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Summary
Full decarbonization of the U.S. energy system to meet climate goals requires aggressive

emissions reductions across energy end uses; however, prevailing policies focus on end-use
electrification and clean energy supply rather than a broader set of demand-side solutions. We
assess multiple CO2 emissions reduction pathways to mid-century for U.S. buildings, which are
among the largest sources of CO2 emissions across end-use sectors. We find potential for up to a
91% reduction in building CO2 emissions from 2005 levels by 2050 using a portfolio of efficiency,
load flexibility, and electrification alongside rapid grid decarbonization. Demand-side measures
could account for nearly half of overall emissions reductions, with building efficiency delivering
more than double the emissions reductions of electrification measures in the near term. Further,
building efficiency and flexibility would generate up to $122 billion in annual power system cost
savings by 2050, offsetting nearly half the incremental cost of full grid decarbonization.

Introduction1

The U.S. established an ambitious goal to reduce net greenhouse gas (GHG) emissions 50–52% from2

2005 levels by 2030 and to reach net-zero emissions economy-wide by no later than 2050; this includes3

a goal to reach 100% carbon-free electricity by 2035 [1]. Ambition at the state level is similarly4

high: states representing over 50% of the U.S. population have set 100% carbon-free electricity5

goals for mid-century or earlier [2]. Achieving these goals will require unprecedented acceleration6

in the adoption of climate change mitigation solutions across every sector of the economy.7

Within the U.S. energy sector, prevailing policy and analysis on decarbonization pathways have8

focused on supply-side solutions for low-carbon energy generation and carbon dioxide (CO2) removal9

technologies rather than demand-side approaches, including those in buildings and other end-use10

contexts [3, 4]. This is despite emerging research suggesting these approaches are essential for11
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climate change mitigation [5, 6, 7]. A recent review indicates demand-side solutions can provide 10–12

30% of the resources required for deep decarbonization across metrics including energy generation13

and peak capacity [8]. The Intergovernmental Panel on Climate Change (IPCC) recently published14

its Sixth Assessment Report (AR6) which includes, for the first time, dedicated chapters to demand15

for services and social aspects of mitigation; these chapters find with high confidence that demand-16

side options can reduce 40–70% of global GHG emissions in end-use sectors by 2050 compared to17

baseline scenarios [9].18

Residential and commercial building energy consumption is a substantial driver of U.S. energy-19

related CO2 emissions, accounting for 1.7 Gt CO2 in 2021, or more than one-third of the U.S. total20

[10]. The buildings sector also accounts for 74% and 42% of the annual U.S. electricity and natural21

gas consumption by end-use sectors, respectively [10]. As a sector that contributes substantially to22

emissions from both power generation and from direct fossil fuel use, the built environment has an23

important role to play in the push towards a carbon-free U.S. economy.24

Building decarbonization solutions improve the efficiency of energy end uses, increase the flex-25

ibility of building loads in response to electric grid needs, and/or convert building services to26

low-carbon sources of electricity. Of the three approaches, building energy efficiency is the most27

extensively studied and widely considered as a beneficial, low-cost option for mitigating climate28

change [11], though its role is shifting alongside aggressive decarbonization of the energy supply29

[12]. Building demand flexibility is a complementary solution that will play an increasingly impor-30

tant role as variable renewable energy accounts for a larger share of power generation capacity [13,31

14, 15, 16]. Finally, building end-use electrification has emerged as a key pillar of economy-wide32

decarbonization, particularly as the carbon intensity of the grid has fallen over the past decade and33

as ambitious targets for power sector decarbonization have been announced [17]. The potential for34

building electrification is bolstered by improvements in the performance and cost characteristics of35

relevant technologies [18].36

Recent studies on pathways to economy-wide decarbonization in the U.S. represent building37

sector solutions as part of an accelerated transition [19, 20, 21, 22, 23, 1, 24], and those with38

projections through mid-century reveal a number of common themes. First, final building energy39

demand is reduced significantly, with reductions ranging from 24–41% in 2050. Studies note higher40

rates of building energy reduction for thermal end uses, especially building heating and cooling, and41

reductions are typically higher in residential buildings [22]. Second, rates of building space and water42

heating electrification accelerate dramatically across studies: electric shares of new equipment sales43

in 2050 range from 85–90% for residential space heating, 55–75% for residential water heating, 71–44

80% for commercial space heating, and 40–60% for commercial water heating. Across most studies,45

however, universal electrification of building end uses does not occur by 2050. Third, regarding46

the power sector, studies assume a 70–100% reduction in fossil fuel use for electricity generation47

by 2050 [21, 22], with some assuming an aggressive target of achieving carbon-free electricity by48

2035 [23, 1]. Finally, most studies project remaining building emissions in 2050: 48–214 Mt CO249

in [21], 55–131 Mt CO2 in [22], and roughly 100-300 Mt CO2 in [1], depending on the scenario.50

In cases with aggressive grid decarbonization, remaining building emissions are owed primarily to51

the assumption that full electrification is not achieved across building end uses; these remaining52

emissions are addressed in net-zero pathways by negative emissions sources.53

Due to their national and economy-wide scope, existing cross-sectoral decarbonization studies54

tend to represent building decarbonization solutions and adoption drivers with a coarse degree of55

detail and are limited in their reporting of the potential impacts of these demand-side solutions56

on specific energy end use segments. Further, despite calculating the total and net costs of deep57
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decarbonization across sectors, these studies do not undertake detailed cost modeling for the build-58

ing sector or assess the implications of ambitious building technology deployment scenarios on the59

power sector. Recent studies focused on residential building GHG emissions demonstrate the po-60

tential for deep emissions reductions, but have similar limitations to the cross-sectoral studies in61

their representation of technologies and costs [25, 26]. To the authors’ knowledge, no existing deep62

decarbonization study quantifies energy and emissions reduction pathways and their cost impli-63

cations for the whole U.S. buildings sector with a high degree of spatio-temporal resolution and64

technology-level detail.65

In this paper, we estimate potential reductions in U.S. building energy consumption and CO266

emissions through 2050 under multiple scenarios of demand-side efficiency, flexibility, electrifica-67

tion, and power sector decarbonization. Our study uses a comprehensive, bottom-up represen-68

tation of commercialized and emerging measures for building decarbonization and identifies key69

policy-related drivers of building emissions reductions, including the range of building technology70

performance levels made available to consumers, rates of building load electrification, rates of build-71

ing and technology stock turnover and accelerated replacement of existing building technologies, and72

decarbonization of the building electricity supply. Our analysis assesses the cross-sectoral linkages73

between decarbonization in the power sector and building technology deployment by quantifying the74

effects of demand-side building measures on electricity system costs, and we attribute our findings75

to specific measures and measure types, end uses, building types, and regions to inform concrete76

policy designs and priorities.77

Building decarbonization measures, scenarios and metrics78

We define a comprehensive set of building energy efficiency (EE), demand flexibility (DF), and79

end-use electrification (EL) technologies and operational approaches (collectively referred to as80

demand-side measures) that are deployed under 12 scenarios of U.S. building and power sector81

decarbonization from 2022-2050 as outlined in Table 1. Scenarios are organized into three groups,82

with one scenario in each group serving as a benchmark against which other group scenarios are83

compared to explore sensitivities to key input assumptions. The three benchmarks represent low,84

moderate, and aggressive potentials for building decarbonization, respectively. We quantify re-85

maining CO2 emissions from the building sector in 2050 for the benchmark scenarios in order to86

highlight the potential need for negative emissions solutions to offset these remaining emissions and87

fully decarbonize the buildings sector.88

Demand-side measure deployment is assessed with the Scout model [27] relative to the EIA89

Annual Energy Outlook 2021 Reference Case forecast, which largely carries forward historical trends90

in building technology adoption and energy consumption. Scenario data for measure costs, hourly91

system load impacts, and estimates of annual building electricity demand through 2050 from Scout92

are coupled with power sector projections from the GridSIM model [28] to assess electricity CO293

emissions and power system cost reductions across the full measure portfolio, as well as the total94

incremental costs of deploying individual measures. Full-portfolio reductions in CO2 emissions from95

on-site combustion of fossil fuels are assessed by coupling Scout estimates of annual building fossil96

fuel demand through 2050 with EIA fossil fuel emissions intensities. Additional details on the97

modeling framework, measures, and scenarios are reported in the Methods.98
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Table 1: Scenario groups, benchmarks, and sensitivity cases. 12 scenarios are simulated: 3
benchmark scenarios represent low, moderate, and aggressive potentials for building decarbonization; the
remaining 9 scenarios are used to explore key sensitivities relative to the benchmarks.

Scenario 
Group Benchmark (BM) Scenario

1: Low

Demand-side measure deployment: 
- High rate of building electrification to heat pumps (HPs) only

Grid decarbonization: GridSIM Reference Case

2: Moderate

Demand-side measure deployment:
- Moderate rate of building electrification to HPs
- Building technologies with breakthrough performance/cost 
enter the market by 2035
- Elevated building codes and standards take effect in 2030
- Additional near-term deployment of building envelope/control 
efficiency measures

Grid decarbonization: 80% reduction vs. 2005 levels by 2050

3: Aggressive

Demand-side measure deployment:
- High rate of building electrification to HPs
- Building technologies with breakthrough performance/cost 
enter the market by 2030
- Elevated building codes and standards take effect in 2025
- Additional near-term deployment of building envelope/control 
efficiency measures

Grid decarbonization: 100% reduction vs. 2005 levels by 2035

(2.1/3.1) Moderate/Aggressive BM with early 
retrofits that accelerate the rate of baseline 
stock turnover

(2.2/3.2) Moderate/Aggressive BMs without 
breakthrough technologies reaching the 
market

(2.3/3.3) Moderate/Aggressive BMs without 
breakthrough technologies reaching the 
market or elevated building codes and 
appliance efficiency standards being enacted

(2.4/3.4) Moderate/Aggressive BMs without 
any additional efficiency/flexibilty deployment 
beyond the reference case (electrification to 
HPs only)

Sensitivity Scenarios

(1.1) Low BM without efficient electrification 
(electrification to a mix of resistance and HPs)

Results99

By 2050, U.S. building CO2 emissions can be reduced up to 91% vs. 2005100

levels without adding to electricity use given deployment of a broad suite101

of demand-side measures102

First, we estimate the potential magnitude of changes in U.S. building electricity use, energy use103

and CO2 emissions to 2050 under various scenarios of demand-side measure deployment and grid104

decarbonization, and demonstrate the sensitivity of these results to changes in model inputs that105

map to key policy levers. Figure 1 shows that U.S. building CO2 emissions could be reduced up106

to 67% and 91% below 2005 levels by 2030 and 2050, respectively, under a scenario with aggres-107

sive deployment of efficiency and electrification, early retrofitting behavior, and a grid that fully108

decarbonizes by 2035 (scenario 3.1). Under this scenario, 210 Mt CO2 emissions remain in 2050,109

which is consistent with remaining building emissions in previous deep decarbonization studies and110

could be addressed by negative emissions sources (see Discussion). The most aggressive scenario111

also avoids more than one-third of total building energy use and decreases total building electricity112

use 11% by 2050 despite the high level of building end-use electrification. Several other scenarios113

produce less favorable results, however. Moderate scenarios (2–2.4) fail to reduce building emissions114

more than 76% below 2005 levels, leaving a minimum of 549 Mt CO2 unabated in 2050, which is115

inconsistent with plausible negative emissions offsets for the sector. Low potential scenarios (1–116

1.1), which push high electrification alone under slow grid decarbonization, are even further from117

a net-zero-compatible pathway, leaving a minimum of 1095 Mt CO2 unabated in 2050 even under118

electrification to high efficiency heat pumps. Moreover, building electricity use increases by up to119

23% in 2050 under the low potential scenarios, as well as in multiple other scenarios that remove120
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key energy efficiency dynamics (2.3–2.4, 3.3–3.4).121

The bottom left panel of Figure 1 isolates the contributions of demand-side measures to total122

building CO2 emissions reductions. Full deployment of demand-side measures accounts for nearly123

half of total CO2 reductions from the reference case in 2050 in scenarios where additional grid124

decarbonization beyond the reference case is assumed (43–46% in scenarios 2, 2.1, 3, and 3.1). The125

other half of CO2 reductions is attributed to grid decarbonization, which reduces remaining refer-126

ence case building electricity emissions after accounting for deployment of efficiency and flexibility127

measures. The influence of demand-side measures on CO2 emissions reductions is strongly depen-128

dent on the deployment of efficiency: when only building electrification is assumed, the share of129

total CO2 emissions reductions attributable to the demand side drops to 21% and 29% under power130

grids that are 80% decarbonized by 2050 and 100% zero-carbon by 2035, respectively (scenarios 2.4131

and 3.4).132

Building energy and CO2 reductions through 2050 depend strongly on133

level of demand-side efficiency deployment134

Decision-makers may use various regulations and market-based instruments to influence the adop-135

tion rates and performance of demand-side measures. Figure 2 compares reductions in annual site136

energy and CO2 emissions from demand-side measures between the three benchmark scenarios and137

nine sensitivity cases in 2050. The comparisons isolate the influence of key dynamics that could138

be affected by policy levers: a decrease in the efficiency of electrification (scenario 1.1 vs. 1); the139

addition of early retrofits (2.1/3.1 vs. 2/3); failure to introduce breakthrough efficiency and more140

aggressive codes and standards (2.2/3.2 and 2.3/3.3 vs. 2/3, respectively); and removal of all addi-141

tional market-viable efficiency deployment beyond the reference case — primarily existing building142

envelope retrofits and controls (2.4/3.4 vs. 2/3). Results for 2030 and cumulative changes in CO2143

from 2022–2050 are also reported in the Supplemental Information (Figures S1 and S2).144

Assuming early retrofit behavior (scenarios 2.1/3.1) produces modest increases in 2050 annual145

site energy savings and avoided annual CO2 in the range of +8–13%, relative to the moderate and146

aggressive benchmark scenarios (scenarios 2 and 3). The aggressive group benchmark (scenario 3),147

which does not assume early retrofitting behavior, nevertheless reduces annual building emissions148

to 89% below 2005 levels by 2050, or 252 Mt CO2, which is still consistent with other economy-wide149

net-zero pathway studies [21, 1]. Indeed, the impacts of early retrofits on annual energy and CO2150

are more prominent in the near term (+26-38% in 2030, Figure S1). These findings suggest that151

most of the long-term decarbonization potential for U.S. buildings can be captured by ensuring152

that building technology choices from 2022 onward — driven by new building additions and end-153

of-life technology replacements — are pushed towards more efficient and flexible options served by154

low-carbon or carbon-free fuel sources.155

In contrast to the incrementally positive impacts of early retrofits, decreasing the efficiency156

of electrification by assuming a large share of electric resistance equipment alongside heat pumps157

(scenario 1.1) has substantial negative impacts relative to the low potential benchmark (scenario158

1), precluding 30% of annual site energy savings and 27% of annual CO2 reductions. Similarly, in159

the moderate and aggressive benchmark scenarios, collective removal of three efficiency dynamics160

— breakthrough efficiency, aggressive codes and standards, and additional market-viable efficiency161

(scenarios 2.2–2.4 and 3.2–3.4) — significantly counteracts energy and CO2 reductions, precluding162

52–66% of annual site energy savings and 37–57% of annual CO2 savings. Effects on cumulative163

CO2 emissions, which encompass both near- and long-term measure impacts, are even greater164
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2.4: Moderate 
BM w/o EE

3.1: Aggressive 
BM w/ early 

retrofits

2.4: Moderate BM 
w/o EE

3.1: Aggressive BM w/ 
early retrofits

3.1: Aggressive BM 
w/ early retrofits

1.1: Low BM w/o 
efficient EL

2.1: Moderate BM w/ 
early retrofits

1.1: Low BM w/o 
efficient EL

3.4: Aggressive BM 
w/o EE

2.1: Moderate BM 
w/ early retrofits

2.4: Moderate BM 
w/o EE

3.4: Aggressive BM 
w/o EE

2.1: Moderate 
BM w/ early 

retrofits

1.1: Low BM w/o 
efficient EL

3.4: Aggressive BM 
w/o EE

1.1: Low BM w/o 
efficient EL

3.4: Aggressive BM w/o EE

2.4: Moderate BM w/o EE

2.3: Aggressive BM w/o 
breakthrough EE or 

elevated codes & stds. 

3.3: Aggressive BM w/o breakthrough 
EE or elevated codes & stds.

Figure 1: By 2050, U.S. building CO2 emissions can be reduced up to 91% vs. 2005 levels
without increasing electricity use given deployment of a broad suite of demand-side mea-
sures. Three benchmark (BM) scenarios representing low, moderate, and high building decarbonization
futures are highlighted relative to the EIA Annual Energy Outlook (AEO) 2021 Reference Case forecast
(electricity, energy) or relative to the AEO forecast with GridSIM Reference Case CO2 intensities substi-
tuted for electricity (emissions) for the years 2022–2050. Nine additional scenarios are simulated to explore
key sensitivities in the results; the sensitivity range around each benchmark scenario is denoted by colored
shading. Bounding sensitivity scenarios for each benchmark are annotated, as are any other scenarios in
which site electricity use increases by 2050 relative to the reference case (top left). The range of possible
changes from the reference case across the full scenario set is summarized for 2030 and 2050. CO2 emis-
sions are separated into those resulting solely from the application of building efficiency, flexibility, and
electrification (“Demand-side Reductions,” bottom left) vs. those resulting from the joint consideration
of demand-side measure deployment and decarbonization of remaining reference case building electricity
demand (“Demand+Supply-side Reductions,” bottom right).
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Scenario

Figure 2: Building energy and CO2 reductions through 2050 depend strongly on the level
of demand-side efficiency deployment. Results for nine sensitivity side cases are organized into three
groups and assessed relative to the 2050 avoided annual energy use and CO2 emissions of the three bench-
mark (BM) scenarios (1, 2, and 3). The sensitivity cases assess the influence of five unique dynamics
on annual energy and emissions: reductions in efficiency of electrification via substantial conversion from
fossil-based heating and water heating to electric resistance technologies (1.1); failure to increase the market-
available technology performance ceiling via eventual introduction of breakthrough efficiency technologies
with very low cost and performance (2.2, 3.2); failure to increase the market-available technology perfor-
mance floor via implementation of more aggressive building performance codes and appliance efficiency
standards (2.3., 3.3); and failure to deploy additional market-viable efficiency options not represented in
the reference case in the near-term — in particular, upgrades for certain envelope components in existing
buildings and deployment of advanced operational controls (2.4, 3.4).

