamine D2-type receptor availability was correlated with 

updating rate in the present study. Thus, activity in the DLPFC may modulate medial OFC 

dopaminergic signaling 369 related to behavioral updating.  
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3.4.5. Updating rate, cortical dopamine D2-type receptors, and nonlinear relationships 

The current finding of nonlinear relationships between updating rate and dopamine D2-

type BPND in the insula and medial orbitofrontal cortex (OFC) follow decades of research 

demonstrating quadratic relationships between measures of dopamine function and behavior 

93,297,301-305. Early studies demonstrated inverted U-shaped functions between cortical D1 

dopamine receptors and cognitive functions, where performance was improved in those with lower 

baseline dopamine levels but impaired in those with higher baseline levels (see Cools and 

D'Esposito (304) for review). Quadratic relationships have been found between dopamine and risk-

taking and flexibility, which may be mediated by striatal as opposed to cortical dopamine 304 or 

D2-type as opposed to D1 receptors 351,370. This research suggests an optimal dopamine level of 

that is highly dependent on individual differences and basal dopamine levels. With particular 

relevance to the present studies, converging research has indicated that optimal levels of striatal 

and cortical D2-receptors maintain behavioral flexibility 297,302,370,371.  

The inverted U-shaped relationship between medial OFC D2-type BPND and updating rate 

in the HC group suggests that more or less D2-type receptor density is associated with lower rates 

of behavioral updating 372,373, similar to findings of probabilistic reversals in rodents 374. The 

medial OFC could influence behavioral updating through its role in the integration of changing 

outcome expectancies 296,298. It has also long been implicated in addiction 29,375 due to its direct 

innervation from the VTA and dense projections to the nucleus accumbens 376, which also projects 

back to the OFC through the mediodorsal nucleus of the thalamus 377.  

D2-type signaling and/or dopamine tone in the medial OFC may maintain flexibility 

286,295,354,374,378 by responding to changing contingencies in probabilistic environments 379-381 and 

updating incentive values of response outcomes 382-385. The medial OFC may be especially 
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sensitive to devaluation 378,386,387 during updating of values 388, and dysregulation related to D2-

type receptors in the medial OFC of MUD participants may hinder responses to negative feedback 

on the BART and bias towards more rigid choices.  

Compared to updating rate and dopamine D2-type BPND in the medial OFC, the 

relationship was the opposite direction in the insula, suggesting that dopamine in these two regions 

differentially impacts behavioral updating during risky decision-making. Diverging influences of 

dopamine receptors in the OFC and insula of rodents was shown for risky choices, whereby 

preference for risky choices was increased by pharmacological blockade of dopamine D2-type and 

serotonergic 5-HT1A receptors in the anterior insula, but increased by blocking 5-HT1A receptors 

in the OFC 389. The U-shaped curve in the HC group suggests that deviation from the optimal level 

of D2-type receptors in the insula is associated with an impairment of behavioral updating. Von 

Economo neurons in the insula express dopamine D3 receptors and are related to arousal and 

incorporating visceral feelings into decision-making 390,391. Since the BART is a visceral task and 

the insula has shown both increases and decreases in activity in response to changes in value 25, 

optimal dopamine tone may thus be necessary to respond efficiently. 

 

3.4.6. Limitations and final remarks 

These findings demonstrate a marked impairment in behavioral updating on the BART in 

MUD. Updating rate was correlated with sensitivity of the DLPFC and anterior insula to risk. 

Dopamine D2-type receptors in the striatum and midbrain were associated with risk-taking, and 

those in the insula and medial OFC were associated nonlinearly with updating rate, but only in HC 

participants. The lack of relationships between striatal or cortical dopamine D2-type receptors and 

behavioral measures in MUD participants suggests that dopaminergic signaling related to 
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behavioral updating are disrupted in MUD. Such findings demonstrate the advantage of pairing a 

visceral, naturalistic risk-taking task with a computational model capable of decomposing 

behavior. Combining with brain imaging can provide insights into the neural substrates of complex 

behavior, including risky behaviors that drive addictions. 

The major limitation of this study was the small sample size. We also were unable to 

compare behavior on the two versions of the BART, as only 14 participants (5 HC and 9 MUD) 

performed both tasks (while visualization suggests similarities in pumping behavior, we cannot 

draw any firm conclusions). Our results regarding dopamine D2-type receptors are also not 

specific to D2 receptors, as the radiotracer we used has affinity for dopamine D2 and D3 receptors. 

While MUD participants took less risk on the BART, it is not known why. A deficit in updating 

rate was shown, but other factors may influence performance, including aversion to potential loss 

88,392 and attitudes towards risk and uncertainty 393. If MUD participants prefer the immediate 

reward of cashing out, they may be oversensitive to reward or they may prefer the certainty of 

cashing out to the uncertainty of continuing to pump. Chapters 4 and 5 address such questions. 
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CHAPTER FOUR 

Loss Aversion 
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4.1 Loss aversion in healthy control participants: Age and posterior cingulate cortical 

thickness 

4.1.1 Introduction 

The proportion of the global population that is 65 years or older is increasing faster than 

those of other age groups; it is estimated that by 2050, one in four people in North America and 

Europe, and one in six people worldwide, will be over 65 394. As older adults face a myriad of 

choices that involve uncertainty and loss across multiple domains, changes in decision-making can 

substantially impact their quality of life 395,396. Accordingly, the impact of aging on decision-

making is of substantial interest 397,398. Some reports have shown worsening in some aspects, 

particularly in more deliberative domains, such as applying decision rules 399. Yet, older adults can 

show more advantageous decision-making than their younger counterparts, especially for choices 

that rely on life experience and acquired knowledge 400.  

Many everyday decisions present a potential for loss, which increases in salience with age 

397,401-403. When making a choice that balances the chance of gain against the risk of loss, people 

of all ages tend to be risk averse and to accept a gamble only if the magnitude of the win vastly 

outweighs that of the loss. This phenomenon has been explained by loss aversion, which reflects 

the overweighing of losses compared to equivalent gains 240,404. Despite reports of greater loss 

aversion in adults over compared to under 40 405-407, some studies find no differences 400,408-410. 

This discrepancy could be due to nonlinear effects of age on loss aversion, the exclusion of middle-

aged participants in comparisons of older and younger groups 400, or differences in methods of 

measuring loss aversion 408,409. 

Although aversions to risk and loss are presumably evolutionarily adaptive mechanisms 

411-414, extreme sensitivity to potential loss can impair decision-making in laboratory tests 415,416 
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and real-world choices 417-419. Loss sensitivity also affects choices by people with psychiatric 

pathologies, such as affective disorders 420,421. Notably, a curvilinear relationship exists between 

age and both real-world financial choices 422 and risky decision-making in the laboratory 423-425, 

with better performance by middle-aged adults than their younger and older counterparts. 

The goal of this study was to determine whether loss aversion followed a curvilinear 

relationship with age, and whether such a relationship is mediated by thickness of the insula, 

ventromedial prefrontal/orbitofrontal cortex, and/or anterior and posterior cingulate cortices, all of 

which are particularly vulnerable to age-related atrophy 426-428, and are implicated in loss aversion 

234,429,430. Because risky decision-making 424,425 and associated cognitive functions 431-433 follow 

curvilinear trajectories with age, we hypothesized that age and loss aversion would be related by 

a quadratic function, and that cortical thickness would influence this relationship. Considering 

reports that the cortical regions selected for study exhibit linear age-related thinning 426-428, we 

hypothesized that cortical thickness would influence loss aversion after a threshold of atrophy had 

been reached. Loss aversion was measured using the Loss Aversion Task, and structural MRI was 

performed on participants from young adulthood through middle age. 

 

4.1.2 Methods 

4.1.2.1 Participants 

Data presented here are from healthy, right-handed volunteers (40 women) between the 

ages of 17 and 54 who participated in studies that were approved by the University of California, 

Los Angeles Institutional Review Board. Of 130 participants (40 women) who performed the Loss 

Aversion Task, data from 24 were excluded during data analysis (see Section 2.2.7), leaving a final 
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sample of 106. Behavioral data from these participants, other than performance on the Loss 

Aversion Task, and corresponding MRI findings have been reported 86,167,434-452.  

Participants were recruited using online and print advertisements. After initial screening, 

they received detailed information about the study and gave written informed consent before 

further screening for eligibility by physical examination, medical history, and psychiatric 

evaluation. Drug use history and demographic information were collected using questionnaires. 

Participants were excluded for medical or neurological disorders or any current Axis I psychiatric 

disorder except Nicotine Dependence, determined by the Structured Clinical Interview for DSM-

IV 306. After intake, participants returned on a different day to perform the Loss Aversion Task, 

which was administered using identical procedures for all studies. A subset of participants (n = 

83) also received structural magnetic resonance imaging (sMRI) scans on a different day. Data 

from 5 of those participants were excluded during preprocessing, leaving 78 for analysis. The 

average time between behavioral testing and the MRI scan was 7 days. At intake and on each test 

day, participants were required to provide a urine sample that was negative for amphetamine, 

cocaine, methamphetamine, benzodiazepines, opioids, and cannabis. They were compensated in 

the form of cash, gift cards, or vouchers. 

 

4.1.2.2 Structural MRI 

Structural T1-weighted magnetic resonance images of the brain were acquired from 83 

participants using a Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence. Images 

were collected from 31 participants on Scanner 1: a 1.5-Tesla Siemens Sonata MRI scanner 

(Erlangen, Germany) with a standard quadrature head coil (TR = 1900 ms, TE = 4.38 ms, flip 

angle = 15°, FOV = 160 × 256 × 256 mm2, 176 slices, resolution: 1x1x1 mm3). Images from 33 
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participants were collected on Scanner 2: a 3-Tesla Trio TIM Siemens MRI scanner (Erlangen, 

Germany) using parameters of TR = 2530 ms, TE = 3.31 ms, flip angle = 7°, FOV = 176 × 256 × 

256 mm2, 176 slices, resolution: 1x1x1 mm3. Data from the remaining 14 participants were 

acquired on Scanner 3: a different 3-Tesla Trio TIM Siemens scanner using the same parameters. 

 

4.1.2.3 MRI processing 

Anatomical MRI images were processed using FreeSurfer 6.0.0 

(http://surfer.nmr.mgh.harvard.edu), which generates a three-dimensional model of the cortical 

surface and provides measurements of local cortical thickness 453. Mean thickness within 72 

automatically defined cortical parcels for each hemisphere were extracted from this model 454,455. 

Data quality was evaluated using the Qoala-T supervised learning quality control tool 456, which 

identified data from 5 participants for exclusion, leaving data from the remaining 78 for the final 

analyses. As scans were acquired on different scanners, the ComBat procedure was used to 

harmonize the data and remove variability due to scanner type. ComBat has been validated on 

cortical thickness data and has been shown to robustly correct for scanner differences 457. To 

preserve the variability due to age, we specified age as a biological variable for the ComBat model. 

 

4.1.2.4 Statistical analysis 

Statistical analyses were performed using RStudio version 1.1.456. Analysis of variance 

(ANOVA) or correlation, as appropriate, was used to determine whether 𝜆 was significantly 

associated with biological sex, race/ethnicity, estimated IQ [using the Wechsler Test of Adult 

Reading (WTAR) 249], mother’s years of education (as a proxy for socioeconomic status), or 
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cigarette smoking status. As shown below, only race/ethnicity was associated with 𝜆 and was 

therefore included as a covariate in subsequent analyses. 

A generalized linear model (GLM) was used to assess the effect of age on loss aversion. 

The parameter estimate (𝜆) from the behavioral choice model was used as the dependent variable 

in a GLM with the independent variable of age. Based on previous research demonstrating a 

curvilinear relationship between age and economic decision-making under risk 424, a hierarchical 

regression analysis was used to test for a quadratic relationship between 𝜆 and age, with age2 added 

as an independent variable for the second step of the model. On an exploratory basis, the same 

associations were tested with the risk attitude parameter, 𝜌. 

The average of the mean cortical thickness of both hemispheres, weighted by cortical 

volume, was calculated to determine whether 𝜆 was related to whole-brain cortical thickness. 

Based on prior research indicating brain regions important for loss aversion 234,429,430 and cortical 

thinning of the cortex with age 426-428, a region of interest (ROI) analysis was performed, including 

the insula, orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and posterior cingulate 

cortex (PCC). ROIs were created by calculating a weighted average of both hemispheres for each 

region. A weighted average was also used to combine the rostral and caudal ACC to create one 

ACC ROI, and the medial and lateral OFC to create one OFC ROI.  

To assess the main effect of cortical thickness on 𝜆, a GLM was used for each region with 

𝜆 as the dependent variable and the linear and quadratic components of cortical thickness (cortical 

thickness and the square of cortical thickness) as independent variables. Estimated intracranial 

volume was included as a covariate. Results were corrected for multiple comparisons using the 

Holm-Bonferroni method.  
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For brain regions showing significant relationships of structure with 𝜆, a mediation analysis 

was performed to test whether cortical thickness mediated the relationship between age and 𝜆. 

Age-related cortical thinning was confirmed using a GLM with cortical thickness as the dependent 

variable, age as the independent variable, and biological sex, race/ethnicity, and estimated 

intracranial volume tested as covariates. Age2 was then added as an independent variable for the 

second step of the model to check for any nonlinear effects of age. 

The mediation model tested whether cortical thickness mediated the effect of age on 𝜆. 

Because of the quadratic relationship between age and 𝜆, age2 was specified as the independent 

variable, with age and estimated total intracranial volume as covariates. To account for any 

nonlinearities, the square of cortical thickness was also included as a covariate. The mediation 

analysis used the “mediations” specification of the “mediation” package in R, which enables 

nonparametric causal mediation analysis 458,459. Indirect effects, given by the Average Causal 

Mediation Effects (ACME), were computed using Monte Carlo simulations, and the 95% 

confidence intervals were computed by determining the effects at the 2.5th and 97.5th percentiles. 

