UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Adaptive Action Selection

Permalink
https://escholarship.org/uc/item/650020zd
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Author
Maes, Pattie

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/650020zd
https://escholarship.org
http://www.cdlib.org/

Adaptive Action Selection

Pattie Maes
MIT Media-lab (E15-495)
20 Ames Street
Cambridge, MA 02139
pattie@media.mit.edu

Abstract

In earlier papers we presented a distributed model
of action selection in an autonomous intelligent
agent (Maes, 1989a, 1989b, 1991a, 1991b). An
interesting feature of this algorithm is that it pro-
vides & handful of parameters that can be used
to tune the action selection behavior of the al-
gorithm. They make it possible, for example, to
trade off goal-orientedness for data-orientedness,
speed for quality, bias (inertia) for adaptivity, and
soon. In this paper we report on an experiment we
did in automating the tuning and run-time adap-
tation of these parameters. The same action selec-
tion model is used on a meta-level to select actions
that alter the values of the parameters, so as to
achieve the action selection behavior that is ap-
propriate for the environment and task at hand.

Introduction

An important problem to be addressed when modeling
an intelligent agent is the problem of action selection:
what mechanism can an agent use to determine what
to do next, given that it has a repertoire of actions
it can engage in, wants to achieve certain goals (or
has certain motivations) and is facing a particular sit-
uation. Computational models of action selection are
important both for producing actions in an artificial
agent (e.g. an autonomous mobile robot) as well as for
understanding the action selection behavior of biologi-
cal agents (human and animal). In previous papers we
argued that none of the models of action selection that
have been presented in the literature on AI present
a satisfactory solution to the problem (Maes, 1991a,
1991b). Two classes of approaches can be identified:
traditional planners and reactive systems. The former
are not satisfactory because they do not produce fast
(re)action, are completely goal-driven and not adap-
tive. The problem with reactive systems is that they
are completely sensor-data driven, do not have a no-
tion of goals, cannot anticipate or predict the outcome
of actions and are hard to design.

In (Maes, 1989a, 1989b, 1991a, 1991b) we presented
an action selection algorithm which tries to combine

108

the best of previous models. This algorithm produces
fast action in a tight connection with the environment,
while providing a notion of goals and run-time arbitra-
tion. Just like traditional planners, our algorithm uses
an explicit description of the conditions and expected
effects of actions (cf. STRIPS operators). But instead
of implementing action selection as a deliberative, se-
quential reasoning process, we use this information to
construct a network, in which action selection is an
emergent property of an activation/inhibition dynam-
ics among the nodes (operators/actions). The algo-
rithm provides a distributed solution to the problem
of action selection through the use of a connection-
ist computational model on a symbolic representation.
The results of experiments prove that our algorithm
does arbitrate among actions, and implements a form
of prediction, planning and anticipation.

One of the interesting properties of the algorithm
is that its behavior can be tuned by hand according
to the requirements of a particular application. The
algorithm has five global, numerical parameters which
make it possible to make the action selection more goal-
driven versus more data-driven, faster versus more cau-
tious, biased towards the recent history versus adap-
tive, and more or less sensitive to goal and action con-
flicts. This is useful because different tasks and appli-
cations require different action selection behavior. For
example, if an agent has very unreliable sensors, we
want it to bias its action selection towards the past
history of action selection. Or if the environment is
very dynamic, we want the action selection behavior
to be very “reactive” and data-driven.

Until recently, we set the values of these parame-
ters by hand by means of a generate and test iterative
process. This solution is far from ideal, first of all,
because this process turned out to be very difficult in
certain cases, and second, because the parameters did
not adapt to changes in the task or environment at
run time (unless the programmer would go through
the same process again). In this paper we describe an
extension of the algorithm which allows the system to
autonomously adapt the parameters to the characteris-
tics of the task and environment. This functionality is

mailto:pattie@media.mit.edu

achieved by using the same action selection algorithm
on a “meta-level”. A meta-network was constructed
which consists of actions that observe the behavior of
the object-level network and control its parameters so
as to achieve some preset goals (in terms of perfor-
mance).

