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Abstract

Young, Hernán, and Robins consider the mean outcome under a dynamic intervention that may 

rely on the natural value of treatment. They first identify this value with a statistical target 

parameter, and then show that this statistical target parameter can also be identified with a causal 

parameter which gives the mean outcome under a stochastic intervention. The authors then 

describe estimation strategies for these quantities. Here we augment the authors’ insightful 

discussion by sharing our experiences in situations where two causal questions lead to the same 

statistical estimand, or the newer problem that arises in the study of data adaptive parameters, 

where two statistical estimands can lead to the same estimation problem. Given a statistical 

estimation problem, we encourage others to always use a robust estimation framework where the 

data generating distribution truly belongs to the statistical model. We close with a discussion of a 

framework which has these properties.

Keywords

dynamic intervention; stochastic intervention; causal inference; targeted learning; semi-parametric 
model

1 Basic summary of article to set stage for discussion

The authors of this excellent article discuss the identification and estimation of the mean 

outcome under a dynamic intervention that assigns treatment not only in response to the 

observed past before treatment but also in response to the actual observed treatment itself 
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under this intervention, where the latter is called the natural value of treatment. We want to 

congratulate the authors for this nice, welcome, and inspiring article.

Let us consider a single time point example of the type studied in Díaz and van der Laan 

(2012) in order to provide a very basic summary of the article and set the stage for this 

discussion. Even though the article considers much more complex, general longitudinal data 

structures, we believe this simpler example is useful as a starting point for discussion.

Consider a nonparametric structural equation model [NPSEM, Pearl, 2009] with W = fW 

(UW), A = fA(W, UA), Y = fY (W, A, UY), defined by unspecified functions fW, fA, fY, and some 

model on the probability distribution of U = (UW, UA, UY). This defines the model on the 

full data (U, W, A, Y) and the observed data O = (W, A, Y). Here W are baseline 

characteristics, A is the intervention node (e.g. treatment variable, missingness indicator, 

etc.), and Y is the outcome of interest. The full data model (i.e. the allowed set of probability 

distributions of (U, O)) implies the observed data model (i.e. the allowed set of probability 

distributions of O). The latter is called the statistical model. Consider now an intervention 

defined by W = fW (UW), A = fA(W, UA), Ad = d(A, W), Yd = fY (W, Ad, UY), where d is a 

deterministic function mapping the observed treatment A and covariates W into the treatment 

value that is assigned to the unit under the intervention. The authors refer to such an 

intervention as a dynamic intervention that depends on the natural value of treatment. The 

authors show that the mean outcome under this intervention d is equivalent to the mean 

outcome under a stochastic intervention  on A that is only a function of W. The counter-

factuals under this stochastic intervention are denoted as . We note that in the special case 

of a single time point, the natural value of treatment actually equals the observed treatment, 

while in a longitudinal data structure the natural value of treatment is the counterfactual 

treatment that would have been observed given the intervention was followed in the past.

Instead of using fobs for the treatment/censoring mechanism, we will use the commonly used 

notation g. This differs from the use of g in the main text and appendix B of the work of 

interest where g was, respectively, used to represent dynamic regimes which do not depend 

on the natural value of treatment and dynamic regimes which may depend on the natural 

value of treatment. We instead use d to represent a dynamic treatment that may depend on 

the natural value of treatment. In the main text, the authors use fd to describe the distribution 

of such a (possibly stochastic) rule, whereas in this commentary we will focus on 

deterministic rules d for simplicity. Finally, we use g* instead of fint for the stochastic 

intervention that corresponds with the dynamic intervention that relies on the natural value 

of treatment.

Let O = (W, A, Y) ~ P0 and Od = (W, A, Ad, Yd) ~ P0,d where P0,d is called the post-

intervention probability distribution. The notation for the variables has changed slightly 

from the original work to emphasize that we are considering the simpler point treatment case 

in this commentary. Note that P0,d is determined by the probability distribution of the full 

data (U, O). The first goal is to identify the full-data parameter EP0,d Yd as a mapping 

depending only on the observed data distribution P0, so that the mean outcome under 

intervention d can be learned from the observed data. Robins et al. (2004) proposed the 

extended g-computation formula for this parameter for general longitudinal data structures, 
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and Richardson and Robins (2013) establish the desired identifiability conditions, under the 

statistical assumption that the extended g-computation formula is well-defined (i.e. the 

positivity condition holds).