 

4.1.3 Results 

4.1.3.1 Participant characteristics and covariates 

Data presented are from 130 healthy, right-handed volunteers (40 women) between the 

ages of 17 and 54 (Table 4.1). Only race/ethnicity was associated with 𝜆 and was therefore 

included as a covariate in subsequent analyses. Biological sex, estimated IQ, cigarette smoking 

status, and years of mother’s education had no significant effects on 𝜆 (ps > 0.05), and, therefore, 

were not included in subsequent analyses (results were consistent when measures of 

socioeconomic status, such as father’s education, were used instead of mother’s education). An 
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ANOVA revealed differences in 𝜆 based on race/ethnicity [F(4,101) = 5.78, p < 0.01], with post-

hoc t-tests illustrating that Caucasians had higher 𝜆 than all other groups (ps < 0.05), and 

Hispanic/Latinx had higher 𝜆 than African Americans (p < 0.05); all other pairwise comparisons 

were nonsignificant (ps > 0.05). Based on these findings, subsequent analyses used race/ethnicity 

as a covariate which was coded as 1=Caucasian, 2=Hispanic/Latinx, 3=African American, and 

4=Other. 

 

 

Table 4.1. Demographics of healthy control participants who performed the Loss Aversion 

Task and had MRI scans 

 

4.1.3.2 Quadratic relationship between loss aversion and age 

In data from the full sample, parameter estimates of the behavioral choice model, estimated 

using hierarchical Bayesian analysis, were consistent with published values 234,239,460. Posterior 

distributions of the parameters are shown in Fig. 4.1. Means with standard errors and ranges were: 

λ = 1.58 (0.04; 0.76 – 2.61; loss aversion), ρ = 0.60 (0.0036; 0.44 – 0.70; risk attitudes), τ = 3.07 

Chapter 4 Loss Aversion 

 

Table 4.1. Demographics of healthy control participants who performed the Loss Aversion 

Task and had MRI scans 

 

 

Variable 

Scanner 1 

(1.5 T Siemens 
Sonata; n = 31) 

Scanner 2 

(3 T Trio TIN 
Siemens; n = 33) 

Scanner 3 

(3 T Trio TIM 
Siemens; n = 14) 

Omnibus Statistics 

Age, yearsa 32.8 (1.14) 19.9 (0.193) 38.0 (2.76) F(2,75) = 61.1, p < 0.001*** 

Biological sex 

     female/male (n) 
18/13 8/25 4/10 c2(2) = 8.38, p = 0.015* 

IQ estimate 

     standard scorea 
105.5 (2.153) 110.9 (1.843) 108.4 (2.408) F(2,62) = 1.635, p = 0.203 

Mother’s  

Education, yearsa 
12.3 (0.656) 14.8 (0.690) 13.3 (1.06) F(2,72) = 3.16, p = 0.0482* 

Race/Ethnicity (n)    c2(8) = 28.8, p < 0.001*** 

      White 9 27 9  

      African  

      American 
6 1 0  

      Hispanic/Latinx 13 2 3  

      Asian/Pacific  
      Islander 

0 3 1  

      Other 3 0 1  

Cigarette smoking, n 13 14 10 c2(2) = 3.94, p = 0.139 
aUnless otherwise indicated, values are means (SE) 

IQ estimate = Weschler Test of Adult Reading. 

* p < 0.05; ** p < 0.01; *** p < 0.001. 
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(0.09; 0.96 – 6.74; choice consistency) and reaction time = 1.45 (0.0059; 0.206 – 4.49). When the 

quadratic variable of age was added to the model, both age [ = -0.067, t(97) = -2.24, p = 0.028] 

and age2 [ = 0.0010, t(97) = 2.309, p = 0.023] had significant effects, and the model fit the data 

better than the linear model [ANOVA; F(97,98) = 5.33, p = 0.02, change in 𝑅2 = 0.0433; Fig. 

4.2A].  

The curvilinear association between 𝜆 and age persisted in the subsample from which sMRI 

data were acquired (n = 78); when the quadratic variable of age was added to the model, both age 

[ = -0.0722, t(75) = -2.36, p = 0.021] and age2 [ = 0.0011, t(75) = 2.46, p = 0.016] were 

significantly related to 𝜆. The quadratic model provided a significantly better fit for the data than 

the linear model [ANOVA; F(75,76) = 6.074, p = 0.016; change in 𝑅2 = 0.070].  

 

4.1.3.3 Mediation by posterior cingulate cortical thickness of the age effect on loss aversion 

Main effects: Mean overall cortical thickness was not significantly related to loss aversion 

( = 0.072, t(77) = 0.152, p = 0.88) and was therefore excluded from subsequent analyses. There 

were no linear or quadratic main effects of cortical thickness on λ in the insula [linear:  = 1.71, 

t(71) = 0.111, p = 0.878; quadratic:  = -0.244, t(71) = -0.134, p = 0.894], OFC [linear:  = 0.169, 

t(71) = 1.56, p = 0.123; quadratic: :  = -3.18, t(71) = -1.57, p = 0.122], or ACC [linear:  = -1.257, 

t(71) = -0.124, p = 0.902; quadratic:  = 0.139, t(71) = 0.076, p = 0.939]. Although there were 

effects of both the linear and quadratic components of PCC thickness on 𝜆 [linear:  = -0.200, 

t(71) = -2.28, p = 0.026; quadratic:  = 3.82, t(71) = 2.20, p = 0.031], neither survived Holm-

Bonferroni correction for multiple comparisons. 

To determine whether there was a confounding effect of scanner, particularly given 

demographic differences between participants scanned on the different machines (Table 4.1), we 
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tested whether brain structure differed by scanner. There was a significant difference due to 

scanner [F(2,75) = 10.53, p < 0.001]. Post-hoc analyses revealed that PCC thickness measured on 

Scanner 2 was larger than on Scanners 1 and 3 (p < 0.0001), whereas data from Scanners 1 and 3 

did not differ; ps > 0.05). Therefore, the aforementioned analyses of main effects were performed 

twice: both with scanner as a covariate and excluding data from Scanner 2. The results were 

unchanged: linear and quadratic components of PCC thickness affected λ (p < 0.05), but neither 

survived multiple comparison correction. 

Mediation analysis: Age-related cortical thinning of the PCC followed a linear course [ = 

-0.00471, t(73) = -2.22, p = 0.0294; Fig. 4.2B], with no quadratic component [ = -0.000123, t(72) 

= -0.546, p = 0.59]. Due to the confounding effect of scanner, the mediation analysis was 

performed twice: once without the covariate of scanner, and once with data from Scanner 2 

removed. The results were comparable, and results without those from Scanner 2 are reported here. 

PCC thickness significantly mediated the age-loss aversion relationship, as quantified by the 

Average Causal Mediation Effects (ACME; p = 0.018; Fig. 4.2C). To account for any 

nonlinearities, the mediation model was repeated with the square of PCC thickness as a covariate. 

Results were comparable (ACME; p < 0.05). Since linear age-related change in the PCC was 

confirmed, but age and λ were quadratically related, we examined which component of the λ-age 

relationship was mediated by PCC thickness. To visualize the relationship between λ and PCC 

cortical thickness for different ages, we plotted the relationship between PCC thickness and λ by 

age for younger (<35) and older (>35) participants (Fig. 4.2D). We split the data at the age of 35 

as this was the inflection point of the age-loss aversion quadratic. The plot suggests that the 

mediation analysis captures an effect of PCC thickness on loss aversion that shifts throughout the 
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lifespan, potentially mediating the increase in loss aversion in later life as opposed to the decrease 

in young adulthood. 

 

4.1.3.4 Exploratory analyses: risk aversion (𝛒) and brain structure 

The risk aversion parameter (𝜌) was not significantly correlated with age [ = -0.000520, 

t(98) = 0.83, p = 0.408] or the quadratic variable of age [ = 0.0000266, t(97) = 0.494, p = 0.622]. 

There were no main effects for cortical thickness or the cortical thickness2 on risk attitudes in any 

of the four ROIs: insula [linear:  = -0.0557, t(72) = -0.050, p = 0.960; quadratic:  = 0.0142, t(72) 

= 0.077, p = 0.939]; OFC [linear:  = -1.08, t(72) = -0.980, p = 0.330; quadratic:  = 0.203, t(72) 

= 0.987, p = 0.327]; ACC [linear:  = -1.22, t(72) = -1.22, p = 0.228; quadratic:  = 0.219, t(72) = 

1.214, p = 0.229]; PCC [linear:  = 0.911, t(72) = 0.993, p = 0.324; quadratic:  = -0.177, t(72) = 

-0.972, p = 0.334]. 

 

Figure 4.1. Posterior distributions of 

computational parameters from the 

Loss Aversion Task in healthy 

control participants. The distribution 

densities of each parameter are plotted. 

Higher values of 𝜆 indicate higher loss 

aversion and that the participant assigns 

more weight to losses than to gains of 

equal magnitude. When 𝜌 < 1, the 

participant is risk-seeking for losses 

(more likely to take a gamble over a 

sure loss) and risk-averse for gains 

(more likely to choose a sure gain over 

a riskier prospect). The opposite is true 

when 𝜌 > 1. Tau (𝜏) is the logit sensitivity and represents choice consistency, or the sensitivity of 

the participant to the difference between the certain amount and the gamble. 
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Figure 4.2. Relationships between age, loss aversion, and cortical thickness. A and B. Loss 

aversion (𝜆) follows a quadratic trajectory with age, whereas cortical thickness of the posterior 

cingulate cortex (PCC) declines linearly with time. Shading indicates standard error confidence 

intervals. C. Cortical thickness of the PCC mediates age-related changes in 𝜆. The effect of age on 

PCC thickness is given by “a”. The effect of PCC thickness on 𝜆 is given by “b”. The Average 

Direct Effect (ADE; c’) is the effect of age on 𝜆 when controlling for the mediator of PCC 

thickness. To calculate the Total Effect (c) of age on 𝜆, without accounting for the mediator, both 

age and age2 were included in the model and the regression coefficient for age2 was taken as the 

strength of the effect. The causal mediation analysis was performed using nonparametric bootstrap 

confidence intervals and Monte Carlo simulations. The model included age, age2, race/ethnicity, 

scanner, and estimated intracranial volume, as well as PCC thickness as the mediator. Age2 was 

specified as the variable of interest. The measure of significance was given by the Average Causal 

Mediation Effect (ACME; p = 0.018*). Asterisks denote statistically significant results. * p < 0.05. 

** p < 0.01. D. A negative relationship between PCC thickness and λ exists in older participants, 

but no relationship is present in participants under 35 years.  The age of 35 was used to split the 

data into younger and older groups as it approximates the inflection point of the age-λ quadratic. 
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4.1.4 Discussion 

With the global population of those 65 years and older growing faster than all other age 

groups 394, an understanding of the trajectory of decision-making over the lifespan may help people 

make better choices as they age 395,422. Providing unique insight into the relationship between aging 

and decision-making, this study found an association between age and loss aversion that followed 

a quadratic function, declining across young adulthood and reaching a minimum around age 35 

before increasing in middle-age. We also showed that PCC thickness mediates the relationship 

between age and loss aversion, suggesting that cortical thinning of the PCC is likely one of several 

factors that contribute to changes in decision-making throughout the lifespan. Because we also 

confirmed that PCC thickness declines linearly with age 426-428, PCC thinning may emerge as an 

important factor in loss aversion when a certain threshold of atrophy begins in middle age.  

A nonlinear relationship between age and loss aversion could unify seemingly-conflicting 

results in the literature. Previous studies may have captured components of the quadratic 

relationship: participants aged 25-40 were less loss averse than those aged 41-55 405, and 

participants ~18-28 were less loss averse than those aged ~60-86 years 406,407. Others may have 

missed differences due to the nonlinearities observed here 400,410. Our findings conflict with certain 

studies that did not find a quadratic relationship between age and loss aversion 408,409,461, which 

may be accounted for by the use of different tasks and methods to measure loss aversion 408,409,461. 

Nevertheless, the loss aversion and risk preference parameters were very similar to those recently 

reported in a study that fit a prospect theory utility function to choice data from 146 participants 

462. 

The quadratic relationship between loss aversion and age mirrors the developmental 

trajectory of the cortex, during which the neurobiological mechanisms of cortical thinning differ 
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in development and aging 463. Cortical maturation includes thinning in sensory and eventually 

fronto-cortical areas, and may extend beyond the mid-twenties 428, whereas cortical thinning 

approaching middle-age could be considered the onset of senescence 464. Thus, PCC thickness may 

be unrelated to loss aversion during cortical maturation but may arise as a contributing factor once 

cortical thinning is underway. 

With normal aging, functional changes include the reduction of the integration of 

coordinated activity between brain regions and increases in the localization of function within 

regions 465. Such reorganization can contribute to shifts in the mechanisms underlying decision-

making, perhaps increasing reliance on certain regions and not others. The PCC has been linked 

to the representation of subjective value during probabilistic choice tasks 111,123, reward signaling 

466, attentional focus 467, and the dynamic adaptation of behavior 468. Beyond a threshold of cortical 

thinning of the PCC, such functions may be impeded, rendering the most adaptive strategy that 

which is the least cognitively demanding 469. Such adaptations could manifest in the use of an 

automatic or default heuristic, such as loss aversion, as shown by older adults using less cognitively 

taxing strategies in paradigms that involve risk 470. The plasticity of the brain coupled with an 

adaptive response to shifting cognitive resources 471 may result in older adults opting for choices 

that are “good enough” instead of searching to maximize outcomes [i.e., using “satisficing” instead 

of maximizing strategies 407]. During probabilistic choices involving loss, older adults are more 

likely to use such strategies when making decisions related to finances 472 and health 473. Satisficing 

strategies are related selectively to loss aversion and not to risk preferences; those who have greater 

loss aversion tend to stop searching for an optimal solution sooner 474.  