The Basic Algorithm

This section summarizes the basic action selection
model and algorithm, without the meta-level control.
More elaborate descriptions of the algorithm and its re-
sults can be found in (Maes, 1989b, 1991a, 1991c). An
intelligent agent is viewed as a collection of competence
modules, Competence modules are like the (mind-
less) agents populating the Society of Mind (Minsky,
1986): they are autonomous modules that are expert
in achieving a particular competence, such as grasping
a cup. Every competence has an associated activation
level, which is a real number. A competence module
further also has a set of conditions which have to be
observed in order for the competence module to be
ezecuiable. And finally, a competence module has an
add-list and delete-list which describe the expected ef-
fects on the state of the world that the module has.
An executable competence module whose activation
level surpasses a preset threshold can be selected (be-
come active). This means that a set of processes start
running which try to “realize” the competence (cer-
tain real world actions are performed at that moment).
Consider as an example the pick-up-board competence
module described below,

(defmodule PICK-UP-BOARD
:condition-1list ’(board-within-reach hand-empty)
:add-1list ' (board-in-hand)
:delete-list ’(board-within-reach hand-empty)
:processes <a set of processes that implement
the action of picking up the board>)

An agent also has a set of goals (or motivations),
which have an associated number representing the
strength of that goal at a particular moment in time.
For example, the agent can have the goal of sanding
the board with associated strength 40 and the goal of
spray painting itself with strength 90. An agent also
has a set of protected goals, which are goals that are
achieved and that should remain achieved. E.g. once
the board has been sanded, this becomes a protected
goal. The set of goals and their associated strengths
vary over time as the agent takes actions. Finally an
agent has a set of perceptual conditions (or sensor data)
that it observes at a particular moment in its environ-
ment

The different competence modules of an agent are
linked in a network through “predecessor”, “succes-
sor” and “conflicter” links. In this paper we assume
that these links are known. The idea is that these
links among competence modules are either innate (i.e.
programmed) or learned through experience (Maes &

109

Brooks, 1990). There is a predecessor link from com-
petence module A to competence module B (compe-
tence module A has competence module B as prede-
cessor) if competence module B (through the actions
it takes), makes certain conditions of competence mod-
ule A come true (the intersection of B’s add-list with
A’s condition-list is non empty). For example, ‘pick-
up-board’ may make the condition of ‘sand-board’ that
the board has to be in the hand of the agent, become
true. Second, there is a matching successor link in
the opposite direction for every predecessor link. Fi-
nally there is a conflicter link from competence mod-
ule A to competence module B (competence module
B is said to conflict with competence module A) if
competence module B makes a certain condition of
competence module A undone (the intersection of B’s
delete-list with A’s condition-list is non empty). For
example, ‘put-down-board’ may make the condition of
‘sand-board’, that board has to be in the hand, untrue.

The intuitive idea behind the action selection mech-
anism is that competence modules use the links of the
network to activate and inhibit each other (respectively
increase and decrease each other’s activation level), so
that after some time the activation energy accumulates
in the competence module that represents the “best”
choice, given the current situation and motivational
state of the agent. Once the activation level of a com-
petence module reaches a certain threshold, it may be
selected, and its processes start operating. The pattern
of spreading activation among competence modules, as
well as the input of new activation energy into the net-
work is determined by the current situation and the
motivational state of the agent. The input of new acti-
vation energy into the network of competence modules
is defined as follows:

e Activation by the Current Situation. The currently
observed perceptual conditions (sensor data) in-
crease the activation level of the competence mod-
ules that have those conditions. For example, if the
agent observes a board within its reach, then the
activation level of the ‘pick up board’ competence
module is increased.

e Activation by the Goals. The goals of the agent in-
crease the activation level of the competence mod-
ules that might achieve them (have the goal in their
add-list) with an amount which is relative to the
strength of the goal. For example, the activation
level of ‘sand-board’ is increased with some amount
proportional to the strength of the goal ‘board-
sanded’.

e Inhibition by the Protected Goals. Finally the pro-
tected goals of the agent decrease the activation level
of the competence modules that might undo them
(have the protected goal in their delete-list) with an
amount that is relative to the strength of the goal.

These processes are continuous: there is a contin-
ual flow of activation energy towards the competence

modules whose condition list partially matches the cur-
rent situation and towards the modules whose add-
list matches the goals. The modules that would undo
protected goals continuously weakened. If the situa-
tion or the motivational state changes (e.g. the per-
ceived conditions change or the strengths of the goals
change), the input of activation energy automatically
flows to other competence modules. Besides the im-
pact on activation levels from the current situation
and goals, competence modules also activate and in-
hibit each other. Competence modules spread activa-
tion along their links as follows:

e Activation of Successors. An executable competence
module spreads activation forward. It increases (by
a fraction of its own activation level) the activation
level of its successors. Intuitively, we want these
successor competence modules to become more ac-
tivated because they are “almost executable”, since
more of their conditions will be fulfilled after the
competence module has become active. For exam-
ple, if the *pick up board’ competence module is ex-
ecutable (i.e. a board is withing reach of the agent
and it’s hand is empty), this will increase the acti-
vation level of its successor, the ‘sand-board’ com-
petence module.