As the authors nicely demonstrate, in many applications, this type of intervention might be 

considered unrealistic and thereby not interesting: i.e. after the unit has received its natural 

treatment, one cannot turn around the clock and undo this treatment by replacing it by a new 

treatment value d(A, W). In these applications, the authors propose an approximation of the 

target intervention by a dynamic intervention (A1, W) → d(A1, W), where now A1 is an 

intended treatment value A1, instead of the actual realized treatment value, under the 

assumption that one actually observes such an intended treatment value.

On the other hand, one can also imagine applications in which (A, W) → d(A, W) 

corresponds with an augmentation of the observed treatment value, in which case such an 

intervention measures the effect of augmenting the treatment by a certain amount that 

possibly depends on the characteristics of the unit. Thus clearly identification of the mean 

outcome under such a type of intervention is of both theoretical and practical interest. The 

SWIG causal graph theory developed in Richardson and Robins (2013) provides a graphical 

methodology to establish such identification results for general complex, longitudinal data 

structures. In the single time point example, it is also possible to establish the desired 

identifiability mathematically, as in Díaz and van der Laan (2012). If

(i) Randomization: A is independent of UY, given W, and

(ii) Positivity: P(A = a|W = w) = 0 implies P(d(A, W)= a|W = w) = 0 for all w in the support 

of W,

then

where  and  is the conditional distribution of d(A, W) 

given W = w, which can be identified as a function of P0(A|W).

Note that, in this simple case where such mathematical derivation is tractable, the necessary 

identification conditions arise naturally in the derivation process. The mathematical 

derivation above also shows that E0Yd equals the mean outcome  under a stochastic 

intervention that replaces the equation A = fA(W, UA) by drawing A given W, from . This 

van der Laan et al. Page 3

J Causal Inference. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



point is made in general by the authors: the extended g-computation formula of the mean 

outcome under dynamic interventions depending on the natural value of treatment equals the 

regular g-computation formula for the mean outcome under a stochastic intervention that 

first involves drawing from the actual conditional distribution of treatment, before 

evaluating the deterministic rule. The authors stress that the equivalence of the two g-

computation formulas shows that the positivity assumption for this stochastic intervention 

equals the positivity assumption for the dynamic intervention depending on the natural value 

of treatment, and that one can use estimators developed for stochastic interventions to 

estimate the mean under these dynamic interventions depending on natural value of 

treatment. The authors propose a particular inverse probability of treatment weighted 

estimator, and contrast estimators based on parametric models and estimators based on semi-

parametric statistical models.

2 Discussion items

We focus the discussion on the following points, which are indirectly or directly raised by 

this article:

Separation of statistical estimation and causal modeling

By recognizing that the identifiability results for two different causal parameters result in the 

same estimand and statistical model, one can borrow statistical methods and their properties 

(including their statistical assumptions such as the positivity assumption) developed for one 

causal parameter to solve the statistical estimation problem for the other.

Enhancing statistical interpretation by using multiple nested identifiability results

Consider two identifiability results that correspond with the same estimand and statistical 

model, but one result relies on weaker or the same causal assumptions as the other (i.e. one 

set of assumptions is a subset of the other set of assumptions). Should one not use the former 

in the interpretation of the statistical results?

Data adaptive target parameters

The estimand for many causal effects of interest corresponds with the estimand for the mean 

outcome under a stochastic intervention that itself needs to be learned from the data: the 

mean outcome under a dynamic treatment depending on the natural value of treatment 

represents one such example. Is it not of interest to define data adaptive target parameters/

estimands defined by replacing the stochastic intervention by a data dependent fit of this 

stochastic intervention? What are the implications for statistical inference for such data 

adaptive target parameters?

Robust statistical inference

When pursuing statistical inference for the causal quantity of interest, what is the scientific 

rationale (if any) to select statistical methods that rely on parametric assumptions?

We discuss each of these points in some detail in the remainder of this commentary.
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3 Separating statistical estimation from causal modeling

The full data model and full-data target parameter play an important role in obtaining 

knowledge from subject-matter experts about the data generating experiment and 

determining the full data target parameter that represents the answer to the scientific 

question of interest. The full-data model MF should represent a priori knowledge about the 

phenomena under study, and the full-data target parameter  should provide the 

answer  to the scientific question of interest.

