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Symmetry-enforcing neural networks with applications
to constitutive modeling

Kévin Garangera, Julie Krausb, Julian J. Rimolia,∗

aDepartment of Mechanical and Aerospace Engineering, University of California, Irvine,
CA 92697, USA

bSchool of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332,
USA

Abstract

The use of machine learning techniques to homogenize the effective behavior
of arbitrary microstructures has been shown to be not only efficient but also
accurate. In a recent work, we demonstrated how to combine state-of-the-art
micromechanical modeling and advanced machine learning techniques to ho-
mogenize complex microstructures exhibiting non-linear and history dependent
behaviors [44]. The resulting homogenized model, termed smart constitutive law
(SCL), enables the adoption of microstructurally informed constitutive laws into
finite element solvers at a fraction of the computational cost required by tradi-
tional concurrent multiscale approaches. In this work, the capabilities of SCLs
are expanded via the introduction of a novel methodology that enforces mate-
rial symmetries at the neuron level, applicable across various neural network
architectures. This approach utilizes tensor-based features in neural networks,
facilitating the concise and accurate representation of symmetry-preserving op-
erations, and is general enough to be extend to problems beyond constitutive
modeling. Details on the construction of these tensor-based neural networks
and their application in learning constitutive laws are presented for both elastic
and inelastic materials. The superiority of this approach over traditional neural
networks is demonstrated in scenarios with limited data and strong symme-
tries, through comprehensive testing on various materials, including isotropic
neo-Hookean materials and tensegrity lattice metamaterials. This work is con-
cluded by a discussion on the potential of this methodology to discover symmetry
bases in materials and by an outline of future research directions.

1. Introduction

The determination of the effective mechanical properties of materials is a vast
topic that has historically been essentially based on experimental methods [13],
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coupled with constitutive models specifically conceived for the type of material
studied [49]. These constitutive models are fundamental to engineering-level
analysis of the mechanics of materials, via their use in finite element meth-
ods [14]. Traditionally, they have been grouped into two categories — phe-
nomenological and micro-mechanical —, although the distinction between the
two is not always clearly defined. The former type of models tends to rely
on empirical considerations and observations, while the latter type is based on
physical considerations of the material behavior. What makes the distinction
between the two types sometimes ambiguous is the fact that to be of practical
use, even micro-mechanical models need to rely on some assumptions or simpli-
fications. Some examples of phenomenological models include [39, 34, 17, 37]
while examples of micro-mechanical models are given in [28, 31, 57, 16, 3].

A different approach consists of using computational modeling of the mate-
rial behavior at the microscale. Various methods fall under this approach, such
as computational homogenization, which is based on the principle of separation
of scales [27, 62, 41, 25], and concurrent multiscale methods, where a strong
coupling between scales is considered [9, 22, 63, 10]. A major drawback of these
approaches is their computational cost, which tends to be prohibitively high
for most three-dimensional problems [25], preventing their widespread use in
engineering applications.

With the hope of benefiting from the efficiency of constitutive modeling and
the accuracy of computational microscale modeling, data-driven methods based
on machine learning have been proposed [2, 38, 33, 45, 59, 44, 35]. With these
methods, mathematical models capable of approximating complex relationships,
such as artificial neural networks, are trained from data generated by compu-
tational simulations. The use of very general and powerful models is justified
by the need to capture intricate behaviors of materials that would be otherwise
hard to efficiently model accurately from physical considerations only. Concep-
tually, this approach differs significantly from the derivation of a constitutive
model based on physics or empiricism that already captures some characteris-
tics of the material response by nature. This stark difference remains true even
if some of these latter constitutive models are calibrated on data samples with
methods inspired from machine learning, such as in [50].

Artificial neural networks were proposed decades ago to model the mechan-
ical response of materials such as concrete [26], sand [19], or sandstone [47],
although these initial approach relied on a limited amount of experimental data
to calibrate relatively small networks. Subsequent early works revolving around
neural networks for constitutive modelings include [24, 40, 54]. More recently,
thanks to advances in micro-structure simulation and the increasing availability
of computational resources, larger and more powerful models have been used to
learn constitutive laws from simulated data for elastic [38, 45, 35] and inelastic
materials [59, 44, 64]. In these works, constitutive models are learned by train-
ing neural networks with standard deep learning methods on pairs of inputs and
outputs, which consist respectively of kinematic variables (e.g., strain tensor or
deformation gradient) and stress variables.

Despite these promising results, one of the disadvantages of neural networks
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for constitutive modeling is the fact that some of the properties that the mate-
rial is known to satisfy, from mathematical or physical considerations, cannot in
general be enforced. These properties notably include hyperelasticity, frame in-
difference (or objectivity), material stability, invariance to material symmetries,
and compliance with thermodynamics laws [46]. This drawback of neural net-
works is linked to their inherent ability to approximate arbitrary functions, and
therefore can be seen as an inevitable consequence of this otherwise powerful
and desirable feature. To put in perspective this tension between the capability
of a model to replicate intricate behavior and the intrinsic enforcement of known
properties, micro-mechanical models can be thought as belonging to the other
end of the spectrum, being derived from physical considerations but not always
able to captures all aspects of a material’s response.