e Activation of Predecessors. A competence module
that is not executable spreads activation backward.
It increases (by a fraction of its own activation level)
the activation level of its predecessors. Intuitively,
a non-executable competence module spreads to the
competence modules that can fulfill its conditions
that are not yet true, so that the competence mod-
ule itself may become executable afterwards. For
example, if ‘sand-board’ is not executable because
the agent is not holding the board, it will spread ac-
tivation energy to ‘pick up board’ to encourage this
competence module to become active (so that after-
wards ‘sand-board’ can become active).

e Inhibition of Conflicters. Every competence module
(executable or not) decreases (by a fraction of its
own activation level) the activation level of its con-
flictors. Intuitively, every competence module will
try to prevent a competence module that undoes
one of its true conditions from becoming active. For
example, the ‘sand-board’ competence module will
decrease the activation energy of its conflicter ‘put-
board-down’, because the latter would undo the con-
dition that the board has to be in the hand.

The global algorithm performs a loop, in which at
every timestep the following computation takes place
over all of the competence modules:

1. The impact of the current situation and goals on
the activation level of a competence module is com-
puted.

2. The way the competence module activates and in-
hibits related competence modules through its suc-

110

cessor links, predecessor links and conflicter links is
computed.

3. A decay function ensures that the overall activation
level remains within some boundaries.

4. The competence module that fulfills the following
three conditions becomes active: (i) it has to be ex-
ecutable, (ii) its level of activation has to surpass
the threshold and (iii) it must have a higher acti-
vation level than all other competence modules that
fulfill conditions (i) and (ii). When two competence
modules fulfill these conditions (i.e., they are equally
strong), one of them is chosen randomly. Once a
competence module has been activated (it actually
performs its actions at that moment), its activation
level is reset to 0 (but it may quickly increase again,
since the spreading activation process goes on con-
tinuously).

We have evaluated the algorithm empirically by per-
forming a wide series of experiments using several ex-
ample applications. The networks cannot be said to
show a ‘jump-first think-never’ behavior. They do ex-
hibit planning or “reasoning” capabilities. The effects
of a sequence of actions are considered before actually
embarking on its execution. If a sequence of modules
exists that transforms the current situation into the
goal state, then this sequence becomes highly activated
through the cumulative effect of the forward spread-
ing (starting from the current state) and the backward
spreading (starting from the goals). If this sequence
potentially implies negative effects, it is weakened by
the inhibition rules.

More specifically, goal-relevance of the selected mod-
ules is obtained through the input from the goals and
the backward spreading of activation. Situation rele-
vance and opportunistic behavior are achieved through
the input of the sensor data and the forward spread-
ing of activation. Conflicting and interacting goals are
taken into account through inhibition by the protected
goals and inhibition among conflicting modules. Fur-
ther, local maxima in the action selection are avoided,
provided that the spreading of activation can go on
long enough (the threshold is high enough), so that the
network can evolve towards the optimal activity pat-
tern. And finally, the algorithm automatically biases
towards ongoing “plans”, because these are favored by
the remains of the past spreading activation patterns.

The Need for Adaptive Action Selection

In the recent past, researchers have been arguing about
different action selection models, trying to convince
their peers that one model is more appropriate than
another (Al-magazine, 1990). For example, advocates
of the traditional planning model argue that reactive
systems are not very “thoughtful” because they do not
model and reason about the consequences of actions.
They argue that such systems would fail in “critical”
environments such as a nuclear power plant. On the

other hand, advocates of the reactive systems model
claim that traditional planners are slow, brittle and
not flexible and will fail in environments that are very
dynamic. We believe that the desired characteristics
for an action selection model differ from application to
application. The degree to which an environment or
task is “critical’ (the cost of non-optimal actions) de-
termines how much prediction is desired. The degree to
which an environment is “dynamic” (changes rapidly)
determines how reactive or fast the action selection
has to be. The degree to which an environment is pre-
dictable, determines the usefulness of internal models,
and so on.