Subsequently, it is necessary to establish identifiability of the full-data target parameter from 

the probability distribution of the observed data, under assumptions which might exceed the 

assumptions coded by the full-data model. Based on these findings, one will need to commit 

to a statistical model M and a statistical target parameter, , with the following 

two main considerations: (1) the statistical model incorporates the realistic assumptions in 

the full data model MF, but not the possibly extra unrealistic assumptions that were needed 

for the identifiability result, in order to guarantee that the statistical model contains the true 

probability distribution of the data (i.e. P0 ∈ M) and (2) the target parameter defines an 

estimand ψ0 = Ψ(P0) that approximates the full data parameter value  as best as the data 

allows. In particular, the estimand ψ0 should equal the full data target parameter value 

when the identifiability assumptions hold. At this point, the statistical estimation problem is 

well defined. The full-data target parameter and underlying full-data model can be 

completely ignored in the process of developing estimators and corresponding statistical 

inference for the statistical parameter.

Consider two of these exercises, possibly starting with different full-data models and full-

data parameters, but leading to the same statistical model and statistical target parameter, so 

that the two statistical estimation problems are identical. In this case, it would be most 

scientifically coherent to have an estimation procedure that depends only on assumptions 

affecting the statistical model and statistical target parameter. Therefore, it is very good 

practice to always be explicit in the formulation of the statistical model M and target 

parameter Ψ so that the scientific community knows what statistical estimation problem has 

been addressed, which might be relevant for answering other scientific questions of interest 

as well. The roadmaps for causal inference presented in Rose and van der Laan (2011), Pearl 

(2009), and Petersen and van der Laan (2014) make each of these steps explicit. The only 

role of the full-data model, full data target parameter, and the identifiability result in the 

estimation process is to generate a statistical model and statistical target parameter. The 

authors of this article have exemplified this insight by borrowing statistical results for mean 

outcomes under stochastic interventions, since, for a well-defined stochastic intervention, 

that problem used the same statistical model and statistical target parameter as used the 

mean outcome under a dynamic treatments depending on the natural value of treatment.

We have used this general insight into our work as well. For example, in Hubbard et al. 

(2011), we noted that the identifiability result for a particular type of natural direct effect 

yielded the same estimand and statistical model as used for the causal effect among the 

treated, even though the two problems assumed a different time ordering of the data and thus 
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incomparable sets of causal assumptions. This allowed us to use the efficient and double 

robust targeted minimum loss-based estimator developed for the causal effect among the 

treated (Rose and van der Laan 2011) to efficiently estimate this natural direct effect 

parameter. Similarly, in Lendle et al. (2013) we borrowed the latter TMLE for the effect 

among the untreated to efficiently estimate the natural direct effect among the untreated. In 

section A5 of the appendix in Rose and van der Laan (2011), we discuss this general and 

useful (although trivial in some sense) point in more detail: statistical theorems are invariant 

to (e.g. non-testable) assumptions that do not change the statistical model and statistical 

target parameter, allowing us to use the same theorems across very different applications 

and causal models.

4 Enhancing interpretation of statistical output by referencing multiple 

identifiability results

The authors discuss identification and estimation of the mean outcome under a dynamic 

intervention that depends on the natural value of treatment. Suppose that a data analyst uses 

the extended g-computation formula to define an estimator and also provides a 95% 

confidence interval under statistical assumptions S. The data analyst could now make the 

following two statements: (1) The confidence interval (as a random interval) contains the 

statistical estimand with probability 0.95 under the statistical assumptions S; (2) The 

confidence interval contains the mean outcome under the dynamic intervention depending 

on the natural value of treatment with probability 0.95 under the statistical assumptions S 

and the additional identifiability (causal) assumptions C. Statement 1) concerns the pure 

statistical interpretation of the estimand. Statement 2) concerns a statement about the desired 

causal quantity, under additional assumptions C. As shown by the authors, under the same 

causal assumptions C, the estimand also equals the mean outcome under a corresponding 

stochastic intervention where A is drawn from  conditional on W = w. Thus, the data 

analyst could make a third statement: 3) the confidence interval contains the mean outcome 

under the stochastic intervention  with probability 0.95 under the same assumptions S and 

C. For a longitudinal rather than point treatment data structure, the causal assumptions for 3) 

can be a subset of the causal assumptions for 2) so that the causal interpretations that can be 

applied will also vary with which causal assumptions hold.