7

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4253001

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



(Figure S2), with 49–69% of cumulative emissions reductions precluded by removing these efficiency165

dynamics in the moderate and aggressive potential groups. This is an initial reflection of the greater166

near-term influence of efficiency measures that will be further demonstrated in the next section.167

The incremental impacts of successively removing each efficiency dynamic appear comparable in168

magnitude, particularly for the energy use metric. These large negative effects are generally robust169

to the overall level of building and grid decarbonization (comparing groups 2 and 3), though the170

removal of breakthrough technologies is less impactful when such technologies are assumed to enter171

the market later (group 2). The removal of all three efficiency dynamics also has somewhat less172

influence on CO2 reductions under full grid decarbonization by 2035 (group 3), where building173

electrification is most important to demand-side emissions reductions.174

Demand-side measures contribute nearly half of total building CO2 reduc-175

tions by 2050; reductions are most strongly attributed to thermal energy176

service efficiency improvements and electrification in single family homes177

Next, we attribute total building CO2 emissions reductions to end-use sources, demonstrate the178

sequencing of CO2 emissions reductions by measure type, and highlight the segments of building179

energy use with the greatest potential to drive CO2 reductions. Figure 3 presents the end-use wedges180

of emissions reductions across the three benchmark scenarios. Reductions are largely attributable181

to thermal end uses: lower energy demand from heat transfer through the building envelope, and182

lower and/or less carbon-intensive HVAC and water heating equipment. In the moderate and high183

potential benchmarks (scenarios 2 and 3), where fossil-based equipment electrification is deployed184

in parallel with envelope improvements and more efficient and flexible electric equipment, envelope185

improvements account for the single-largest share of CO2 emissions reductions (30–36%) among186

end uses. Reductions in HVAC and water heating energy use account for an additional 26–31%187

and 21–23% of total emissions reductions, respectively. While other end uses register reductions188

on the wedges in these scenarios — notably, computers and electronics, lighting, and cooking —189

collectively these end uses account for just 10–23% of total reductions in 2050.190

The strong influence of envelope improvements on total CO2 emissions reductions in Figure 3191

is consistent across the moderate and aggressive benchmarks. Moreover, in both cases the relative192

influence of envelope impacts grows over time, comprising 1.4–1.5 times greater shares of total193

reductions in 2050 than in 2030, a reflection of slow rates of turnover in the baseline envelope stock.194

Further attribution of envelope measure impacts to those reducing electric vs. non-electric loads,195

however, reveals differences between the two benchmarks. A greater share of non-electric envelope196

impacts is observed in the moderate benchmark (48% vs. 16% in the aggressive benchmark), as197

lower equipment electrification rates leave more non-electric demand for envelope measures to affect198

through 2050. This result underscores the potential importance of envelope efficiency deployment199

as a hedge against slow rates of load electrification that would otherwise impede deeper levels of200

building sector emissions reductions.201

The end-use reduction wedges in Figure 3 grow through 2050 with increasing deployments of202

building efficiency, electrification, and flexibility measures. In the moderate and aggressive bench-203

marks, these deployments occur alongside an electric grid that progressively decarbonizes beyond204

the reference case, and Figure 3 reiterates the finding from Figure 1 that demand-side measures205

contribute nearly half of total building sector emissions reductions by 2050. Figure 4 also shows206

that the relative influence of building decarbonization drivers changes depending on whether one207

takes a near-term (2022–2030) or long-term (2030–2050) perspective. Building efficiency measures208
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Figure 3: Demand-side measures contribute nearly half of total building CO2 reductions
by 2050 under moderate to aggressive decarbonization benchmarks; reductions are largely
attributable to thermal end uses. Emissions reduction wedges are shown relative to a reference line
that reflects AEO 2021 Reference Case building demand and fossil fuel emissions intensities with GridSIM
emissions intensities for electricity, for each of the low, moderate, and aggressive benchmark scenarios (1,
2, and 3, respectively). Reductions from electrifying and improving the efficiency and flexibility of building
end uses (demand-side measures) are indicated with colored wedges for each affected end use. Within the
demand-side wedges, CO2 reductions from improved envelope efficiency (which reduce demand for both
electric and non-electric heating and cooling energy) are assessed before and reported separately from the
overlapping reductions of measures that improve HVAC equipment efficiency. More broadly, reductions from
electric efficiency and flexibility improvements are assessed before considering additional decarbonization
of the power supply beyond the reference case, while reductions from electrification are staged in parallel
with power supply decarbonization. Power supply decarbonization further reduces the emissions from any
reference case building electricity that remains after accounting for deployment of efficiency and flexibility
measures; these reductions are indicated with a dark gray wedge in each scenario.
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Figure 4: Under an aggressive decarbonization benchmark, demand-side efficiency measures
drive near-term reductions in building CO2 (through 2030), while electrification measures de-
liver the majority of their impacts in out years (2030-2050). Reductions from the 2005 buildings
sector emissions level are broken out between 2005–2030 and between 2030–2050 by source: historical reduc-
tions (from 2005–2021); reductions projected in the reference case forecast; further demand-side reductions
via building efficiency, flexibility and electrification beyond the reference case; and further decarboniza-
tion of the building electricity supply beyond the reference case. Reductions from electric efficiency and
flexibility improvements are assessed before considering additional decarbonization of the power supply
beyond the reference case, while reductions from electrification are staged in parallel with power supply
decarbonization. Non-electric efficiency impacts are applied to any non-electric demand that remains after
considering the deployment of building load electrification measures. Emissions that remain in 2050 are
segmented in the call-out box by building type and end use; the ‘Other’ end use consists of miscellaneous
loads such as water pumps, generators, grills, and manufacturing in commercial spaces [29].
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demonstrate a greater degree of near-term influence, contributing more than double the reductions209

of building electrification measures between 2022–2030 in the aggressive benchmark, while electri-210

fication and grid decarbonization deliver almost three times the reductions of efficiency measures211

from 2030–2050 — a finding that is largely owed to the gradual ramp-up of load electrification rates212

(see Figures S14–S17). The influence of efficiency measures is more pronounced under moderate213

assumptions with slower rates of electrification and grid decarbonization (see Figure S4).214

Under the aggressive decarbonization benchmark, Figure 4 shows that 252 Mt of annual building215

CO2 emissions remain in 2050, or 11% of the sector’s 2005 CO2 emissions level. Given the full216

decarbonization of electricity supply in this benchmark, remaining emissions come from residual217

non-electric building energy demand. A large portion of these remaining non-electric emissions are218

attributable to heating, water heating, and cooking end uses (6% of 2005 levels) — particularly in219

commercial buildings, which face strong barriers to electrification [18] leading to lower electrification220

rates over the long term (see Figures S14–S17). While significant policy attention is focused on221

addressing such barriers, less is given to the larger segment of remaining non-electric “Other”222

building CO2 emissions in Figure 4, which mostly come from loads like manufacturing in commercial223

spaces and residual fuel oil that EIA classifies as “non-building” [29]. These loads, which may be224

harder to electrify, would comprise nearly 5% of 2050 building sector emissions if left unaddressed.225

Figure 5 presents further segmentation of demand-side CO2 emissions reductions under the ag-226

gressive decarbonization benchmark, and it reveals a more diverse set of reduction opportunities227

than that suggested by the higher-level end-use attribution of Figure 3. Considered across the build-228

ing sector as a whole in both 2030 and 2050, emissions reduction opportunities are strongly weighted229

towards single family homes in highly populated regions with large fossil-based heating service de-230

mands and higher reference case electricity emissions — in particular, the Great Lakes/Mid-Atlantic231

and Southeast. Within these region/building type segments, 2030 reductions are largely attributable232

to efficiency improvements that reduce non-electric heating energy — primarily improvements to233

the building envelope — and this is especially true for the Great Lakes/Mid-Atlantic segments,234

given the near-term dominance of fossil-based heating service in this region. By 2050, however,235

end-use and measure type contributions are distributed across multiple categories, with substantial236

reductions coming from electric heating, cooling, and water heating efficiency and greater influence237

coming from electrification measures that reduce fossil demand and the associated potential for238

non-electric efficiency impacts over the long term.239

The dominant influence of single family homes on total CO2 emissions reductions in Figure240

5 is further demonstrated by the similarities between residential-only results (Figure S5) and the241

results shown in Figure 5. Emissions reductions in commercial buildings are far more heterogeneous242

and less concentrated around a handful of influential reduction segments, given the wide variety243

of commercial building types and uses (Figure S5). Nevertheless, when aggregated across building244

types, commercial building emissions reductions constitute an important driver of building sector245

decarbonization (also see Figure S8). In 2030, for example, commercial measures contribute 35%246

of total reductions across regions and 41% of reductions in the highly influential Southeast region.247

These shares lessen by 2050, given acceleration in residential electrification and reference case effi-248

ciency improvements in key segments of near-term commercial emissions reductions such as retail249

lighting. Still, the 2050 commercial reductions remain substantial at 28% of total reductions across250

regions. Five commercial building types — retail, education, hospitality, offices, and assembly build-251

ings — are consistently among the top contributors to emissions reductions in the most influential252

regions. Commercial heating reductions are notable, but primarily in colder regions such as the253

Great Lakes/Mid-Atlantic, Northeast, and Upper Midwest. Other commercial end uses — notably254
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L1 L2 L3 L4

Commercial 
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2050

L1 L2 L3 L4

All Buildings, 2030 All Buildings, 2050

Figure 5: Under an aggressive decarbonization benchmark, building CO2 emissions reduction
opportunities are strongly weighted towards single family homes in highly populated regions
with large fossil-based heating service demands and higher reference case electricity emissions.
The plot further segments the aggressive decarbonization benchmark scenario’s total building emissions
reductions in 2030 (left) and 2050 (right), across all building types. Emissions reductions are segmented
across the following dimensions, beginning with the inner ring of each plot and moving outwards: region
(aggregations of 25 EIA Electricity Market Module regions [30] to 11 higher-level regions); building type
(aggregations of the three residential and 11 commercial EIA Annual Energy Outlook building types to
two and eight residential and commercial building types, respectively); energy end use; and measure type
(electrification paired in some cases with flexibility (EL+DF), electric efficiency paired in some cases with
flexibility (EE (Elec.)+DF), and non-electric efficiency (EE (N-Elec.)). White regions of the plot denote
aggregations of very small segments.
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lighting in the near term, computers (PCs)/electronics, and cooking in hospitality environments —255

are attributed reduction shares that are comparable to or greater than those of heating in warmer256

regions like the Southeast.257

Aggressive deployment of building efficiency and flexibility measures gen-258

erates up to $122 billion in annual power system cost savings by 2050,259

offsetting nearly half the incremental cost of full grid decarbonization260

Finally, we examine the implications of widespread demand-side measure deployment in buildings261

for power sector decarbonization. Specifically, we analyze the same measures and grid scenarios262

discussed previously under the moderate and aggressive decarbonization benchmark scenarios (2263

and 3) to determine the extent to which the demand-side measures impact bulk power system264

generation and transmission costs and to gain insight into the cost-effectiveness of the measure265

portfolio.266

Given that the focus of this analysis is on power sector cost savings, we specifically analyze267

measures that reduce building electricity use. When considering electrification measures, we assess268

the potential benefits of efficient building end-use electrification relative to a baseline that deploys269

a substantial portion of less efficient resistance heating and water heating equipment in lieu of270

heat pumps (consistent with scenario 1.1, see Methods). This allows us to isolate the impacts of271

efficiency, including deployment of more efficient building end-use electrification measures.272

Decarbonizing the U.S. power supply will require a large build-out of renewable generation,273

energy storage, and flexible clean generation technologies with significant implications for costs.274

Under moderate to aggressive grid decarbonization in the absence of additional building efficiency,275

flexibility, and efficient end-use electrification measures, the total amount of generation capacity276

needed in 2050 is 2.6–3.2 times the current amount of power system capacity (Figure S9). The277

increase is due to the incremental load growth from inefficient building end-use electrification and278

electrification of transportation, as well as satisfying the goal of a deeply decarbonized power sector.279

This compares to approximately 50% higher generation capacity in 2050 under Reference Case280

assumptions that are limited to the impacts of existing state-level climate legislation. By 2050,281

in the absence of new demand-side measures, we estimate $390–527 billion per year in capital282

expenditures and production costs (Figure S10). This range is 1.8–2.4 times the $217 billion of283

forecasted 2050 annual expenditures in the Reference Case.284

Building end-use efficiency and flexibility can reduce the cost of decarbonizing the power sector285

by reducing overall electricity consumption and peak demand, and shifting usage to hours when it286

is less costly to serve. The result is a reduction both in fixed generation and transmission costs (i.e.,287

capital investment and fixed operations and maintenance) and in variable generation costs (i.e., fuel288

and variable operations and maintenance). Figure 6 shows that by 2050, we estimate that these289

benefits could amount to gross cost savings of $78–122 billion per year, or 39–45% of the incremental290

cost of additional power supply decarbonization before accounting for the cost of the portfolio of291

demand-side measures. Consistent with the estimates of emissions savings, HVAC and envelope292

measures account for a large share of total cost savings due to the overall magnitude of heating and293

cooling loads and the high efficiency of technologies that are available to reduce them. Additionally,294

a majority of the cost reduction potential (69–72%) is attributable to residential measures, which295

generally have larger energy savings potential than commercial measures.296

The gross benefits discussed above do not account for the costs of the demand-side measures.297

Under the aggressive benchmark, where technologies with breakthrough cost and performance char-298
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Figure 6: Moderate to aggressive deployment of building efficiency and flexibility measures
generates $77–$122 billion in annual power system cost savings by 2050, or 39–45% of the
incremental cost of additional power supply decarbonization before accounting for the cost
of the portfolio of demand-side measures. Gross benefits represent avoided power system generation
costs given full deployment of the measure portfolio. Electrification (EL) measure benefits involve switching
from an inefficient to an efficient EL measure, yielding positive power system benefits in our analysis.
Electrification measures with demand flexibility are included in the EL category. Non-electric measures are
excluded from these results, thus excluding natural gas system cost savings.
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acteristics are assumed to enter the market earlier, and the total cost of demand-side measure de-299

ployment is generally lowest, the total incremental cost of the measure portfolio in 2050 is $136300

billion, of which 90% is covered by the $122 billion in system cost savings benefits that the measure301

portfolio generates. This estimate is strongly influenced, however, by a small portion of measures302

with high incremental deployment costs that are more than double their benefits (Figure S12). Gen-303

erally, these high-cost measures are packages of best currently market-available HVAC equipment304

and envelope efficiency improvements. Excluding this high-cost portion of the measure portfolio305

retains most of its system cost benefits ($111 billion) but at roughly half the total incremental306

deployment cost ($73 billion). These findings suggest that initiatives aimed at reducing the incre-307

mental costs of installing the highest-performing HVAC and envelope technologies on the market308

today would be one of the most effective strategies for driving down the overall costs of reducing309

building electricity demand to support accelerated grid decarbonization.310

Discussion311

We show that strategic reduction and management of U.S. building energy demand alongside grid312

decarbonization could sharply decrease building sector CO2 emissions by mid-century, up to a 91%313

reduction from 2005 levels. A reduction of this magnitude would avoid nearly one quarter of the314

annual CO2 emissions projected for the energy system in 2050 under reference case conditions, more315

than 1 Gt CO2 in absolute terms. Moreover, our results demonstrate that demand-side solutions316

greatly reduce the costs of power sector decarbonization, avoiding up to well over $100 billion per317

year in power system costs by 2050. There are no “silver bullet” solutions for building decarboniza-318

tion; rather, large emissions and system cost reductions require a broad focus on measures that319

improve the efficiency and flexibility of building energy services alongside widespread electrification320

of fossil-based building loads. Because building end-use electrification can only happen gradually,321

building efficiency and flexibility are important near-term strategies with substantial contributions322

to overall reductions in building sector CO2 emissions and power system costs through 2050. Ef-323

ficiency and flexibility can also support increased electrification at all scales: at the building scale324

(e.g., by decreasing the required capacity of electrified heating and water heating equipment); at325

the distribution scale (e.g., by mitigating new loads that could necessitate infrastructure upgrades);326

and at the bulk power scale (e.g., by reducing the system peak generation capacity needed to serve327

electrified end uses).328

Our analysis directly represents a heterogeneous portfolio of building solutions and quantifies329

their individual and collective contributions to energy system CO2 emissions reductions through330

mid-century. This approach contrasts markedly with that of previous cross-sectoral decarbonization331

studies, which tend to reduce building sector decarbonization to aggressive load electrification332

and lack the detailed, bottom-up treatment of building technology development and deployment333

dynamics that is needed to guide real-world policy approaches.334

While our results encourage more substantive consideration of buildings as a critical demand-335

side resource for energy system decarbonization, our data also underscore the unprecedented scale336

and speed with which building technology development and deployment must occur to enable the337

deepest levels of building sector emissions reductions and power system benefits by 2050. Table338

2 shows that in our aggressive benchmark, 97 million fossil-based and resistance furnaces and 139339

million fossil-based and resistance water heaters are converted to heat pumps in residences between340

2022–2050 — a nearly four- and twelve-fold increase in the deployment of residential air source heat341

pumps and heat pump water heaters over the reference case, respectively. Commercial heat pumps342
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Table 2: Achieving the deepest building CO2 reductions by mid-century requires deployment
of high performance building technologies and operational approaches at an unprecedented
scale and speed. The actions shown reflect an aggressive benchmark in which building efficiency, flexibility,
and electrification are aggressively deployed alongside a power grid that decarbonizes 100% by 2035.

2030 2050 Annualized △ 
(2022-2050) 2030 2050 Annualized △ 

(2022-2050)

Convert fossil-fired and resistance 
heating/WH equipment to HPs 43M units 236M units 8M units/yr 

(49% sales)
84 TBtus service 

demand
740 TBtus service 

demand

26 TBtus service 
demand/yr 
(20% sales)

HPWHs 27M units 139M units 5M units/yr 33 TBtus demand 314 TBtus demand 11 TBtus demand/yr
ASHPs 16M units 97M units 3M units/yr 50 TBtus demand 426 TBtus demand 15 TBtus demand/yr

Envelope retrofits at or above 
ESTAR/IECC/90.1 levels in the column year 32M homes 105M homes

4 M homes/yr 
(3% existing 

homes)
14 Bsf 45 Bsf 1.5 Bsf/yr 

(1.8% existing sf)

Roofs 32M homes 105M homes 4 M homes/yr 12 Bsf 45 Bsf 2 Bsf/yr
Windows 27M homes 104M homes 4 M homes/yr 14 Bsf 45 Bsf 2 Bsf/yr
Walls* and/or floors 8M homes 32M homes 1 M homes/yr 4 Bsf 17 Bsf 1 Bsf/yr

New building shells constructed at or above 
ESTAR/IECC/90.1 levels in the column year 10M homes 35M homes 1 M homes/yr 

(93% new homes) 14 Bsf 62 Bsf 2 Bsf/yr 
(86% new sf)

Pair new/replacement HVAC equipment w/ 
advanced controls** that enable demand 
management

15% of all installed 
units

75% of all installed 
units

3% of all installed 
units

7% of all service 
demand

53% of all service 
demand

2% of all service 
demand

Pair new/replacement lighting and plug load 
equipment w/ advanced controls** that 
enable demand management

16% of all installed 
units

34% of all installed 
units

1% of all 
installedunits

27% of all service 
demand

45% of all service 
demand

2% of all service 
demand

*Includes air sealing

CommercialResidential
Advancement

**Controls measures at or above the 'Best' performance tier

serve 740 more TBtus of heating and water heating service demand annually by 2050 than in the343

reference case, an eleven-fold increase. These heat pump deployments occur alongside widespread344

building shell retrofits to more efficient components — by 2050, 105 million of the homes and345

45 billion of the commercial square feet built by 2022 have undergone at least one component346

retrofit at or above the latest ENERGY STAR/IECC/ASHRAE 90.1 performance levels, implying347

efficiency retrofit rates of 3% and 1.8% per year, respectively. Another 35 million homes and 62348

billion commercial square feet added in 2022 or later are at or above this shell performance tier,349

or 93% and 86% of new residential and commercial construction over this period, respectively.350

Finally, advanced controls unlock more efficient and flexible energy management capabilities in351

many buildings — such controls are deployed with 75% of total residential HVAC units and serve352

roughly half of total commercial HVAC, lighting, and plug load energy by 2050.353

Even if these lofty deployment milestones are achieved, additional advancements will be needed354

to address building CO2 emissions that could remain by 2050 — at least 210 Mt CO2 annually,355

in our assessment (scenario 3.1). Two possible sources of negative emissions can offset remaining356

building CO2 emissions: 1) land use, land-use change, and forestry; and 2) negative emissions357

technologies (NETs). These negative emissions sources could provide roughly 800 Mt CO2-eq358

and potentially up to 500 Mt CO2 in the U.S., respectively [31, 32]. Allocated proportionally to359

end-use sector contributions to U.S. greenhouse gas emissions [31], these offsets amount to just360

over 400 Mt CO2 for buildings, enough to address the remaining building CO2 emissions in our361

most aggressive decarbonization scenarios (3–3.1). However, available offsets will likely need to362

be weighted towards harder-to-abate energy services such as aviation, long-distance transport, and363

shipping [33], and large uncertainties concerning the scalability of NETs make them a high-risk364
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bet for building emissions offsets [34]. Blending renewable hydrogen fuel with the U.S. natural365

gas supply or replacing natural gas with hydrogen entirely could further abate up to 61 Mt CO2366

from U.S. building heating by 2050 [35]. Existing evidence casts doubt on the widespread use of367

hydrogen heating, however, given disadvantages on economics, efficiency, and resource intensity368

[36], and hydrogen heating may present particular affordability issues for the customers that are369

least able to electrify equipment [37].370

Our building CO2 emissions estimates could be affected by further consideration for the fugi-371

tive emissions associated with building operations: emissions from leakage of building equipment372

refrigerants and from methane leaks in the natural gas supplied to buildings. An initial assessment373

of these two fugitive sources demonstrates that accounting for avoided methane leakage delivers374

around 1.8–3.5X the CO2-eq impacts of accounting for refrigerant leakage, resulting in small but375

notable overall effects on total estimated CO2-eq emissions reductions (see Supplemental Informa-376

tion Section 3 and Figure S28). This finding is supported by the limited existing literature on this377

topic [38, 39]; however, such studies concern the individual building scale rather than the stock378

scale reflected here. Moreover, fugitive emissions estimates may be sensitive to assumptions about379

reference case developments in equipment refrigerants and considerable uncertainties in estimated380

methane leakage rates. We consider the estimation of fugitive emissions in buildings, as well as the381

assessment of embodied emissions generated outside the building operation phase, to be important382

areas for further analysis.383

The U.S transition to a low-carbon energy system is well underway, with energy-related CO2384

emissions having fallen steadily over the past decade. But achieving the deeper levels of emissions385

reductions targeted by economy-wide decarbonization plans will require a comprehensive mix of386

solutions addressing both the generation and end uses of energy. Buildings occupy a critical in-387

tersection between energy supply and demand and, as such, offer a wide range of opportunities388

to reduce or enable reductions in U.S. CO2 emissions. As the power grid decarbonizes, building389

electrification is a clear strategy for reducing emissions, but building efficiency and flexibility are390

equally essential, both to limit the scale of the required supply-side transformation and to facilitate391

high rates of electrification — a true “all-of-the-above” menu of solutions to dramatically reduce392

CO2 emissions and address the climate crisis.393

Experimental Procedures394

Building and grid modeling frameworks395

Figure 7 summarizes key data produced by the building and grid models used in this analysis and396

highlights model linkages. Here we describe the each of these models and their interaction in greater397

detail.398

Scout modeling of the building sector399

Building decarbonization solutions are represented using Scout (scout.energy.gov), a hybrid (Q1/Q4400

[40]) building stock modeling framework for estimating the short- and long-term annual impacts of401

energy efficiency, flexibility, and electrification measures on building energy use, CO2 emissions, and402

operating costs at the scale of U.S regions or across the U.S. as a whole. Simulations are consistent403

with Scout v0.7.3 [41]. Here we focus on key elements of Scout’s modeling approach for the current404
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The approach to assessing total measure portfolio impacts 
leverages LBNL and Brattle modeling capabilities

Unit cost, performance, 
lifetime, and markets for 

building electrification 
(EL), efficiency (EE), and 
flexibility (DF) measures

12 scenarios of building technology 
performance/deployment and grid decarbonization

Brattle forecasts of 
regional power system 

demand, grid CO2

emissions intensities, 
and costs to 2050

External sources Scout GridSIM/LoadFLEXInput Output

Assess individual measure 
deployment costs and 
power system cost 
savings in 2030/2050 for 
whole U.S.**