Therefore any action selection model that aims to
be “generally useful” should be tunable to the charac-
teristics of an environment and task. This is possible
for the action selection algorithm that we described
above. Its behavior can be tuned to the characteris-
tics of a particular application by a handful of global
parameters (Maes, 1989b, 1991a):

o Threshold 6. This parameter determines how much
activation energy has to be accumulated by a module
before it can be selected. By varying 6 one can trade-
off speed for thoughtfulness. The higher 8, the longer
the activation spreading goes on before a module has
accumulated enough activation energy. As such, it
allows the network to look ahead further, thereby
avoiding local maxima (in time) of activation levels.

e Goal-orientedness 4. This parameter determines the
strength of the backward spreading of activation en-
ergy. It determines (i) how much activation energy
is put into the network by the goals (as opposed to
the sensor data) and (ii) what the (global) weight
is of the predecessor links. By varying v the action
selection behavior can be made more or less goal-
driven.

e Dala-orientedness ¢. This parameter determines the
strength of the forward spreading of activation en-
ergy. It determines (i) how much activation energy is
put into the network by the sensor data (as opposed
to the goals) and (ii) what the (global) weight is of
the successor links. By varying ¢ the action selection
behavior can be made more or less data-driven.

e Goal-conflict sensitivity §. This parameter deter-
mines the strength of the inhibitory spreading of
activation. It determines (i) how much activation
energy is taken away from the network by a pro-
tected goal (as opposed inserted by a goals) and (ii)
what the (global) weight is of the conflictor links. By
varying é the action selection behavior can be made
more or less sensitive to goal conflicts. For example,
if § is larger than v, the system cares more about
avoiding goal conflicts than about achieving goals.

e Bias towards past history . The parameter 7 de-
termines what the mean level of activation is that
the activation levels are reduced to (decayed) at ev-
ery timestep (activation levels are not reinitialized at

111

every timestep). It determines in how far the ‘his-
tory’ of spreading activation plays a role in the action
selection. This parameter can be used to tradeoff
adaptivity (quick response to changes in the sensor
data or goals) for bias towards the ongoing plan (in-
ertia).

In the original algorithm presented in the previ-
ous section, these parameters have to be set by hand.
There are several problems with this approach. One
problem is that it is difficult to come up with the “op-
timal” parameter settings. It is hard to understand
the characteristics of the environment and task well
enough to decide what the optimal parameter values
are. A second problem is that the parameters are not
independent from one another, so changing the value
of one also affects the others. Typically, the values for
the parameter were chosen by running an experiment,
noticing whether something goes wrong, tuning the pa-
rameters and starting anew. This process was iterated
until the parameter values were stable. A third prob-
lem with this solution is that the parameters did not
adapt to changes in the task and environment. E.g.
if something about the network or the environment
changed at run-time, the parameter values were not
adapted to the new situation.

Therefore we decided to automate the continuous
run-time adaptation of these parameters. The same
agent selection algorithm is used in a “meta-level net-
work”, which runs in parallel with the network we had
before. The nodes of this network do not take actions
in the environment, but instead alter the parameter
values for the first network so as to adapt the action
selection behavior of the first network to the character-
istics of the particular task and environment at hand.

The meta-level network also proved to be useful for
dealing with a related problem. Occasionally we ob-
serve problems of a “non-local” nature in the action
selection networks: a network can get stuck in a dead-
lock (the activation levels of modules are not changing
anymore and none of the modules has enough energy
to exceed the threshold), or in a loop (the network
keeps activating the same set of modules without mak-
ing progress). Noticing these problems requires a more
global perspective: it is not possible for a single mod-
ule to decide that the network is stuck in a deadlock
or a loop. However, this proved to be easily diagnosed
by the meta-level network.

The Meta-Network

The idea of the meta-net is related to other research in
the Artificial Intelligence and Cognitive Science litera-
ture. Many of the Al systems that have been built have
a meta-level architecture. They consist of two distinct
levels, where one level, called the object-level, solves
problems about and acts upon an external problem
domain, while the meta-level solves problems about
and acts upon the object-level problem solver. For an
overview see (Maes & Nardi, 1988).