In our point treatment example (Díaz and van der Laan, 2012), the application of interest 

might be one where the dynamic intervention (A, W) → d(A, W) cannot be carried out in the 

real world, but the stochastic intervention represents a perfectly plausible experiment of 

interest. In that case, the additional statement 3) is important for the interpretation of the 

statistical output.

Let us consider another example. Suppose O = (W, A, Z, Y) ~ P0 and assume the 

nonparametric structural equation model W = fW (UW), A = fA(W, UA), Z = fZ (W, A, UZ) and 

Y = fY (W, A, Z, UY). Suppose that one is concerned with estimation of the natural direct 

effect defined as
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where Y(a, Z0) = fY (W, a, Z0, UY) and Z0 = fZ (W, 0, UZ), a ∈ {0, 1}. One may now use the 

following identifiability result from the current literature [e.g. Petersen et al. (2006)]: if C1) 

(A, Z) ⊥ Y(a, z)|W, for all values (a, z), C2) A⊥Z(a)|W for all values a, and C3) E0[Y(1, z) - 

Y(0, z)|Z(0) = z, W] = E0[Y(1, z) - Y(0, z)|W] for all z, then

Here we denoted E0[Y|A = a, W = w, Z = z] with Q ̄
0 (a, w, z). The data analyst who just 

computed a 95% confidence interval for ψ0 under statistical assumptions S can now make 

the following statements: (1) the confidence interval contains ψ0 with probability 0.95 under 

assumptions S; (2) the confidence interval contains  with probability 0.95 under 

assumptions S and the above listed causal assumptions C1, C2, C3. However, many will 

argue that assumption C3 is particularly hard to defend. One may now note that the estimand 

ψ0 also equals , where  is the stochastic intervention on (A, Z) 

defined as: .

In other words, the full data parameter NDE* is now defined in terms of the mean outcomes 

under two stochastic interventions on (A, Z) that deterministically set A = 1 or A = 0 and 

draws Z from the conditional distribution of Z, given A = 0, W (which equals the conditional 

distribution of Z0, given W, by C2). Since NDE* equals Ψ(P0) under the randomization 

assumptions C1 and C2 only, the data analysis can now also state 3) the confidence interval 

contains  with probability 0.95 under S and C1, C2. In this manner, one might still obtain 

reliable inference for NDE* while reliable inference for NDE is out of the question, due to 

the indefensible assumption C3 (Zheng and van der Laan, 2011). Using this approach, Zheng 

and van der Laan (2012) obtain an identifiability result for a natural direct effect on a time to 

event outcome, controlling for a time-dependent intermediate process defined in terms of a 

mean outcome under a stochastic intervention only differing in a static intervention on 

treatment, where the identifiability only relies on the sequential randomization assumptions 

required for identification of the mean outcome under these two stochastic interventions.

5 Statistical inference for data adaptive target parameters such as the mean 

outcome under a stochastic intervention learned from data

It appears that many causal parameters of interest are defined by a mean outcome under a 

stochastic intervention that itself needs to be learned from data. Let us denote this causal 

quantity with , where  denotes a stochastic intervention that can be identified as a 

function of P0. For example, as argued above, the article under discussion defines a full data 

parameter whose g-computation formula equals the extended g-computation formula for the 
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mean outcome under a dynamic treatment that depends on the natural value of treatment. 

The authors might agree that in some applications, in which the dynamic intervention is 

impossible to carry out and “intended treatment values” are not available,  might be of 

more interest than the original dynamic treatment parameter. The discussion in this section 

is relevant in such cases.