In theory, a neural network large enough should be able to learn approxi-
mately the previously mentioned properties with sufficient data, but doing so
may require an excessively large number of training samples and computational
resources [12]. For material symmetry and frame indifference, the difficulty
with obtaining a dataset large enough to implicitly represent these properties
is partially alleviated by the use of data augmentation techniques. With these
techniques, new samples are generated from existing ones by applying a trans-
formation that preserves the invariant properties of interest [55]. However, data
augmentation still does not solve the issue of computational cost and is not
always applicable, as with the case of material symmetry if the basis of the
material symmetry group is not known. In addition, the approach consisting of
learning some properties from a dataset may not be acceptable if these prop-
erties needs to be satisfied exactly, as such approximations may result in an
inconsistent model that violates some laws of physics. For example, the non-
respect of frame indifference, itself a purely mathematical property, leads to a
different work produced along a path depending on the frame of reference.

For these reasons, neural networks that are designed to satisfy these prop-
erties by construction have been proposed [43, 21, 20, 60, 4, 36]. In addition to
alleviate the already mentioned issues with data augmentation, neural networks
that are designed to satisfy some of these properties tend to also perform better
and require smaller models [43, 48]. A common approach to guarantee hypere-
lasticity is to learn a strain energy function with a neural network potential [21,
20, 4, 36], rather than a strain-stress relationship, similarly to what has been
done in molecular chemistry [7]. The frame indifference problem is generally
solved by using an input representation that is independent of the frame of
reference, such as the Cauchy-Green strain tensor [21, 20] or Green-Lagrange
strain tensor [4]. However, the use of these tensors as inputs is incompatible
with the enforcement of material stability via input convex neural networks,
which is a recent method that requires the deformation gradient as input [36].
Finally, material symmetries have been enforced in previous works with one of
two methods:

1. By using invariants of the strain tensor as inputs [43, 36, 42],

2. By using a process known as group symmetrization, where all the trans-
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formed versions of an input with respect to a symmetry group are passed
through a neural network and averaged [21, 20, 36].

One of the advantages of the first method compared to the second one is that
the basis of the materials symmetry group does not need to be known. It can
also be applied to infinite symmetry group, such as transverse isotropy [20].
The second method can be adapted to infinite groups by considering only a
finite subgroup of the materials symmetries, but this results in the material
symmetries being only approximately satisfied by the trained constitutive law.
In addition, the larger the symmetry group, the more neural network outputs
need to be computed with the second method, making it computationally more
expensive than the first one for large groups. On the other hand, the first method
requires identifying a set of invariants that is suited to the problem, which can
be challenging, given that many different invariants exist [56, 53, 6, 18] and
not all of them are appropriate for numerical computations [58]. What’s more,
there also seems to be cases where learning constitutive laws from invariants
fails, unlike when learning from the full strain tensor [36].

In this work, a new method to enforce materials symmetry is proposed, in
which the materials symmetries are exactly enforced at the neuron level, in-
dependently of the neural network architecture. This method relies on linear
operations and activations that are equivariant to the action of the material
symmetries. With traditional neural networks, features describe each individ-
ual scalar entry of a network’s inputs and outputs, as well as the hidden layers’
outputs. With the proposed approach, this concept is extended to tensors, by
considering features represented by tensors. While the inputs and outputs of the
networks introduced here are each individual tensors (a strain tensor and a stress
tensor), the hidden layers’ outputs are represented as arrays of tensors. This for-
malism does not change in essence the nature of the linear operations occurring
between layers, but it allows to conveniently write symmetry-preserving oper-
ations in a concise and straightforward way, while reusing known results from
linear elasticity applied to materials with symmetries. However, the proposed
activation functions, since they are applied feature-wise, are not equivalent to
activation layers of standard neural networks, which are applied to each scalar
individually. The methodology to construct neural networks based on tensor
features are detailed in section 2. The resulting neural networks are named
tensor feature equivariant neural networks (TFENN). Although the examples
presented in this work come from continuum mechanics, the proposed method-
ology is general and can be applied to any problem where the inputs and outputs
can be represented as collections of symmetric tensors.