In our model, the meta-level control is implemented
using the same action selection algorithm in a meta-
network. The nodes (or competence modules) of this
network are experts in diagnosing and curing typical
problems with action selection networks. The meta
network contains nine competence modules, Four of
those increase and decrease the threshold and mean
activation level. Three more increase the goal orient-
edness, data orientedness and goal conflict sensitivity.
There are no meta modules that decrease these three
parameters. This is the case because whenever one
parameter is increased, the other parameters are de-
creased a little (i.e. the total sum of all the parameters
is constant). We only experienced the need for increas-
ing the sensitivity to sensor data, goals and goal con-
flicts. It does not seem to be necessary ever to decrease
their sensitivity, except to change their respective ra-
tios (make the action selection more goal oriented than
data oriented, or more goal conflict sensitive than goal
oriented, and so on). Finally there are two more meta-
nodes that deal with “global” problems with the ob-
ject level network: one node decreases the threshold
when the object level is in a deadlock, and the other
one restores the threshold to its original value after-
wards. The following is a description of the different
meta-nodes:

e Make-faster decreases the threshold # when acti-
vated. It is triggered when the object-level network
is too slow. In particular, when the average time it
takes for the object network to select an action is
longer than the average time it takes for the envi-
ronment to change spontaneously. This is what the
definition of this meta-node looks like:

(defmodule MAKE-FASTER
:condition-list ’(slow)
:add-list ’(appropriate-speed)
:delete-list ’(slow)
:processes ’((decrease (network-threshold
sobject-networks))))

e Make-more-thoughtful increases the threshold @
when activated. It is triggered when the object-level
is too fast, i.e. when the average time needed to
select an action is shorter than the average width
of the object-network (the average length of a path
from executable nodes to the goal nodes). Things
are slightly more complicated in that this module
also takes into account how unpredictable the envi-
ronment is. In a very unpredictable (dynamic) en-
vironment the threshold has to be set higher for the
network to be thoughtful than in a predictable en-
vironment (one for which the object level network
reliably models how it changes).

e Make-more-biased increases the mean-activation-
level # when activated. It is triggered when the
object-network is not biased enough towards the
past history. This is true in two cases: (i) when
the object-level “jumps” from working on one goal

112

(selecting an action in one goal tree) to working on
another goal (activating an action in a disjunct goal
tree) without any good reason to do so (without the
situation representing a unique opportunity, i.e. the
iwo paths are equally long), and (ii) when the sen-
sor data seem to be very noisy and unstable (some-
thing is true all the time and then false for just one
timestep, or vice versa, something is false all the
time and then true for just one timestep).

Make-more-adaptive decreases the mean activation
level # when activated. It is triggered when the
object-level is not adaptive enough. This is the case
if the object level does not react enough to impor-
tant changes in the goals or the sensor data (e.g. a
sudden opportunity to achieve a different goal than
the one it is working on easily).

Make-more-goal-oriented increases the goal-orient-
edness ¥ when activated. It is triggered when the
object-level is not goal oriented enough. In particu-
lar, this is the case when, after selecting an object-
level action, the total length of the tree (branching
paths) from the goals to executable modules has in-
creased.

Make-more-data-oriented increases the data-orient-
edness ¢ when activated. It is triggered when the
object-level is not data-oriented enough, i.e. when
the action selection does not respond to changes in
the environment fast enough, even thought the mean
activation level (bias towards past history) = is low.

Make-more-sensitive-to-goal-conflicts increases the
goal-conflict-sensitivity § when activated. It is trig-
gered when the object-level is not enough sensitive to
goal conflicts. This is the case when the object level
is no longer able to satisfy a particular (sub-)goal (a
particular proposition can theoretically not be made
true anymore). This is the case when the network
contains a lot of conflictor links and negative (pro-
tected) goals for which no “reversible (restoring) ac-
tions” exist.

Deal-with-deadlock decreases the threshold 8 when
activated. It is triggered when the object-level is in
a deadlock situation. This is the case when the acti-
vation levels of the object level modules change less
then a small value ¢ and none of the modules has
accumulated enough activation energy to exceed the
threshold. Deal-with-deadlock is activated repeat-
edly until the threshold is low enough so that some
executable module has enough activation energy.

Restore-threshold-after-deadlock increases the
threshold @ again after the deadlock problem has
been dealt with (it restores it to its previous value).
It is activated whenever deal-with-deadlock has been
activated, except if deal-with-deadlock is being ac-
tivated very often (in half or more of the cases that
an object level module gets selected). In the latter
case, the effect of deal-with-deadlock (the decrease

of the threshold) is permanent.