Assess measure portfolio 
impacts on baseline 

stock/energy (apply market 
shares to overlapping 

measure deployments)*

Assess total measure 
impacts on direct CO2

emissions from fossil 
combustion in 25 U.S. 
grid regions to 2050*

a

Assess total measure 
impacts on indirect CO2

emissions for electricity 
generation in 25 U.S. 
grid regions to 2050*

Assess measure portfolio
deployment costs and 
power system cost 
savings in 2030/2050 for 
whole U.S.**

EIA AEO 2021 Reference 
Case building and 

technology stock/energy 
forecast to 2050

EIA fossil fuel CO2

emissions intensities
Electrification rates from 

Guidehouse analysis

*For all modeled scenarios 
**For 2 scenarios of focus

Assess individual 
measure impacts on 

baseline stock/energy 
forecast*

Figure 7: Results are generated through an integrated demand- and supply-side modeling
workflow and outputs. Demand-side measures (building efficiency, flexibility, and electrification) are
assessed with the Scout model relative to the EIA Annual Energy Outlook 2021 Reference Case forecast
from 2022-2050, with rates of building electrification exogenously determined via target scenarios developed
in consultation with Guidehouse. Resultant Scout scenario measure costs, hourly system load impacts, and
estimates of annual building electricity demand through 2050 are coupled with power sector projections
from the GridSIM model to assess measure-level deployment costs, electricity CO2 emissions reductions,
and power system cost reductions. Direct reductions in CO2 emissions from on-site combustion of fossil
fuels are assessed by coupling Scout estimates of annual building fossil fuel demand through 2050 with EIA
fossil fuel emissions intensities.
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assessment; further details are found in Supplemental Information Section 2.1.1 as well as in the405

Methods and Supplemental Information of [15] and [42].406

Scout analyses are founded on bottom-up representation and aggregation of specific segments407

of the U.S. building technology stock and its annual energy use, Seuse−ref
y , and CO2 emissions,408

Scarb−ref
y , under reference case building and power sector evolution in each year y between 2022-409

2050:410

Seuse−ref
y =

R∑
r

B∑
b

Fb∑
f

Ub,f∑
u

Tb,f,u∑
t

V∑
v

Sstk−ref
r,b,f,u,t,v,y I

euse−ref
r,b,f,u,t,v,y (1)

Scarb−ref
y =

R∑
r

B∑
b

Fb∑
f

Ub,f∑
u

Tb,f,u∑
t

V∑
v

Sstk−ref
r,b,f,u,t,v,y I

carb−ref
r,b,f,u,t,v,y (2)

where Sstk−ref
r,b,f,u,t,v,y is the stock total for the typical reference case building technology in class t in411

year y that serves end use u with fuel type f in building type b, vintage v, and region r (e.g.,412

the stock in a “microsegment” of the buildings sector, subsequently denoted by X); Ieuse,refr,b,f,u,t,v,y413

is the reference case site energy use per unit stock of the given technology microsegment in year414

y; and Icarb−ref
r,b,f,u,t,v,y is the reference case average CO2 emissions per unit stock deployed in year y415

(unit energy consumption multiplied by average CO2 emissions per unit consumption). We draw416

reference case estimates of building technology stock evolution, unit energy consumption, and CO2417

emissions per unit fossil-based fuel consumption from the 2021 EIA Annual Energy Outlook (AEO)418

Reference Case [29]; reference case estimates of CO2 emissions per unit electricity consumption are419

drawn from the Brattle GridSIM Reference Case (see below for additional details). The region set R420

is consistent with the 25 EIA Electricity Market Module (EMM) regions [43, 44], with aggregation421

to 11 higher-level regions for reporting purposes (see Supplemental Information section 2.2) and422

sets of building types (B), fuel types (Fb), end uses (Ub,f ) and technology types (Tb,f,u) correspond423

to those used in the National Energy Modeling System (NEMS) building modules to develop the424

AEO forecast [43, 44]. The set of building vintages (V ) reflects two bins — buildings constructed425

by 2022 and in 2022 or subsequent years, with associated implications for technology stock turnover426

calculations (see Supplemental Information section 2.1.1).427

Changes in reference case building energy and emissions projections under various scenarios of428

building decarbonization are assessed at the level of individual building decarbonization measures,429

each of which is applied to particular segments of the reference case building stock during the year430

range that the measure is made available to energy consumers. Alternate scenario estimates of431

energy, Seuse−alt
y,m , and CO2 emissions, Scarb−alt

y,m , are constructed that reflect the effects of measure432

m deployment through year y on reference case outcomes:433

Seuse−alt
y,m =

Rm∑
r

Bm∑
b

Fb,m∑
f

Ub,f,m∑
u

Tb,f,u,m∑
t

Vm∑
v

(Sstk−ref
X,y Ieuse−alt

X,y,m,mt σX,y,m + Sstk−ref
X,y Ieuse−ref

X,y (1− σX,y,m)) aX,y,m

(3)

Scarb−alt
y,m =

Rm∑
r

Bm∑
b

Fb,m∑
f

Ub,f,m∑
u

Tb,f,u,m∑
t

Vm∑
v

(Sstk−ref
X,y Icarb−alt

X,y,mt σX,y,m + Sstk−ref
X,y Icarb−ref

X,y (1− σX,y,m)) aX,y

(4)
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where region set Rm, building type and vintage sets (Bm and Vm), fuel types (Fb,m), end uses434

(Ub,f,m) and technology types (Tb,f,u,m) are the subsets of the sets in equations 1 and 2 that measure435

m applies to (an applicable “market”); Sstk−ref
X,y is a single reference case building stock microsegment436

from the measure’s applicable market in year y; Ieuse−ref
X,y and Icarb−ref

X,y are the reference case energy437

and fuel CO2 per unit stock deployed as described for equations 1 and 2; Ieuse−alt
X,y,m,mt and Icarb−alt

X,y,m,mt438

are the same for the alternate case deployment of measure m of type mt; σX,y,m is the portion of the439

reference case stock that has been captured by measure m through year y; and aX,y,m is a market440

share adjustment that accounts for economic competition between measure m, the reference case441

counterfactual technology, and any other alternate scenario measures that provide the same energy442

service through year y (see Supplemental Information section 2.1.1 for additional details on handling443

of stock turnover and overlaps across measures). Note that setting the σX,y,m term in equations444

3 and 4 to zero produces reference case counterfactual results at the measure level, Seuse−ref
y,m and445

Scarb−ref
y,m , which are compared against the results of equations 3 and 4 to assess measure-specific446

energy and CO2 impacts.447

To facilitate representation of a wide range of building decarbonization solutions, the per-unit448

energy consumption and CO2 emissions terms in equations 3 and 4, Ieuse−alt
X,y,m,mt and Icarb−alt

X,y,m,mt, are449

dependent on the measure type mt, and are calculated as follows:450

Ieuse−alt
X,y,m,mt =

{
Ieuse−ref
X,y RP euse−ann

X,y,m , mt ∈ [EE,EL]

Ieuse−ref
X,y RP euse−tvar

X,y,m mt ∈ [EE +DF,EL+DF ]
(5)

Icarb−alt
X,y,m,mt =


Icarb−ref
X,y RP euse−ann

X,y,m , mt = EE or mt = EL and f ∈ X = electric

Icarb−ref
X,y RP euse−ann

X,y,m (τaltr,f=elec,y/τ
ref
r,f∈X,y), mt = EL and f ∈ X ̸= electric

Icarb−ref
X,y RP carb−tvar

X,y,m mt ∈ [EE +DF,EL+DF ]

(6)
where RP euse−ann

X,y,m and RP euse−tvar
X,y,m both denote the unit-level site energy consumption of measure451

m in year y relative to the counterfactual reference case technology that provides the same energy452

service1, but the former is calculated using annual energy performance metrics (e.g., COP, EF,453

annual consumption ratios, etc.) while the latter accounts for time-varying relative energy perfor-454

mance across all hours in a year; RP carb−tvar
X,y is interpreted in the same manner as RP euse−tvar

X,y455

but for relative CO2 emissions per unit instead of energy use; τ refr,f∈X,y and τaltr,f=elec,y are aver-456

age annual CO2 intensities for the reference case technology fuel type (f ∈ X) and electricity457

(f = elec), respectively, for a measure m that electrifies building loads (mt = EL) in region r458

and year y. The time-varying energy and CO2 performance terms in equations 5–6 (RP euse−tvar
X,y459

and RP carb−tvar
X,y ) address measures with demand flexibility (DF) features that non-uniformly shed460

and/or shift building loads across time. Further details on the hourly load calculations for such461

measures are available [15] and hourly emissions and consumer cost calculations are further detailed462

in Supplemental Information section 2.1.3.463

Equation 6 assesses each measure’s CO2 per unit stock Icarb−alt
X,y,m,mt relative to a counterfactual464

term Icarb−ref
X,y that reflects reference case fuel CO2 intensities. In the case of a microsegment X465

1Reference case technology performance characteristics are drawn from NEMS files “rsmeqp.txt” and “rsmlgt.txt”
for residential non-lighting and lighting equipment, respectively, and from “ktek.csv” for commercial technologies;
more details about these files are available in the EIA National Energy Modeling System documentation for buildings
[44, 43]. Technology characteristic data for envelope and miscellaneous technologies are separately developed for Scout
and are available: https://github.com/trynthink/scout/blob/master/cpl_envelope_mels.json
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with an electric fuel type f , this effectively stages the CO2 impacts of reductions in electricity466

consumption from demand-side measures before the impacts of additional grid decarbonization467

beyond the reference case. This approach differs from most previous cross-sectoral decarbonization468

studies2, which tend to attribute reductions in existing electric CO2 emissions to the power sector,469

thus precluding any CO2 impacts from building electric efficiency. For electrification (EL) measures,470

the CO2 impacts of changing from a fossil-based fuel and equipment type to electric equipment471

are assessed in parallel with grid decarbonization and attributed to the measure via the CO2472

intensity ratio (τaltr,f=elec,y/τ
ref
r,f∈X,y). For non-electrification measures, the same ratio is applied to473

any reference case electricity that remains after measure deployment to account for the impacts of474

additional grid decarbonization on building CO2 emissions.475

Finally, alternate scenario energy and CO2 results at the measure-level are aggregated across the476

full measure portfolio M to develop national-scale energy and CO2 emissions time series from 2022-477

2050, Seuse−alt
y and Scarb−alt

y , that can be directly compared against the reference case estimates of478

equations 1 and 2:479

Seuse−alt
y =

M∑
m

Seuse−alt
y,m (7) Scarb−alt

y =

M∑
m

Scarb−alt
y,m (8)480

While equations 1–2 and 7–8 focus on the whole U.S. buildings sector, other aggregations of481

the results to the regional level or across subsets of building types, fuel types, and measures are482

enabled by the bottom-up approach that is used to construct these high-level energy and emissions483

estimates.484

GridSIM and LoadFlex modeling of the power sector485

Power system outcomes are modeled with GridSIM [28], a proprietary long-term power system486

simulation and capacity expansion model developed by The Brattle Group. GridSIM analyzes how487

clean energy policies and technological change will affect future power system outcomes, particu-488

larly in high-renewable futures, over a multi-decade planning horizon. Like other expansion models,489

GridSIM identifies the cost-minimizing generation capacity expansion plan and accompanying power490

system operations, given information about existing power generation and transmission, and expec-491

tations about electricity demand, technology costs, fuel prices, and environmental policies, among492

other considerations.493

GridSIM models electricity demand on a chronological hourly basis, so that storage can be494

scheduled and traditional generation can be committed to balance variable wind and solar output.495

This is necessary for representing the value of each technology and developing a credible investment496

trajectory in a high-renewable future.497

Additionally, GridSIM incorporates how the effective load carrying capability (ELCC) of each498

type of variable wind and solar resource is likely to decline in the future with increasing penetration.499

It incorporates declining ELCC curves, accounting for correlated generation profiles and their coin-500

cidence with peak net loads. This, along with the chronological operations representation described501

above, enables GridSIM to project a realistic generation build mix and associated marginal costs.502

Table 3 summarizes key methodological elements of the GridSIM modeling framework as it was503

applied in this study, and further details are provided in Supplemental Information Section 2.2.1.504

Brattle’s LoadFlex model [50] is used in conjunction with GridSIM to calculate the economic505

benefits of measures with demand flexibility features at the grid level. LoadFlex simulates the506

2A notable exception is [45], which also effectively assesses the emissions impacts of demand-side efficiency before
the impacts of additional decarbonization of the electricity supply.
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Table 3: Summary of key GridSIM modeling elements as applied in the current analysis.

Input Summary
Geographic scope and resolution Contiguous U.S., 25 EIA Electricity Market Module (EMM) regions [30].

Temporal scope and resolution

Annual results are forecasted between 2020 and 2050 in 5 year increments. Within a given projection year, 
GridSIM utilizes a “typical days” representation of hourly load conditions, which is a common approach for 
capacity expansion models. The 365 days of the year are clustered based on similarities in daily load level and 
hourly shape. Reducing the number of days modeled to a subset based on these representative clusters allows 
the model to capture the full range of load and renewable generation conditions that are necessary to consider 
from a planning standpoint, while keeping the model runtime manageable. Using typical days also allows the 
model to retain intra-day hourly chronology, which is important to accurately account for the impact of the 
hourly profiles of demand-side efficiency, flexibility, and electrification programs.

Load forecast

Reference case: Annual electricity projections are based on regional peak demand and energy forecasts from the 
2021 AEO Reference Case [29].  Current load shapes are based on aggregated 2020 hourly utility load data from 
the FERC 714 dataset [46], with modifications to account for changes in the annual load factor implied in the 
AEO growth rates.
Decarbonization scenarios (2 and 3): Additional incremental load is assumed to represent electrification of the 
transportation and buildings sectors. Elevated growth in transportation demand assumes that 95%, 50%, and 
35% of light-duty, medium-duty and heavy-duty vehicles are electric by 2050, respectively. Elevated growth in 
building demand is consistent with deployment of the measure set assumed in this study's inefficient 
electrification scenario (1.1) at the electrification rate assumed for the given decarbonization scenario, which 
results in up to a 23% increase over reference building annual electricity demand by 2050 in the high 
decarbonization benchmark scenario (3).

Existing unit characteristics
The assumed capacity, heat rate, location, fixed O&M, and variable O&M of existing generation is based on 
assumptions in the 2021 AEO.  Planned retirements of existing units are based on documentation of NREL’s 
ReEDS model (Version 2019) [47].

New generator costs Capital, variable O&M, and fixed O&M costs are based on the Moderate Case in NREL’s 2021 Annual Technology 
Baseline [48].

Fuel prices Near-term fuel prices are based on forward market data (where available), and blended to the long-run fuel price 
trajectory from the 2021 AEO.

Transmission

Transmission capability in GridSIM is represented as a “pipe and bubble” framework which aggregates 
transmission capacity into larger “pipes” between load and generation “bubbles” as defined by 25 EIA EMM 
regions. Transmission capacity is based on the 2021 AEO Reference Case [29].  Like most bulk system capacity 
expansion models, GridSIM does not model the distribution system.
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hours of dispatch for each flexibility measure that maximize economic benefits across energy and507

generation capacity. If, on any day, shifting a measure’s load from its baseline would result in a508

net increase in system costs rather than a reduction, the measure is not dispatched (i.e., no load509

is shifted from baseline). The dispatch of each measure is constrained by the physical behavior of510

each measure at the building level as represented in Scout; these constraints are further described511

in Supplemental Information Section 2.2.1.512

Building–grid model coupling513

Building and grid models are loosely coupled via a one-way exchange of data between GridSIM514

and Scout that occurs in both directions without any real-time feedback. Regarding the former,515

GridSIM projections establish reference and alternative scenario values for the CO2 intensity of the516

building electricity supply, which are used to calculate the CO2 per unit stock terms in equations 2517

and 4. Regarding the latter, GridSIM estimates of power system costs are adjusted to reflect Scout518

estimates of hourly electricity demand impacts from building efficiency, flexibility, and efficient519

electrification deployment at the grid region level in a given year, taking into account seasonal520

changes in load shapes, ∆Dr,y,h,m,mt:521

∆Dr,y,h,m,mt = (Dref
r,y,h,m,mt −Dalt

r,y,h,m) ar,y,m (9)

where Dref
r,y,h,m,mt is the reference case electricity demand profile of all stock segments affected by522

measure m of type mt in grid region r, projection year y and hour h, Dalt
r,y,h,m is the same profile523

after measure m is deployed in isolation (e.g., considering only the measure’s unit-level impacts on524

load and baseline stock turnover across the grid region), and ar,y,m is a market share adjustment525

that accounts for competition between measure m and other technologies that provide the same526

end use service in region r through year y. The latter term in equation 9 enables aggregation527

of measure-level impacts across a full portfolio; excluding this term yields results for individual528

measures, before considering aggregation and competition across a portfolio.529

The calculation of the reference case term Dref
r,y,h,m,mt in equation 9 differs by measure type530

mt. For efficiency and flexibility measures, the calculation bases reference case electricity demand531

on that of the appropriate counterfactual technology or technologies from the AEO forecast. For532

electrification measures, an “inefficient” electrification counterfactual is developed that assumes the533

deployment of a substantial mix of electric resistance heating and water heating alongside heat534

pumps to fulfill the added electric service. Settings for the inefficient counterfactual measures are535

consistent with those from scenario 1.1 in Table 4 and are described further in the next section.536

Measure-level results from equation 9 are multiplied by GridSIM’s marginal cost forecasts for537

each grid region and summed across all hours of the year, regions, and measures to develop portfolio-538

level estimates of avoided system cost benefits in year y, ∆By:539

∆By =

M∑
m

Rm∑
r

8760∑
h=1

∆Dr,y,h,m,mt Mr,y,h (10)

where Mr,y,h is the GridSIM marginal system cost forecast (2020$/MWh) for region r, projec-540

tion year y, and hour of the year h, and system costs are inclusive of energy, capacity (genera-541

tion/transmission), and, if applicable, renewable energy credits (RECs) but do not include distri-542

bution costs. To ensure internal consistency between the avoided system cost estimates and the543
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treatment of electrification load impacts in equation 9 as incremental to an inefficient electrifi-544

cation reference, the added regional electricity demand from inefficient electrification is reflected545

in the GridSIM capacity expansion forecast that determines the marginal system costs Mr,y,h of546

equation 10. Additional details on GridSIM’s marginal cost outputs are available in Supplemental547

Information Section 2.2.2.548

Finally, incremental measure deployment costs are calculated to enable direct comparisons be-549

tween measure costs and benefits. As with system cost savings, incremental costs are calculated550

first at the measure-level, and then aggregated to a portfolio-level estimate in year y, ∆Cy:551

∆Cy =

M∑
m

∆Iy,m CRFm Sstk−ref
y,m σy,m ay,m, (11)

552

CRFm =
i (1 + i)l

(1 + i)l − 1
(12)

where ∆Iy,m is the incremental, unit-level installed cost of measure m in 2020$ compared with a553

counterfactual reference case technology in year y, CRFm is a capital recovery factor that annualizes554

incremental measure costs using the assumed real interest rate i = 8% and measure lifetime l,555

Sstk−ref
y,m σy,m is the total portion of applicable reference case stock that the measure captures through556

year y before competition, and ar,y,m adjusts for competition of measure m with other measures in557

the portfolio.558

Building decarbonization scenarios559

Table 4 details the 12 scenarios considered in this study along with key modeling assumptions.560

Individual scenarios are distinguished by the three demand-side measure features introduced pre-561

viously — energy efficiency (EE), load electrification (EL), and demand flexibility (DF) — and by562

four input dimensions that span both the demand- and supply-side of building energy use:563

• Market-available technology performance range: the energy performance levels of building564

technologies available for purchase by end-use consumers, bounded by a minimum performance565

“floor” and a maximum performance “ceiling”. DF measure features are integrated with a566

subset of EE measures, and thus the level of DF deployment depends on scenario settings for567

the EE dimension.568

• Electrification of building loads: the rate at which fossil-based equipment is converted to569

electric service via EL measures, and the efficiency level of the converted equipment. As with570

the market-available technology performance range dimension, DF features are integrated571

with a subset of EL measures.572

• Early retrofits: a small but increasing fraction of consumers that choose to replace existing573

building equipment and/or shell components before the end of their useful lifetimes.574

• Power sector: the annual average CO2 emissions intensity of the electricity supplied to the575

buildings sector across the modeled time horizon (2022-2050).576

Here we elaborate on the measure features and input dimensions that distinguish our modeling577

scenarios.578
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Table 4: Summmary of modeling scenarios and key assumptions. Scenarios are differentiated by
the degree of demand-side building efficiency, flexibility, and electrification deployment as well as by the
degree of decarbonization of the electricity supplied to buildings. Three benchmark scenarios are highlighted
in gray; remaining scenarios in each group are used to explore key sensitivities relative to the benchmarks.

Raise Floor Raise Ceiling
Additional 

Efficiency not 
in Ref. Case*

Switching Rate Efficiency Level

1: Low Benchmark (BM), 
High EL to HPs under reference grid

Decision-makers use regulations and market-based 
instruments to dramatically accelerate electrification 
(EL) to heat pumps (HPs), but progress on electric grid 
decarbonization stalls, leaving the power sector short 
of full decarbonization by 2050.

Switch to HPs (mix of HP 
performance levels 

depends on EE column 
settings)

1.1: Low BM w/o efficient EL
Consumers are not pushed to switch to heat pumps and a 
substantial amounut of additional electric resistance heating 
and water heating is deployed.