Notably, the Loss Aversion Task does not measure adaptive decision-making, and a loss-

aversion strategy is not necessarily disadvantageous. Older individuals do not indiscriminately 
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make worse decisions 400,475-477, and heightened loss aversion may reflect naturally occurring shifts 

in values and motivations 401,478. Changes in cognitive faculties with age are not linear across time 

nor uniform across domains; the age-related decline of certain cognitive faculties, such as 

processing speed, episodic memory, and executive functions 479,480, may lead older adults to revert 

to a previously learned response, such as loss aversion, that requires less cognitive effort. 

Meanwhile, prioritizing the use of abilities that remain intact or even improve with age, such as 

those that depend on experience, emotional intelligence, and crystallized intelligence, may 

improve efficiency 433,478,481,482. While young adults can take more risk than older adults, risk-

seeking as measured in the laboratory is separable from loss aversion 483. Thus, it is possible for a 

participant to display a certain level of loss aversion in the face of uncertain gambles but still be 

seek risk when presented different options.  

The PCC also is implicated in emotional processing, as it is activated by emotional words 

484 and attending to emotional states 485. Emotional processing is necessary for adaptive decision-

making 154,486,487, and loss aversion is linked to the ability to regulate 239,460 and process 488 

emotions. Such faculties peak around age 45-60 433, and emotional content is particularly salient 

for older adults 489,490. Since reliance on emotional information can compensate for age-related 

declines in cognitively challenging situations 481,491, increases in loss aversion with age may reflect 

greater focus on emotional or experiential dimensions of decision-making. Related to emotional 

processing is interoception, which is also involves PCC function 492,493 and tied to loss aversion 

494. Thus, age-related cortical thinning in the PCC may hinder the ability to efficiently integrate 

affective responses into complex choices, especially those that include loss. 

As the present moment also gains salience with age, and prioritizing immediate or 

emotional wellbeing may intensify as time horizons constrict 495,496. Converging evidence, 
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including self-reported goal orientations and performance on a probabilistic gambling task 401-403, 

indicates a shift later in life towards avoiding losses instead of seeking gains. In fact, loss 

orientation in later adulthood is correlated with subjective well-being 403. When motivations shift 

towards optimizing immediate, emotional wellbeing and processing power becomes limited with 

age, perhaps partly because cortical thinning of the PCC impedes probabilistic assessments, loss 

aversion may naturally emerge as a low-effort response when facing choices with uncertainty.  

Greater loss aversion in younger participants and its subsequent decline across young 

adulthood may similarly reflect the underdevelopment of complex probabilistic decision-making 

470,497. The Loss Aversion Task requires the time-limited integration of the magnitude and 

probability of both reward and loss to decide whether the chance of reward is worth the risk of 

loss; this estimation of subjective value is critical to adaptive choice behavior. Sensitivity to the 

difference in expected value between options follows an inverted U-shaped function, suggesting 

that the ability to distinguish appropriately between reward-based options may not fully develop 

until the mid-20s 470.  

While the age range of 17 to 54 covered in the current study does not represent the entire 

lifespan, prior studies point to the trajectory of the quadratic relationship observed here. Loss 

aversion was a main driver of behavior in children as young as 5-8 years old 498, and adults older 

than those examined here (aged 61-86) exhibited greater loss aversion than young adults 406,407, 

consistent with the upward trend we observed from ages 35-54. Another limitation of this study is 

imbalance and relatively small samples of men and women; therefore, conclusive statements about 

effects of biological sex on loss aversion were not possible. That race/ethnicity was a significant 

factor in loss aversion also merits further investigation. The lack of an effect of age on risk-taking 

may reflect the type of task used, as the Loss Aversion Task is not necessarily designed to 
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comprehensively elicit risk preferences. Finally, the lack of significance when testing for the linear 

association between loss aversion and PCC thickness when correcting for multiple comparisons 

was likely due to nonlinearities in the relationship not captured in the statistical model – a negative 

correlation of loss aversion with PCC thickness in older participants, who had smaller PCC 

thickness, but not in participants whose PCC thickness crossed the inflection point on the U-shaped 

curve.  

We conclude that cortical thickness of the PCC may supplement other cognitive and 

neurobiological age-related changes and arise as an important factor for loss aversion around the 

onset of age-related atrophy. Tracking age-related changes in the influence of decision-making 

biases, such as loss aversion, can inform policies that are tailored to the aging population 396. 

Moreover, determining the age at which changes begin can introduce opportunities for early 

intervention, such as services, education, or incentives that could better inform important life 

decisions, such as those related to health and finances 395,422,499. Identification of brain regions that 

affect such choices when altered with age provides the opportunity to forecast – and perhaps 

forestall – future decision-making impairments. To this end, future longitudinal studies may go 

beyond cross-sectional investigations to use measurements from key brain regions (e.g., PCC) at 

mid-life to predict changes in decision making biases later in life. 
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4.2 Loss aversion in Stimulant Use Disorder: Loss aversion and striatal dopamine D2-type 

receptors availability 

4.2.1 Introduction 

Individuals with substance use disorders persist in the use of drugs despite negative 

outcomes 23,195,500,501. As such behavior may reflect insensitivity to negative consequences 

82,102,105,106,108,109,160, individuals with these disorders may be less loss averse than healthy control 

(HC) participants. However, findings regarding sensitivity to loss of those with addictive disorders 

are mixed, with some showing greater, some showing lower, and some showing no difference in 

loss aversion than HC groups 82,105,106,502-512.  

Sensitivity to loss is related to affective components of choice 239,420,460,488,494,513, and 

arousal may have an exaggerated impact in those with drug addictions 154,329. Thus, whether loss 

aversion differs between HC and participants with Stimulant Use Disorder (SUD) remains unclear. 

These individuals also may perceive the discontinuation of drug use as a loss, and thus heightened 

sensitivity to loss may motivate continued drug use 500.  

While many tasks involve potential loss, attitudes towards loss can be specifically assessed 

using the Loss Aversion Task (LAT) 234,460. Loss aversion describes the overweighing of losses 

compared to equivalent gains 240,404 and has been used to explain the pervasive phenomenon of 

forgoing larger amounts of money to avoid potential loss (although see Gal and Rucker (514). For 

instance, when making a choice that balances the chance of gain against the risk of loss, people 

tend to accept the gamble only if the magnitude of the win outweighs that of the loss (e.g., flipping 

a coin to win $200 if it lands on heads and lose $100 if it lands on tails, versus winning $150 for 

heads and losing $100 for tails).  
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Studies have tested for differences in loss aversion between HC participants and 

individuals with addictive disorders 508-512, and the few studies that assessed neural function related 

to loss aversion in these groups demonstrated activations in areas of the prefrontal cortex, striatum, 

and amygdala 502,507. These results mirror findings of brain activity during loss aversion in HC 

participants 234,429,430,460,513,515-517.  

The striatum and amygdala both receive dopaminergic innervation and are implicated in 

addiction 12,330,518. Since signaling at striatal dopamine D2-type (D2 and D3) receptors can mediate 

responses to negative or aversive outcomes 519,520, we hypothesized that striatal and/or amygdala 

dopamine D2-type receptor availability (binding potential, BPND) would be related to loss 

aversion. We also sought to determine whether HC participants differ in risky choices involving 

loss from those with SUD. 

 

4.2.2 Methods 

4.2.2.1 Participants 

Data presented here are from 189 participants (112 HC and 77 SUD) who performed the 

Loss Aversion Task (LAT) across three studies (Table 4.2). All participants provided informed 

consent, as approved by the UCLA Institutional Review Board. They were fluent in English and 

in good physical and neurological health, as assessed by history and physical examination. All 

Axis I psychiatric diagnoses were excluded, other than Methamphetamine Use Disorder or 

Cocaine Use Disorder in the SUD group, and Tobacco Use Disorder, mild Alcohol Use Disorder, 

and mild Cannabis Use Disorder in both groups, determined by the Structured Clinical Interview 

for DSM-IV 306.  
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After intake, participants returned on a different day to perform a cognitive battery that 

included the LAT. A subset of participants (14 HC and 39 SUD) also performed trials specifically 

designed to elicit risk preferences. These 22 “gain-only” trials presented choices between a sure 

win of $5 or a 50% chance of winning a variable amount that varied from $4-$50 (see Chapter 2 

for task details). On each study day, participants provided a urine sample that was negative for 

cocaine, methamphetamine, benzodiazepines, opiates, and cannabinoids. Individuals who smoked 

cigarettes were allowed to smoke until 15 min before testing to avoid effects of nicotine 

withdrawal. They were compensated with cash, gift cards, or vouchers. 

The HC participants were recruited as part of a study of individuals who smoked cigarettes 

(N = 41) or as control participants for studies of stimulant dependence (N = 71). For the SUD 

group, one cohort comprised participants (N = 44) who met DSM-IV criteria for 

Methamphetamine Dependence, were not seeking or receiving treatment, and reported abstinence 

from methamphetamine for a mean (SD) of 6.80 (5.86) days, confirmed by negative urine test. 

Participants in the second cohort (N = 33) met DSM-5 criteria for SUD (cocaine type or 

amphetamine type), were recruited following ≈1 week of supervised abstinence in a residential 

substance use disorder treatment program, and reported abstinence from their drug of choice 

(cocaine or methamphetamine) for a mean (SD) of 7.00 (1.26) days before testing. A subset of 

participants who met DSM-5 criteria for Methamphetamine Use Disorder (MUD) received 

[18F]fallypride PET scans (22 HC and 18 SUD).  

 

4.2.2.2 PET data acquisition, processing, and analysis 

PET scanning was conducted using [18F]fallypride, which was prepared using [18F]fluoride 

ion as reported 314. [18F]Fallypride has sufficient affinity to allow measurement extrastriatal regions 
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as well as striatal regions 314. Scans were acquired on a Philips Gemini TF PET-CT scanner and 

reconstructed with the row action maximum likelihood algorithm (RAMLA). Participants were 

free to open and shut their eyes during the PET scan. A CT transmission scan was used for 

attenuation correction. [18F]fallypride (5 mCi) was injected as a bolus, and emission data were 

acquired dynamically scanning was conducted in two 80-min blocks separated by a 10-20 min 

break.  

Processing of decay-corrected, attenuation-corrected data was the same as described in 

Section 3.2.3. Separate independent t-tests were used to assess group differences in BPND of the 

striatum and amygdala, and GLMs to test the relationship of BPND to demographic covariates 

when accounting for group.  

 

4.2.3 Results  

4.2.3.1 Participant characteristics and demographics 

Demographics of participants who performed the LAT are presented in Table 4.2. Data 

from 19 subjects were excluded on the basis of data quality (e.g., displaying implausible choices, 

as described in Section 2.2.7). The SUD group was slightly older, had fewer years of mothers’ 

education, and included more participants who smoked cigarettes than the HC group. When group 

was included in the model, ethnicity, age, and the variable of study were significantly related to 

loss aversion (𝜆). Loss aversion was higher in younger participants and those who identified as 

Caucasian and Hispanic than in older participants and those who identified as belonging to other 

ethnic groups. The interaction of group and estimated IQ on loss aversion was also significant, 

whereby where was a positive relationship in participants with SUD but a negative relationship in 

control participants.  
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In the SUD group, there was no relationship between behavioral parameters and days since 

the last use of the drug of choice or days in the last month in which the participant smoked 

cigarettes, drank alcohol, or used marijuana. However, loss aversion differed by treatment status—

participants who were not in treatment were more loss averse. Because the variables of study and 

inpatient status were both significant but described overlapping variance (i.e., three different 

studies, two of which included participants receiving inpatient treatment), the variable of study 

was included as a covariate in analyses. 

HC and MUD participants who performed trials specifically designed to elicit risk 

preferences differed only on biological sex: there were more men than women in the SUD group 

[𝜒2(1) = 4.6761, 𝑝 = 0.0306]. When accounting for group, ethnicity was associated with 𝜆. 

When full utility functions were fit to these participants, ethnicity was associated with both 𝜆 and 

𝜌 and age only with 𝜌. 

In subset of participants who received PET scans, there were no group differences in any 

demographic variables, and no variable was significantly associated with 𝜆 when group was 

included in the model. 
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Table 4.2. Demographics of healthy control and participants with Stimulant Use Disorder 

who performed the Loss Aversion Task 

 

4.2.3.2 Group differences in loss aversion 

Loss aversion analysis. Participants with SUD were less loss averse (M = 1.72, SD = 1.06) 

than their healthy control counterparts (M = 2.09, SD = 1.18), as assessed by a two-sample t-test 

(𝑡(170) = 2.12, 𝑝 = 0.036) (Fig. 4.3A). However, GLMs with age, mother’s education, study, 

and smoking status did not reach statistical significance. Results were unchanged in the sample 

that received PET scans (Fig. 4.3B). 