Both feed-forward and recurrent TFENNs are presented, allowing the learn-
ing of constitutive models from elastic and inelastic materials. To apply the
proposed method, a basis of the symmetry must be known, which at first may
seem like a drawback in comparison to invariants-based methods. However, this
requirement can be turned into an advantage by considering a symmetry basis
as a learnable parameter of the neural network, therefore allowing its discov-
ery through training. Only rate-independent problems are considered in this
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work, but the methodology is easily extended to viscoplasticity, for which the
formulation of material symmetries is essentially the same. In section 3, the
proposed methodology is applied to the learning of constitutive laws for several
materials: a three-dimensional isotropic neo-Hookean material, the unit cell of a
two-dimensional tensegrity lattice metamaterial, and a two-dimensional plastic
microstructure. Results indicate that TFENNs are capable of learning com-
plex constitutive models despite the apparently restrictive constraints placed
on them. In addition, they tend to outperform standard neural networks with
similar numbers of parameters and same numbers of layers, with the most signif-
icant improvements being for scenarios with scarce data and strong symmetries.
The ability of standard neural networks to learn a dataset’s symmetries is also
investigated via numerical comparisons with TFENNs. An example of symme-
try basis discovery is also presented, based on the tensegrity lattice metama-
terial dataset. In addition, some of challenges and limitations of the proposed
methodology are discussed. Finally, in section 4, main conclusions of the study
are provided, as well as potential future research directions.

Notations

The following notations are used throughout the paper:

• R: the set of real numbers.

• Ji, jK: the set of integers {i, i+ 1, . . . , j}.

• Sn: the set of symmetric matrices of size n× n.

• O (n): the set of orthogonal matrices of size n× n.

• T d
n : the set of real tensors of order d and dimensions all equal to n.

• diag (v): the diagonal matrix with diagonal entries given by the vector v.

• tr (A): the trace of the matrix A.

• In: the identity matrix of size n.

• A : B: the double contraction between two tensors of order at least 2 A
and B.

2. Neural networks with tensor features

2.1. Equivariant feedforward neural networks

TFENNs are meant to learn a constitutive relationship f between a pair of
second-order tensors of same size, the first one being a kinematic input and the
second one a stress output. In particular, since the primary focus of this work
is the enforcement of material symmetries, the input and output tensors are
assumed to be symmetric tensors M ∈ Sd that, for any matrix Q ∈ O (d), are
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transformed via the group action: M 7−→ QTMQ, where d is the appropriate
dimension. The Cauchy-Green strain tensor C and the second Kirchoff-Piola
stress tensor S, which are work conjugates up to a multiplicative constant, are
an example of a pair of such tensors. For a history-independent material, using
these tensors as input and output to a neural network allows to formulate the
material symmetries of the constitutive relationship as

∀Q ∈ G,∀C ∈ Sd, f(QTCQ) = QTf(C)Q, (1)

where G is the group of material symmetries, a subgroup of O (d). If f satisfies
eq. (1), it is said to be G-equivariant, which is the property that is sought
of TFENNs. To construct such neural networks, symmetric tensors are used to
represent intermediate features resulting from internal operations of the network
(see fig. 1), and said operations are designed to be G-equivariant themselves.

2.2. Neuron operations

Input tensor

Layer 1 Layer 2

Tensor feature

Output tensor

Figure 1: Representation of a TFENN with two hidden layers of eight two-dimensional tensor
features each. Each connection between two features is associated to a weight tensor and each
feature is associated with a bias tensor. The weights of the connections leading to a given
feature, the bias tensor of this feature, and the activation at the corresponding layer fully
characterize a neuron operation.

At each layer of the proposed neural networks, a set of neuron operations is
applied to a set of symmetric tensor features to produce a new set of symmetric
tensor features. Assuming that a layer has a number of input (respectively
output) features nin (respectively nout), and that the input (respectively output)
features are denoted by xj (respectively hi), the neuron operations is expressed
as

∀i ∈ J1, noutK , hi = ϕ

 nin∑
j=1

Wij : xj + bi

 . (2)
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In eq. (2), Wij ∈ T 4
d is a weight tensor with minor symmetries, bi ∈ Sd is a

bias tensor, and ϕ : Sd 7−→ Sd is a tensorial activation function. To ensure that
the neuron operations are equivariant, each weight W , each bias b, and the
activation ϕ are chosen such that

∀Q ∈ G,∀x ∈ Sd,


W :

(
QTxQ

)
= QT (W : x)Q,

b = QTbQ,

ϕ(QTxQ) = QTϕ(x)Q.

(3a)

(3b)

(3c)

Clearly, eqs. (3a) to (3c) are sufficient conditions for the equivariance of the
neural network resulting from the composition of multiple layers.

2.2.1. Weights

The form that W must take to satisfy eq. (3a) given G is a well-studied
problem arising from the characterization of the elasticity tensor of linear elastic
materials with symmetries. It was shown that the number of different equiv-
alence classes for material group symmetries in two dimensions is 4 and 6 for
hyperelastic and elastic materials respectively [29], and 8 [23] and 12 [61] in
three dimensions. The tensor forms corresponding to each of these classes in
the natural basis of symmetry are given in multiple references, for example in [5]
for the 2D case and [1] for the 3D case.

2.2.2. Biases

If G is the trivial group, i.e. triclinic symmetry or no symmetry is assumed,
any symmetric tensor b can be used to satisfy eq. (3b). Otherwise, the form
of b is more constrained and but can be determined for each symmetry group
easily by solving a set of linear systems. For example, with isotropic or cubic
symmetry, bmust be a multiple of the identity, while with orthotropic symmetry
and d = 2, it must be diagonal.