Switch to BAU sales mix 
of HPs/resistance (53% 

HPs/47% resistance 
res.heating, 9%/91% res. 
water heating, 56%/44% 
com. heating, 4%/96% 
com. water heating)

2: Moderate BM, 
Modest EE and EL to HPs under 
80x2050 grid

Decision-makers rely mostly on market-based 
instruments to moderately increase deployment of 
energy efficient technology (EE) and EL to HPs; the 
power sector continues to decarbonize rapidly, but 
some electricity emissions remain in 2050.

2.1: Moderate BM w/ early retrofits
A small but increasing percentage of consumers chooses to 
replace equipment and/or certain building shell components 
before the end of their useful lifetimes.

Represented 
(see Table 7 for 

details)

2.2: Moderate BM w/o breakthrough EE Efficient technologies with very high performance and low cost 
characteristics never materialize on the market.

2.3: Moderate BM w/o breakthrough EE or 
elevated codes & stds.

Failure to implement codes and standards that raise the 
market-available technology performance floor to the latest 
ESTAR/IECC/90.1 levels.

2.4 Moderate BM w/o EE
No additional near-term deployment of efficiency beyond the 
reference case (e.g., no envelope upgrades in existing homes, 
no deployment of advanced controls).

N/A

3: Aggressive BM,
High EE and EL to HPs under 
100x2035 grid

Decision-makers use both regulations and market-
based instruments to dramatically accelerate 
deployment of EE and EL to HPs, while the grid fully 
decarbonizes well before mid-century.

3.1: Aggressive BM w/ early retrofits See 2.1. Elevated
3.2: Aggressive BM w/o breakthrough EE See 2.2.
3.3: Aggressive BM w/o breakthrough EE 
or elevated codes & stds. See 2.3.

3.4: Aggressive BM w/o EE See 2.4. N/A

 Represented 
(Additional 

HVAC, lighting, 
and plug load 

controls; 
efficient window 

and roof 
replacements)

Represented

*Ref. Case = AEO 2021 Reference Case projections

N/A

Moderate 
(elevated codes 
and standards 
take effect in 

2030)

N/A

Moderate 
(breakthrough 
tech. enters 
market in 

2035)

N/A

Aggressive 
(breakthrough 

tech. enters the 
market in 

2030)

Aggressive 
(elevated codes 
and standards 
take effect in 

2025)

N/A N/A

Power GridScenario Scenario Narrative

Electrification of Load
Early 

Retrofits

Market-Available Technology Performance 
Range

Guidehouse Most 
Aggressive (see Table 6 

for details)

N/A

GridSIM 
Reference Case

Guidehouse Optimistic 
(see Table 6 for details)

Switch to HPs

Moderate (80% 
reduction in 

grid emissions 
from 2005 

levels by 2050)

Aggressive 
(100% zero-

carbon grid by 
2035)

N/A

N/A

Guidehouse Most 
Aggressive
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Scenario measure features579

The EE, EL, and DF measure features considered in this study represent, respectively: persistent580

reductions in equipment energy use (e.g., via installation of a higher-performance device) or in the581

demand for energy services (e.g., via improved building envelopes or operational controls); conver-582

sions of fossil-based heating, water heating, and cooking to electric service; and load shedding and583

shifting in response to grid needs. Measure features are sometimes mixed; for example, heat pump584

electrification (EL) measures or more efficient electric equipment (EE) measures can be scheduled585

to operate in off-peak hours on the grid in a given region to increase demand-side flexibility (DF).586

In each modeled year, measures compete for market share across four tiers of energy performance:587

• Tier 0: AEO 2021 Reference Case counterfactual technologies, which reflect the sales-weighted588

average technology in the AEO forecast;589

• Tier 1: Market-available technologies that meet the latest ENERGY STAR, IECC, or ASHRAE590

90.1 performance guidelines in the projection year [51, 52, 53];591

• Tier 2: The best performing technologies currently available on the market; and592

• Tier 3: Breakthrough technologies with aggressive cost and performance targets that are593

assumed to be achieved at scale by the time of market entry in a future year.594

While EE and EL measure features are represented across all four performance tiers, DF features595

are restricted to the best available performance tier (Tier 2). This restriction simplifies the handling596

of DF features in the analysis and reflects the assumption that such features are most likely to be597

packaged with higher-end technology offerings. Moreover, cost and performance characteristics for598

Tier 1 and 2 technologies are modified over time as needed to maintain a consistent incremental599

cost and performance difference from their Tier 0 counterfactuals across the model time horizon.600

Where possible, measure unit-level installed cost, performance, lifetime, and market/market entry601

settings are drawn from previous buildings sector analyses [42, 15] and updated to reflect the latest602

expectations and ambitions for building technology development. Table 5 outlines key data sources603

for these inputs at each measure tier and Table 6 includes detailed input values for key envelope,604

HVAC, and water heating measures across each of the tiers. Detailed inputs are also separately605

available for the core set of 170 individual building measure definitions used in scenario runs [54].606
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Table 5: Summary of building decarbonization measure energy performance tiers and key
input data sources.

Performance Cost
0: AEO Reference Case counterfactual 
technologies EL*

1: Currently available ESTAR/IECC/90.1 EE, EL Latest ENERGY STAR specifications [51]; 
IECC 2021 [52]; 90.1-2019 [53]

EIA equipment cost forecasts (major end 
use equipment) [55]; NREL Residential 
Measures Database (residential envelope) 
[56]; RS Means (residential/commercial 
envelope) [57];  Guidehouse Grid-
Interactive Efficient Building (GEB) 
Technologies Data Report (plug loads) [58]

2: Currently best available on the market EE, DF, EL

GEB Roadmap and underlying measure 
potential analysis (all EE+DF measures) 
[16, 15]; EIA equipment performance 
forecasts (major end use equipment EE) 
[55]

EIA equipment cost forecasts (major end 
use equipment EE cost component) [55]; 
Guidehouse GEB Technologies Data Report 
(DF cost component of all EE+DF 
measures, EE cost component for plug 
loads measures) [58]; NREL Residential 
Measures Database (envelope) [56]

3: Prospective cost and performance 
targets EE, EL

2030 (high);
2035 

(moderate)

DOE BTO Roadmaps [59] or targets based on highest potential performance level 
when recent Roadmap is unavailable**

*When on the market, reference case heat pumps and/or a mix of reference case heat pumps and reference case electric resistance (for inefficient EL scenario 1.1) are subject to the same 
Guidehouse electrifcation rates as electrification measures in higher performance tiers; such reference case electrification technologies represent an efficiency gain over comparable fossil-
based equipment.
**Relevant in particular to HVAC, water heating, and refrigeration technologies. For these technologies, an aggressive performance target is established for the market entry year using the high-
end of currently market-available technologies as a benchmark; an installed cost is then calculated using Scout given this performance level to meet a 5 year consumer payback period. This 
process is consistent with that used to develop cost and performance targets in existing BTO Roadmaps, such as those for Windows & Envelope and Sensors & Controls. For ASHPs, separate cost 
targets are calculated in cold climates vs. non-cold climates; all HP targets are all based on a fuel switching context in which the HP is replacing fossil-based heating/water heating equipment.

2022

Key data sources
Measure performance tier Features 

assessed
Market 

entry year

AEO 2021 Reference Case forecast [29]
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Table 6: Detailed measure settings for residential and commercial envelope, HVAC, and water heating solutions across performance tiers.

Measure Performance 
Tier Affected Markets Market Entry Year Building Type Energy Performance Installed Cost

Residential 4.63 COP (cooling), 2.58 COP (heating) $5150/unit (new homes); $9150-10150/unit (existing homes)
Commercial 3.4 BTU out/BTU in $141/kBtu/h cooling

Residential
Equipment: 4.69 (cooling), 2.70 (heating)
Envelope components: R-2.5-3.7, 0.25-0.4 SHGC (windows); R-15-
25 (walls); R-47-60 (roofs); R-15-31 (floors); 5 ACH (air sealing)

Equipment: $6100/unit (new homes); $11100/unit (existing 
homes)
Envelope components: $48/ft^2 glazing (windows); $8.9/ft^2 
wall (walls); $2.1/ft^2 roof (roofs); $5/ft^2 footprint (floors); $0-
$1.2/ft^2 wall (new-existing air sealing)

Commercial

Equipment: 3.4 BTU out/BTU in
Envelope components: R-2.25-2.98 (windows); R-16.8-25.3 
(walls);R-0-19.6 (floors); R-25-31 (roofs); 0.4 CFM/ft^2 @ 0.3 in. 
w.c. (air sealing)

Equipment: $141/kBtu/h cooling
Envelope components: $56.2/ft^2 glazing (windows); $27.4/ft^2 
wall (walls); $5/ft^2 footprint (floors); $6.3/ft^2 roof (roofs);  $0-
$0.9/ft^2 wall (new-existing air sealing)

Residential

EL, EL+DF: consistent with residential ASHP + envelope/pre-
cooling load savings shape from [15] with additional efficiency 
bump to 4.55 COP (cooling) and 1.88 COP (heating) to account 
for change from fossil to typical** electric equipment (relative to 
which the savings in [15] are assessed)
EE, EE+DF: consistent with residential ASHP + envelope/pre-
cooling load savings shape from [15]

Equipment: $6357/unit (new homes);
$11357/unit (existing homes)
Envelope components: $57/ft^2 glazing (windows); $10.8/ft^2 
wall (walls); $4.5/ft^2 roof; $5-6.8/ft^2 footprint (new-existing 
floors); $0.31-$2/ft^2 wall (new-existing air sealing)

Commercial

EL, EL+DF: consistent with commercial HVAC + envelope/pre-
cooling load savings shape from [15] with additional efficiency 
bump to 4.13 COP (cooling) and 2.32 COP (heating) to account 
for change from fossil to typical** electric equipment (relative to 
which the savings in [15] are assessed)
EE, EE+DF: consistent with commercial HVAC + envelope/pre-
cooling load savings shape from [15]

Equipment: $178/kBtu/h cooling
Envelope components: $56.2/ft^2 glazing (windows); $37-
41.8/ft^2 wall (walls); $7/ft^2 roof (roofs); $10-11.9/ft^2 
footprint (floors); $0.46-$2.2/ft^2 wall (new-existing air sealing)

Residential

Equipment: 12 COP (cooling), 6 COP (heating)
Envelope components: R-13, 0.09 SHGC cooling (windows); +R-
40 (walls add-on); R-15-31 (floors); 1 ACH (air sealing)
Controls: 30% heating and cooling savings*****

Equipment: $5520/unit (non-cold climates); $6223/unit (cold 
climates)
Envelope components: $55/ft^2 glazing (windows), $0.75/ft^2 
wall (walls add-on); $0.79/ft^2 footprint (floors); $0.9-$1.2/ft^2 
wall (new-existing air sealing)
Controls: $0.5/ft^2 floor*****

Commercial

Equipment: 12 COP (cooling), 6 COP (heating)
Envelope components: R-10, 0.09 SHGC cooling (windows); +R-
40 (walls add-on); +R-50-64 (roofs add-on); 0.2 CFM/ft^2 @ 0.3 
in. w.c. (air sealing) 
Controls: 30% HVAC savings

Equipment: $51/kBtu/h cooling (non-cold climates); $41 kBtu/h 
cooling (cold climates)
Envelope components: $66/ft^2 glazing (windows); $1.9/ft^2 
wall (walls); $0.55/ft^2 roof (roofs); $0.16-$0.53/ft^2 wall (new-
existing air sealing)  
Controls: $1/ft^2 floor

ESTAR HPWH (EL, EE) 1 Residential****
EL, EL+DF: 3.30 UEF (new homes); 2.2 UEF (existing homes, 
which assumes integrated 120V to avoid panel upgrade)
EE, EE+DF: 3.30 UEF

$2075/unit

Residential

EL, EL+DF: consistent with HPWH load savings shape from [15] 
with additional efficiency bump to 1.13 UEF to account for 
change from fossil to typical** electric equipment (relative to 
which the savings in [15] are assessed)
EE, EE+DF: consistent with HPWH load savings shape from [15]

$2756/unit

Commercial**** 3.9 BTU out/BTU in $299/kBtu/h water heating
Residential 3.55 UEF $2266/unit
Commercial 3.9 BTU out/BTU in $33/kBtu/h water heating

**Per market share-weighted electric equipment performance from AEO 2021 Reference Case forecast.

****ESTAR residential HPWH and Best commercial HPWH settings are consistent with Reference Case HPWH performance.

Prospective ASHP, 
Envelope, Controls (EL, EE) 3

*Excludes large commercial boiler/chiller configurations.

***Assumes prospective breakthrough ASHP technology is able to serve large commercial heating and cooling needs; prospective residential controls measures are limited to single and multi-family homes, and prospective commercial controls measures are limited to offices, schools, food service, and retail buildings.

Best Available HPWH 
(EL+DF, EE+DF) 2

Prospective HPWH (EL, EE) 3

2022

2030/2040 
(equipment and 

windows/all other 
envelope, high); 

2035/2040 
(equipment and 

windows/all other 
envelope, 
moderate)

2030 (high); 
2035 (moderate)

2022All fossil-based storage water heating 
equipment (EL, EL+DF);
All electric storage water heating 
equipment

All unitary fossil-based HVAC equipment*, 
associated envelope (EL, EL+DF); 
All electric resistance or air source heat 
pump HVAC equipment, associated 
envelope (EE, EE+DF)

All fossil-based HVAC equipment***, 
associated envelope (EL, EL+DF); 
All electric resistance or air source heat 
pump HVAC equipment***, associated 
envelope (EE, EE+DF)

Reference case ASHP (EL) 0

1ESTAR ASHP, 90.1/IECC 
Envelope (EL, EE)

Best Available ASHP, 
Envelope (EL+DF, EE+DF) 2
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Scenario input dimensions608

The settings for four key input dimensions distinguish the 12 scenarios outlined in Table 4: market-609

available technology performance range, rate and efficiency of load electrification, early retrofit610

assumptions, and degree of power grid decarbonization.611

A scenario’s market-available technology performance range denotes the lowest and highest–612

performing technologies made available to consumers in a given year (the bounding technology613

performance “floor” and “ceiling”). In our scenarios, the technology performance floor is repre-614

sented by either Tier 0 or 1 technologies, depending on assumptions about building performance615

codes and appliance efficiency standards. When more aggressive codes and standards are not as-616

sumed (scenarios 1-1.1, 2.3-2.4, 3.3-3.4), the technology floor is set to the Tier 0 level, consistent617

with the reference case counterfactual technology. Scenarios that assume enactment of more aggres-618

sive codes and standards by a certain year (2-2.2, 3-3.2) remove the Tier 0 technologies from market619

competition in that year and set the performance floor to be consistent with Tier 1 technologies620

for the remainder of the modeling time horizon. Similarly, the technology performance ceiling is621

represented by Tier 2 or 3 technologies, depending on assumptions about the introduction of tech-622

nologies with breakthrough cost and performance characteristics. When breakthrough technology623

introduction is not assumed (scenarios 1-1.1, 2.2-2.4, 3.2-3.4), the technology performance ceiling624

is set to Tier 2; otherwise, the ceiling is set to Tier 3 beginning in the year that breakthrough625

technology introduction is assumed (as in scenarios 2-2.1 and 3-3.1). Step changes in both the626

technology performance floor and ceiling are implemented on a technology class-by-class basis but627

are reflected globally across all building energy segments that associate with the technology class.628

Rates of building heating, water heating, and cooking load electrification are exogenously spec-629

ified based on a separate analysis conducted in consultation with Guidehouse. The analysis pairs630

Guidehouse’s expert judgement of HVAC and water heating market characteristics and key adop-631

tion drivers and barriers with an assessment of equipment stock turnover and shipments to develop632

four plausible scenarios of conversions from fossil-based to electric equipment in the residential and633

commercial heating and water heating sub-sectors. The Guidehouse conversion scenarios demon-634

strate differing degrees of movement in annual sales towards heat pumps by a given year under635

varying assumptions about federal and utility incentives, state and local restrictions, and prod-636

uct innovations (see Table S1). Conversion rates are distinguished by region, building type, fuel,637

equipment type and scenario, as shown in Figures S14-S17 for the two electrification scenarios638

adapted for our analysis, “Optimistic” (used in scenarios 2-2.4) and “Most Aggressive” (used in639

scenarios 1-1.1 and 3-3.4). The weighted average national heat pump sales shares as a portion of640

total unitary AC plus heat pump and total storage water heater sales are shown in Table 7, which641

provides values assumed in other recent studies for context. We also assume natural gas cooking642

conversions, which were not assessed in the Guidehouse analysis; here, we set conversion rates to643

the values developed for the heating end use on the recommendation of the Guidehouse analysts.644

Further details about the conversion rates and adaptation of the Guidehouse analysis are available645

in Supplemental Information section 2.1.2.646

Electrification conversions generally occur with high efficiency in our scenarios, as fossil-based647

heating and water heating equipment moves to air source heat pumps and heat pump water heaters,648

respectively. Ground-source heat pump (GSHP) adoption is represented at AEO 2021 Reference649

Case levels across all scenarios. In scenario 1.1., we explore the implications of “inefficient” electri-650

fication of heating and water heating, where fossil-based equipment is converted to a mix of heat651

pumps and electric resistance heating and water heating. The share of heat pumps vs. resistance652

in the technology mix is consistent with AEO 2021-forecasted electric equipment sales shares in653
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Table 7: Comparison of the Guidehouse 2030 and 2050 heat pump sales shares consistent
with the electrification rates assumed in this study against 2019 heat pump sales shares and
heat pump sales shares assumed in other recent decarbonization studies that addressed the
buildings sector. Guidehouse heating sales shares are relative to total sales of unitary AC equipment
plus heat pumps; rates for comparable studies are typically relative to total heating equipment sales. Sales
shares are exclusive to heat pumps and do not include electric resistance technologies.

2030 2050 2030 2050 2030 2050 2030 2050 2030 2050 2030 2050
Residential heating 37% 50% 76% 75% 90% 60% 85% 60% 90% 61% 86%
Residential water heating 1% 20% 60% 50% 85% 45% 55% 45% 60% 44% 59%
Commercial heating 9%** 20% 42% 30% 85% 50% 75% 50% 80% 39% 71%
Commercial water heating 0.10% 5% 30% 10% 50% 45% 60% 40% 60% 18% 40%
*Based on AHRI and DOE Rulemakings market share and shipments data
**Based on RTU market data

ACEEE [19]

NREL EFS High

Guidehouse

Optimistic Most 
Aggressive BASE 350 NDC Pathway

Sub-sector

2019 US 
HP Sales 
Market 
Share*

100%

E+

Energy 
Innovation [23]

USF, Evolved 
Energy, LBNL 

[22]
Princeton [21]

2021 — 53% heat pumps (including GSHPs)/47% resistance (residential heating), 9%/91% (resi-654

dential water heating), 56%/44% (commercial heating), 4%/96% (commercial water heating) [60,655

61]. Cooking electrification is conservatively assumed to occur without any efficiency gain across656

scenarios.657

Two scenarios in our analysis (2.1 and 3.1) assume that a small fraction of consumers decides658

to replace existing equipment and/or envelope components before the end of their useful lifetimes,659

thus accelerating the pace with which building decarbonization measures can penetrate baseline660

markets. Annual early retrofit fractions are specified separately by building and equipment or661

envelope component type as summarized in Table 8. Residential and commercial fractions are662

initialized for the start year 2022 on the basis of building renovation data from the American Housing663

Survey (AHS) and EIA Commercial Building Energy Consumption Survey (CBECS), respectively664

[62, 63]. To produce these initial rate estimates, we focus on the proportion of buildings in the665

data that report retrofitting a given technology before the end of its expected useful lifetime. For666

example, for commercial HVAC equipment, we find the total number of buildings constructed667

between 1990 and 2008 that report an HVAC renovation during that period, under the assumption668

that HVAC equipment typically functions for 20 years and thus would not be regularly replaced669

until 2010 at the earliest. We divide this number by the total number of buildings constructed670

in that time period, and annualize by dividing the result by 18 years (2008-1990). To represent671

the effects of building policies that encourage early retrofitting behavior [64, 65], we represent a672

fourfold escalation in each initial annual rate by 2035, with rates remaining at the 2035 value in all673

subsequent years. For electrification measures, we represent 100% conversion of any baseline stock674

that turns over and converts to electric service via early retrofits, assuming that consumers who675

are persuaded to undergo early retrofits will also be encouraged to electrify their equipment.676

Finally, power grid decarbonization is represented at three levels in our analysis, all of which677

are based on GridSIM forecasts. The lowest level, reference case grid reflects only the impacts of678

already-enacted state-level renewable portfolio standard (RPS) mandates; this trajectory is paired in679

scenarios 1 and 1.1 with the most aggressive rates of building electrification to explore the emissions680

implications of accelerating electrification under a slowly decarbonizing grid. Moderate scenarios681
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Table 8: Rates of early retrofit assumed in scenarios 2.1 and 3.1 and supporting data sources.
Early retrofit rates represent equipment or envelope component replacements before end-of-life; initial rates
increase through 2035 and remain flat thereafter.