Full utility model. Full utility functions were fit to the data of participants with SUD who 

completed trials to explicitly measure tolerance for risk as well as for loss. Posterior distributions 

Table 4.2. Demographics of healthy control and participants with Stimulant Use Disorder 

who performed the Loss Aversion Task 

 

Variable 
Healthy Controls 

(n=112) 

Participants with 

Stimulant Use Disorder 

(n=77) 

Omnibus Statistics 

Age, yearsa 28.61 (0.88) 38.03 (1.31) t(182) = -6.27, p < 0.0001*** 

Biological sex 

    female/male (n) 
39/71 22/53 c2(1) = 0.594, p > 0.05 

IQ estimatea 105.5 (1.20) 103.28 (1.20) t(138) = 1.53, p > 0.05 

Mother’s Education, yearsa 13.81 (0.26) 12.61 (0.33) t(172) = 2.85, p < 0.005** 

Study (n)   H(2) = 45.7, p < 0.0001*** 

    Study 1 41 0  

    Study 2 63 52  

    Study 3 8 25  

Race/Ethnicity (n)   H(4) = 6.3576, p > 0.05 

    White 62 31  

    African American 14 16  

    Hispanic/Latinx 22 15  

    Asian/Pacific Islander 7 5  

    Other 7 10  

Days of substance use in 

the previous 30 days 
   

    Alcohol  3.058 (0.40) 3.169 (0.58) t(171) = -0.163, p > 0.05 

    Marijuana 2.789 (0.78) 4.55 (1.0) t(130.96) = -1.37, p > 0.05 

    Tobacco 18.95 (1.7) 20.07 (1.4) t(143) = -0.516, p > 0.05 

        No. who smoked 55 59 c2(1) = 18.3, p < 0.0001*** 

    Stimulants (cocaine or  

    methamphetamine)  
 21.58 (1.17)  

aValues are means (SE) 

IQ estimate = Weschler Test of Adult Reading 
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and group mean differences of 𝜆, 𝜌, and 𝜏 are shown in Figures 4.4A and 4.4C. The 95% highest 

density interval (HDI) was used to assess the credibility of group differences in parameter 

estimates 246, as described in Section 2.3. The analysis revealed that SUD participants were close 

to displaying credibly lower risk tolerance than HC participants [95% HDI of group difference: 

(−0.27 −  0.01), with 96.1% of posterior samples below zero] (Fig. 4.4E). When GLMs with 

age, mother’s education, study, and smoking status were used to analyze group differences in 𝜆 

and 𝜌, the SUD group showed lower risk tolerance than the HC group (p = 0.025) (Fig. 4.5A). 

The full utility model was also fit to the data of participants who completed just the 50-50 

gamble task (i.e., the Loss Aversion Task without risk-only trials) to explore whether the recovered 

parameter estimates replicated earlier work, despite the fact that accurate parameter recovery is in 

principle problematic using this approach (Fig. 4.4B and Fig. 4.4D). This analysis revealed no 

credible differences in any parameters (Fig. 4.4F), but the GLM revealed higher values of risk 

tolerance for SUD compared to HC participants [𝛽 = 0.0765, 𝑡(139) = 3.42, 𝑝 = 0.000816] 

(Fig. 4.5B). This suggests misestimation, as the analysis revealed the opposite association in 

participants who performed trials designed to accurately calculate risk tolerance and loss aversion. 

Indeed, when the data of participants who did complete risk-only trials were reanalyzed without 

the risk-only trials, the analysis replicated the misestimated results.  
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Figure 4.3. Group differences in loss aversion (𝝀). 

A logistic regression was fit to each participant’s data 

with the gain and loss amounts as independent 

variables and the participant’s choice as the 

dependent variable. Loss aversion was taken as the 

ratio of the coefficient for the loss amount to the 

coefficient of the gain amount. (A) Participants with 

SUD were less loss averse (M = 1.72, SD = 1.06) than 

their healthy control counterparts (M = 2.09, SD = 

1.18), as assessed by a two-sample t-test (𝑡(170) =

2.12, 𝑝 = 0.036). (B) Estimated marginal effects of generalized linear models with age, mother’s 

education, study, and smoking status are plotted. Results did not reach statistical significance.  
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Figure 4.4. Posterior distributions of computational parameters from the Loss Aversion 

Task analyzed with full utility functions. Parameters were estimated using hierarchical Bayesian 

analysis separately for healthy control (yellow) and Stimulant Use Disorder (red) participants who 

completed the Loss Aversion Task. (Left column) Data from participants who completed trials 

specifically designed to isolate attitude towards loss (i.e., 22 extra trials that presented choices 

between a sure win of $5 or a 50% chance of winning a variable amount that varied from $4-$50). 

(Right column) Participants who only completed the Loss Aversion Task with 50-50 gambles. 

(A-D) The posterior distributions (i.e., group parameter estimates) of each parameter are plotted. 

Higher values of 𝜆 indicates higher loss aversion, and higher 𝜌 less curvature of the utility function, 

or in other words higher risk tolerance or less risk aversion. The inverse temperature 𝜏 represents 

choice consistency. (E) Posterior distributions of group mean differences were plotted with the 
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95% Highest Density Interval (HDI) indicated in red for 𝜆 (−0.25 –  0.15), 𝜌 (−0.27 –  0.01), and 

𝜏 (−1.2 –  1.6). Group differences are considered credible if the HDI does not contain zero. For 

risk tolerance (𝜌), 96.1% of posterior samples were below zero. (F) Posterior distributions of 

group mean differences are plotted with the 95% Highest Density Interval (HDI) indicated in red 

in for 𝜆 (−0.24 –  0.15), 𝜌 (−0.27 –  0.01), and 𝜏 (−1.3 –  1.53). 

 

 Figure 4.5. Estimated marginal effects of 

group on computational parameters 

from the Loss Aversion Task. The 

posterior means of choices parameters were 

used in generalized linear models (GLMs) 

to account for group differences in 

covariates. Estimated marginal effects of 

parameters on group are plotted. (A) When 

risk tolerance was measured explicitly and 

biological sex was included as a covariate, 

and analysis indicated that participants with 

Stimulant Use Disorder (SUD) were 

significantly less risk tolerant (p = 00.025). 

(B) However, when the full utility model 

was applied to data from the 50-50 gamble 

Loss Aversion Task without explicitly 

measuring risk tolerance, parameters were 

misestimated. With age, smoking status, 

participant’s mother’s years of education, 

and study as covariates, the analysis indicated that participants with SUD had higher risk tolerance 

(𝜌) (i.e., lower risk aversion) than did healthy control participants (p = 0.00082), but no differences 

in loss aversion (𝜆). The analysis also indicated a group difference in the inverse temperature 

parameter (p < 0.0001).  

 

4.2.3.3 Loss aversion, risk tolerance, and dopamine D2-type BPND in the striatum 

Loss aversion analysis. The interaction of group and dopamine D2-type BPND in the whole 

striatum on loss aversion (𝜆) did not reach significance [interaction: 𝛽 = −0.155, 𝑡(27) =

−1.97, 𝑝 = 0.060; simple effect of whole striatal BPND: 𝛽 = 0.17, 𝑡(27) = 3.11, 𝑝 =

0.0048]. MUD participants who were more loss averse had greater striatal BPND than those who 
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were less loss averse (Fig. 4.6A). In HC participants, however, loss aversion was not correlated 

with dopamine D2-type BPND. There were no main effects or interactions between BPND in the 

amygdala with group on loss aversion. 

Full utility model. In participants with MUD for whom the full utility model was fit, the 

positive association between 𝜆 and striatal receptor availability was trending (𝛽 = 0.016, 𝑡(15) =

1.78, 𝑝 = 0.096) (Fig. 4.6B). There was also a negative association between the risk tolerance 

parameter (𝜌) and striatal receptor availability (𝛽 = −0.014, 𝑡(14) = −2.95, 𝑝 = 0.012). There 

were no associations with BPND in the amygdala (Fig. 4.6C).  

 

 

Figure 4.6. Dopamine D2-type receptor availability, loss aversion, and risk tolerance on the 

Loss Aversion Task. (A) In 17 healthy control (HC) volunteers and 13 participants with 

Methamphetamine Use Disorder (MUD), loss aversion was differentially related to striatal 

dopamine D2-type receptor (D2/D3) binding potential (BPND) between groups. The interaction of 

group and striatal D2-type BPND was trending (p = 0.060), and the simple effect of BPND was 

significant (p = 0.0048). Analyses were performed using generalized linear models (GLMs) 

including the interaction of group and region. (B and C) In participants for whom the full utility 

model was fit, the positive association between loss aversion and striatal BPND was trending (p = 

0.096). The negative association between risk tolerance and BPND was significant (p = 0.012). 

Grey shading indicates standard error of the mean.  
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4.2.4 Discussion  

These findings demonstrated no difference in loss aversion between Stimulant Use 

Disorder (SUD) and healthy control groups, although the analysis without covariates indicated 

lower loss aversion in SUD participants. Results revealed a potential association between striatal 

dopamine D2-type receptor availability and loss aversion only in Methamphetamine Use Disorder 

(MUD), and a second analysis reinforced these findings. When full utility functions were fit to a 

subset of participants with MUD, analysis indicated that MUD participants had lower tolerance 

for risk than healthy controls, and that risk tolerance was negatively correlated with striatal D2-

type BPND. Taken together, these results suggest that avoiding loss may not be a motivating factor 

in MUD, but may be modulated by signaling through D2-type receptors only in MUD.  

 

4.2.4.1 Loss aversion and risk tolerance in SUD 

Lower tolerance for risk in MUD compared to HC participants is in line with findings from 

the BART, where participants with SUD took less risk (see Chapter 2). These results follow 

previous studies showing lower risk-taking in individuals with Methamphetamine Dependence and 

those who heavily use marijuana, alcohol, or cigarettes compared to control participants 86,87,263,265. 

Lower tolerance for risk could be related to greater distortion of outcome probability or sensitivity 

to rewards, both of which have been associated with administration of the D2-type receptor 

antagonist amisulpride to control participants 288. Real-world risky choices of individuals with 

SUD may thus not stem from an indiscriminate tolerance for risk. Such findings reinforce the 

importance of how risk is assessed and defined across studies 69,231,521.  

In the large sample who completed the LAT as assessed using logistic regression, the group 

difference in loss aversion did not reach statistical significance when covariates were included in 
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the model. However, the two-sample independent t-test indicated that SUD participants had lower 

loss aversion than healthy controls. Similar findings have been shown in alcohol dependence 502, 

cocaine dependence 509,511,512, and opiate dependence 505. On tasks that do not directly measure 

loss aversion but that assess sensitivity to loss, participants with addictions have shown attenuated 

processing in response to loss compared to controls 82,102,105,106,108,160. Reduced loss aversion may 

be related to a lower sensitivity to aversive outcomes 82,105,106,160, which may be reflected in the 

persistence of drug use despite negative consequences 23,195,500,501.  

Participants who were in residential treatment were less loss averse than those who were 

not in residential treatment. Previous research has demonstrated changes in preferences during 

inpatient treatment 113,332,522. Since rewards on the LAT are monetary, they may be associated with 

future drug use for participants who are not in treatment. Thus, participants not in treatment may 

be more cautious on the task and display higher loss aversion. When in residential treatment, 

however, the nature of what is valued presumably changes, and the money won on the task may 

be less valuable as it is no longer associated with potential drug use.  

Notably the LAT is not a measure of adaptive risk-taking. Aversions to risk and loss are 

presumably evolutionarily adaptive mechanisms 411-414,523, but extreme sensitivity to potential loss 

can impair decision-making during laboratory tasks 415,416 and real-world choices 417-419, as well as 

by those with psychiatric pathologies 420,421. Many tasks used clinically and in the laboratory to 

assess decision-making involve loss although it is not explicitly measured. Thus, understanding 

whether participants with SUD show differences in tolerance for loss may help clarify decision-

making deficits in the disorder. 
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4.2.4.2 Loss aversion, risk tolerance, and striatal dopamine D2-type availability 

The interaction between group and striatal D2-type receptor availability on loss aversion 

was trending in the large sample, and the simple effect of striatal BPND reached significance. In 

the sample of participants with MUD to whose data full utility functions were fit, the association 

between loss aversion and striatal dopamine BPND was trending for loss aversion and was 

significant for risk tolerance. The striatum has been implicated in loss aversion in healthy controls 

524; striatal activity tracked the magnitude of potential losses and was involved in a network 

displaying bidirectional responses to losses and gains, whereby striatal deactivations in response 

to loss, compared to activations in response to gain, biased choices towards loss aversion 

234,429,460,513,515,517. A natural question is whether D2-type receptors are related to the striatal 

response to loss.  

HC participants exhibited no relationship between striatal D2-type receptor availability and 

loss aversion. The lack of association supports previous findings of no change in loss aversion 

when control participants were administered the dopamine precursor levodopa 287,290 (see Sokol-

Hessner and Rutledge (524) for review). In the SUD group, however, the positive correlation 

between striatal D2-type BPND and loss aversion was trending. In the subsample to whose data 

the full model was fit, striatal D2-type BPND was negatively correlated with risk tolerance and the 

positive correlation with loss aversion was trending. Taken together, these findings are in line with 

previous research demonstrating an inverse relationship between D2-type receptor availability and 

the propensity to gamble 287-290. For instance, pharmacologically boosting dopamine with levodopa 

led to riskier choices 287, and similar findings were shown in rodents 293-295.  

SUD participants did not show a relationship between striatal dopamine D2-type BPND 

and decision-making on the BART. These results suggest that signaling through striatal D2-type 



 107 

 

 

receptors may play a role specific to loss aversion during decision-making in SUD and raises 

interesting possibilities. The dopamine system may assume control when chronic stimulant use 

affects function in circuitry involving neurotransmitters other than dopamine 227,525,526, or control 

over the dopaminergic system may malfunction, perhaps though hypofunction of the PFC 191,269. 

Corticostriatal signaling necessary for goal-directed behavior 282,283,342 may be disrupted in SUD 

12,269, impairing reward-seeking for losses.  

Neuroadaptations related to drug use 191,527 or preexisting individual differences 102,153,528-

531 may be related to a role for striatal D2-type receptor signaling in loss-related choices that is 

absent in nonaddicted individuals. Homeostatic adaptations to dysregulated dopamine tone could 

alter sensitivity of the dopaminergic system 338 and thereby risk-seeking 293,345. For instance, 

imbalances in striatal dopamine tone may alter the threshold for response 338, reducing the ability 

to devalue stimuli through negative feedback 293.  Lower D2-type BPND in SUD 12,22 and skewed 

dopamine tone 532,533 may shift risk-taking behaviors, especially in situations with potential loss 

293. Striatal D2-type receptors also may assume a role in loss sensitivity in situations of dopamine 

perturbation 534,535. Indeed, as opposed to boosting dopamine nonselectively with levodopa, 

administering dopamine D2-type agonists caused changes in the subjective value of losses in HC 

participants 536 and reduced prediction errors for losses in patients with Parkinson’s disease 534,535.  