The meta-level network does not have any goals.
It is completely data driven. Whenever the condi-
tions for a meta-module are fulfilled (the meta-module
is executable) and the meta-module has accumulated
enough activation energy (from the sensor data) to ex-
ceed the meta-net threshold, the module is selected.
The latter condition means that the meta-node’s trig-
gering conditions should be observed for a sufficiently
long time, so that they can increase the node’s acti-
vation level to a point where it exceeds the threshold.
This implements the desirable feature that meta-nodes
look at the average recent behavior of the object net-
work (where the relevance of observations is weighed
over time).

Discussion

The meta-level network was tested by running several
experiments with very different applications. Some ap-
plications required very fast action selection, others
required very thoughtful action selection, yet others
emphasized goal conflict sensitivity and so on. We
evaluated the system by adopting random values for
the object-level parameters and then running the two
networks (in parallel) until the meta-network did not
select any actions anymore. Gradually the object level
network displays a better and better action selection
behavior, until it does not make any “wrong selections”
anymore according to the meta-net’s standards.

These experiments proved that the meta-net pro-
vides an effective way of setting and adapting the
object-level parameters. Each time, the meta-net was
able to fairly quickly settle on a selection of parameters
that was satisfactory (in that no meta-level modules
got triggered after a while). The meta-net does not
necessarily convergence to the same parameter values
for two experiments with the same application. This
is the case because the same action selection behavior
can be produced by “similar” parameter values (values
that are within a certain interval).

The question can be raised whether there is a need
for a meta-meta-net (or an infinite tower of meta-
levels). In the current implementation the parameter
values for the meta-network are set by hand. This
is an acceptable solution because (i) the meta-net is
very simple, and because of that the parameters val-
ues do not make much of a difference in its behavior,
(ii) the meta-net always solves the same problem (op-
erates in the same domain), namely that of setting the
parameters of other networks, as such there is less of
a need for it to adapt its action selection behavior to
its environment (the environment is always the same).
The only meta-level parameter which we found to be
important is the threshold (and how it compares to
the data-orientedness). It determines how much “ev-
idence” has to be built up for a particular problem
before the meta-net takes action and changes certain

113

object-level parameters. It would be nice if the thresh-
old would increase as the system proceeds, so as to
implement some notion of "temperature” as in sim-
ulated annealing. This way the system would make
changes to the object-level parameters more easily in
the beginning and be more reluctant to change things
as the object-level action selection behavior improves.

In conclusion, this experiment proves that the meta-
net is a convenient method for adapting the parameters
of our action selection algorithm to the characteristics
of the task and environment. In addition, it proves
that meta-level control does not necessarily imply a
rigid, hierarchical control structure, but instead can
be implemented in a distributed way. The meta-net
runs in parallel with the object-net and as such does
not make the latter less adaptive or reactive. Finally,
more experiments will have to be performed to deter-
mine whether the current set of meta-nodes is suffi-
cient for dealing with a wide range of tasks and envi-
ronments characteristics. To this end, we plan to use
“TileWorld” (Pollack & Ringuette, 1990), which is a
highly parametrized environment simulator, enabling
to control the characteristics of an environment.

References

Al magazine. Special issue on Universal Planning, Vol.
10 (4), 1989.

Maes, P. & Nardi, D. (editors). Meta-level Architec-
tures and Reflection. North-Holland, 1988.

Maes, P. The Dynamics of Action Selection. Proceed-
ings of the IJCAI-89 conference, Detroit, 1989a.

Maes, P. How To Do the Right Thing. Connection
Science Journal. 1(3), 1989b.

Maes, P. Situated Agents can Have Goals. In: Design-
ing Autonomous Agents: Theory and Practice from
Biology to engineering and Back. P. Maes (editor).
Special Issue of the Journal Robotics and Autonomous
Systems. 6(1&2), 1990. Also MIT-Bradford Press
book, 1991a.

Maes, P. & Brooks, R.A. Learning to Coordinate Be-
haviors. Proceedings of AAAI-90, 1990.

Maes, P. A Bottom-Up Mechanism for Action Selection
in an Artificial Creature. In: Adaptive Behavior, from
Animals to Animats. Edited by Stewart Wilson and
Jean-Arcady Meijer. MIT-Press, 1991b.

Maes, P. The Agent Network Architecture (ANA).
Proceedings of the AAAI Spring Symposium on Inte-
grated Intelligent Architectures. AAAI-Press, 1991c.

Minsky, M. The Society of the Mind. Simon and Schus-
ter, New York, New York, 1986.

Pollack, M. & Ringuette, M. Introducing the Tile-
World: Experimentally Evaluating Agent Architec-
tures. Proceedings of AAAI-90, 1990.

	cogsci_1991_108-113