Building Type Data source
Component retrofitted 
(year range)

Starting annual 
early retrofit 

rate (%) by 2035 (4X)
Lighting (2000-2008) 1.5 6
HVAC (1990-2008) 0.9 3.6
Roof (1990-2008) 0.6 2.4
Windows (1990-2008) 0.3 1.2
Insulation (1990-2008) 0.3 1.2

Use com. HVAC Water heating 0.9 3.6
N/A All other 0 0

HVAC (1990-2008) 0.5 2
Roof (1990-2008) 0.27 1.08
Windows (1990-2008) 0.23 0.92
Insulation (1990-2008) 0.06 0.24

Use res. HVAC Water heating 0.5 2
Use com. lighting Lighting 1.5 6
N/A All other 0 0

Commercial
CBECS 2012 [63]

Residential

AHS 2019 [62]

(2-2.4) reflect a grid that is decarbonized 53% vs. 2005 levels by 2030 and 80% by 2050, which is682

consistent with the 2050 reduction goal of the 2016 U.S. Mid-Century strategy [66] and results in683

similar grid development to existing modeling scenarios that assume low renewable energy costs [67].684

Finally, our most aggressive scenarios (3-3.4) reflect a grid that is 79% decarbonized by 2030 and685

100% decarbonized by 2035, consistent with the Biden-Harris Administration clean electricity goal686

[1]. As described in Table 3 and Supplemental Information section 2.2.1, overall growth in electricity687

demand is consistent with the AEO 2020 Reference Case in the GridSIM reference forecast, but688

reflects higher levels of transportation and building electricity demand growth in the 80x2050 and689

100x2035 scenarios.690

Analysis limitations691

Key methodological limitations are grouped into those concerning the buildings and power system692

modeling for this study.693

Regarding the buildings modeling, rates of end-use electrification are determined based on exoge-694

nously developed scenarios; the scenarios reflect expert judgments of plausible levels of fossil-based695

equipment conversions to heat pumps under different market and regulatory conditions paired with696

analysis of HVAC and water heating stock totals and rates of stock turnover. This approach reflects697

the lack of reliable bottom-up models of consumer electrification decisions in the buildings context.698

The electrification rates in our analysis can serve as useful benchmarks for policy programs that699

seek to drive the levels of building emissions reductions estimated in our study; however, additional700

research is needed to compare the conversion rates used in our analysis against real-world data on701

consumer fuel switching costs and decision-making across U.S. regions, both historically and given702

additional policy support for electrification in the coming years.703

Second, our building decarbonization scenarios reflect the effects of an increased technology per-704

formance floor — e.g., through more aggressive building performance codes and appliance efficiency705
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standards — as an increase in minimum market-available technology performance levels across all706

regions that begins in a certain year. While appliance efficiency standards can be increased across707

regions via federal regulations, building performance codes are adopted at the local and state levels708

and, in practice, adoption timelines for more aggressive codes will vary from jurisdiction to juris-709

diction. Moreover, our analysis represents the effects of more aggressive codes on market-available710

technology performance levels in both new construction and retrofit contexts, though currently711

most building codes only apply to the former.712

Third, we generate grid profiles of hourly building demand and demand reductions based on713

data from a previous study [15] and inherit the data limitations noted in that study: possible714

under-representation of the diversity in end-use load profiles, a coarse resolution of representative715

weather conditions that drive loads, and the use of typical meteorological year weather conditions716

that do not reflect the most extreme within-year variations in hourly weather patterns or the effects717

of climate change. An additional limitation is the use of typical electric heating load profiles to718

assess the hourly load impacts of heat pump measures not specifically assessed in [15]: in practice,719

temperature responses can vary across different heat pumps [68]. Taken together, these limitations720

could collectively result in either under- or over-estimation of the peak load impacts of building721

efficiency and flexibility measures, with associated implications for grid modeling estimates.722

Finally, we note key limitations in the scope of our demand-side analysis. First, the build-723

ing decarbonization measures we explore do not include emerging community/district-level decar-724

bonization strategies, such as renewable geothermal heating and cooling on campuses or in urban725

centers, which may become increasingly important in the U.S. for decarbonizing dense clusters726

of large commercial buildings. Second, we assess only operation-phase building emissions and do727

not account for other life-cycle GHG emissions associated with building material manufacturing,728

transport, construction, and disposal. These emissions are an important source of building sector729

GHG contributions, and will only grow in significance as operational emissions from buildings are730

reduced to support economy-wide decarbonization goals.731

Regarding power system modeling, our estimates of avoided power system costs only include732

avoided generation costs (capital expenditures and production costs) and avoided transmission733

costs. The analysis does not currently account for distribution costs, which would need to increase734

to accommodate new electrification-related load. Taking these additional costs into account would735

increase the overall power system costs across all grid scenarios, and would likewise increase the736

gross benefits of the demand-side measures by avoiding generation, transmission, and distribution737

costs. We identify the assessment of avoided distribution costs as an important opportunity for738

expanding our research.739

Second, geographic variation in the power system modeling is limited to 25 regions. We do740

not account for nodal variation in prices, which would require significant computational power in741

a national modeling study. We also do not account for transmission congestion within regions.742

Representation of these additional within-region constraints likely would result in larger estimates743

of power system investment, and higher demand-side measure benefits in our study.744

Third, we estimate the cost-effectiveness of demand-side measures based on marginal costs.745

For this study, GridSIMs generation capacity expansion decisions do not endogenously account746

for interactions between demand-side and supply-side resource options. GridSIM does have the747

capability to allow demand-side and supply-side measures to compete, and this could provide valu-748

able insight regarding the quantity and type of power generation resources that would be avoided749

through demand-side investment, as well as a more robust view of how power system operations750

would change due to the addition of cost-effective demand-side measures.751
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Supplemental Information

1 Additional results

1.1 Building sector modeling

Figures S1 to S8 present alternate versions of the main results from Scout modeling of the building
sector.

Figure S1 demonstrates the sensitivity of 2030 building energy and CO2 emissions avoided by
demand-side measures to changes in key dynamics that could be affected by policy levers, pro-
viding a nearer-term lens on the 2050 results shown in Figure 2. The influence of early retrofitting
behavior and additional deployment of efficient envelopes and controls beyond the reference
case is notably more prominent in the near-term than under a longer-term perspective. While
early retrofitting increases the 2030 energy and CO2 reduction potential of demand-side measure
deployments by 26-38% across the moderate and aggressive decarbonization scenarios, failure
to increase deployment of efficient envelopes and controls beyond the reference case precludes
66-81% of 2030 energy and CO2 reduction potential across these scenario groups. Of the other
dynamics examined, only the removal of more aggressive codes and standards in scenario group
3 registers influence in Figure 2, albeit to a smaller degree than the early retrofit or additional
efficiency dynamics. Note that in this aggressive scenario group, such codes and standards begin
having effect in 2025, while in the moderate scenario group 2 these effects aren’t represented
until 2030.

Figure S2 shows the influence of the same sensitivity dynamics on cumulative avoided building
CO2 emissions between 2022-2050. Because the cumulative CO2 metric captures the impacts
of sensitivity dynamics across the full time horizon, and early retrofits and additional efficiency
deployments both have more notable impacts in the near-term per Figure S1, greater sensitivity
to these two dynamics is observed under the cumulative metric than under the annual one shown
in Figure 2 for 2050.

Figures S3 and S4 show the staging of building CO2 emissions reductions and remaining build-
ing CO2 emissions in 2050 under less aggressive scenario assumptions than is reflected in Figure
4. Under the low decarbonization benchmark (Figure S3), in which only accelerated electrifica-
tion is assumed alongside reference case grid decarbonization, building sector CO2 emissions are
reduced just 45% by 2030 and 53% by 2050 vs. 2005 levels — far out of step with a net-zero
compatible pathway for the sector. In this case, a wide variety of building end uses contribute
to remaining CO2 emissions from buildings in 2050, with notable contributions from cooling and
commercial refrigeration, ventilation, and computers and electronics alongside the thermal and
“Other” end uses that drive remaining emissions under the aggressive benchmark (Figure 4). Un-
der the moderate decarbonization benchmark (Figure S4), which represents moderate increases
in deployment of both electrification and parallel efficiency and flexibility measures, the influence
of efficiency deployment vs. electrification is more pronounced than in the aggressive bench-
mark (Figure 4), as efficiency measures deliver more than four times the reductions of building
electrification measures between 2022–2030 and roughly equal reductions between 2030–2050;
this compares with just over two times more reductions from efficiency vs. electrification between
2022–2030 and three times less between 2030–2050 under the aggressive benchmark.

Figure S5 shows the residential and commercial-specific versions of the segmentation of avoided
CO2 from Figure 5. The Figure demonstrates that reductions in commercial buildings are far more
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heterogeneous than those in residential buildings, and are less concentrated around a handful of
influential reduction segments given the wide variety of commercial building types and uses. Fig-
ures S6 and S7 show detailed segmentation of avoided building CO2 emissions in 2030 and 2050
under less aggressive scenario assumptions than are reflected in Figures 5 and S5. Results for
the low decarbonization benchmark (Figure S6) demonstrate the distribution of CO2 reductions
in a future with high building electrification to heat pumps and no other demand-side changes.
Here, reductions are more heavily concentrated towards single family heating in colder regions
with a large installed base of gas heating equipment (Great Lakes/Mid-Atlantic, Northeast, Up-
per Midwest, and California). Given parallel deployment of efficiency measures in the moderate
decarbonization benchmark (Figure S7), near-term (2030) reductions are more strongly driven by
envelope efficiency improvements in single family homes with non-electric heating, while by 2050
the strongest influences are from electrification and electric efficiency measures.

Finally, Figure S8 presents an alternate segmentation of total avoided building CO2 emissions
in 2030 and 2050 across all three benchmark scenarios that facilitates direct comparison of emis-
sions reductions across building and measure type categories. Of particular note in Figure S8: the
strong comparative influence of residential vs. commercial electrification, given the greater mag-
nitude of existing fossil-based loads for residential and the higher rates of electrification assumed
for residential buildings; the high relative near-term significance of both residential and commer-
cial electric efficiency and of envelope efficiency in residential buildings with non-electric heating,
particularly under more moderate rates of electrification (scenario 2); and the sharp increase in
CO2 emissions reductions from electrification measures, particularly in residential buildings, un-
der a long-term (2050) vs. short-term (2030) perspective.

1.2 Power sector modeling

1.2.1 GridSIM energy and capacity results

Figure S9 presents power system capacity and generation mixes for each of the three grid sce-
narios modeled in GridSIM — a reference case, a moderate case with 80% grid CO2 reduction vs.
2005 levels by 2050 (80x2050), and an aggressive case with 100% grid CO2 reduction by 2035
(100x2035). Results for the latter two cases reflect additional load growth from electrification of
transportation and buildings. In these two cases, rates of building end-use electrification are con-
sistent with this paper’s moderate and aggressive decarbonization benchmarks (scenarios 2 and
3 in Table 4), but the electrified equipment is deployed with a lower efficiency level (consistent
with settings from scenario 1.1 in Table 4). Growth in building demand otherwise follows that of
the 2021 AEO Reference case. Transportation electrification assumes that 95%, 50%, and 35% of
light-duty, medium-duty and heavy-duty vehicles are electric by 2050, respectively.

The reference case supply forecast satisfies baseline load growth and clean energy constraints
consistent with state mandated RPS targets. This leads to a 50% increase in national installed
capacity (ICAP) from 2020–2050. The majority of capacity additions are firm dispatchable natural
gas combined-cycle (CC) and combustion-turbine (CT) plants, with additional growth in clean re-
sources (solar, land-based wind, and offshore wind) to satisfy state RPS targets. The generation
mix is around 30% renewable and 45% carbon-free by 2050, in compliance with state RPS targets
and demand growth. Natural gas is the primary fuel type for more than half of national generation
in each year of the study horizon.

The 80x2050 decarbonization scenario supply forecast satisfies additional transportation and
building electrification load that is incremental to the reference case, in addition to achieving 80%
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Figure S1: Sensitivity of annual building energy use and CO2 in 2030 to changes in policy-related dy-
namics. Results for nine sensitivity side cases are organized into three groups and assessed relative to the
annual avoided energy use and CO2 emissions of the three benchmark scenarios (1, 2, and 3). The sensitivity
cases assess the influence of five unique dynamics on annual energy and emissions: reductions in efficiency
of electrification via substantial fuel switching from fossil-based heating and water heating to electric resis-
tance technologies (1.1); failure to increase the market-available technology performance ceiling via eventual
introduction of breakthrough efficiency technologies with very low cost and performance (2.2, 3.2); failure to
increase the market-available technology performance floor via implementation of more aggressive building
performance codes and appliance efficiency standards (2.3., 3.3), and; failure to deploy additional market-
viable efficiency options not represented in the reference case in the near-term — in particular, upgrades for
certain envelope components in existing buildings and deployment of advanced operational controls (2.4,
3.4).

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4253001

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



4

1:
Low BM: 

High EL to HPs,
reference grid

1.1:
(-) efficient

EL (EL to HP/
resistance

mix)

0

1000

2000

3000

4000

5000

6000

7000

8000

Av
oi

de
d 

CO
2 

Em
is

si
on

s 
(M

t 
CO

2)
vs

. G
ri

dS
IM

 R
ef

. C
as

e,
 A

nn
ua

l, 
20

30

Group 1

2106

-658 (31%)

2:
Moderate BM: 

Modest EE/
EL to HPs,

80x2050 grid

2.1:
(+) early
retrofits

2.2:
(-) break-

through EE

2.3:
(-) break-

through EE,
elevated

codes & stds.

2.4:
(-) all additional
EE (EL to HPs

only)

Group 2
Total Avoided
Incremental Change

3998

+954 (24%)

-351 (9%)

-1169 (29%)

-2754 (69%)

3:
Aggressive BM: 

High EE/
EL to HPs,

100x2035 grid

3.1:
(+) early
retrofits

3.2:
(-) break-

through EE

3.3:
(-) break-

through EE,
elevated

codes & stds.

3.4:
(-) all additional
EE (EL to HPs

only)

Group 3

6624

+1097 (17%)

-621 (9%)

-1861 (28%)

-3221 (49%)

Scenario

Figure S2: Sensitivity of building CO2 in to changes in policy-related dynamics, 2022-2050. Results for
nine sensitivity side cases are organized into three groups and assessed relative to the cumulative avoided
CO2 emissions of the three benchmark scenarios (1, 2, and 3) between 2022-2050. The sensitivity cases assess
the influence of five unique dynamics on cumulative emissions: reductions in efficiency of electrification via
substantial fuel switching from fossil-based heating and water heating to electric resistance technologies
(1.1); failure to increase the market-available technology performance ceiling via eventual introduction of
breakthrough efficiency technologies with very low cost and performance (2.2, 3.2); failure to increase the
market-available technology performance floor via implementation of more aggressive building performance
codes and appliance efficiency standards (2.3., 3.3), and; failure to deploy additional market-viable efficiency
options not represented in the reference case in the near-term— in particular, upgrades for certain envelope
components in existing buildings and deployment of advanced operational controls (2.4, 3.4).
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5

Figure S3: Staging of building CO2 emissions reductions and remaining emissions in 2050 under low de-
carbonization benchmark. Reductions from the 2005 building sector emissions level are broken out between
2005-2030 and between 2030-2050 by source: historical reductions (from 2005-2021); reductions projected
in the reference case forecast; and further demand-side reductions via building electrification beyond the
reference case.
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Heating, WH, and cooking: 
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Figure S4: Staging of building CO2 emissions reductions and remaining emissions in 2050 under moder-
ate decarbonization benchmark. Reductions from the 2005 building sector emissions level are broken out
between 2005-2030 and between 2030-2050 by source: historical reductions (from 2005-2021); reductions
projected in the reference case forecast; further demand-side reductions via building efficiency, flexibility and
electrification beyond the reference case; and further decarbonization of the building electricity supply be-
yond the reference case. Reductions from energy efficiency are grouped into measures that reduce demand
for electric vs. non-electric energy; the former type of efficiency measure is staged first, while the latter type
of efficiency measure is applied to any non-electric demand that remains after considering the deployment
of building load electrification measures with parallel decarbonization of the electricity supply.
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Figure S5: Segmentation of avoided building CO2 emissions under aggressive decarbonization bench-
mark, residential- and commercial-only focus. The plot further segments the scenario’s total building emis-
sions reductions in 2030 (top row) and 2050 (bottom row), constrained to residential (left column) or commer-
cial (right column) building types only. Emissions reductions are segmented across the following dimensions,
beginning with the inner ring of each plot and moving outwards: region (aggregations of 25 EIA Electricity
Market Module regions [1] to 11 higher-level regions); building type (aggreagations of the 3 residential and
11 commercial EIA Annual Energy Outlook building types to 2 and 8 residential and commercial building
types, respectively); energy end use; and measure type (electrification paired in some cases with flexibility
(EL+DF), electric efficiency paired in some cases with flexibility (EE (Elec.)+DF), and non-electric efficiency
(EE (N-Elec.)). White regions of the plot denote aggregations of very small segments.
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Figure S6: Segmentation of avoided building CO2 emissions under low decarbonization benchmark. The
plot further segments the scenario’s total building emissions reductions in 2030 (top row) and 2050 (bottom
row), across all building types (left column) or constrained to residential (middle column) or commercial (right
column) building types only. Emissions reductions are segmented across the following dimensions, beginning
with the inner ring of each plot and moving outwards: region (aggregations of 25 EIA Electricity Market
Module regions [1] to 11 higher-level regions); building type (aggreagations of the 3 residential and 11
commercial EIA Annual Energy Outlook building types to 2 and 8 residential and commercial building types,
respectively); energy end use; and measure type (electrification paired in some cases with flexibility (EL+DF),
electric efficiency paired in some cases with flexibility (EE (Elec.)+DF), and non-electric efficiency (EE (N-
Elec.)). The low decarbonization benchmark exclusively deploys electrification (EL) measures, thus no impacts
are attributed to energy efficiency (EE) measure types. In each plot, the top three regional segments are
highlighted with color (inner ring), as are the top segments for each level nested within those regions (e.g.,
building type, end use, measure type); all other segments are shaded gray. In the plots covering all building
types, the aggregation of commercial building types is highlighted with a thick gray border. White regions
of the plot denote aggregations of very small segments.
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Figure S7: Segmentation of avoided building CO2 emissions under moderate decarbonization bench-
mark. The plot further segments the scenario’s total building emissions reductions in 2030 (top row) and 2050
(bottom row), across all building types (left column) or constrained to residential (middle column) or commer-
cial (right column) building types only. Emissions reductions are segmented across the following dimensions,
beginning with the inner ring of each plot and moving outwards: region (aggregations of 25 EIA Electricity
Market Module regions [1] to 11 higher-level regions); building type (aggreagations of the 3 residential and
11 commercial EIA Annual Energy Outlook building types to 2 and 8 residential and commercial building
types, respectively); energy end use; and measure type (electrification paired in some cases with flexibility
(EL+DF), electric efficiency paired in some cases with flexibility (EE (Elec.)+DF), and non-electric efficiency
(EE (N-Elec.)). In each plot, the top three regional segments are highlighted with color (inner ring), as are
the top segments for each level nested within those regions (e.g., building type, end use, measure type);
all other segments are shaded gray. In the plots covering all building types, the aggregation of commercial
building types is highlighted with a thick gray border. White regions of the plot denote aggregations of very
small segments.
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Figure S8: Building type, end use, and measure type attribution of avoided building CO2 emissions in
2030 and 2050 for three decarbonization benchmark scenarios. Figure rows from top to bottom show
avoided emissions for each of the low, moderate, and aggressive benchmark scenarios (1, 2, and 3), respec-
tively; columns from left to right show 2030 and 2050 results, respectively. Reductions from fuel switching in
the residential sector are consistently large in magnitude across scenarios (except for in Scenario 2, in which
residential non-electric efficiency shows larger impacts in 2030 due to share of non-electric fossil load that
can be reduced via efficiency in residential buildings in the near term in that scenario). End use savings are
driven by HVAC and water heating equipment along with electric envelope efficiency across scenarios.
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decarbonization of the grid vs. 2005 levels by 2050. This leads to more installed capacity by 2050
than the reference case, an increase of 160% (compared to an increase of 50% in the reference
case). More ICAP is required to meet load and resource adequacy constraints through carbon-
free generation than with firm dispatchable resources due to intermittent generation profiles and
declining effective load carrying capacity (ELCC) (see Section 2.2 for further description). The
carbon constraint increases the development of all types of renewables and with some growth in
natural gas CCs in order to meet increased demand. The generation mix is 80% carbon-free by
2050, with 70% of generation from renewables. New hydrogen-fueled CCs help meet 2050 clean
generation needs in addition to renewable resources and existing clean generators, like nuclear.

The 100x35 decarbonization scenario supply forecast satisfies additional building electrifica-
tion load beyond the reference and 80x2050 cases, in addition to achieving full grid decarboniza-
tion by 2035. This leads to more total capacity than the other two cases due to increased load
from inefficient measures and more aggressive carbon constraints. In 2050, total ICAP is 220%
greater than 2020 ICAP, with additional solar, wind, hydrogen burning CCs, and nuclear small
modular reactor (SMR) capacity. Some fossil fuel generation remains online after the power sec-
tor has decarbonized. This generation exists exclusively for reliability purposes, would be utilized
infrequently, and could run on renewable gas in the rare instances when needed.

1.2.2 GridSIM system cost results

Figure S10 presents total power system costs across all three GridSIM scenarios in 2030 and 2050.
The three scenarios are consistent with those reflected in Figure S9 and the 80x2050 and 100x2035
cases reflect the same additional load growth from transportation electrification and inefficient
building electrification. Power system costs include the fixed and variable costs needed to con-
struct and operate generation and transmission assets. These include the fixed O&M, variable
O&M, fuel costs, generating unit start costs, capital expenditures for new generation assets, and
capital expenditures for new transmission assets. By 2050, in the absence of new demand-side
measures to counter higher electric load growth in the 80x2050 and 100x2035 cases, we estimate
$390–527 billion per year in capital expenditures and production costs. This range is 1.8–2.4 times
the $217 billion of forecasted 2050 annual expenditures in the Reference Case.