 

4.2.4.3 Estimation of risk tolerance and loss aversion 

Estimating the parameters of loss aversion (𝜆) and risk tolerance (𝜌) without trials that 

isolated risk resulted in inaccurate parameter estimates. This is because 𝜌 is a measure of the 

curvature of the utility function, from which risk attitudes naturally arise through diminishing 

sensitivity to marginal changes in value. Higher values indicate less curvature and therefore less 



 108 

 

 

risk aversion in the domain of gains. But if the LAT contains no trials that present risk without 

potential for loss, 𝜌 cannot be measured accurately (see Section 2.2.2) 537, as was exhibited by 

parameter estimates that suggested higher instead of lower risk tolerance of participants with SUD.  

This misestimation was further confirmed when the data from participants whose risk 

tolerance was explicitly measured were reanalyzed without separate risk-only trials. Results 

indicated that the SUD group had greater aversion to loss but not to risk than the HC group. On 

the surface, greater risk-taking when there is a potential for loss can reflect either lower loss 

aversion or greater risk tolerance. Thus, attempting to estimate full utility functions using only the 

50-50 mixed gamble task (the LAT) resulted in confounded parameters of risk and loss aversion.  

 

4.2.4.4 Concluding remarks and limitations 

 This study showed lower tolerance for risk and either no difference or potentially lower 

loss aversion in individuals with SUD compared to control participants. There also were 

associations between choice behavior and striatal dopamine D2-type receptor availability only in 

SUD participants. We suggest that signaling at striatal dopamine D2-type receptors is involved in 

risky decisions that involve loss, and that neuroadaptations arising from substance use or 

preexisting differences in the balance of D1 and D2-type receptors establish a role for dopamine 

in loss-related choices not observed in healthy control groups. It is also clear that risk and loss 

should be isolated on the LAT to provide accurate measures of loss aversion and risk tolerance.  

The main limitation of the current analysis was that most participants did not perform trials 

designed to isolate their preferences towards risk; therefore, the full utility model could not be fit 

to most of the data. However, we were able to show misestimation using the full model when not 

accounting for risk tolerance. There were also cohort effects based on study, but the variable of 
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study was controlled for in all statistical analyses, and the difference in risk and loss aversion 

between participants who were in treatment and those who were not suggested that loss aversion 

may change with inpatient treatment.  
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CHAPTER FIVE 

Risk, Ambiguity, and Delay 
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“We sail within a vast sphere, ever drifting in uncertainty, driven from end to end.” 

– Blaise Pascal (1623-62), French mathematician, physicist, inventor, philosopher, and  

theologian 

“Uncertainty! Fell demon of our fears! The human soul that can support despair, supports 

not thee.” 

– David Mallet (1705-1765), Scottish poet and playwright  

“Neurosis is the inability to tolerate ambiguity.”  

– Sigmund Freud (1856-1939), Austrian neurologist 

“The quest for certainty blocks the search for meaning. Uncertainty is the very condition to  

impel man to unfold his powers.”  

– Erich Fromm (1900-1980), German psychologist, sociologist, philosopher 

“We demand rigidly defined areas of doubt and uncertainty!” 

 – Majikthise and Vroomfondel, A Hitchiker’s Guide to the Galaxy  

“Johnny’s always runnin’ around, tryin’ to find certainty.”  

– Robert Palmer (1949-2003), English musician and producer  

 

5.1 Introduction 

Humans dislike uncertainty—a fact echoed for centuries by scientists, philosophers, and 

theologians. Since most decisions encountered in everyday life present incomplete information 

about the probabilities of possible outcomes, such ambiguity is an important but often overlooked 

factor in decision-making 70,538. People tend to be particularly averse to ambiguity—which can be 

compared with pure risk, when the probabilities of possible outcomes are known 539—and this 

aversion can lead to disadvantageous choices 70,71,540. Ambiguity aversion has not been assessed 
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in individuals with Stimulant Use Disorder (SUD), but individuals who heavily use marijuana 

were more ambiguity averse than healthy controls 113, and a related measure of intolerance for 

uncertainty was linked to a variety of substance abuse disorders 541-544. Decision-making under 

ambiguity is associated with functional activation in corticolimbic and frontostriatal circuitry 

4,110,111,545 that is particularly impaired in addictions 12,22,533. Yet ambiguity aversion is understudied 

with respect to addiction, and its neural circuitry has not been studied at all in individuals with 

SUD.  

 

5.1.1 Ambiguity aversion and addiction 

Since ambiguity aversion and drug use are motivated by similar factors, including the 

desire to avoid and/or alleviate stress and negative affect 546-549, ambiguity aversion may confer 

vulnerability to and contribute to the maintenance of drug use 550. The familiar and relatively 

unambiguous rewarding outcome produced by continued drug use also may be preferable to the 

pursuit of other, less certain, rewards, especially considering neuroadaptations that occur in 

addiction 527,551, including decreased responses to non-drug rewards and exaggerated responses to 

stressors 191,269,552. In support of this theory, alcohol reduced the stress response to uncertainty 553 

and ambiguity aversion was associated with drug use in participants with Opioid Use Disorder 554 

and those who heavily uses marijuana 113, as well as addiction severity 331 and inpatient drug abuse 

treatment outcome 332,333. Intolerance of uncertainty also was a motivating factor for alcohol use 

542,543.  

In individuals with substance abuse disorders, brain activity during decision-making under 

uncertainty (i.e., risk and ambiguity) has shown differences in the striatum, amygdala, and 

prefrontal regions 78,79,82,86,101-106,109,555. Ambiguity aversion can be assessed formally using 
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economic choice tasks that compare risk-taking under ambiguous and unambiguous conditions 

(i.e., ambiguity vs. pure risk). There has been recent interest in isolating attitudes toward risk and 

ambiguity in individuals with substance use disorders 113,554,556,557, but few studies have been paired 

with neuroimaging. In individuals with opioid use disorder, activity in the striatum and vmPFC 

encoded the value of ambiguous choices and correlated with striatum-vmPFC connectivity at rest 

522. Decision-making under uncertainty also has been related to striatal dopamine release 334, 

polymorphisms in dopamine receptor genes 558, and striatal D2-type receptor availability 90.  

 

5.1.2 Risk, ambiguity, and delay discounting  

Choosing between immediate or delayed reward is common in everyday decisions—

deciding between eating a tasty desert now or a healthy meal for long-term health, or smoking a 

cigarette that provides immediate relief but long-term negative health consequences. People 

naturally prefer options that reap sooner rewards compared to those available in the future, and the 

value of the future reward is discounted as a function of its delay. Such delay discounting is not 

pathological, but when the present vastly outweighs the future in determining value, choices can 

become maladaptive 559.  

Intertemporal choices can be measured using a delay discounting task (DDT), in which 

participants make a series of choices between smaller, more immediate rewards and larger, more 

delayed rewards 236. Delay discounting is exaggerated in various clinical groups, including those 

with substance use disorders 126,560, and high levels of delay discounting have been associated with 

predisposition to addiction and treatment outcome 561-566.  

However, delay discounting behavior can be altered by various factors, from the framing 

of options 144,189 and influence of peers 219 to working memory training 143 and orientation to the 
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future 144,145,567. Various considerations influence the calculation of value, and motivations and 

priorities likely differ between clinical groups 568. Still, delay discounting behavior is frequently 

taken as a measure of “impulsivity,” which is likely overlooking crucial factors and can lead to 

erroneous conclusions. 

A crucial component of decision-making during intertemporal choice is the uncertainty 

inherent to the delay, and this uncertainty affects choices 569. Neglecting to account for tolerance 

for uncertainty has led to inflated measures of discounting 135-139. The effect of risk on the value 

of delayed options can be understood when considering how value is modeled in such tasks. 

Briefly, most models of delay discounting assume that people consider each increment in reward 

amount to have equal value, represented by a linear utility function, in which utility reflects 

satisfaction obtained from a reward (i.e., money). However, empirical studies show that most 

people value such increments in reward proportionally less as the total amount increases: an 

increase from $1 to $10 provides greater satisfaction than an increase from $1,001 to $1,010 9. 

This effect of diminishing marginal utility can be described by a concave utility function. When 

discount functions are calculated assuming linear utility, the discounting due to delay can be 

confounded with the discounting due to change in utility (independent of the delay), and measures 

of discounting can become inflated 135-139. This issue is compounded when comparing groups that 

have different underlying risk preferences, such HC volunteers and those with SUD 22,570. 

However, the respective contributions of risk and delay to intertemporal choice have remained 

underexplored with respect to addiction.  
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5.1.3 The current study 

We evaluated ambiguity aversion in SUD and HC volunteers who performed the Choice 

under Risk and Ambiguity (CRA) task. Participants with SUD also received an fMRI scan to assess 

resting-state functional connectivity (RSFC) with seeds in the nucleus accumbens, caudate, and 

amygdala, as well as [18F]fallypride positron emission tomography (PET) to assess striatal 

dopamine D2-type BPND. Based on prior literature 86,113,546, we expected individuals with SUD to 

be more averse to ambiguity than HC participants. Due to the systematic impairment in 

corticolimbic and frontostriatal circuitry in SUD 12,22, we also hypothesized that ambiguity 

aversion would be associated negatively with frontostriatal and positively with corticolimbic 

circuitry, and that striatal dopamine D2-type BPND would be associated with aversion. 

To determine whether SUD and HC volunteers discounted delayed rewards at different 

rates when their attitudes towards risk were taken into account (i.e., by measuring the curvature of 

their utility function), we administered a DDT and hypothesized that group differences would be 

lessened when risk tolerance was taken into account. Since tolerance for risk, but not ambiguity, 

was incorporated into the DDT model estimation, we wanted to determine whether ambiguity 

aversion was correlated with discount factors and whether ambiguity aversion would be accounted 

for by including risk tolerance in the model.  

 

5.2 Methods 

5.2.1 Participants 

The CRA task and a DDT were performed by 40 SUD and 13 HC volunteers. All 

participants provided informed consent, as approved by the UCLA Institutional Review Board. 

They were fluent in English and in good physical and neurological health, as assessed by history 
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and physical examination. All psychiatric diagnoses were excluded, other than Cocaine Use 

Disorder or Methamphetamine Use Disorder in the SUD participants, and Tobacco Use Disorder, 

mild Alcohol Use Disorder, and mild Cannabis Use Disorder in both groups, determined by the 

Structured Clinical Interview for DSM-IV 306.  

SUD participants were recruited following ≥1 week of supervised abstinence in the 

residential substance use disorder program at the CLARE | Matrix Foundation. They had at least 

two weeks abstinence. Only in SUD participants received resting-state fMRI and [18F]fallypride 

PET. On all study days, participants provided a urine sample that was negative for cocaine, 

methamphetamine, benzodiazepines, opiates, and cannabinoids. Participants who smoked 

cigarettes were allowed to smoke until 15 min before testing to avoid effects of nicotine 

withdrawal. They were compensated with cash, gift cards, or vouchers. 

 

5.2.2 MRI data acquisition 

fMRI scans were collected from 35 volunteers with SUD. Images were acquired on a 3-

Tesla PRISMA (Siemens) MRI scanner with a 32-channel head coil receiver. Data from 10 

participants were excluded. Resting-state data were collected over 13 min. while participants had 

their eyes open and were viewing a black screen. The protocol consisted of the continuous 

acquisition of 750 Echo-planar Image (EPI) volumes over 10 minutes. A multi-band accelerated 

EPI pulse sequences (factor 8) was used to acquire 72 axial slices with a repetition time (TR) of 

800 ms with a 104x104 matrix. The resolution was 2x2x2 mm3, echo time (TE) 37 ms, and flip 

angle 52 degrees. The structural T1-weighted images were obtained using a Magnetization 

Prepared Rapid Gradient Echo (MPRAGE) sequence with parameters of isovoxel 0.8 mm3, FOV 

240 x 256 mm2, TE 2.24 ms, TR 2400 ms, flip angle 8 degrees, and 208 sagittal slices.  
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5.2.3 MRI data pre-processing 

All analyses were performed on Linux (CentOS release 6.10) using FSL 5.0.9, MATLAB 

8.6, R (version 3.6.0). FMRI processing included rigid body realignment to correct for head 

movements within each scanning run, skull removal, and non-linear registration to the Montreal 

Neurological Institute (MNI) template. Motion cleaning and noise reduction were performed by 

first removing variance associated with motion parameters by running a 24-parameter linear 

regression model that included six motion parameters (3 translational dimensions along X, Y and 

Z axes and 3 rotational dimensions: “pitch”, “roll” and “yaw”), the temporal derivatives of these 

parameters and the quadratic of all parameters 571. Next, a censoring procedure was used. Mean 

frame displacement (FD) and the variance of signal change from the average signal (DVARS) of 

the raw images were estimated. A null sampling distribution of DVARS was used to identify 

frames with excessive variance at p < 0.05 572; frames with FD exceeding 0.45 mm were also 

flagged. Those frames as well as the one located in time just prior (t-1) and two just after (t+1 and 

t+2) each were included in a censoring temporal mask for data interpolation: a least-squares 

spectral decomposition of the uncensored data was performed to reconstitute data of the censored 

timepoints see methods in 573. The uncensored data defined the frequency characteristics of signals 

that then replaced the censored data. This step aimed at minimizing the contamination of the signal 

from the censored frames during frequency filtering. The interpolated signal was then demeaned, 

detrended and filtered using an ideal bandpass filter (0.009 – 0.08 Hz). Following band-pass 

filtering, the interpolated timepoints were finally censored. Participants with more than 50% 

frames censored (i.e., those with less than 5 minutes of remaining resting state data) were excluded 

from the analysis. To reduce the contribution from non-neuronal noise in the data, the minimal 

number of principle components that explained at least 50% of the variance of mean signal 
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extracted from white matter and cerebrospinal fluid were evaluated and regressed out from the 

signal  aCompCor50, 574. Volumes were then spatially smoothed with a Gaussian filter using a 5-

mm FWHM kernel. Each voxel was normalized to a mean value of 100 (SD=1).  