2.2.3. Activations

Finally, to satisfy eq. (3c), the approach proposed in this work is to define
ϕ such that it applies a scalar activation function σ to the eigenvalues λ of its
argument. This is done by defining the mapping Φ from scalar activations to
tensorial activations such that ∀U ∈ O (d) ,∀λ ∈ Rd,

Φ(σ)
(
Udiag (λ)UT

)
= Udiag

([
σ(λ1) · · · σ(λd)

])
UT. (4)

Given eq. (4), it is obvious that Φ is well-defined (i.e. does not depend on the
choice of U) and that ϕ := Φ (σ) satisfies eq. (3c).

2.3. Equivariant recurrent neural networks

The concept of tensor features can be extended to recurrent neural networks
(RNNs) to model history-dependent constitutive models.
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2.3.1. Standard neuron operations

The most popular RNN cells, such as the LSTM [32] and the GRU [11], are
based on standard neuron operations. Some of these neurons output intermedi-
ate features and some are gates that control the flow of information through the
network. These gates use logistic activation functions and their output is mul-
tiplied by the output of other neurons. For example, a possible layer operation
of a GRU with scalar features is

r = σ
(
wirx+whrh′ + br

)
, (5)

z = σ
(
wizx+whzh′ + bz

)
, (6)

ĥ = ψ
(
wihx+ bih + r ⊙

(
whhh′ + bhh

))
, (7)

h = (1− z)⊙ ĥ+ z ⊙ h′, (8)

where x is the vector of input scalar features, h′ is the vector of output scalar
features at the previous time step, σ and ψ are activation functions applied
element-wise (respectively a logistic function and a hyperbolic tangent), r and

z are gate output, ĥ is a candidate output, and the various w and b are re-
spectively weight matrices and bias vectors. In eqs. (7) and (8), ⊙ denotes the
element-wise product of vectors.

2.3.2. Tensorial neuron operations

To extend this architecture to tensor features, the following modifications
are proposed:

• The input and output of the layer are replaced with arrays of tensor fea-
tures, similarly to the approach proposed for feedforward neural networks.

• The output of gates are kept as vectors of scalars to remain faithful to the
original purpose of gates which is to keep or forget specific features.

• The activation of eq. (7) is replaced with a tensorial activation function.

• The operation ⊙ is replaced with an element-wise product between vectors
of scalars and arrays of tensors.

These modifications lead to the following operations, written at the neuron level:

ri = σ

 nin∑
j=1

tr
(
wir

ijxj

)
+

nout∑
j=1

tr
(
whr

ij h
′
j

)
+ bri

 , (9)

zi = σ

 nin∑
j=1

tr
(
wiz

ijxj

)
+

nout∑
j=1

tr
(
whz

ij h
′
j

)
+ bzi

 , (10)

ĥi = Φ(ψ)

 nin∑
j=1

W ih
ij : xj + bihi + ri

nout∑
j=1

W hh
ij : h′

j + bhhi

 , (11)

hi = (1− zi) ĥi + zih
′
i, (12)
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where the various W ∈ T 4
d are tensor weights, the b ∈ Sd are bias tensors, and

the w ∈ Sd are matrix weights. The linear operations in gates are from Sd to
R, which explains the use of the trace operator, since linear forms on Sd are
isomorphic to Sd via the isomorphism s ∈ Sd 7−→ tr (s ·).

The equivariance of the neuron operation defined by eqs. (9) to (12) can be
ensured by choosing the weights and biases such that the operation in eq. (11)
is equivariant and the operations in eqs. (9) and (10) are invariant. The invari-
ance of these last operations means that a rotation of x and h′ by the same
orthogonal matrix results in unchanged output r and z. All these conditions
are satisfied by choosing the tensor weights W as in eq. (3a) and the bias ten-
sors b and matrix weights w as in eq. (3b). The fact that the invariance of
the operations in eqs. (9) and (10) requires this choice of weights is a conse-
quence of the fact that ∀Q ∈ O (d) , tr

(
wQTxQ

)
= tr

(
QwQTx

)
and that

∀y ∈ Sd, (tr (xy) = 0 ∀x ∈ Sd =⇒ y = 0).
These conditions that the various W , w, b need to satisfy thus allows their

full characterization as performed in sections 2.2.1 and 2.2.2.

2.3.3. Other neural network architectures

Although the presented approach is illustrated with a GRU, it can be applied
without difficulty to other recurrent neural network architectures. This includes
models with hidden state variables like LSTM by simply using tensor features
for these variables.

3. Results

The results of applying TFENNs to multiple materials is presented in this
section. These materials include a neo-Hookean 3D hyperelastic material, a 2D
unit of an elastic tensegrity metamaterial, and a 2D representative volume ele-
ment of an elasto-plastic microstructure. Standard neural network architectures
with the same number of layers and a similar or higher number of parameters
are also trained on these problems for comparison.