Above, we indicated that natural direct effect parameters inspire such analogue natural direct 

effect parameters which are now defined in terms of stochastic interventions. The mean 

outcome E0Yd0 under an optimal dynamic treatment d0 = arg mind∈D E0Yd is another 

example of interest, where  is now deterministic but unknown nonetheless. van der 

Laan and Petersen (2007) and Robins et al. (2008) recommend defining causal quantities 

(e.g. working marginal structural models) that correspond with realistic dynamic treatment 

interventions defined as rules that satisfy the strong positivity assumption, where it is often 

possible to define such rules in terms of the actual (unknown) treatment mechanism g0. The 

mean outcome under such a realistic rule is now E0Yd0 where d0 is a dynamic treatment 

defined in terms of g0. An example of a realistic rule that would belong to this class for the 

point treatment data structure O = (W, A, Y) is the dynamic treatment d0(W) = I(g0(1|W) > δ) 

for some δ > 0 that sets A = 1 if there is support, but sets A = 0 otherwise.

Suppose that  is an estimator of this unknown stochastic intervention , 

mapping the empirical probability distribution Pn of the observed data sample O1, …, On 

into a realized estimate of . Given a data set, we have this estimate  in our hand. One can 

imagine that after we have presented our collaborator with a confidence interval for , 

he or she might ask, what is  like? The natural answer is to show the collaborator a plot of 

our estimate . Our collaborator might then also consider the target parameter 

, which would tell us what would happen if the tangible rule  were actually 

implemented in the population. This parameter is known, given the data, and thus well-

defined. Our collaborator might want statistical inference for this data adaptive target 

parameter as well: that is, one wants a confidence interval that contains the random data 

adaptive parameter with probability 0.95. In van der Laan et al. (2013) we defined such 

general data adaptive target parameters and established various theorems for statistical 

inference. In particular, statistical inference can be developed for such data adaptive 

parameters under appropriate conditions, including a Donsker class condition and a 

stabilization condition on  [see theorem 1 in van der Laan et al. (2013)]. The main 

message is that one can use the same estimator as developed for , but the influence 

curve is different since it contains no contribution due to estimation of . As a consequence, 

one often ends up with narrower confidence intervals. In fact, it might be difficult or 

impossible to develop valid inference for , while statistical inference for the data 

adaptive target parameter can be simply based on the estimator of E0Yg* for a fixed g*, but 

setting .

For example, in van der Laan (2013), van der Laan and Luedtke (2014b), we developed such 

estimators and such confidence intervals for the mean outcome under an estimate dn of the 

optimal dynamic treatment d0. In this case, one can show that E0Ydn - E0Yd0 is a second-
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order term so that one might assume that it is . Under that assumption and the 

assumption that the blip functions are nonzero with probability one (Robins and Rotnitzky, 

2014; van der Laan and Luedtke, 2014a), the statistical inference for E0Yd0 and E0Yd|d=dn 
relied on the same estimator and same confidence intervals. Nonetheless, even in this case, 

the confidence interval for E0Ydn avoids reliance on this assumption 

, and one obtains better finite sample performance of the 

estimator and confidence interval even if this assumption holds.

As another example, consider the point treatment data structure and a realistic rule d0 that 

sets A = 1 if g0(1|W) > δ > 0 and sets 0 otherwise. Statistical inference for E0Yd0 is 

problematic due to the fact that the unknown g0 appears within an indicator defining the 

treatment rule. As a consequence, the contribution E0Ydn - E0Yd0 obtained by estimating this 

rule might not behave well, so that, contrary to the optimal dynamic treatment example, it is 

unreasonable to assume that . If one is willing to assume that w 

→ I(gn(1|w) > δ) has a limit in L2(P0) as n gets large, then these serious statistical inference 

problems for E0Yd0 are completely avoided by simply targeting E0Ydn where the given rule 

dn is now defined by setting A = 1 if gn(1|W) > δ > 0. Few people would claim that the latter 

is less interesting than the mean outcome under the unknown realistic rule d0.