 

5.2.4 Resting-state functional connectivity analysis 

To minimize bias, we used the statistically conservative approach of voxel-wise whole-

brain analyses rather than restricting to a priori-selected target regions or networks. Seeds were 

placed in the nucleus accumbens, caudate, and amygdala, as defined by FSL’s FIRST—a tool for 

automated segmentation of subcortical strucutures. The time series from each seed was extracted, 

and its first normalized eigen vector (mean = 100, SD = 1) used as a regressor in an ordinary least 

squares linear regression analysis on every voxel (OLS, FEAT). The parameter estimates of the 

model, corresponding to the Pearson’s correlation coefficient (since data were previously 

normalized), were z-transformed to improve data normality. The resulting z-transformed images 

were used in separate group models for risk tolerance and ambiguity aversion (using FLAME1 in 

FSL’s FEAT). To account for movement differences between sessions and participants the mean 

frame displacement value was included as a covariate in all models, in addition to age. Results 

were cluster-corrected for multiple comparisons using a voxel-height threshold of p < 0.001 (Z > 

3.1) and cluster threshold of p < 0.05 as recommended per 575.  

 

5.2.5 PET data acquisition and processing 

PET scanning was conducted using [18F]fallypride. Scans were acquired on a Siemens 

Biograph mCT and reconstructed data were combined into 16 images containing data averaged 

across 10 minutes and corrected for motion with FSL MCFLIRT, as described in Section 3.2.3. 
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Separate independent t-tests were used to check for group differences in dopamine D2-type BPND, 

as well as their relationship to demographic covariates when accounting for group.  

 

5.3 Results 

5.3.1 Participant characteristics and demographics 

Data from 4 SUD participants were excluded for data quality, leaving 36 SUD and 13 HC 

for statistical analysis (Table 5.1). The SUD group had slightly older participants than the HC 

group and more men than woman. When testing for associations between demographic variables 

and behavioral parameters, while controlling for group, age was the only significant demographic 

factor, where older individuals in both groups had higher risk aversion [𝛽 = −0.00464, 𝑡(43) =

−2.64, 𝑝 = 0.0115]. 

The DDT was performed by 13 HC and 28 SUD volunteers. When accounting for group, 

neither k nor k risk was associated with any demographic factors. Results were the same when the 

natural log transforms of both parameters were tested. Thus, only HDIs, as is recommended in 

Bayesian analysis 246, were used to assess differences between groups and no additional GLMs 

were performed.  
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Table 5.1. Demographics of participant who performed the Choice Under Risk and 

Ambiguity Task 

 

5.3.2 Group differences in risk tolerance and ambiguity aversion 

Posterior distributions of parameters and group mean differences for risk tolerance (𝛼), 

ambiguity aversion (𝛽), and inverse temperature (𝛾) are shown in Fig. 5.1A-C. For risk tolerance, 

96.75% of posterior samples were above zero, suggesting that HC participants have credible higher 

values for risk tolerance than MUD participants. For ambiguity aversion, however, 84.23% of 

posterior samples were above zero—a less credible difference (Fig. 5.1C). 

GLMs with age and biological sex as covariates did not reveal any group differences. 

However, a chi squared analysis revealed that MUD participants had more extreme values of 

ambiguity aversion (𝛽), but not risk tolerance (𝛼), when categorized as having low, medium, or 

Risk, Ambiguity, and Delay 

 

Table 5.1. Demographics of participant who performed the Choice Under Risk and 

Ambiguity Task 

 

Variable 
Healthy Controls 

(HC; n=13) 

Participants with 

Stimulant Use Disorder 

(SUD; n=36) 

Statistics 

Age, yearsa 34.94 (2.43) 42.91 (2.08) t(46) = -2.15, p = 0.037* 

Biological sex 

    female/male (n) 
7/6 6/27 c2(1) = 4.22, p = 0.040* 

IQ estimate 

    standard scorea 
94.54 (7.66) 103 (2.46) t(14.53) = -1.05, p > 0.05 

Mother’s Education, yearsa 14.75 (0.730) 13.53 (0.51) t(40) = 0.801, p > 0.05 

Race/Ethnicity (n)   H(5) = 7.60, p > 0.05 

    White 4 11  

    African American 6 10  

    Hispanic/Latinx 2 8  

    Asian/Pacific Islander 1 0  

    American Indian/Alaska  

    Native 
0 3  

    Other 0 2  

Days of substance use in 

the previous 30 days 
   

    Alcohol  3.64 (1.14) 2.97 ( 0.88) t(39) =  0.416, p > 0.05 

    Marijuana 5.75 (2.10) 3.00 (0.91) t(31) = 1.07, p > 0.05 

    Tobacco 19.30 (5.40) 22.38 (1.96) t(37) = -0.635, p > 0.05 

        No. who smoked 5 25 c2(1) = 4.11, p = 0.043 

    Methamphetamine   19.64 (1.96)  
aValues are means (SE) 

IQ estimate = Weschler Test of Adult Reading 
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high values of aversion [𝜒2(2) = 7.042, 𝑝 = 0.0296]. As shown in Table 5.2, a greater 

proportion of MUD participants had very low and high levels of ambiguity aversion.  

 

Figure 5.1. Posterior distributions 

of risk and ambiguity aversion. (A 

and B) Parameters were estimated 

using hierarchical Bayesian analysis 

separately for 12 HC (a, yellow) and 

35 SUD (b, red) volunteers. The 

posterior distributions (i.e., group 

parameter estimates) of each 

parameter are plotted. Higher values 

of 𝛼 indicate higher tolerance for risk 

(i.e., lower risk aversion) and higher 

values of 𝛽 indicate higher ambiguity 

aversion (i.e., lower tolerance for 

ambiguity). The inverse temperature 

(𝛾) represents choice consistency. (C) 

The posterior distributions of group 

mean differences are plotted, with the 

95% HDI of 𝛼 (-0.22 - 0.0053), 𝛽 (-

0.30 - 0.11), and 𝛾 (0.62 - 1.37) 

indicated in red. Group differences 

are considered credible if the HDI 

does not contain zero. For 𝛼, 96.75% 

of posterior samples were above zero, 

suggesting higher risk tolerance in the 

HC group. For 𝛽, 84.23% of posterior 

samples were above zero—a less 

credible group difference. HDI = 

Highest Density Interval; SUD = 

Substance Use Disorder; HC = 

healthy control. 
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Table 5.2. Contingency tables showing participants with low, medium, and high aversion 

from the Choice Under Risk and Ambiguity Task 

 

5.3.3 Group differences in delay discounting 

DDT model fit was assessed using Leave-One-Out Information Criterion (LOOIC) and 

Widely Applicable Information Criterion (WAIC) 576. Surprisingly, values were lower for the 

models that did not include a separate measure of risk tolerance (Table 5.3). 

Posterior distributions of the discount factor with (k risk) and without (k) risk tolerance in 

the model and of the group mean differences are shown in Fig 5.2A-D. When risk tolerance was 

not included in the model, 95.48% of posterior samples were above zero [95% HDI of group 

difference: (−0.0071 − 0.0906)], suggesting a credible group difference in discount factors (Fig. 

5.2E). However, the group difference was eliminated by including risk tolerance in the estimation 

process, where only 49.06% of posterior samples were above zero [95% HDI of group difference: 

(−0.0317 − 0.0326)] (Fig. 5.2F).   

 

 

Table 5.3. Delay discounting task model fit.  
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Figure 5.2. Posterior distributions of discount rates with linear utility (no risk tolerance) and 

with nonlinear utility (without risk tolerance). (A-D) Parameters were estimated using 

hierarchical Bayesian analysis separately for 13 HC (a, yellow) and 27 SUD (b, red) volunteers. 

One model assumed linear utility (k) and the other used a separate measure of utility curvature 

from the Choice under Risk and Ambiguity Task (k risk). The posterior distributions (i.e., group 

parameter estimates) of each parameter are plotted. Higher values indicate higher discount factors 

and more discounting of delayed rewards. (E-F) The posterior distribution of group mean 

differences was plotted with the 95% HDI indicated in red. Group differences are considered 

credible if the HDI does not contain zero. (E) When risk tolerance was not included in the model, 

95.48% of posterior samples were above zero, suggesting higher discounting in the SUD vs. HC 

group (HDI: -0.0071-0.0906). (F) However, when risk tolerance was included in the model, the 

group difference was eliminated (HDI: -0.0317-0.0326). HDI = Highest Density Interval; SUD = 

Substance Use Disorder; HC = healthy control. 
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5.3.4 Association between ambiguity aversion and discount factor 

Since discount rates were negatively skewed, a natural log transform was used for analysis. 

Variables that differed by group and/or were associated with behavioral parameters were included 

in the GLM (age, biological sex, years of education of the participant’s mother, and smoking 

status). Ambiguity aversion (𝛽) was positively correlated with the natural log of k [𝛽 =

3.56, 𝑡(20) = 2.27, 𝑝 = 0.034] but not with the natural log of k risk [𝛽 = −0.0884, 𝑡(20) =

−0.322, 𝑝 = 0.751] (Fig. 5.3). The relationship between risk tolerance (𝛼) and the natural log of 

k was trending [𝛽 = −4.22, 𝑡(20) = −1.79, 𝑝 = 0.089]. 

 

Figure 5.3. Estimated marginal effects of 

ambiguity aversion on discount factor. The 

posterior means of ambiguity aversion and 

discount factors were used in generalized linear 

models (GLMs) to account for covariates of age, 

biological sex, smoking status, and years of 

education of the participant’s mother. The log 

transform of discount factors were used. 

Estimated marginal effects are plotted. 

Ambiguity aversion was correlated with the 

natural log of k (p = 0.034), but not with the 

natural log of k risk (p = 0.751). Thus, 

accounting for utility curvature eliminated the 

association.  

 

 

5.3.5 Ambiguity aversion and drug use 

A GLM with age in the model revealed that the average days per week that participants 

used their drug of choice (methamphetamine or cocaine) was positively correlated with ambiguity 

aversion [𝛽 = 0.0080, 𝑡(28) = 3.27, 𝑝 = 0.00284], but not with risk tolerance (Fig 5.4). No 
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associations were found between k or k risk and measures of drug use. Results were unchanged 

when the log transform of parameters were used.  

 

Fig. 5.4 Ambiguity aversion and grams of 

stimulants used per week. The posterior mean of 

ambiguity aversion was used in a generalized linear 

model (GLM) with the covariate of age to test for 

association with grams of stimulant 

(methamphetamine or cocaine) used per week. There 

was a significantly positive correlation between 

grams of stimulant use per week and ambiguity 

aversion (p = 0.0028), but not risk aversion. 

 

 

5.3.6 Corticolimbic and frontostriatal connectivity and ambiguity aversion 

Ambiguity aversion was correlated positively with RSFC of the right amygdala with the 

paracingulate/medial frontal cortex (peak MNI coordinates: x=0 y=54, z=-6) and the lateral 

occipital cortex (peak MNI coordinates: x=-38 y=-70, z=26) (Fig. 5.5A-B); and the left amygdala 

with the insula (peak MNI coordinates: x=-40, y=-24, z=22), precuneus (peak MNI coordinates: 

x=4, y=-70, z=26), superior parietal cortex (peak MNI coordinates: x=32, y=-48, z=72), and 

postcentral gyrus (peak MNI coordinates: x=-64, y=-24, z=44) (Fig. 5.5C-D). Ambiguity aversion 

was correlated negatively with RSFC of the right nucleus accumbens with the super frontal 

gyrus/frontal pole (peak MNI coordinates: x=22, y=54, z=16) (Fig. 5.5E) and the left caudate with 

the medial frontal gyrus/frontal pole (peak MNI coordinates: x=-2, y=58, z=30) (Fig. 5.5F). No 

associations were found with the risk aversion parameter (𝛼). 
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Fig. 5.5 Ambiguity aversion and cortico-amygdalar and frontostriatal resting-state 

functional connectivity. In 25 participants with Stimulant Use Disorder (SUD), ambiguity 

aversion was associated differentially with cortico-amygdala and frontostriatal resting-state 

functional connectivity (RSFC). (A and B) Ambiguity aversion was correlated positively with 

RSFC of the right amygdala (pink) with the (A) paracingulate/medial frontal cortex (x=0 y=54, 

z=-6) and (B) lateral occipital cortex (x=-38 y=-70, z=26). (C and D) Ambiguity aversion also 

was correlated positively with RSFC of the left amygdala (red) with the insula (c) (x=-40, y=-24, 

z=22) and precuneus (D) (x=4, y=-70, z=26). (E and F) Ambiguity aversion was correlated 

negatively with RSFC of the right nucleus accumbens (E, blue) with the superior frontal gyrus 

frontal pole (x=22, y=54, z=16) and left caudate (F, green) with the medial frontal gyrus/frontal 

pole (x=-2, y=58, z=30). Age and mean frame displacement were included as covariates and results 

were cluster-corrected using a voxel-height threshold of p < 0.001 (Z > 3.1) and cluster threshold 

of p < 0.05. 

 

5.3.7 Dopamine D2-type binding potential and ambiguity aversion, risk tolerance, and 

discount factors 

There was no association between dopamine D2-type BPND and risk tolerance, ambiguity 

aversion, or discount factors in striatal or amygdala regions.  
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5.4 Discussion 

These findings demonstrated that ambiguity aversion was associated positively with cortico-

amygdalar RSFC, but negatively with frontostriatal RSFC. Ambiguity aversion—but not risk 

tolerance or discount factor—was positively correlated with grams of stimulant 

(methamphetamine or cocaine) used per week. While initial findings indicate that ambiguity 

aversion may not be higher in individuals with SUD, the small sample size necessitates caution in 

the interpretation of results that may be driven by the extreme choices of SUD participants, who 

were shown by a chi squared analysis to have more extreme choices than HC participants. These 

results suggest that dynamic changes in ambiguity aversion may be an important factor in addiction 

that is modulated by frontostriatal and cortico-amygdalar RSFC. 