Figure S11 presents five-year annual averages for both marginal energy ($2022/MWh) and
capacity ($2022/MW-yr) costs through 2050 for each GridSIM scenario. In all cases, marginal
power system costs increase in real terms over time, mostly due to costs associated with meeting
resource adequacy and hourly energy needs in later years with higher demand. Reference costs
increase by 60% from 2030 to 2050. Marginal energy costs decline slightly in real terms nationally
through the study horizon. Many regions see slight declines, while others see slight increases.
Marginal capacity costs increase in real terms for most regions throughout the study horizon.

The 80x2050 decarbonization case shows higher annual marginal system costs than in the
reference case due to higher load from transportation electrification and inefficient building elec-
trification and greater need for zero-carbon resources. In 2030, costs are only 10% higher than
the reference case, while 2050 costs are 80% higher as the system moves to mostly zero-carbon.
Marginal energy costs increase in real terms for most regions by the end of the study horizon.
Through 2030, marginal energy costs remain low, with renewables entering the market to satisfy
state driven clean energy requirements and take advantage of federal incentives prior to their step
down. Energy costs increase in later years in order to meet increased load with a mix of firm gener-
ation, renewables, transmission capacity expansion, and higher cost zero-carbon firm generation.
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Figure S9: Total installed U.S. generation capacity and annual generation between 2020–2050 under
the GridSIM reference case and moderate–aggressive grid decarbonization with inefficient building
electrification. GridSIM projections of total installed generation capacity (top row) and annual generation
(bottom row) are shown for the GridSIM reference case, (left), a moderate grid decarbonization case with 80%
grid CO2 reduction vs. 2005 levels by 2050 (middle), and an aggressive grid decarbonization case with 100%
grid CO2 reduction by 2035 (right). Capacity and generation projections in the 80x2050 and 100x2035 cases
reflect rates of building end-use electrification from this paper’s moderate and aggressive decarbonization
benchmarks (scenarios 2 and 3 in Table 4), but the electrified equipment is deployed with a lower efficiency
level (consistent with settings from scenario 1.1 in Table 4). Growth in building demand otherwise follows
that of the 2021 AEO Reference case. Transportation electrification is also reflected and it is assumed that
95%, 50%, and 35% of light-duty, medium-duty and heavy-duty vehicles are electric by 2050, respectively. In
the 100x35 case, some fossil fuel capacity remains online after the power sector has been decarbonized. This
capacity exists exclusively for reliability purposes, would be utilized infrequently, and could run on renewable
gas in the rare instances when it is needed. In addition to the resource types listed in the figure legend, the
capacity and generation mixes include pumped hydrogen, biogen, and geothermal generation, though they
are not readily visible to due to their small contribution relative to total installed capacity and generation.
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Figure S10: Annual U.S. bulk power system costs in 2030 and 2050 under the reference case and
moderate–aggressive grid decarbonization with inefficient building electrification. GridSIM projections
of total bulk power system costs in 2030 and 2050 are shown for the GridSIM reference case, (left), a moder-
ate grid decarbonization case with 80% CO2 reduction vs. 2005 levels by 2050 (middle), and a high grid
decarbonization case with 100% grid CO2 reduction by 2035 (right). System costs in the 80x2050 and
100x2035 cases reflect rates of building end-use electrification from this paper’s moderate and aggressive
decarbonization benchmarks (scenarios 2 and 3 in Table 4), but the electrified equipment is deployed with
a lower efficiency level (consistent with settings from scenario 1.1 in Table 4). Growth in building demand
otherwise follows that of the 2021 AEO Reference case. Transportation electrification is also reflected and
it is assumed that 95%, 50%, and 35% of light-duty, medium-duty and heavy-duty vehicles are electric by
2050, respectively. Costs shown are power generation costs (capital expenditures and production costs),
expanded transmission infrastructure costs, and exclude federal tax subsidy costs (ITC/PTC). Electricity dis-
tribution related costs and energy costs from other sectors are not modeled.
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$2022/MWh $2022/MW-yr

Figure S11: Five-year annual average marginal energy and capacity costs between 2020–2050 under
the GridSIM reference case and moderate–aggressive grid decarbonization with inefficient building
electrification. GridSIM projections of five-year annual average marginal energy (left) and capacity (right)
costs are shown for the GridSIM reference case, a moderate grid decarbonization case with 80% grid CO2

reduction vs. 2005 levels by 2050, and an aggressive grid decarbonization case with 100%grid CO2 reduction
by 2035. Marginal cost projections in the 80x2050 and 100x2035 cases reflect rates of building end-use
electrification from this paper’s moderate and aggressive decarbonization benchmarks (scenarios 2 and 3
in Table 4), but the electrified equipment is deployed with a lower efficiency level (consistent with settings
from scenario 1.1 in Table 4). Growth in building demand otherwise follows that of the 2021 AEO Reference
case. Transportation electrification is also reflected and it is assumed that 95%, 50%, and 35% of light-duty,
medium-duty and heavy-duty vehicles are electric by 2050, respectively.
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Marginal capacity costs remain flat in most regions through 2030 and increase in later years as
the system decarbonizes and needs additional generation capacity to satisfy resource adequacy
requirements.

In the 100x2035 decarbonization case, marginal system costs are notably higher compared to
the other scenarios. In 2030, costs are 40% higher than in the reference case, and in 2050, costs are
140% higher. The higher costs are driven by additional capital expenditures needed to build clean
generation and transmission capacity to satisfy resource adequacy. Marginal energy costs increase
through 2035 as firm generation burns high cost zero-carbon fuels to serve demand. Energy costs
are significantly higher than the other scenarios due to high hydrogen fuel costs and increased
transmission capacity expenditures. Costs decline in real terms towards the end of the study
horizon as fuel prices decline with clean firm-generation technology advancements. Marginal
capacity costs are comparable to the other two cases and remain high through the study horizon.
There is a drop in capacity costs for many regions around 2035 when the carbon constraint is the
most binding constraint in the model, driving a high carbon price. There is a trade-off between
energy, capacity, and carbon market prices in deep decarbonization power system modeling.

Finally, Figure S12 compares the potential reductions in annual power system costs from the full
deployment of individual demand-side efficiency, flexibility, and efficient electrification measures
against the total annualized incremental cost of deploying these measures in 2050; the Figure also
indicates eachmeasure’s level of total annual CO2 reductions (through the size of each scatter point
on the plot). Here, demand-side measure deployment levels are consistent with the moderate
and aggressive decarbonization scenarios from Table 4 (scenarios 2 and 3, respectively), and the
forecasted hourly marginal system costs that are attached to measures’ hourly load impacts (see
Equation 10) are consistent with annual results shown for the 80x2050 and 100x2035 grid cases in
Figure S11. Results in Figure S12 are calculated based on levels of individual measure deployment
that do not account for competition across the demand-side measure portfolio; therefore, the
costs and benefits reflect full deployment of each measure in isolation, constrained only by the
rates of baseline stock turnover and electrification that are assumed for the given scenario.

Figure S12 shows that across scenarios, residential HVAC/envelope and water heating mea-
sures tend to offer the largest potential annual system cost savings and CO2 reductions. Moreover,
the low and high performance tiers of these measures (ESTAR/90.1/IECC and Breakthrough Tech-
nology, see Methods) tend to generate system cost savings benefits that are commensurate with
the measures’ incremental deployment costs. Measures represented with the unit-level charac-
teristics of technologies at the best performance levels currently available on the market tend to
have notably higher deployment costs, however. This is particularly true for measures that affect
HVAC/envelope, and it reflects both the relatively higher cost of installing HVAC equipment and
envelope components at these performance levels, based on current market data, and the as-
sumption that these measures are deployed as packages, with the incremental costs of all HVAC
and envelope improvements borne simultaneously (see Supplemental Information Section 2.1.1).
Total portfolio costs and benefits, which are calculated by adjusting down the individual measure
results of Figure S12 to reflect the market competition simulated in Scout, are strongly influenced
by both the high deployment costs of best available HVAC/envelope and by the degree of deploy-
ment achieved by the low cost/high impact measures — particularly the Breakthrough Technology
tier, which begins entering the market earlier in the aggressive benchmark than in the moderate
benchmark (2030 vs. 2035). In the aggressive case, total portfolio benefits and annualized costs
in 2050 are $122 and $135 billion, respectively, for a benefit-cost ratio of 0.9; excluding the in-
fluence of very high cost measures in Figures S12 with costs that are greater than 2X benefits,
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Figure S12: Potential annual deployment costs, system cost savings, and avoided CO2 emissions of
building efficiency, flexibility, and efficient electrification measures in 2050. The annualized incremental
cost of deploying each measure in full across the U.S. building stock in 2050 (y axis) is compared against its
annual system cost savings potential in 2050 (x axis); diagonal lines benchmark 1:1 and 2:1 ratios between
measure deployment costs and system cost savings, respectively. Each measure’s total annual CO2 emissions
reduction potential in 2050 is indicated by its point size on the scatter plot, with larger point sizes indicating
larger emissions reduction potential. Measure potentials are assessed in isolation: constraints from stock
turnover and electrification rates are reflected, but competition with overlapping measures in the portfolio
is not reflected. The shape of each measure point indicates its energy performance tier above comparable
reference case technologies, from the lowest tier (ENERGY STAR/IECC/90.1) to the highest tier (Breakthrough
Technology); performance tiers are described further in theMethods. Furthermore, the color of eachmeasure
point indicates the end use service that the measure affects, and residential measure points are distinguished
from commercial measure points via a black border.

however, these totals change to $112 billion in benefits and $73 billion in costs, for a benefit-cost
ratio of 1.5. In the moderate case, total portfolio benefits and annualized costs in 2050 are $77
and $117 billion, respectively, for a benefit-cost ratio of 0.7; excluding the influence of the high
cost measures, these totals change to $67 in benefits and $57 billion in costs, for a benefit-cost
ratio of 1.2. These results do not account for additional benefits that would be expected from the
deployment of demand-side measures that avoid fossil-based power generation and reduce CO2
emissions, such as avoided social costs of carbon and reductions in public health costs.

1.2.3 GridSIM emissions results

Figure S13 presents power sector emissions by scenario through 2050. In the reference case,
annual carbon emissions decrease through 2035, mostly due to state RPS targets maturing in the
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2030s. Additional load growth and reliance on fossil generation causes total annual emissions to
increase in the later years of the study horizon. The reference case assumes no additional adoption
of clean energy policies at the state or national level beyond what exist at the time of this study.

In the 80x2050 decarbonization scenario, annual carbon emissions decline linearly throughout
the study horizon due to a modeling assumption that the requirements of the federal carbon
policy decline linearly to an 80% reduction by 2050 relative to 2005 levels. In early years, state
RPS policies are more aggressive than the federal carbon reduction mandate.

The 100x2035 decarbonization scenario shows annual carbon emissions decline through 2035
then remain at zero through the study horizon. Through 2035, carbon emissions decline slightly
faster than the mandated reductions due to the front loading of renewable development to take
advantage of expiring tax credits, in addition to satisfying near term state RPS targets.

MMT CO2

Figure S13: Annual power sector CO2 emissions between 2020–2050 under the GridSIM reference case
and moderate–aggressive grid decarbonization. GridSIM projections of total power sector CO2 emissions
are shown for the GridSIM reference case, amoderate grid decarbonization case with 80% grid CO2 reduction
vs. 2005 levels by 2050, and an aggressive grid decarbonization case with 100% grid CO2 reduction by 2035.
GridSIM emissions rates are used to represent three levels of power sector decarbonization in this paper’s
overall scenario set (see Table 4).

2 Additional methodological details

2.1 Scout modeling of the building sector

2.1.1 Building technology stock turnover and measure interactions

Scout represents the effects of turnover in both the building stock (new additions, demolitions)
and the stocks of technologies that are installed to provide energy services within buildings. Build-
ing and technology stocks are separated into new and existing bins, where the former is defined
as all buildings/technology stocks that are constructed/added after the beginning of the model-
ing time horizon onward (2022-2050) and the latter is defined as all buildings/technology stocks
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that were already constructed/installed as of the beginning of the modeling time horizon. Rates of
building construction and demolition are resolved by region and building type and consistent with
the 2021 AEO Reference Case forecast and supporting National Energy Modeling System (NEMS)
Macroeconomic Activity Module (MAM). The AEO Reference Case forecast also provides base-
line projections of building technology stock evolution by technology class, including estimated
growth in the technology stocks associated with new building construction, decay in technology
stocks associated with building demolitions, and the effects of consumer switching from one tech-
nology class to another [2].

Changes to baseline technology stocks under alternate scenarios of building sector develop-
ment depend on the annual rates with which reference case technologies in a certain baseline
microsegment are displaced by more efficient, flexible, and/or electrified alternatives in new and
existing buildings, λr,b,t,v,y:

λr,b,t,v,y =


Bnew,ref

r,b,y∑y
i=2022 Bnew,ref

r,b,i

+ λ
rpl2022+
r,b,t,v,y , v = new

λ
rpl2022−
r,b,t,y + λ

rpl2022+
r,b,t,v,y + λ

rple2022−
b,t,y , v = existing

(1)

whereBnew,ref
r,b,y is the total number of new homes (residential) or square feet (commercial) of build-

ing type b constructed in region r and year y in the AEO Reference Case forecast;1 λrpl2022+r,b,t,v,y are
the portions of technologies of type t that were installed after the beginning of the modeling
time horizon (2022) and have reached the end of their useful lifetimes, respectively; λrpl2022−r,b,t,y is
the portion of technologies of type t that were installed before the beginning of the modeling
time horizon, have not already been replaced, and have reached the end of their useful lifetimes;
and λrple2022−b,t,y is the portion of technologies of type t that were installed before the beginning of
the modeling time horizon, have not already been replaced, and are retired before the end of
their useful lifetimes. Typical reference case technology lifetimes for major equipment categories
are drawn from the AEO Reference Case forecast, while lifetimes for envelope and miscellaneous
technologies are separately compiled based on a variety of sources.2 By default, early retirement
rates are assumed to be zero, but these rates are set to non-zero values in the scenarios from
Table 4 that explore the effects of accelerated stock turnover, as further detailed in Table 8 in the
Methods.

Annual stock turnover rates determine the portion of the baseline stock that a measure can
capture in each year of the modeling time horizon, σX,y, introduced in the main text in equations
3 and 4:

σX,y =

∑y
i=2022 S

stk−ref
X,i λr,b,t,v,i γX,i

Sstk−ref
X,y

, (2)

where X is a shorthand for the baseline technology microsegment defined by region r, building
type b and vintage v, fuel type f , end use u, and technology type t; Sstk−ref

X,i is a single reference

1Drawn from “RESDBOUT.txt” and “KDBOUT.txt” for residential and commercial buildings, respectively; more details
about these files are available in the EIA National Energy Modeling System documentation for buildings [3, 4]

2Drawn from “rsmeqp.txt” and “rsmlgt.txt” for residential non-lighting and lighting equipment, respectively, and from
“ktek.csv” for commercial technologies; more details about these files are available in the EIA National Energy Mod-
eling System documentation for buildings [3, 4]. Technology characteristic data for envelope and miscellaneous tech-
nologies are separately developed for Scout and are available: https://github.com/trynthink/scout/blob/master/
cpl_envelope_mels.json.
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case building stock microsegment from the measure’s applicable market in year i; and γX,i is a
constraint placed on a measure’s applicable market when it is not on the market (γX,i = 0) or to
represent exogenously-defined limitations — in the case of electrification measures, for example,
this variable represents the exogenously-determined portion of a fossil-based equipment market
that is converted to electric service in year y.3

Stock turnover also factors into the determination of each measure’s unit-level energy perfor-
mance level, introduced in the main text in equation 5:

RP euse
X,y,m = RP

euse−cpt
X,y,m Φ

cpt
X,y,m +RP euse

X,y−1,m (1− Φ
cpt
X,y,m), (3)

Φ
cpt
X,y,m =

Sstk−ref
X,y λr,b,t,v,y γX,y∑y

i=ym
0
Sstk−ref
X,i λr,b,t,v,i γX,i

(4)

where RP euse
X,y,m,M is the measure’s unit-level energy performance level relative to the counterfac-

tual reference case technology across all captured stock, calculated based on either annual or
hourly data (RP euse−ann

X,y,m and RP euse−tvar
X,y,m in main text equation 5), RP euse−cpt

X,y,m is the measure’s unit-
level relative energy performance level for stock captured in year y only, Φcpt

X,y is the fraction of the
total stock captured by the measure that is captured in year y only, and ym0 denotes the first year
that measure m is available on the market.

Baseline stock captured by a measure in isolation is further adjusted to account for competition
with other measures in the portfolio that apply to the same segments of baseline technology
stock.4 A measure- and segment-specific competition adjustment factor, aX,y,m, is calculated for
each year y:

aX,y,m =


θmkt
X,y,m,M + θscaleX,m,M , y = yE

(θmkt
X,y,m,M + θscaleX,m,M )Φ

cmp
X,y,M+

aX,y−1,m(1− Φ
cmp
X,y,M ), otherwise

(5)

where θm,mkt
X,y,M is a measure’s market share when competed in measure set M in year y, θscaleX,m,M is

additional market share conferred on measurem when one or more competing measures apply to
only part of the competed baseline stock segment,5 Φ

cmp
X,y,M is the fraction of a common baseline

stock segment that the measure setM competes for in year y, and yE is the earliest market entry
year across the measure setM .

The competed market share θmkt
X,y,m,M is calculated differently depending on which building

type (residential or commercial) a measure applies to, adapting the approach used in EIA’s simu-
lations of technology adoption for the AEO. Specifically, the approach uses a logistic regression

3As stated in the Methods, exogenous electrification conversion rates do not apply to the portion of the existing stock
turnover fraction (λr,b,t,v=exist,y ) that represents early retrofit decisions, when such decisions are assumed.

4In the case of EL measures, the portion of the referece case fossil-based equipment stock that converts to electricity is
dictated by the exogenous Guidehouse electrification scenarios described in section 2.1.2; therefore, reference case fossil
equipment is not directly competed with the EL measures, and these measures only compete against other EL measures
in the analysis.

5Applicable when a user specifies a market scaling fraction, ξscaleX , for one or more of the competing measures. In
such cases, the portion of the baseline segment that the measure(s) does (do) not apply to is divided up across all other
competing measures in accordance with their relative market shares.
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model and a cost model to assign market shares in the residential and commercial sectors, re-
spectively, estimating market shares as a trade off between a measure’s capital and operating
costs:

θmkt
X,y,m,M = 

exp((β1)X,y UX,y,m + (β2)X,y ψX,y,m,mt)∑M
k=1 exp((β1)X,y UX,y,k + (β2)X,y ψX,y,k)

, b ∈ residential

Ub,f,m∑
u=1

D∑
d=1

θu,d, b ∈ commercial

(6)

where UX,y,m, UX,y,k, ψX,y,m,mt, and ψX,y,k,mt are the unit-level installed capital and annual oper-
ating costs in year y for individual measuresm and k within setM , respectively,6 (β1)X,y and (β2)X,y

are choice coefficients from the AEO reference case7 that weight the influence of capital and op-
erating costs on market share in the residential sector,8 D is a set of discount rates from the AEO
reference case9 that weight the influence of capital and operating costs on market share in the
commercial sector, and θu,d is the market share assigned to measurem when it has the lowest life
cycle cost (capital plus operating costs) of all competing measures in set M for end use u within
the measure’s applicable end use set Ub,f,m under discount rate d;10 when measure m does not
have the lowest life cycle cost of competing measures in setM for end use u and discount rate d,
θu,d is zero.

The calculation of operating costs in equation 6 requires annual projections of average retail
rates by fuel and customer type (residential/commercial); moreover, assessment of demand flex-
ibility measures requires further resolution of annual average retail rates to an hourly timescale.
Retail rate projections are drawn from the AEO cases that most closely align with our scenario’s
supply-side assumptions: the AEO 2021 Reference Case for scenario group 1 in Table 4, and
the AEO 2021 Low Renewable Cost side case for both scenario groups 2 and 3 in Table 4 [2].
Operating cost calculations vary by measure type:

6Reference case technology installed cost characteristics are drawn from NEMS files “rsmeqp.txt” and “rsmlgt.txt”
for residential non-lighting and lighting equipment, respectively, and from “ktek.csv” for commercial technologies; more
details about these files are available in the EIA National Energy Modeling System documentation for buildings [3, 4].
Technology characteristic data for envelope and miscellaneous technologies are separately developed for Scout and are
available: https://github.com/trynthink/scout/blob/master/cpl_envelope_mels.json

7Drawn from ‘rsmeqp.txt’ and ‘rsmlgt.txt’ for major equipment and lighting technologies; more details about these files
are available in the EIA NEMS documentation for the residential sector [3].

8The NEMS documentation notes that the ratio of these coefficient approximates the discount rate used in valuing
operating cost savings from more efficient equipment.

9Each discount rate represents a combination of a constant risk-free interest rate and a time-preference premium rate
that represents the degree to which a given decision-maker accepts investment risks. Rates are drawn from the AEO
reference case file ‘kprem.txt’ and are summarized in table E-1 of the EIA National EnergyModeling System documentation
for the commercial sector [4], p. 224.