3.1. Implementation details

3.1.1. Neural network implementation

All neural networks and training scripts are implemented in Python with the
automatic differentiation package Jax [8] and other packages based on it [15, 30].
An important detail is the fact that the tensorial activations as defined in eq. (4)
are implemented via an eigenvalue decomposition of the input, which is only
differentiable when eigenvalues are simple. This initially led to numerical issues
when attempting to compute the gradient of TFENNs. However, using double
precision floating point numbers and ensuring that no weights of the neural
network are zero-initialized solved these issues in practice for the presented
results. A better option for future work would be to express eq. (4) (which itself
is differentiable everywhere) as a composition of differentiable matrix functions.
For activations based on polynomial, exponential, or logarithm functions, this
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could be done by using the matrix versions of these functions. However, not all
of them are currently implemented in Jax.

3.1.2. Random deformations generation

Random deformation gradients F are generated from positive eigenvalues
sampled with a uniform distribution (hence defining a diagonal matrix D) and
from random rotation matrices R, both combined by setting F = RD. In
two dimensions, rotation matrices are generated by sampling random angles
from a uniform distribution between 0 and 2π. In three dimensions, they are
constructed from random rotations axes sampled from a uniform distribution
on the unit sphere and random rotation angles sampled as in two dimensions.

3.1.3. Data scaling

An important step in the training of neural networks is the scaling of the
input and output data. Here, three different scaling schemes are used:

1. Scalar component-wise scaling: each component of the input and out-
put tensors is scaled by its mean and standard deviation over the training
set. This method is used to scale the input-output pairs provided dur-
ing training to the standard neural networks, but is not suitable for the
TFENNs, as it would break the possible symmetries of the data.

2. Tensor symmetry-preserving scaling: input and output tensors are
shifted and scaled by adding and multiplying them with multiples of the
identity matrix, such that the mean and standard deviation of the diagonal
coefficients of the scaled tensors are respectively zero and one. This scaling
ensures that material symmetries are preserved and is therefore used to
scale the data provided to TFENNs.

3. Global scaling: identical to the scalar component-wise scaling, except
that the standard deviation is computed over all components of the ten-
sors. This method is used for the computation of the mean squared error
loss during training and validation to provide a same objective in all cases
and a comparable outcome. In other words, after a neural network pre-
dicts a scaled output tensor according to the first or second scheme, this
tensor is rescaled according to the third scheme before being compared to
the target tensor, itself also scaled according to the third scheme. Given
that the loss function involves a subtraction between the predicted and
target tensors, the shifting of the tensors has no impact on the loss and
only the scaling is relevant. The scaling involves a standard deviation
computed over all components of the tensors to ensure that the compo-
nents of the tensors are represented in the loss according to their original
magnitude. All values of the validation loss reported in this section are
computed using the third scheme.

3.1.4. Loss function

The loss function used to train all neural networks is the mean squared error
between the predictions and targets. That is, for a set of N pairs of inputs and
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outputs {(Xi,Yi)}Ni=1, which are either tensors or sequences of tensors grouped
in a single array, the loss function is defined as

L =
1

N

N∑
i=1

∥Yi − f(Xi)∥2F , (13)

where ∥·∥F denotes the Frobenius norm.

3.2. Neo-Hookean material

The first material considered is an isotropic neo-Hookean hyperelastic ma-
terial. The model used for this material is derived from the strain energy

W =
λ

2
(log detF )

2 − µ log detF +
µ

2

(
tr
(
FTF

)
− 3

)
, (14)

where λ and µ are model parameters. Equation (14) results in the following
constitutive model, expressed with respect to the Cauchy-Green and second
Piola-Kirchoff tensors C and S:

S =

(
1

2
λ log detC − µ

)
C−1 + µI3. (15)

A dataset of C-S pairs was generated by sampling random deformation gra-
dients F as described in section 3.1.2, and by subsequently computingC = FTF ,
and S using eq. (15). Different architectures of neural networks with both scalar
features and tensor features (using isotropic symmetry-preserving parameters)
were trained on a dataset of 20 000 samples. These networks are compared with
respect to the validation loss measured on a distinct dataset of 4000 samples
during training in fig. 2. It can be seen that TFENNs achieve a significantly
lower validation loss than standard networks with a lower number of parameters.
These neural networks were also trained on a smaller training sets of 10 000 and
5000 samples and on larger ones of 40 000 and 80 000 samples. The validation
loss obtained at the end of training for these sets is shown in fig. 3. An im-
portant observation is that the decrease in performance of TFENNs for fewer
training samples is less significant than the one of standard networks. Even
with a dataset of 5000 samples, TFENNs achieve a validation loss comparable
to the one obtained with the best standard neural network trained on 80 000
samples.