Differences in delay discounting between HC and SUD volunteers, as well as the association 

between discount factors and ambiguity aversion, were eliminated when taking into account utility 

curvature, adding to the body of work demonstrating inflated measures of delay discounting when 

not accounting for risk tolerance (i.e., utility curvature) 135-139.  These findings suggest that group 

differences in delay discounting reflect more than “impulsivity” in the sense of preferring 

immediate gratification, as has been suggested 126, and instead are—in the very least partly—

related to attitudes towards uncertainty. 

In individuals with SUD, frontostriatal connectivity—specifically between the left caudate 

and the medial frontal cortex, and the right nucleus accumbens and a frontal area somewhat less 

medial—was correlated negatively with aversion to ambiguity. The role of frontostriatal circuitry 

is valuation is well-documented 2,24,111,577,578, and during choices that involve both risk and 

ambiguity, the striatum and areas of the PFC—most robustly the vmPFC/OFC—were implicated 

in the coding of subjective value 24,111. While activity related to risk and ambiguity have not been 
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compared in SUD during fMRI, activity in the striatum and vmPFC of participants who use heroin 

encoded the value of ambiguous choices and correlated with striatum-vmPFC connectivity at rest 

522.  

While ambiguity aversion was correlated negatively with RSFC of frontostriatal regions, it 

was correlated positively with RSFC of the amygdala. Certain studies in HC volunteers 

demonstrated preferential activity in the amygdala for ambiguous versus risky choices 110,545, 

although others did not 4,111,579,580. The amygdala has long been associated with emotional inputs 

into decision-making 6 and connectivity may be related to the negative emotions associated with 

ambiguity, which tends to be perceived as uncomfortable or aversive 71,547,549,581,582. Such 

influences may be especially pertinent in SUD, as differences in amygdala connectivity have been 

found between HC and individuals with substance use disorders 583, who also have shown 

hyperfunction of the amygdala 47,584.  

Specifically, RSFC of the left amygdala with the insula and precuneus, and the right amygdala 

with the paracingulate/medial frontal cortex, was stronger in individuals with higher ambiguity 

aversion. Connectivity of the amygdala with these regions may be involved in the visceral, 

emotional responses to ambiguity 110,545,582,585,586, thereby influencing frontostriatal value 

computation 460,587-589. In HC volunteers, fronto-amygdalar and precuneus-amygdalar connectivity 

were related to self-reported impulsivity 590 and directing attentional awareness away from 

arousing and unpleasant stimuli 591. In certain contexts in SUD, such functioning may be 

hyperactive and contribute to atypical decision-making 583,590,592,593. For instance, self-reported 

impulsivity and connectivity of the amygdala with the insula and inferior frontal gyrus were 

elevated in heroin-dependent participants, who also showed differing network activity between the 

amygdala and precuneus compared to controls 590. In participants with Cocaine Dependence, 
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reduced cortico-amygdala RSFC also was related to relapse within the first 30 days after treatment 

592, suggesting a crucial role for such circuitry in drug-seeking behaviors. 

While SUD participants did not have systematically higher ambiguity aversion than HC 

participants, we did demonstrate that those with SUD had more extreme levels of aversion on both 

ends of the spectrum. Since ambiguity aversion was correlated with grams of stimulant used per 

week, individual differences in ambiguity aversion—as opposed to global increases or decreases 

when compared to HC groups—may be a motivating factor in drug use. This may explain results 

of a recent longitudinal study that also found no significant difference between individuals with 

Opioid Use Disorder and HC volunteers, although they demonstrated that reductions in ambiguity 

aversion during the course of treatment preceded relapse 554. Drug use at the time of testing may 

account for such differences, as short-term abstinence has been shown to increase ambiguity 

aversion 113, which may be decreased by recent drug use. Participants in the study were also in an 

outpatient treatment program, where drug use would be considered a negative outcome. For those 

not seeking treatment, drug use would presumably be a positive outcome. A recent study also 

found that opioid maintenance treatment was associated with better decision-making in an 

ambiguous context 594. 

Since the positive correlation between ambiguity aversion and delay discounting disappeared 

when accounting for utility curvature, there may be overlap between risk and ambiguity aversion 

in terms of the delay. That group differences in delay discounting and its association with 

ambiguity aversion disappeared when risk tolerance was included in the model suggests that 

aversion to ambiguity may partly underlie the preference for sooner rewards demonstrated in 

addictions. Thus, exaggerated discounting considered characteristic of addiction 126 may be 

motivated at least in part by wanting to avoid a state of uncertainty 546, and not only the desire for 
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immediate gratification. Although speculative, it may be that the certainty of continuing to take a 

substance––whether positive or negative––is preferred to the relatively unfamiliar and less 

controllable option of abstaining, or searching for another source of reward. In this regard, 

ambiguity aversion has been associated with drug use aside from stimulants, including marijuana 

113 and opiates 554.  

In support of this theory, the related construct of intolerance for uncertainty was a motivating 

factor in alcohol misuse 542,543 and was higher in opiate-dependent participants than in control 

participants 541,544. Although not the same as ambiguity aversion, which refers to the preference 

for known over unknown risk, intolerance for uncertainty involves the aversive feelings associated 

with uncertainty, but we can assume some overlap (although see Tanaka, Fujino, Ideno, Okubo, 

Takemura, Miyata, Kawada, Fujimoto, Kubota and Sasamoto (595)). Since uncertain situations 

are more likely to be perceived as threatening and aversive 547,549,581, and because stress and 

negative affect can provoke drug use and relapse 596,597, the stress of ambiguous situations may 

contribute to the vulnerability and maintenance of drug use. In opiate-dependent participants, 

intolerance for uncertainty was also positively related to conditioned place preference, which 

describes the preference for contexts that were previously paired with reward 544. Thus, individuals 

with higher ambiguity aversion may be more susceptible to cues associated with the context of 

drug taking, which can cause drug use and relapse 598,599.  

That we found no association between dopamine D2-type BPND and either ambiguity 

aversion, risk tolerance, or discount factors was somewhat surprising considering previous studies 

of delay discounting in stimulant-dependent groups 132 and decision-making under uncertainty 

90,334,558. Our lack of a correlation suggests that—at least at the level of dopamine D2-type 

receptors—dopamine signaling may be associated with behavior on tasks that more generally 
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assess decision-making under uncertainty and involve a variety of cognitive processes aside from 

ambiguity alone 69,90,334. However, without a control sample, there is a possibility that the 

relationship between dopamine and ambiguity aversion is dysregulated in SUD and thus shows no 

association where one may exist in HC participants 545,558.  

The main limitation of this study was the relatively small sample size and the lack of a 

comparison group for brain imaging. However, the robust correlation between ambiguity aversion 

and drug use, as well as the association of ambiguity aversion with cortico-amygdala and 

frontostriatal RSFC and to delay discounting behavior, present ambiguity aversion as a significant 

factor in SUD that merits further investigation. More accurate models for characterizing the 

behavior of individuals with substance use disorders can generate more precise results and provide 

a stronger foundation for therapeutic strategies that target decision-making in this population, 

including refining the measurement of delay discounting and its feasibility as a phenotype for 

addictions 600. Understanding risk and delay is also understudied in neuroscience 601 and has never 

been assessed and related to markers of neural function in individuals with SUD.   
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CHAPTER SIX 

Conclusions, Future Directions, and Implications 
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6.1 Overview 

Individuals with addictive disorders engage in risky behaviors. Often taken as a reflection of 

“impulsivity,” risky decision-making reflects various distinct and overlapping cognitive processes, 

most of which have evolutionary value and are not maladaptive per se. If one or many of these 

subprocesses takes on abnormal dominance, behavior can become disadvantageous or suboptimal. 

To design effective interventions for promoting recovery and relapse prevention, it is important to 

clarify which components of decision-making are dysregulated and thus would represent logical 

therapeutic targets.  

The goals of this research were to investigate decision-making under uncertainty in individuals 

with Stimulant use Disorder (SUD). The behavior and neural function of SUD and healthy control 

(HC) participants were compared on four decision-making tasks paired with brain imaging. 

Participants performed the Balloon Analogue Risk Task (BART), a naturalistic decision-making 

task, and three economic choice tasks to isolate components of choice: the Loss Aversion Task 

(LAT), the Choice under Risk and Ambiguity (CRA) task to compare aversion to risk (known 

probabilities) and ambiguity (unknown probabilities), and a delay discounting task (DDT) to 

determine the contribution of risk and ambiguity to intertemporal choice. Different subsets of 

participants also received functional magnetic resonance imaging (fMRI) during the BART and at 

rest, as well as positron emission tomography (PET) for estimation of dopamine D2-type (D2 and 

D3) receptor binding potential (BPND).  

Taken together, our findings suggest an impairment in value computation related to the 

estimation of uncertainty in SUD (Fig. 6.1). During the BART, reductions in behavioral updating 

and risk-taking, which were related to activations in the anterior insula and dorsolateral prefrontal 

cortex (DLPFC) and dysregulation in striatal, midbrain, and cortical dopamine D2-type receptors, 
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may reflect impairments in estimating ambiguous risk on the BART (Chapter 3). When isolating 

components of decision-making that influence subjective value, we found no disruption in 

sensitivity to loss (Chapter 4), but strong associations between ambiguity aversion and drug use 

(Chapter 5). The findings also pointed towards ambiguity aversion, associated with by cortico-

amygdala and frontostriatal circuitry, underlying the exaggerated preference for immediacy found 

during delay discounting tasks (perhaps "impulsivity") (Chapter 5). Thus, value computation may 

be distorted in individuals with SUD due to a sensitivity to and difficulty in estimating ambiguous 

risk, perhaps in response to exaggerated arousal or affectual responses to the stress or negative 

affect provoked by uncertainty. 
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Fig. 6.1 Dynamic changes in tolerance for ambiguity may motivate drug use in Stimulant Use 

Disorder. 
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6.2 Risk-Taking and Dopamine D2-type Receptor Availability 

One important finding was that individuals with SUD took less—not more—risk than HC 

participants on both an adaptive risk-taking task (the BART, Fig. 3.2 and Fig. 3.3) and an 

economic choice task (the CRA task, Fig. 5.1). Previous studies showed that individuals with 

Methamphetamine Dependence and those who heavily used marijuana, were problem drinkers, or 

smoked cigarettes took less risk under uncertain conditions 86,87,263,265. These studies and the 

current findings demonstrate the importance of how risk is assessed and defined 69,231,521. They 

also suggest that real-world maladaptive behaviors of individuals with substance use disorders 

may not stem from a blanket tolerance for risk. 

While the CRA task does not assess adaptive risk, risk-taking on the BART is advantageous. 

In addition to lower risk-taking on the BART, SUD participants also showed marked impairments 

in behavioral updating. Their lower risk-taking may reflect an inability to update outcome 

contingencies and accurately assess ambiguous risk on the task. Optimal behavior on the BART 

requires learning, and—similar to the Iowa Gambling Task—the BART likely engages choice 

processes related to both risk and ambiguity 75: ambiguity on early trials when little information 

about the probability of the balloon bursting has been presented, and risk as the participant learns 

through feedback. SUD participants may thus have not been as efficient in estimating outcome 

probabilities as were control participants 112. 

Different subsets of participants who received PET scans performed the BART and LAT, 

which provided measures of risk-taking and economic risk tolerance (i.e., utility curvature), 

respectively. Risk parameters were negatively correlated with dopamine D2-type BPND in the 

striatum and midbrain of healthy control participants who performed the BART (Fig. 3.5A-D) and 

with striatal dopamine D2-type BPND in SUD participants who performed the LAT( Fig. 4.6C). 
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Thus, both naturalistic and economic risk tolerance were negatively related to dopamine D2-type 

receptor availability in the striatum and midbrain, following previous research 287-290,292-295. 

However, associations were found only in healthy control participants on the BART, whereas they 

were found in SUD participants who performed the LAT (since control participants who performed 

the LAT did not receive PET scans, it remains unknown whether an association would exist). 

Paired with the findings of impairments in risk-taking and behavioral updating on the BART, that 

SUD participants did not show an association between risk-taking on the BART and D2-type 

BPND suggests that dysregulated signaling through D2-type receptors contributes to maladaptive 

decision-making under uncertainty in SUD.   

 

6.3 Behavioral Updating, Cortical Activity, and D2-type Receptor Availability 

A striking finding was the marked impairment in updating rate of SUD participants performing 

the BART (Fig. 3.2 and Fig. 3.3). That the model was able to quantify this decision-making deficit 

demonstrates the advantages of using computational models to parameterize behavior on complex 

tasks such as the BART. Since updating behavior requires learning and flexibility, diminished 

behavioral updating also connects maladaptive risk-taking on the BART to deficits exhibited by 

participants with SUD in other cognitive functions 45,270-273.  

Updating rate was associated with parametric modulation of activation by risk in the anterior 

insula only in SUD participants (Fig. 3.4). Activity in the anterior insula is related to the integration 

of arousal and negative or aversive outcomes into decision-making 1,6,25,278,602, as well as to the 

estimation and prediction of risk 35,99,277-279. Insula activation has also been related specifically to 

ambiguity 4 and tolerance for uncertainty 603. Heightened or malfunctioning insular signaling 

related to arousal or the affective components of choice may compromise value computation and 
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thus adaptive risk-taking on the BART by biasing behavior away from pumping (and thus the risk 

of loss) and towards cashing out.  