10The market shares are summarized in table E-1 of the EIA National Energy Modeling System documentation for the
commercial sector [4], p. 224.
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ψX,y,m,mt =


Ieuse−ref
X,y ρrefr,b,f∈X,y RP

euse−ann
X,y,m , mt = EE or mt = EL and f ∈ X = electric

Ieuse−ref
X,y ρaltr,b,f=elec,y RP

euse−ann
X,y,m mt = EL and f ∈ X ̸= electric

Ieuse−ref
X,y ρrefr,b,f∈X,y RP

ecost−tvar
X,y,m mt ∈ [EE +DF,EL+DF ]

(7)

where ρrefr,b,f∈X,y and ρaltr,b,f=elec,y are the reference case retail price of fuel f in microsegment X
and the alternate scenario price of electricity in region r, building type b, and year y, respectively,
and RP ecost−tvar

X,y,m accounts for time-varying relative energy performance and assigns correspond-
ing time-varying electricity rates across all hours in a year for measures with demand flexibility
(DF) features. The method for determining hourly retail electricity rates and re-aggregating to the
annual relative energy cost metric in equation 7 is detailed in section 2.1.3. Assignment of refer-
ence vs. alternate scenario prices in equation 7 is consistent with the assumed staging of impacts
from reductions in consumption, fuel switching, and grid decarbonization described for main text
equation 6 (e.g., reductions in consumption and associated energy cost savings are staged before
additional grid decarbonization beyond the reference case, while changes in energy costs from
fuel switching are staged in parallel with the additional grid decarbonization).

Heating and cooling energy use and CO2 emissions may be affected by measures that improve
the efficiency of HVAC equipment, add operational controls, or upgrade components of the build-
ing envelope. Since these overlapping measures do not provide the same type of energy service,
their overlaps are not accounted for by the competition adjustment in equation 5 and require a dif-
ferent approach to account for overlapping impacts. This issue is addressed in the best available
performance tier (Tier 2 in Methods) by representing the deployment of such measures simulta-
neously as a package with relative energy performance characteristics that account for the joint
influence of contributing measures. In the other performance tiers, however, the deployment of
HVAC equipment efficiency, controls, and envelope measures is decoupled, with timing dictated
by the stock turnover characteristics of each individual measure. To address overlaps in these
cases, adjustment factors are developed that scale down the baseline and efficient energy use
and CO2 emissions for the individual HVAC and control measures in a manner that considers their
direct intersection together with the influence of parallel envelope improvements:

ζ
ref, eqp
X,y = (1− γX,y) + γX,y

(
∆

eqp
X,y

∆
eqp
X,y +∆ctls

X,y

)
(8)

ζ ref, ctlsX,y = (1− γX,y) + γX,y

(
∆ctls

X,y

∆
eqp
X,y +∆ctls

X,y

)
(9)

ζ
alt, eqp
X,y = ζ

ref, eqp
X,y (1−∆ctls

X,y)(1−∆env
z,b,f,u,v,y) (10)

ζalt, ctlsX,y = ζ ref, ctlsX,y (1−∆
eqp
X,y)(1−∆env

z,b,f,u,v,y) (11)

where ζ ref, eqpX,y , ζ ref, ctlsX,y , ζalt, eqpX,y , and ζalt, ctlsX,y are additional adjustments applied to each measure’s
reference and alternate-scenario energy use and CO2 emissions segments (see main text equa-
tions 3 and 4 and supporting explanation) to resolve overlaps between HVAC equipment, controls,
and envelope measures, γX,y is the fraction of total energy use in segment X and year y that is
overlapping across the HVAC equipment efficiency and controls measures, ∆eqp

X,y and ∆ctls
X,y is the
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total energy savings of all HVAC and controls measures, respectively in the overlapping segment
divided by the total energy use of the overlapping segment, and ∆env

z,b,f,u,v,y is the total energy
savings of all envelope measures that affect the same region r, building type b and vintage v, fuel
type f , and end use u as segment X in year y, divided by the total energy use of that region,
building type and vintage, fuel type, and end use.

Following the application of the adjustment factors in equations 8–11, affected measures are
represented as a single measure bundle for subsequent competition and assessment against other
measures in the analysis. We isolate the envelope-specific contributions to these measure bun-
dles (as represented, for example, in Figure 3) by simulating the envelope portion of the bundle
in isolation and calculating the ratio of envelope-isolated energy impacts to those of the full bun-
dle, before competition with other measures; this ratio is subsequently applied to the bundle’s
impacts post-competition to assign the envelope portion of those impacts. The stock, installed
cost, and lifetime characteristics of the measure bundle are anchored on those of the contribut-
ing HVAC equipment efficiency measure; thus, the bundle is effectively competed as an HVAC
equipment measure with improved energy performance from parallel controls and/or envelope
improvements. The incremental cost of the controls is considered in the competition; the incre-
mental cost of envelope improvements is not considered in the competition, though it is reflected
in the assessment of measure LCCEs per equation 11. We exclude envelope costs from the com-
petition calculations because the NEMS-based market share functions in equation 6 are generally
only appropriate for equipment purchase/replacement decisions and associated costs. This ap-
proach effectively assumes that consumers who opt for a given performance tier of HVAC/controls
equipment will adopt from the same performance tier for envelope improvements. Improved un-
derstanding of consumer choices between candidate envelope technologies — particularly in the
context of parallel HVAC equipment upgrades — is acknowledged as an important area of future
work.

2.1.2 Exogenous electrification scenarios and rates

This analysis uses exogenous building electrification scenarios to project rates of fuel switching
to electric technologies based on different policy and economic drivers related to incentives and
regulations as well as new product innovations. Scenarios used in this analysis were developed
in consultation with a team of HVAC market experts at Guidehouse. Four scenarios were devel-
oped to represent a range of plausible adoption trajectories for residential and commercial space
heating and water heating technologies that are further resolved by existing heating fuel (electric
resistance, natural gas, distillate/oil, and propane), heating system type (e.g., residential ducted
furnace and storage water heater; commercial RTU and storage water heater), building vintage
(new/existing), and U.S. Census Region (Northeast, South, Midwest, West).

The general methodology used to develop existing market shares and projected conversion
rates through 2050 is as follows:11

1. EIA RECS [5] and CBECS [6] installed equipment bases for space heating and water heating
technologies are converted to annual shipments for each fuel, building type, and region by
assuming 15-year equipment lifetimes.

2. Census Bureau data on annual housing starts are specified for each equipment type and
region, to further resolve shipments into new vs. existing building vintages.

11The data that underpin these calculations are also available upon reasonable request.
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3. Conversion percentages that are resolved by fuel, building type and vintage, equipment
type, and region are applied to estimate incremental heat pump (HP) sales in 2030.

4. Percentages of HP sales are calculated in reference to total storage water heater sales and
unitary AC+HP sales in 2030.

5. Rates are projected forward to 2050 based on assessments of policy drivers that could ac-
celerate (or slow) adoption (see Table S1).

6. Assumptions are checked against U.S. DOE rulemaking and Air-Conditioning, Heating, and
Refrigeration Institute (AHRI) data [7] where available.

The four conversion scenarios and an example of the various policy and economic drivers that
differentiate them for the residential unitary AC/HP market are presented in Table S1. As shown
in the table, availability and level of federal or utility incentives, state or local restrictions, and new
product innovations are the key differentiating factors considered. Similar qualitative scenario de-
scriptions were created for each sector and end use (e.g., residential and commercial space and
water heating) to develop sector-specific conversion shares. Table S2 presents heat pump sales
market shares across sectors and equipment types for each of the four electrification scenarios.
Sales shares of heat pumps are greater in residential than commercial and for space heating com-
pared to water heating, and increase across scenarios through 2050, reaching a weighted average
of 87% of new equipment sales in the most aggressive scenario.

Table S1: Exogenous electrification scenarios and descriptions of key policy and economic drivers for resi-
dential unitary AC/HP market.
Scenario Federal / Utility Incentives State / Local Restrictions Product Innovations

Conservative Modest federal, few utilities Few for new construction (NC),
none for existing

Low GWP refrigerants,
grid interactive

Optimistic Moderate, federal, more utilities Some for NC, none for existing Affordable CCHPs
Aggressive Large federal, more utilities More for NC, some for existing Affordable CCHPs

Most Aggressive Large federal, most utilities Most for NC, most for existing Affordable CCHPs

Table S2: Heat pump sales market shares by building sector and end use across exogenous electrification
scenarios.

Heat pump sales shares by scenario
Conservative Optimistic Aggressive Most aggressive

Segment Representative equip-
ment

2019 heat pump sales
shares

2030 2050 2030 2050 2030 2050 2030 2050

Res. Space Heating Central ducted fur-
nace+AC/HP

37% 45% 61% 50% 76% 63% 85% 75% 90%

Res. Water Heating Storage water heater 1% 10% 30% 20% 60% 40% 75% 50% 85%
Com. Space Heating Rooftop unit 9% 15% 27% 20% 42% 25% 66% 30% 85%
Com. Water Heating Storage water heater 0% 3% 20% 5% 30% 7% 45% 10% 50%

Weighted average of sales market shares: 27% 44% 34% 67% 50% 79% 61% 87%

We use the conversion rates from Guidehouse’s scenarios to drive elevated heat pump adop-
tion in comparison to reference case levels in our scenarios of demand-side measure deployment
(see Table 4). Additional methodological notes and assumptions for our development of conver-
sion rates based on the Guidehouse heat pump adoption scenarios are as follows:
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• Conversion rates for commercial sector new construction were not calculated by Guidehouse
due to limited data availability of commercial new construction characteristics; for commer-
cial buildings, new construction conversion rates are assumed to match those in the existing
building market.

• Conversion rates for commercial space heating were only calculated for rooftop units (RTUs);
based on Guidehouse’s review of available data and existing literature, these shares were
replicated for non-RTU equipment with a conversion rate cap at 50% in 2050, which reflects
specific challenges with HP conversions in commercial buildings (e.g., due to space, tech-
nology and other constraints).

• Due to limited availability of market data, conversion rates for commercial water heating
were not initially modeled as part of the Guidehouse work. Because these still need to be
represented in Scout for our analysis, the conversion rates for commercial water heating
match those for commercial space heating but from the scenario that is one step less ag-
gressive (e.g., commercial water heating conversion rates in the “Optimistic” scenario match
those of commercial space heating conversion rates in the “Aggressive” scenario). Commer-
cial water heating conversions are also capped at 40% in all scenarios for both existing/new
construction based on a projection from the National Renewable Energy Laboratory’s “High”
scenario for 2050 from the Electrification Futures Study [8].

Figures S14–S17 present the conversion rates above the AEO reference case by building type
and vintage, existing fuel type, and region for both space and water heating equipment for the
“Optimistic” and “Most Aggressive” exogenous electrification scenarios, the two that were used
in our analysis per the discussion in the Methods.

2.1.3 Hourly electric loads, emissions, and costs

Measures in the best available performance tier are represented with demand flexibility features
that reduce and/or shift hourly building electric loads based on system load conditions, as de-
scribed in detail in [9]. For this study, we expand the assessment of flexibility measures to repre-
sent their potential impacts on CO2 emissions and consumer electricity costs. The former ensures
that these measures’ time-varying load impacts are appropriately reflected in annual emissions re-
sults, while the latter allows the representation of flexibility measures in the competition framework
described in the previous section.

Hourly load impacts are calculated and re-aggregated to an annual basis as in [9], producing
the time-varying energy term introduced in the main text in equation 5:

RP euse−tvar
X,y,m = (1−

∑8760
h=1 ∆DX,y,h,m

Seuse−ref
X,y

) (12)

where DX,y,h,m is the load impact of measure m in hour h of year y for energy use segment X.
To translate annual average grid CO2 emissions factors and electricity retail rates to an hourly

basis, we leverage Cambium [10], a publicly-available database that compiles NREL Standard
Scenarios simulation data [11]. Regional hourly average emissions and marginal system cost data
from Cambium are used to adjust average annual grid emissions factors and retail prices up or
down to reflect sub-annual variations in these variables. Hourly adjustments are re-aggregated to

24

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4253001

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



25

0.0

0.2

0.4

0.6

0.8

1.0
Electricity to HP Midwest Electricity to HP Northeast Electricity to HP South Electricity to HP West

0.0

0.2

0.4

0.6

0.8

1.0
Distillate to HP Midwest Distillate to HP Northeast Distillate to HP South Distillate to HP West

0.0

0.2

0.4

0.6

0.8

1.0
Natural Gas to HP Midwest Natural Gas to HP Northeast Natural Gas to HP South Natural Gas to HP West

2020 2030 2040 2050
0.0

0.2

0.4

0.6

0.8

1.0
Propane to HP Midwest

2020 2030 2040 2050

Propane to HP Northeast

2020 2030 2040 2050

Propane to HP South

2020 2030 2040 2050

Propane to HP West

Year

Fr
ac

tio
n 

fo
ss

il-
ba

se
d 

or
 re

sis
ta

nc
e 

eq
ui

pm
en

t c
on

ve
rte

d 
ab

ov
e 

AE
O 

Re
fe

re
nc

e 
Ca

se
s

Heating (Existing)
Heating (New)
Water Heating (Existing)
Water Heating (New)

Figure S14: Fossil-based and electric resistance equipment conversion rates in residential buildings,
Optimistic scenario.
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Figure S15: Fossil-based and electric resistance equipment conversion rates in commercial buildings,
Optimistic scenario.
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Figure S16: Fossil-based and electric resistance equipment conversion rates in residential buildings,
Most Aggressive scenario.
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Figure S17: Fossil-based and electric resistance equipment conversion rates in commercial buildings,
Most Aggressive scenario.
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an annual basis to determine the time-varying emissions and operating cost terms introduced in
the main text in equations 6 and 7, respectively:

RP carb−tvar
X,y,m =



(1−

∑8760
h=1 ∆DX,y,h,m

τ
ref−cmb
r,y,h

(
∑8760

h=1
τ
ref−cmb
r,y,h

)/8760

Seuse−ref
X,y

), mt = EE +DF or

mt = EL+DF and
f ∈ X = electric

(1−

∑8760
h=1 ∆DX,y,h,m

τ
alt−cmb
r,y,h

(
∑8760

h=1
τ
alt−cmb
r,y,h

)/8760

Seuse−ref
X,y

) (τ altr,f=elec,y/τ
ref
r,f∈X,y) mt = EL+DF and

f ∈ X ̸= electric

(13)

RP ecost−tvar
X,y,m =



(1−

∑8760
h=1 ∆DX,y,h,m

ρ
ref−cmb
r,y,h

(
∑8760

h=1
ρ
ref−cmb
r,y,h

)/8760

Seuse−ref
X,y

), mt = EE +DF or

mt = EL+DF and
f ∈ X = electric

(1−

∑8760
h=1 ∆DX,y,h,m

ρ
alt−cmb
r,y,h

(
∑8760

h=1
ρ
alt−cmb
r,y,h

)/8760

Seuse−ref
X,y

) (ρaltr,f=elec,y/ρ
ref
r,f∈X,y) mt = EL+DF and

f ∈ X ̸= electric

(14)
where τ ref−cmb, τ alt−cmb, ρref−cmb

r,y,h , and ρaltr,f=elec,y are reference and alternate case average hourly
emissions and marginal system costs12 from Cambium, respectively, in hour h of year y and region
r. Reference case hourly grid emissions and cost data correspond to the Cambium Mid-Case;
alternate case emissions and costs correspond to the Cambium Mid-Case 95 by 2050 scenario for
the grid conditions represented in scenario group 2 of Table 4, and to the Mid-Case 95 by 2035
scenario for the grid conditions represented in scenario group 3 of Table 4.

2.2 GridSIM and LoadFlex modeling of the power sector

2.2.1 Key modeling assumptions

Geographic and temporal scope
GridSIM models the contiguous U.S. based on the 25 EIA Electricity Market Module (EMM) re-
gions [1], which are aggregated into 11 higher-level regions for reporting purposes 13. All loads
and generators are assigned one zone with transmission capability allowing hourly energy transfer
between neighboring zones. The modeling timeframe in this study is 2020 to 2050 in five year
increments.

12Inclusive of grid capacity, energy, ancillary service, and policy costs.
13The aggregation is as follows: Northwest (NWPP); Great Basin (BASN); California (CASO, CANO); Rocky Mountains

(RMRG); UpperMidwest (SPPN,MISW,MISC); LowerMidwest (SPPC, SPPS); Great Lakes/Mid-Atlantic (MISE, PJMW, PJMC,
PJME); Texas (TRE); Southwest (SRSG); Southeast (PJMD, SRCA, SRSE, FRCC,MISS, SRCE); Northeast (NYCW, NYUP, ISNE).
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Transmission topology and limits
Transmission capability in GridSIM is represented as a ‘pipe and bubble’ framework that aggre-
gates transmission capacity into larger ‘pipes’ between load and generation ‘bubbles’ as defined
by the 25 EIA EMM regions. Existing transmission capacity is based on the 2021 AEO Reference
Case. The transmission capacity dictates maximum power flows in and out of neighboring regions.
Energy price separation occurs between zones when transmission lines are fully loaded. Like most
bulk system capacity expansion models, GridSIM does not model the distribution system.

GridSIM models transmission capacity expansion as an option for a cost-optimal future energy
system. Increased transmission capacity of modeled ‘pipes’ is a build option to meet demand as
an alternative to or in addition to new generating capacity. Transmission capacity cost assumptions
are from EIA AEO 2021 for each of the larger ‘pipes’ connecting neighboring region pairs. These
assumptions rely on per kW-mile costs and average distances between the centroid of each region
to arrive at overnight $/kW transmission costs that are then levelized with financing assumptions.
Costs for new transmission expansion are reflected in the hourly marginal energy cost outputs in
the model. Marginal energy costs are high in hours that drive transmission investment, often hours
of high regional load and low local resource availability.

Building and transportation loads
Reference case annual electricity projections are based on regional peak demand and total energy
forecasts from the 2021 AEO Reference Case. Modeled system load shapes are aggregated 2020
hourly utility load data from the FERC 714 database [12] for each region, with modifications to
account for changes in the annual load factor implied in AEO forecasts. Figures S18–S19 present
regional baseline energy and peak forecasts, respectively.

The load forecasts for the moderate and aggressive benchmark decarbonization scenarios that
we represent in the power system costmodeling (scenarios 2 and 3 in Table 4), with 80%grid decar-
bonization vs. 2005 levels by 2050 and 100% grid decarbonization by 2035, respectively) include
additional electrification load that is incremental to the baseline load forecast. In these decar-
bonization scenarios, we assume that the transportation and building sectors will electrify as the
electric system decarbonizes. Additional incremental transportation and building load increases
annual energy and peak demand, in addition to adjusting system load shapes.

Rates of electrification assumed for the building sector in the moderate and aggressive decar-
bonization scenarios are consistent with those used in the Scout modeling of these scenarios, as
further detailed in the Methods and in Supplemental Information section 2.1.2. Given these elec-
trification rates, we develop inefficient counterfactuals for added building electrification load in
GridSIM by assuming that building electrification occurs with the lower performance level of sce-
nario 1.1 in Table 4, which represents a substantial amount of electrification to resistance-based
heating and water heating. This results in up to a 23% increase in baseline building annual elec-
tricity demand by 2050 under the aggressive decarbonization counterfactual scenario.

Both decarbonization scenarios assume the same additional incremental load due to electrifi-
cation of the transportation sector, beyond reference case transportation electrification. Elevated
growth in transportation demand assumes that 95%, 50%, and 35% of light-duty, medium-duty,
and heavy-duty vehicles, respectively, are electric by 2050. Electric vehicle (EV) sales are assumed
to follow an S-Curve, which, along with expected EV lifetimes, determine the number of EVs on
the road each year. Figure S20 shows forecasts of EV stocks for each vehicle class out to 2050.

Additional electrification load influences annual resource planning optimization and hourly dis-
patch decisions due to changes in annual energy demand and hourly shapes. Building sector
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Figure S18: GridSIM baseline annual regional energy forecast for the 11 aggregations of the 25 EIA
EMM regions used in this study.
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Figure S19: GridSIM baseline annual regional total peak demand forecast for the 11 aggregations of
the 25 EIA EMM regions used in this study.

Figure S20: Electric vehicle stock penetration forecast between 2020–2050. Shown are projected pene-
tration rates for light, medium, and heavy duty vehicles (LDV, MDV, and HDV, respectively). This forecast is
used in both the moderate (80x2050) and aggressive (100x35) grid decarbonization scenarios.
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electrification drives higher load in winter months primarily due to heating electrification. Electric
vehicle load profiles are from the EVI-Pro Lite database [13] and reflect a composite of different
charging options: Level 1 through Level 3 at different times of the day, and work, home, and pub-
lic charger locations. Example weekday and weekend profiles are shown in Figure S21 for 10,000
unmanaged vehicles in California. Transportation electrification tends to increase load in evening
hours when customers charge their vehicles after returning home from daily activities.

Figure S21: Illustrative electric light-duty vehicle charging load for 10,000 unmanaged EVs in CA.

Resource adequacy requirement
Each of the 25 modeled regions must satisfy local reserve margin requirements consistent with
the AEO 2021 reference case. Planning reserve margin percentages represent the ratio of local
available capacity above annual peak demand relative to peak demand in each region. Reserve
margins ensure that additional capacity is available to provide system reliability during periods of
unexpected high demand or unplanned resource outages.

The planning reserve margin (%) is held constant for each region through the study period, but
because peak demand grows for each region, more capacity is needed in 2050 than in earlier years
to satisfy the reserve requirement. Each region must have enough Unforced Capacity (UCAP) to
satisfy the peak load plus the reserve margin in each year. In addition, certain restructured markets
(i.e., ISO/RTOs) must jointly satisfy market-wide planning reserve margins in addition to zonal tar-
gets. For example, the California North (CANO) and California South (CASO) regions must each
satisfy their regional reserve margins as set by the AEO in addition to jointly satisfy California ISO’s
12% planning reserve margin.