To demonstrate the ability of TFENNs to preserve material symmetries to
a much higher degree than standard networks, the trained networks were given
random input tensor and random rotated versions of these inputs, and the re-
sulting predictions were compared numerically. Given a neural network model
f , a set of N random input tensors {C1, . . . ,CN}, and a set of N random ro-
tation matrices {R1, . . . ,RN} from the material symmetry group, the resulting
error in symmetry enforcement is given by

ϵsym =
2

N

N∑
i=1

∥∥f (Ci)−Rif
(
RT

i CiRi

)
RT

i

∥∥
2

∥f (Ci)∥2 +
∥∥f (RT

i CiRi

)∥∥
2

. (16)
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Figure 2: Validation loss progress of neural networks trained on a neo-Hookean dataset with
20000 training samples. The minimum validation loss up to the current epoch for tensor
feature-based and standard networks is shown by solid and dashed lines, respectively. The
current validation loss is represented by the dimmed lines.

The results of this test with N = 200 on different neural networks are shown
in table 1. It can be seen that traditional neural networks only marginally
enforce material symmetries after training, with only a modest improvement of
the symmetry error in comparison to the randomly initialized networks before
training. On the other hand, TFENNs achieve a symmetry error that is on par
with the numerical precision of the computations, demonstrating that material
symmetries are enforced to a high degree.

Table 1: Symmetry enforcement error of neural networks trained on the neo-Hookean dataset.

Network Symmetry error
Features Architecture Pre-training Post-training
Scalar 3x32 9.26× 10−1 4.91× 10−1

Scalar 2x32 1.29 4.89× 10−1

Scalar 3x64 1.37 4.83× 10−1

Scalar 2x64 1.59 4.80× 10−1

Scalar 3x128 9.08× 10−1 4.78× 10−1

Scalar 2x128 1.34 4.78× 10−1

Tensor 3x23 2.39× 10−15 1.12× 10−15

Tensor 2x23 1.26× 10−15 9.98× 10−16

3.3. Tensegrity lattice unit cell

A two-dimensional unit cell of an elastic tensegrity metamaterial, shown
in fig. 4a, is considered as a second example. The cell is composed of pinned
bars and cables. Bars are modeled as linear elastic springs up to their Euler’s
buckling load, after which their load is assumed constant. Cables are modeled
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Figure 3: Final validation loss of neural networks trained on full and reduced neo-Hookean
datasets. The validation loss of TFENNs and standard networks is shown by solid and hatched
bars, respectively. The ratio of the achieved validation loss to the one achieved by the tensor
feature-based network with the least number of parameters, highlighted with a bar with a
wider edge, is shown by the numbers above the bars.

(a) Tensegrity cell [51]. Bars and cables are
respectively represented by thick red lines
and thin blue lines.

(b) Mesh of the elasto-plastic microstructure
used in finite elements analysis [44].

Figure 4: Unit cells used in the tensegrity lattice and elasto-plastic microstructure problems.

as linear elastic springs which can only support tension. For a given deformation
gradient F , the twelve nodes at the boundary of the cell are fixed according to F
while the nodes inside the cell are unconstrained. The equilibrium configuration
of the cell is found by using a conjugate gradient method with a Polak-Ribière
update formula [52]. Given the boundary nodes’ positions in the undeformed
configuration X ∈ R2×12, the forces at the nodes in the deformed configuration
f ∈ R2×12, and the area of the undeformed cell A0, the equivalent strain tensor
is computed with

S =
1

A0
XfTF−T . (17)

Equation (17) is found by equating the formulations of the work done from
deformations of the cell both in terms of strain/stress and displacements/forces.

Here again, various neural networks were trained on different dataset sizes.
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The resulting validation loss of neural networks trained on the tensegrity cell
dataset is shown in fig. 5. In addition, results with various enforced symmetries
for TFENNs are provided. TFENNs again outperform traditional neural net-
works with a similar number of parameters by a large margin. Unsurprisingly,
the best performing TFENN is the one with cubic symmetry enforced, as it is
the most restrictive set of symmetries that the tensegrity cell verifies. However,
imposing orthotropic symmetry, which is less constraining but still verified by
the tensegrity cell, still results in an improvement over a scalar feature formu-
lation. The same can be said when using a triclinic formulation, which does
not enforce any symmetry but relies on weight tensors with major symmetry,
and when using a completely unconstrained formulation of the tensor weights.
The difference in performance between the TFENNs with cubic symmetry and
standard neural networks is even more pronounced for smaller datasets, showing
again the high data efficiency of TFENNs. It can be noted that in some cases,
the TFENN with no enforced symmetry performs better than the one with tri-
clinic or even orthotropic symmetry. It is difficult to draw a general conclusion
from this observation as this behavior is not consistent across all dataset sizes
and the difference in performance is relatively small. In any case, it is worth not-
ing that these three formulations still largely outperform the standard network,
therefore supporting the concept of neural networks based on tensor features.