Further support for this theory comes from the finding that D2-type BPND in the insula was 

nonlinearly related to updating rate on in control participants (Fig. 3.5E-F), which may reflect 

dysregulations in how D2-type signaling influences behavioral updating. A similar U-shaped 

function was shown in a meta-analysis between a hypothesized fMRI signal in the insula and 

subjective value, where increases and decreases in insula activity are hypothesized to track 

subjective value 25.  

In the present study, D2-type BPND in the medial orbitofrontal cortex (OFC)—an area also 

involved in integrating affect and arousal into choice 604— was related to updating rate only in 

control participants (Fig. 3.5E-F). Resting-state functional connectivity (RSFC) of the amygdala 

with the insula and medial PFC, among other regions, was associated positively with ambiguity 

aversion (Fig. 5.5A-B), which is hypothesized to relate to the negative feelings and arousal 

provoked by uncertainty 71,547,549,581,582. Thus, activity in the insula, medial PFC, and amygdala 

related to ambiguity may contribute to disadvantageous decision-making on the BART, and more 

generally to suboptimal choice selection under uncertainty. Our findings also extend prior work 

implicating the insula, medial OFC, and amygdala in integrating affect and arousal into the 

decision-making process. 

The nonlinear relationships between updating rate and dopamine D2-type BPND in the insula 

and medial OFC support decades of research demonstrating quadratic relationships between 

dopamine function and behavior 93,289,297,301-305,358,373,507,605,606. The present findings underscore the 

need to look beyond linear relationships 297, especially in a system as intricate and contradictory 

as the dopamine system—made more complex through neuroadaptations and homeostatic changes 
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produced by drug use 191,260,607. Taking into account individual differences in preexisting factors 

528-531, cognitive and personality traits 301,302,371,531, and environmental factors 235,608,609 can help 

refine the assessment of risk-taking in those with addictive disorders. 

 

6.4 Loss Aversion and Dopamine D2-type Receptor Availability 

While SUD participants exhibited higher sensitivity to risk and impaired behavioral updating 

in situations of uncertainty, they were either less sensitive to loss or showed no difference 

compared to healthy control participants (Fig. 4.3-4.5); the analysis indicated lower sensitivity to 

loss in SUD than control participants, but the group difference was eliminated when covariates 

were included in the model (Fig. 4.3). Future studies are needed to clarify differences in loss 

aversion in SUD, but that individuals with addictions persist in drug use despite negative 

consequences 23,195,500,501 suggests that loss may not be a motivating factor when considering 

mechanisms to encourage treatment and recovery. 

However, whereas no association was found in SUD between striatal dopamine D2-type BPND 

and risk-taking on the BART, when loss was isolated on the LAT, the association between loss 

aversion and striatal D2-type BPND was trending in SUD but not HC participants (Fig. 4.6). These 

findings suggest that signaling through striatal D2-type receptors takes on a novel role in SUD. 

Feedback to modulate decision-making includes loss-related signals, and their distortion could 

account for the impaired responses to negative outcomes observed in individuals who use drugs 

82,102,105,106,108,109,160. It would be beneficial to extend investigations of the neural response to loss 

and how it affects value computation, including to investigate the mechanisms by which loss-

related signaling is altered in SUD.  
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6.5 Ambiguity Aversion and Delay Discounting 

The behavior of SUD participants on the BART demonstrated impairments in decision-making 

under uncertainty. When ambiguity aversion was isolated on the CRA task, the SUD group showed 

more extreme values of ambiguity aversion (both higher and lower) (Table 5.2), which was 

strongly associated with the amount of stimulant (cocaine or methamphetamine) used in the 30 

days prior to testing (Fig. 5.4). Even more striking was that the group difference in delay 

discounting—often taken as a measure of “impulsivity”—disappeared when accounting for risk 

tolerance (Fig. 5.2). Participants with greater ambiguity aversion also discounted delayed rewards 

at a higher rate, but not when risk tolerance was taken into account (Fig. 5.3). Thus, tolerance for 

ambiguity, and not the desire for immediate gratification, may underlie exaggerated delay 

discounting in SUD. Preference for known over unknown risk and/or intolerance for uncertainty 

may thus be tractable therapeutic targets for improving decision-making in SUD.  

These results suggest that dynamic changes in ambiguity aversion, as opposed to global 

increases or decreases when compared to control groups, may be a motivating factor in drug use. 

In support of this theory, a recent longitudinal study of participants in an outpatient treatment 

program found that changes in tolerance for ambiguity but not for risk were predictive of opioid 

relapse within one to four weeks 554. Specifically, higher tolerance for ambiguity was predictive of 

drug use. These results may reflect a tendency to engage in riskier behaviors, such as venturing to 

locations with a closer proximity to drugs and alcohol, when tolerance for ambiguity was 

increased. If individuals with addictions have difficulty estimating ambiguous risk 112,260, then 

increases in tolerance for ambiguity paired with an underestimation of their chance of relapse when 

in risker situations may result in relapse. 
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However, while the value of drug use was presumably negative in the context of seeking 

treatment, drug use would likely be a positive outcome to individuals not in treatment. Thus, 

tolerance for ambiguity may motivate drug use by increasing the value of certain rewards (i.e., 

drug use) and decreasing the value of uncertain rewards (i.e., non-drug rewards). This mirrors 

findings of homeostatic alterations induced by chronic drug use in how the brain responds to drug 

and non-drug rewards: dopamine release in response to cues associated with drug use is increased, 

while non-drug rewards elicit less response 191,269. It follows that the certainty of continued drug 

use may be preferably to the pursuit of relatively less certain alternatives.  

In effect, drug use may render uncertain rewards (including non-drug rewards) less valuable, 

as was shown in an investigation of ambiguity aversion in individuals who reported heavy 

marijuana use (≥5 days per week, ≥twice per day, for ≥6 months) 113. Participants who were 

deprived of marijuana for 3 days prior to testing were less likely to choose uncertain rewards than 

were non-deprived participants, and the magnitude of the effect of deprivation on preference for 

the certain reward was higher in those who reported higher levels of marijuana use. These findings 

suggest a greater preference for more certain rewards when in a drug-deprived state. While in the 

laboratory without the option of a drug reward, this preference for certainty manifested as a higher 

preference for the more probable reward. In the real world, a preference for certainty may motivate 

drug use and be reflected in the association found in the here between ambiguity aversion and drug 

use prior to entering treatment. 

Day to day changes in the stress associated with ambiguous situations 546-549 also may influence 

drug use or relapse 550,610. For instance, when participants viewed a series of visual threat cues, 

their stress response (measured by startle response) to unpredictable but not predictable cues was 

reduced in intoxicated compared to non-intoxicated participants 553,611. The alcohol-induced 
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reduction in the stress response to uncertainty persisted during subsequent unpredictable cues and 

the magnitude of the reduction was moderated by negative affect and measures of alcohol use (e.g., 

binge drinking status and alcohol consumption) 553,611. Alcohol and other drugs may thus act as a 

mechanism to manage exaggerated responses to uncertainty, a theory supported by findings of 

increased responses to uncertainty during abstinence in those with alcohol use disorder 612 and 

marijuana dependence 113,613 and in those who smoke cigarettes 614. Since neuroadaptations that 

occur with chronic drug use include enhanced anxiety and negative affect in response to stressors 

527,551, and uncertain stressors are especially poignant 615,616, attitudes towards uncertainty may be 

particularly meaningful with regard to drug use and relapse and thus represent a tangible target for 

intervention. 

 

6.6 Treatment and Policy Implications 

With no FDA-approved medication for SUD and a sharp increase in overdose deaths linked to 

stimulant use 617,618, new treatments are critically needed. The studies presented in this dissertation 

demonstrated impairments in adaptive decision-making under uncertainty in SUD, as well as an 

association between ambiguity aversion and grams of stimulant (cocaine or methamphetamine) 

used per week. Since individuals with substance abuse disorder make maladaptive decisions in 

response to uncertainty, and ambiguity aversion may motivate drug use itself, increasing tolerance 

for uncertainty may help in curbing drug use and maintaining recovery, or perhaps even help to 

prevent initiation. 

On the other hand, that our results showed equal (or perhaps lower) levels of loss aversion in 

SUD compared to control participants suggests a lower sensitivity to negative consequences.  

Treatments or policies that emphasize negative consequences or aversive outcomes may thus be 
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ineffective in curbing substance abuse. In fact, punishing policies tend to exacerbate the very 

problems they are designed to treat; incarceration or engagement with the criminal justice system 

has little to no effect on curbing drug offenses and in many cases causes increases instead of 

deceases in recidivism 619-621.  

Compared to costs associated with traditional public safety (e.g., criminal behavior, 

incarceration) and public health (e.g., mental health treatment, emergency visits), most treatments 

are highly cost-effective, especially when paired with programs such as Alcoholics and Narcotics 

Anonymous that pose virtually no cost 622-625. Since treatment, including programs such as drug 

courts that pair supervision with mandatory treatment 626, has shown better outcomes 627,628, 

refining the objectives of treatments can continue to improve retention and recovery rates, which 

is especially important for those transitioning out of institutions 629. Improving tolerance for 

ambiguity is simple, changeable, portable, and cost-effective. Supplementing existing treatment 

programs with a focus on tolerance for ambiguity thus may be an efficient and effective way to 

improve the choices of individuals with substance abuse disorders.  

Psychological interventions designed to reduce ambiguity aversion have already been used 

effectively for individuals with Generalized Anxiety Disorder 630-632, multiple sclerosis 633, and 

autism 634. A computerized Cognitive Bias Intervention 635 and transcranial direct current 

stimulation 636 also showed promise in reducing ambiguity aversion. Since mindfulness techniques 

have shown success in the treatment of addiction 637,638 as well as in dealing with uncertainty 639,640, 

they may be effective in increasing tolerance for ambiguity in those with addictions.  

In fact, certain studies that examined the influence of mindfulness interventions on psychiatric 

disorders found associations with tolerance for uncertainty. For instance, mindfulness and 

intolerance for uncertainty predicted anxiety and depression in female college students, and 
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mindfulness partially mediated the relationship between intolerance for uncertainty and anxiety 

and depression 641. In a different group of students, intolerance for uncertainty mediated the 

relationship between anxiety and mindfulness 642. Mindfulness techniques may improve the ability 

to cope with aversive feelings or negative affect that provoke cravings and drug use 637,643, such as 

those elicited by uncertainty. Conditions such as depression and anxiety are highly comorbid with 

addiction 644,645 and can act as impediments to recovery 646,647, as can stress 610,648. That addressing 

tolerance for uncertainty may help alleviate symptoms of anxiety and depression suggest that it 

also may improve substance abuse treatment retention and recovery rates. 

More generally, treating addiction not as a physical or moral failing that needs to be punished, 

but as a brain disorder 649 shaped by neurobiological, psychosocial, and socioeconomic factors can 

not only improve the lives of those suffering from addictions and the people around them, but can 

also save the state costs associated with public safety and health. Supplementing existing 

treatments with a focus on improving tolerance for uncertainty may help improve decision-making 

by those with addictions, as well as helping to deal with factors like stress and anxiety that can 

trigger relapse in the long-term. 

 

6.7 Limitations 

Limitations of the studies presented in this dissertation include the relatively small sizes of 

certain analyses, the inability to isolate loss in the main loss aversion sample, and the lack of a 

comparison group when investigating associations between ambiguity aversion and resting-state 

connectivity. The use of our radiotracer for the PET analyses also precluded the separation of 

dopamine D2 and D3 receptors, which show differential functionality 350 as well as different 

distribution in healthy control participants and those who use stimulants 349. It also remains unclear 
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whether decision-making deficits precede or result from drug use, as both preexisting individual 

differences 102,153,528-531 and neuroadaptations related to drug use 191,527 affect choices. Finally, the 

studies presented here are correlational and do not demonstrate a causal relationship between drug 

use and any of the choice processes discussed herein. Future interventions could determine such 

relationships. 

 

6.8 Concluding Remarks 

The studies presented here do not support the efficacy of treatments or policies that focus on 

negative consequences or aversive outcomes, but instead supplant existing research positing 

addiction as a disorder with neurobiological substrates and psychosocial motivations 649. 

Improving our understanding of the cognitive and neural mechanisms of substance abuse can not 

only aid in the development of medication-assisted or behavioral treatments, but also adds to the 

understanding of addiction as a flawed neurocomputational process 260 in which the calculation of 

value is distorted, whereby the values of certain rewards vastly outweigh the alternatives. The 

extent to which choice selection by people with addictions reflects dysfunction in common neural 

mechanisms that are exaggerated or skewed, or rather a difference in the nature of what is valued, 

is an open question. Nonetheless, viewing value as central to the decision-making process in 

addictions provides a powerful framework by which addiction can help us understand the neural 

mechanisms of decision-making, and vice versa. 

The field of neuroeconomics thus offers particularly relevant tools towards such aims 10,650. 

The combination of neuroscientific methods with experimental economic tasks and models can 

help determine how valuation is affected by the complex components involved in making a 

decision. Our understanding of addiction can be refined by continuing to move towards 
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conceptualizing decision-making as the integration of different subsystems into a final, unified 

process that departs from the Cartesian divide 2,6,124,615—viewing substance abuse not as a battle 

between “habits” and “goals” 651,652, but rather as a consequence of distorted value. Further 

examining the neurobiological basis of prospect theory 653 could provide insights into 

“irrationalities” of behavior and their implications for addictions. The significance of ambiguity 

aversion provides one such example of clarifying the fundamental processes that contribute to 

addiction vulnerability and maintenance 

Value computation, however, is central to all decision-making, and understanding the 

cognitive and neural mechanisms of systematic deviations characteristic of human behavior can 

help gain insight into everyday choices. Indeed, aversion to ambiguity has tangible effects—

including on vaccine hesitancy 654, legal decisions 655, medical decisions 656, and stock market 

prices and volatility 657. Taking advantage of the biases inherent to human decision-making can 

thus help design policies to improve people’s choices and bring about behavioral and social 

change. 
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