Clean energy requirements
GridSIM enforces all legally binding state Renewable Portfolio Standards (RPS) that exist at the
time of this study. Each state RPS is mapped to a respective region in order to satisfy the required
proportion of generation from qualifying clean or renewable resources. Qualifying assets vary by
region due to state-specific legislation. Additionally, certain states have megawatt procurement
targets for clean resources that GridSIM enforces in the model. Both types of clean energy goals
create shadow Renewable Energy Credit (REC) prices reflective of the value of clean energy in
each region. The RPS and procurement mandates are the same for the reference case and the
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grid decarbonization cases.
The decarbonization scenarios include additional clean energy requirements mandated as na-

tional carbon constraints. Annual carbon emissions in all regions must achieve a reduction of 80%
by 2050 and 100% by 2035, relative to 2005 emissions levels, in the 80x2050 and 100x2035 grid
decarbonization scenarios, respectively.

Effective load carrying capability (ELCC)
GridSIM incorporates the declining effective load carrying capability (ELCC) of each type of vari-
able wind and solar resource into resource planning decisions. At higher solar penetration levels,
the resource adequacy value of new solar assets declines as simultaneous hourly generation shifts
net peak into later hours of the day, reducing the ability of solar generation to meet peak load.
Declining ELCC curves account for correlated renewable generation profiles and their coincidence
with net peak loads. This, along with GridSIM’s chronological operations representation of non-
renewable generators and storage, enables GridSIM to project a realistic generation build mix and
associated marginal costs in decarbonized power systems. Figure S22 presents an example of de-
clining marginal capacity values for various renewable resources in summer as installed capacities
increase.

Figure S22: Example of declining marginal capacity value of renewable generation resources in the
summer season.

Modeled representative periods
Within a given projection year, GridSIM utilizes a “typical days” representation of hourly load con-
ditions, which is a common approach for capacity expansion models. The 365 days of the year
are clustered based on similarities in daily load level, hourly load shape, and renewable genera-
tion profiles. Reducing the number of days modeled to a subset based on these representative
clusters allows the model to capture the full range of load and renewable generation conditions
that are necessary to consider from a planning standpoint while keeping the model run time man-
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ageable. Using typical days also allows the model to retain intra-day hourly chronology, which
accurately accounts for the impact of the hourly profiles of demand-side efficiency, flexibility, and
electrification measures.

The operating costs of existing and new resources are based on simulated chronological hourly
dispatch of 49 representative days, including four representative days within each of the 12months
and the peak demand day. The four days within each month are selected by accounting for dif-
ferences in demand and renewable generation within each month using a clustering algorithm.
The operating cost of meeting hourly demand in each representative day is assigned a weighting
based on the number of days within the month to which it is representative.

Existing and planned generators
GridSIM models existing generation and storage capacity with characteristics consistent with the
AEO 2021 Reference Case. The location, capacity, heat rate, fixed operations and maintenance
(FOM or fixed O&M) costs, and variable operations and maintenance (VOM or variable O&M)
costs of GridSIM units are representative of existing units in each AEO region. GridSIM models
“meta units” that aggregate capacity and operational characteristics over existing units from the
AEO but are clustered into fewer, larger units by region, fuel type, and heat rate for fossil units.
Figure S23 shows GridSIM’s existing generation and storage capacity by region.

GridSIM models all planned assets as forced builds by region and fuel type to represent gen-
eration capacity with near-term commercial online dates, approved permits, and construction un-
derway. This accounts for additional capacity that is highly likely to be built in each region before
the model makes optimization decisions.

Existing and new generators must retire once they reach their respective retirement age, based
on resource type from the NREL ReEDS model [14]. GridSIM can retire assets prior to the retire-
ment age either partially or completely if cost-optimal.

Generator costs
GridSIM builds new generation capacity to satisfy load, resource adequacy, and clean energy
requirements while minimizing the net present value of costs through the study period. New re-
source overnight capital cost assumptions are fromNREL’s 2021 Annual Technology Baseline (ATB)
Moderate Case trajectories [15]. All resource costs vary by zone consistent with EIA AEO 2016
regional differentiation. Variable O&M costs and fixed O&M costs also come from the Moderate
Case in NREL’s 2021 ATB. Renewable and emerging resources see significant fixed cost declines
in real terms throughout the study horizon.

Overnight capital costs for renewable and clean generation assets are expected to decline in
real terms throughout the study horizon, as shown in Figure S24. Renewable assets (utility scale
solar, land-based wind, and offshore wind) have additional capital cost of $300/kW incremental
to costs in Figure S24, to account for transmission costs needed to interconnect renewables in
resource rich areas to transmission lines and load pockets. The cost assumptions are based on a
review of recent studies [16, 17].

Behind-the meter solar resources do not have the additional transmission cost adder refer-
enced above because they are grid-connected at the distribution level. We apply a 150 GW
national behind-the meter solar capacity limit, consistent with recent studies [18, 19, 20].

Renewable variable costs ranging from $2/MWh to $4/MWh for utility scale solar, land-based
wind, and offshore wind are also modeled to represent basis differentials. Basis differentials ac-
count for the concentration of renewable development in resource rich areas that drive down
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Figure S23: Existing generator capacity for the 11 aggregations of the 25 EIA EMM regions used in
this study.
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Figure S24: GridSIM overnight capital costs by technology.

energy prices at local price nodes, which is not captured by the “pipe and bubble” transmission
representation in GridSIM.

Renewable profiles
Renewable generation profiles are from NREL’s Renewable Energy Potential Model (ReV) [21] with
adjustments based on regional historical capacity factors. Each solar and wind resource type has
a different region specific profile based on five selected points in each region from the NREL ReV
model. Existing solar asset profiles are a blend of fixed mount and single axis tracking technolo-
gies, while new solar plants are primarily based on single axis tracking profiles, the recently more
prevalent technology.

Federal tax credits for renewables
GridSIM models a federal tax landscape that is representative of current and proposed legislation
at the time of this study. These policies do not exactly replicate the Inflation Reduction Act or pre-
vious tax code, but are comparable in aggressiveness to their impacts on cost competitiveness of
renewables. The policy landscape changes often, so for modeling purposes we extend tax credits
beyond current expiration with the assumption that future policies will renew the Investment Tax
Credit (ITC) and Production Tax Credit (PTC), as has occurred historically.

The PTC is a dollar tax credit amount awarded for each MWh of clean generation produced
fromqualifying technologies. The PTC applies only to onshore and offshore wind assets at $25/MWh
in the beginning of the study horizon, stepping down to $15/MWh by 2023, and remaining at that
level through 2050.
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The ITC is a percentage tax credit applied to the total investment costs for new renewable
assets. The ITC applies only to solar at 30% of total costs in the beginning of the study horizon,
stepping down to 10% by 2027, and remaining at that level through 2050.

Fuel costs
Near term natural gas fuel prices are based on regional forward market data (where available) and
blended to the long-run fuel price trajectory from the 2021 AEO. Gas price spot forwards are from
11/8/2021 and sourced from S&P Global Market Intelligence [22]. Coal and oil price trajectories
are from the 2021 AEO for all years. Figures S25–S27 show these price projections by region.
Figure S26 excludes NYUP, NYCW, and ISNE, which are regions without future coal demand and
zero-priced forecasts from the AEO.

Flexibility measure dispatch
Dispatch of building demand flexibility measures is handled by the complementary LoadFlex
model based on assumed constraints on a measure’s load reduction or load building behavior,
which are further defined here.

• Load reduction constraints:

– A measure’s load reduction can only happen once each day, across four consecutive
hours per the peak period constraints established in [9].

– The shape of the measure’s load reduction during these four hours is taken from the
savings profile from Scout, at the granularity of Measure x EMM Region x Day.

– For example, if the measure’s Scout savings profile shows savings of 25% of baseline
in hour 1, 20% in hour 2, 15% in hour 3, and 10% in hour 4, then load reductions are
allowed in any consecutive four hours of the day, with reductions calculated based on
the same shape (i.e., 25% in hour 1, 20% in hour 2, etc.).

• Load building constraints:

– A measure’s load building is constrained by the ratio of load building to load reduction
(MWh to MWh) observed in its Scout savings profile. This ratio is calculated at the
granularity of Measure x EMM Region x Week.

– Load building is assumed to be spread evenly over each hour, in equalMWh increments.

– Ameasure’s load building is also constrained in its timing relative to when load reduction
occurs. Our modeling of this constraint varies by the type of measure, as informed by
Scout documentation and model outputs.

Flexibility measures are deployed in our analysis with packaged efficiency features; there-
fore, the dispatchable portion of these measures’ hourly impacts must be isolated for use
in LoadFLex. Here, we model versions of the measures without the flexibility features (e.g.,
with efficiency features only) and use the changes in hourly load shapes vs. the full measure
versions with flexibility features to determine the dispatachable portion of the measure’s
hourly load impacts for LoadFlex.
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Figure S25: Natural gas fuel price forecasts by EMM region.

Figure S26: Natural gas fuel price forecasts by EMM region.
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Figure S27: Natural gas fuel price forecasts by EMM region.

2.2.2 Marginal energy and capacity cost outputs

The GridSIM outputs of particular relevance for this study are forecasts of marginal energy and
capacity costs. Marginal energy and capacity costs are used to value reductions in overall electric-
ity consumption and in system peak demand attributable to the demand-side measures modeled
in this study. Marginal energy costs are estimated using the shadow price on the modeling con-
straint that requires system load to be fully served by generation in each hour. The shadow price is
effectively the per-kilowatt-hour cost associated with a small incremental increase in load. It could
include the variable cost of the marginal generator as well as the incremental cost of new capacity
(generation or transmission) required to serve new energy needs. Separately, the marginal capac-
ity cost is represented by the shadow price on the modeling constraint that requires that there
be enough available capacity online to meet the system’s peak demand plus a reserve margin. It
represents the cost associated with a small incremental increase in system peak demand.

For each of themodeled grid decarbonization scenarios, years, andmodeling regions, GridSIM
outputs annual capacity prices in $/MW-year and hourly energy prices in $/MWh (see, e.g., Figure
S11). We convert all price input data to hourly estimates in units of $/MWh, and then use the
LoadFlex model to value the hourly load impacts of the demand-side measures with time-varying,
hourly granularity. To convert capacity prices to $/MWh, we allocate the $/MW-year annual value
proportionally across roughly the top 50 to 100 hours per year, depending on the region. To do
this, we calculate system net load in each hour and identify a “threshold” net load value for each
region, above which the capacity price will be non-zero. We then calculate a “weight” to apply to
each net load hour, equal to each net load hour’s absolute difference between the threshold value
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and net load in that hour (the weight is set to zero if net load does not exceed the threshold). We
then calculate a weighted average capacity price in each hour, region, and year, based on these
weights.

3 Sensitivity of results to accounting for fugitive emissions sources

We assess the sensitivity of the emissions results in our benchmark scenarios to accounting of sev-
eral fugitive emissions sources, including leakage of refrigerants from building HVAC technologies
and leakage of methane from the natural gas supply chain. In the former case, installing air con-
ditioning (AC) and heat pump (HP) technologies in both residential and commercial buildings will
cause an increase in emissions of fluorinated gases (”F-gases”), which are commonly used as re-
frigerants in these technologies and, when leaked into the atmosphere, have very high global
warming potential (GWP) [23]. In the latter case, replacing natural gas-fired space and water heat-
ing equipment with electric technologies will not only reduce direct emissions from on-site natural
gas combustion but will also avoid the leakage of methane (CH4) throughout the oil and natural
gas supply chain [24], thus avoiding another high-GWP source of emissions. These two sources
of fugitive emissions will counteract one another in scenarios that feature accelerated adoption of
HP technologies, but the magnitude of their associated emissions impacts relative to avoided op-
erational emissions under various building decarbonization scenarios has not been studied before
at the scale of the U.S. building stock.

We integrate data into our modeling framework on both fugitive emissions sources at the
technology level to determine how they impact overall CO2-equivalent (CO2-eq) emissions. Fig-
ure S28 presents results for our three benchmark scenarios (see Table 4). In general, our results
show that increases in CO2-eq emissions due to refrigerant leakage (shown as negative emissions
reductions in the orange bars in the figure) are of a smaller magnitude across scenarios as are
further decreases in CO2-eq emissions due to avoided methane leakage (shown as positive emis-
sions reductions in the blue bars in the figure). In 2030, the impact of refrigerant leakage is around
half of that of avoided methane leakage across scenarios. In 2050, we find that avoided methane
leakage emissions are greater than refrigerant leakage emissions by 45.9 Mt CO2-eq in Scenario
1 (around 3.5X), which reflects the constraint of aggressive HP conversions to fuel switching con-
texts in that scenario (e.g., excluding aggressive replacement of resistance heating/water heating
technologies with HPs). We see that when a wider frame of aggressive HP conversions is explored
that includes both fuel switching to HPs and replacement of electric resistance heating and wa-
ter heating with HPs (scenario 3), the difference in impacts of refrigerant leakage and avoided
methane leakage are somewhat smaller, though methane leakage still dominates (a ratio of 1.9X),
leading to overall CO2-eq savings that are 33 Mt CO2-eq higher than in the benchmark for that
scenario.

These findings demonstrate important sensitivities to accounting for fugitive emissions sources
from refrigerant and methane leakage in building decarbonization analyses. They suggest that the
negative effects of aggressive fuel switching to HP technologies in terms of added refrigerant leak-
age emissions are always offset by concurrent reductions in methane leakage from the natural gas
supply, due to reduced demand for gas heating and water heating services under high electrifica-
tion. Furthermore, our sensitivity analysis assumes that HVAC technologies use typical refrigerants
that are used in the HVAC/water heating markets today and/or mandated in the future by exist-
ing regulations (see additional methodological details in the following section); if new policies are
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passed that further regulate the use of higher-GWP refrigerants and thus accelerate the adoption
of lower-GWP refrigerants, the avoided methane leakage benefits from fuel switching will further
outweigh the influence of added refrigerant leakage emissions in the overall fugitive emissions ac-
counting framework. We identify further sensitivity analysis to the use of lower-GWP refrigerants
as an important area of further study for the fugitive emissions topic.

Figure S28: Sensitivity of benchmark scenario emissions reductions to fugitive emissions impacts in
2030 and 2050. Total avoided CO2 emissions for each benchmark scenario are calculated both with and
without accounting of additional impacts from fugitive emissions sources, including leakage of refrigerants
from building HVAC technologies and leakage of methane from the natural gas supply chain. Figure bars
show initial benchmark scenario avoided emissions, increases in emissions due to refrigerant leakage, de-
creases in emissions due to reductions in methane leakage from the natural gas supply chain, and total
benchmark scenario avoided CO2-eq emissions after accounting for fugitive emissions.

3.1 Fugitive emissions assessment methodology

3.1.1 Refrigerant emissions data and analysis approach

To assess CO2-eq emissions from refrigerant leakage over the lifetimes of both HP and AC tech-
nologies, we use a modified version of the total equivalent warming impact (TEWI) equation [25]
to calculate the direct emissions from refrigerant leakage and end-of-life recovery losses, as in:
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Table S3: Summary of data used to calculate fugitive emissions from refrigerant leakage.
Sector Equipment Lannual (%) n (yr) m (kg) Typical Refriger-

ant
GWP-100 Low-GWP

Refrigerant
GWP-100

Residential Room AC 2 18 0.7

R-410A 2088 R-32 675ASHP 5.8 15.5 3.59
GSHP 5.8 15.5 3.59
Central AC 5.8 18 2.95
HPWH 2 13 4.7 R-134a 1430 R-1234yf <1Refrigeration 0.3 17 0.275

Commercial Scroll chiller 8.5 20 995 R-410A 2088 R-32 675
Centrifugal chiller 8.5 25 995

R-134a 1430 R-1234ze 7Reciprocating chiller 8.5 20 995
Screw chiller 8.5 20 995
Central AC 5.8 21 2.95

R-410A
2088 R-32 675GSHP 5 18 141.4

Rooftop ASHP 5 21 141.4
Rooftop AC 5 21 141.4
Wall-window room AC 2 10 0.7 1430 R-1234yf <1
Refrigeration - large 22.5 10 2000 3900 R454C 148
Refrigeration - small 22.5 10 2000 R-134a 1430 R-1234yf 1HPWH 2 15 60.5

TEWI = (GWP ×m× Lannual × n) + (GWP ×m× EOL)) (15)

where:

• GWP = global warming potential of refrigerant, relative to CO2 (GWP = 1);

• Lannual = leakage rate per year (%);

• n = system operating life (years);

• m = refrigerant charge (kg); and

• EOL = end-of-life emissions as a percentage of initial refrigerant charge (%)

For each technology typemodeled in Scout, data are collected from existing sources on typical
refrigerants, refrigerant charges, and end-of-life refrigerant leakage [26, 27]; typical refrigerant
leakage rates [28, 29], and system operating lifetimes. GWP-100 values from the IPCC Fourth
Assessment Report [30] are used to convert refrigerant emissions to CO2-eq In our analysis, if a
conventional refrigerant in use today is subject to regulation that would prohibit the use of that
refrigerant in a future year (e.g., the U.S. EPA’s Final Rule 21 [31] prohibits the use of R-410a for
chillers as of January 1, 2024), we represent that via a phase-out year after which the conventional
refrigerant is substituted with a low-GWP alternative. Additional rule-making from the EPA is
anticipated under the American Innovation & Manufacturing (AIM) Act that will establish lower
GWP limits for a wide variety of HVAC and refrigeration applications [32]. While we do not reflect
such anticipated rules in this analysis, our framework is developed in such a way that new rules
that affect phase-out years for existing refrigerants can be incorporated as they enter into force.

Table S3 shows the input data used for each Scout technology type (EOL refrigerant leakage
for all equipment types is assumed to be 15% [28].) Values from equation 15 are formulated at
the level of individual technology stock units in Scout, thus facilitating their attachment to Scout
stock estimates in the same manner that per-unit operation-phase CO2 emissions terms Ieuse−alt

X,y

and Ieuse−alt
X,y,m,mt are in equations 2 and 4, respectively.
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3.1.2 Supply chain methane emissions data and analysis approach

To assess the CO2-eq emissions of methane leakage from the oil and natural gas supply chain,
we incorporate data on leakage rates across various segments of the natural gas industry to cal-
culate methane leakage rate factors for consumption of natural gas. These factors are used to
calculate fugitive methane emissions from baseline building sector natural gas consumption as
well as avoided methane emissions when reducing natural gas consumption through efficiency or
removing it entirely via fuel switching to electricity.

Previous assessments of emissions from methane leakage throughout the oil and natural gas
supply chain find that the U.S. EPA’s Greenhouse Gas Inventory (GHGI) has historically underesti-
mated the degree of leakage. Alvarez et al. [33] find in a recent bottom-up assessment of methane
emissions across all oil and natural gas industry segments that emissions are especially underesti-
mated for the production segment. Given the geospatial resolution of Scout and the variability of
methane leakage rates across different oil and natural gas production basins in the U.S., we incor-
porate data on methane leakage rates at the state-level using recent work from Burns and Grubert
[34]. Their study uses basin-level estimates of production-stage methane emissions in combina-
tion with data on natural gas production, consumption, and trade to attribute production-stage
methane emissions to individual states. Figure S29 shows the state-level leakage rates from Burns
and Grubert, and Table S4 shows estimates of average leakage rates for the other oil and natural
gas industry segments from Alvarez et al.

Figure S29: Estimated consumption-normalized production-stage methane emissions for natural gas
consumed in each state, adapted from [34].

In our analysis, we add state-level production-stage leakage rates to U.S. national averages for
the remaining oil and natural gas industry segments, which we assume decrease proportionally
with production-stage decreases, to calculate total methane leakage factors by state, as in:
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Table S4: Estimates of non-production-stagemethane emissions across oil and natural gas industry segments
and converted leakage rates used to assess fugitive emissions in Scout.

Industry Segment Alvarez et al. estimate of 2015
CH4 (Tg/yr)

Converted methane leak-
age rate†

Gathering 2.6 0.46%
Processing 0.72 0.13%
Transmission & Storage 1.8 0.32%
Local Distribution 0.44 0.08%
Oil Refining and Transportation 0.034 0.01%

† Based on estimated 2015 total natural gas production of 565 Tg[33]

Ls = Lp,s + Lg,US + Lpr,US + Lts,US + Lld,US + Lort,US (16)

where:

• Ls = total state methane leakage rate per year (%);

• Lp,s = production-stage leakage rate specified by state (%);

• Lg,US = national average gathering leakage rate (%);

• Lpr,US = national average processing leakage rate (%);

• Lts,US = national average transmission and storage leakage rate (%);

• Lld,US = national average local distribution leakage rate (%); and

• Lort,US = national average oil refining and transportation leakage rate (%)

After determining state-level leakage rates based on this approach, we apply these to reference
case and alternate scenario estimates of energy consumption where the fuel type f is natural gas
(see main text equations 1 and 7). Given that the leakage rates apply to volume of methane
leaked from natural gas production, we convert natural gas consumption in MMBtu to volume
using a conversion factor of 1.037 MMBtu = 1,000 ft3 [35]. We then apply the state-level leakage
rates mapped to the EMM region set [1] to calculate volume of methane leaked, which we then
convert to mass using the specific volume of methane at 70 degrees Fahrenheit, 1 atmosphere
of pressure (20.2 g/ft3). Finally, we use the GWP-100 value of methane (28) to convert to CO2-eq
emissions that we add to reference and alternate case emissions estimates in equations 2 and 8.
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