A test was also performed with a TFENN enforcing isotropic symmetry,
which is not verified by the tensegrity cell, and naturally resulted in the network
being incapable of learning the cell’s response. This test is not represented in
fig. 5 as the final validation loss, ranging between 8.429 × 10−1 and 1.13 for
the various dataset sizes, is much higher than the displayed ones. From this
result, it can be guessed that in the case of unknown dataset symmetry, multiple
TFENNs with different enforced symmetries may be trained, and the one with
the lowest validation loss selected, thereby offering a mean of discovering a
dataset symmetry.
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Figure 5: Final validation loss of neural networks trained on full and reduced tensegrity cell
datasets with different enforced symmetries. Plotting conventions as in fig. 3.
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3.4. Elasto-plastic microstructure

The last example considered is a two-dimensional microstructure composed
of a hard elastic inclusion in a soft elastic-plastic matrix. 10 000 sequence sam-
ples of 200 loading steps each were generated via a finite element simulation,
as detailed in [44]. The microstructure, which has cubic symmetry, is shown
in fig. 4b. In these cases, the input and output tensors are respectively the
infinitesimal strain tensor and the average Cauchy stress tensor.

A TFENN enforcing cubic symmetry and multiple standard neural networks
were trained on different sizes of datasets, up to 8000 samples, and were tested
on the remaining 2000 samples. All networks have two hidden layers and the
TFENN has the least number of parameters. The final validation loss of all
networks on the different dataset sizes is reported in fig. 6. The conclusions
from this example are similar to the ones obtained from previous experiments:
TFENNs provide a significant improvement in data efficiency and prediction
accuracy, with a reduced number of parameters. The resulted observed so far
therefore extend to history-dependent models.
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Figure 6: Final validation loss of neural networks trained on full and reduced elasto-plastic
microstructure datasets. Plotting conventions as in fig. 3.

3.5. Discussion

Three examples of various complexity were considered in this section, both
for history-independent and history-dependent models. The presented results
show that TFENNs, which enforce material symmetries down to floating point
precision, are capable of learning the response of various materials and mi-
crostructures with a high accuracy and a relatively low number of training
samples. TFENNs are particularly efficient in comparison to standard neural
networks with small datasets. Indeed, with all examples, the relative improve-
ment of TFENNs over standard neural networks is more pronounced with fewer
training examples.

Even when no symmetry is enforced and the tensor weights and biases are
unconstrained, TFENNs still outperform standard neural networks, as shown
with the case of the tensegrity cell. Given that the only difference between
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TFENNs with no enforced symmetry and standard neural networks is the use of
tensorial activation functions, this result suggests that these activation functions
alone play a significant role in the performance of TFENNs.

3.6. Symmetry basis discovery

In all three previous examples, the basis of symmetry of the material was
known and used in the implementation of the TFENNs. However, in practice,
the basis of symmetry of a material may not always be known, which may seem
like a limitation of TFENNs. To address this issue, a method to discover the
basis of symmetry of a material from data is proposed in this section. This
method consists of transforming the input and output tensors of the TFENNs
during training via a learnable transformation matrix. That is, if the neural
network operation is denoted by f , a d×d rotation matrix R is defined and the
prediction of the network combined with the rotation is given by

ŷ = Rf(RTxR)RT. (18)

Clearly, if f is constrained to enforce the material symmetries assuming accord-
ing to a chosen arbitrary basis, for the resulting model to learn the material’s
response, then R has to be a rotation from the actual basis of symmetry of the
material to the chosen basis for the representation of f . To discover an appro-
priate matrix that satisfies this property, R is computed from a set of learnable
parameters of the neural network and added during training. In two dimensions,
this parameter is a single angle θ and in three dimensions, a possible choice is a
set of four parameters defining a quaternion q. For the three-dimensional case,
q is normalized to obtain the resulting rotation matrix R and a term penalizing
the deviation of q from a unit quaternion can be added to the loss function.

This method was tested on the tensegrity cell dataset, which was transformed
into five different arbitrarily rotated versions of it. A TFENN enforcing cubic
symmetry with the added learnable rotation was trained five times with different
random initial parameters on each of these datasets. The final validation loss
and the final value of the learned angle for each rotated dataset and initialization
seed are reported in table 2. It can be seen that all but one case result in a
low final validation loss with a learned rotation close to the actual rotation of
the dataset (up to a 45◦ rotation, which preserves the cubic symmetry of the
tensegrity cell). The model that fails to find the correct rotation also has a high
final validation loss, making the failure easy to detect. In addition, the initial
angle difference, which depends on the random initialization seed, is reported
in table 2, as it shows that the ability of the model to find the correct rotation
is not particularly correlated with the magnitude of the initial angle difference.
Therefore, it can be concluded that this method is effective at discovering the
basis of symmetry of a material from data with a few training experiments based
on different random initializations.
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Table 2: Final validation loss and learned rotation angle of TFENNs trained on rotated
versions of the tensegrity cell dataset. The only failing case occurs for a rotation of 20◦ and
a random initialization seed of 2.

True
rotation

Seed
Final

validation
loss

Predicted rotation (error)

Pre-training Post-training

20◦

0 9.25× 10−6 −31.727◦ (6.727◦) −24.993◦ (0.007◦)
1 1.71× 10−4 53.716◦ (11.284◦) 64.964◦ (0.036◦)
2 1.02 −139.904◦ (20.096◦) −142.341◦ (17.659◦)
3 1.21× 10−5 −16.344◦ (8.656◦) −25.005◦ (0.005◦)
4 7.71× 10−5 −41.065◦ (16.065◦) −24.983◦ (0.017◦)

175◦

0 1.57× 10−4 −31.727◦ (18.273◦) −50.053◦ (0.053◦)
1 4.68× 10−6 53.716◦ (13.716◦) 39.999◦ (0.001◦)
2 1.38× 10−5 −139.904◦ (0.096◦) −140.005◦ (0.005◦)
3 7.99× 10−6 −16.344◦ (11.344◦) −4.989◦ (0.011◦)
4 1.12× 10−5 −41.065◦ (8.935◦) −49.971◦ (0.029◦)

222◦

0 5.25× 10−5 −31.727◦ (16.273◦) −47.999◦ (0.001◦)
1 5.18× 10−5 53.716◦ (11.716◦) 42.009◦ (0.009◦)
2 6.12× 10−5 −139.904◦ (1.904◦) −137.993◦ (0.007◦)
3 1.11× 10−4 −16.344◦ (13.344◦) −2.994◦ (0.006◦)
4 1.08× 10−4 −41.065◦ (6.935◦) −47.999◦ (0.001◦)

298◦

0 4.83× 10−5 −31.727◦ (14.727◦) −17.008◦ (0.008◦)
1 2.43× 10−5 53.716◦ (19.284◦) 73.024◦ (0.024◦)
2 1.76× 10−5 −139.904◦ (12.096◦) −152.010◦ (0.010◦)
3 3.76× 10−6 −16.344◦ (0.656◦) −16.993◦ (0.007◦)
4 1.12× 10−4 −41.065◦ (20.935◦) −61.939◦ (0.061◦)

340◦

0 5.28× 10−6 −31.727◦ (11.727◦) −20.000◦ (0.000◦)
1 8.65× 10−6 53.716◦ (16.284◦) 70.001◦ (0.001◦)
2 3.18× 10−5 −139.904◦ (15.096◦) −155.011◦ (0.011◦)
3 8.93× 10−6 −16.344◦ (3.656◦) −19.999◦ (0.001◦)
4 5.00× 10−3 −41.065◦ (21.065◦) −19.971◦ (0.029◦)

4. Conclusion

In this work, a novel type of neural network named TFENN was introduced.
These neural networks are designed to work with input-output pairs of symmet-
ric tensors and to be equivariant to the action of subgroups of the orthogonal
group, with the main application being the constitutive modeling of materials
with symmetries. This equivariance is exact for both finite and infinite groups,
unlike some other methods that have been proposed in the literature. TFENNs
rely on a representation of the inputs, outputs, and intermediate features of the
networks as symmetric tensors of same order and dimensionality. The equivari-
ance of the network is then enforced at the neuron-level by two techniques:

1. Weights and biases are constrained to vector subspaces that depend on
the desired enforced symmetry, a technique analogous to weight sharing
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which reduces the total number of free parameters.

2. The activation functions are applied to the eigenvalues of their input ten-
sors.

These methods are easily extended to encompass the case of recurrent neural
networks, which are used to model history-dependent problems. Despite the
fact that this method for enforcing equivariance may seem overly constraining,
TFENNs are shown to be capable of learning complex constitutive models on a
variety of material models and geometries, elastic or inelastic. In fact, the var-
ious examples presented in this work show that TFENNs perform better than
standard fully-connected neural networks, in particular when the training data
is scarce. This better performance can intuitively be partially attributed to the
fact that TFENNs preserve material symmetries by construction and thus do
no need to learn them from data, which means that the learning capacity of the
network is fully utilized toward learning the constitutive model instead. Since
when no particular symmetry is enforced, TFENNs still tend to outperform
traditional neural networks, the role of tensor-wise activation functions seem to
be of particular importance. A possible avenue for future research is thus to
investigate the effect of these activation functions on new problems, particularly
for materials with no symmetry, since they could not benefit from the restricted
linear operations used on materials with symmetries. The impact of imposing
the major symmetry of the weight tensors is also still unclear, and could be in-
vestigated further, particularly for materials that are not hyperelastic. Another
promising direction would be to combine the methodology presented in this
work with techniques that enforce other material properties, such as potential
networks used to learn strain energy fields or input convex neural networks for
enforcing material stability. Finally, given the fairly general nature of the pro-
posed method and its successful application to constitutive modeling, it would
be interesting to apply it to other fields involving tensorial data with symmetry
properties.
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