In van der Laan and Luedtke (2014b), our estimator dn is based on a highly data adaptive 

super-learner of d0 developed in Luedtke and van der Laan (2014), so that one might be 

concerned that the Donsker class condition on dn might be violated theoretically or 

negatively affect the finite sample coverage of the confidence interval for E0Ydn. To deal 

with this challenge, in van der Laan et al. (2013) and van der Laan (2013), van der Laan and 

Luedtke (2014b) we started a general theory for estimation and inference for data adaptive 

parameters, such as theorem 2 in van der Laan et al. (2013) that avoids any conditions on the 

estimator , beyond convergence to some fixed g*. First, we defined data adaptive target 

parameters of the type , where  is the training sample for split v 

in a V-fold sample splitting scheme. That is, one uses the vth training sample to generate a v-

specific data adaptive target parameter E0Yg with , and the final data adaptive 

target parameter is defined as the average of these v-specific data adaptive parameters across 

the V splits. As shown in van der Laan et al. (2013) one can estimate and obtain inference 

for such a V-fold data adaptive target parameter by estimating each v-specific data adaptive 

target parameter based on the v-specific complementary sample. However, if estimators of 

these v-specific target parameters are highly non-linear such an estimator will suffer from 

large second-order terms. Therefore, in van der Laan (2012), van der Laan and Luedtke 

(2014b) we developed a cross-validated TMLE in which only the targeting step relies on 

cross-validation, and as a consequence the actual estimator of this V-fold data adaptive 

target parameter will have nice theoretical and practical behavior, not negatively affected by 

the sample splitting. Specifically, in van der Laan and Luedtke (2014b) we present a cross-

validated TMLE of , where  is a super-learner of the 
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optimal dynamic treatment d0. In this case the CV-TMLE presents a general method for 

general cross-validated data adaptive parameters.

We refer to van der Laan et al. (2013) for many other motivating examples demonstrating 

that statistical inference for data adaptive target parameters opens up a wealth of new 

scientific questions (that one would not know before looking at the data) and corresponding 

statistical inference, allowing for data mining to generate the parameters and hypotheses of 

interest (thereby also avoiding massive multiple testing adjustments).

6 Robust statistical inference: lack of scientific rationale to rely on 

parametric assumptions

As the authors point out, there is absolutely no reason to use the parametric extended g-

computation formula method to estimate the desired mean outcome under the dynamic 

intervention depending on the natural value of treatment, especially since researchers also 

have access to more robust methods in the semi-parametric model literature. In particular, 

the authors present an inverse probability of treatment weighted type estimator of the desired 

extended g-computation formula estimand. In this section, we will discuss this point in more 

detail.

The identification results in causal inference aim to rely on minimal assumptions, in 

particular, these results typically avoid any statistical assumptions (i.e. restrictions on the 

probability distribution of the data). That is, many of the identifiability results correspond 

with nonparametric statistical models. All that hard work for the purpose of reliable 

inference about causal quantities in this part of the causal inference literature goes to waste 

if one uses estimators that are biased due to relying on parametric assumptions that are 

known to be false. It is not scientifically sensible to be nonparametric for the sake of 

identification but parametric for the sake of estimation given that parametric assumptions 

are made out of convenience. That is exactly what we do when we use, for example, 

parametric model-based estimators to estimate the estimand defined by the extended g-

computation formula, or IPTW estimators based on parametric models for the treatment 

mechanism. Using such a parametric model-based approach for causal inference makes it 

less relevant to worry about the causal assumptions since one cannot even trust the estimator 

of the statistical estimand. This makes one wonder whether there is any theoretical scientific 

argument to use estimation procedures based on arbitrary parametric assumptions.

One argument might be that estimators based on parametric models can be shown to be 

asymptotically normally distributed. In other words, we have theorems that show that the 

confidence intervals have the desired coverage asymptotically under the assumption that 

these parametric assumptions are true. But what is the point of relying on a theorem whose 

assumptions are known to be false?

In addition, by not enforcing that a statistical model needs to be correctly specified (i.e. 

contain the true distribution), different statisticians often end up generating different 

statistically significant output, even when they are addressing identical statistical estimation 

problems and have equal access to all the statistical information about the data generating 
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experiment. The problem here is that the choice of statistical model is viewed as an art 

instead of a choice driven by scientific knowledge, missing the fact this choice heavily 

affects the choice of target estimand, the corresponding estimator, and its statistical 

properties. Some data analysts like to quote “all models are wrong, but some are useful” and 

use it as an argument that we should not worry too much about the model choice. The truth 

is that as long as the field of applied statistics is driven by arbitrary model choices, we do 

not satisfy common sense scientific standards.

Important advances have been made in empirical process theory, weak convergence theory 

(e.g. van der Vaart and Wellner, 1996), efficiency theory for semi-parametric models (e.g. 

Bickel et al., 1997), general methods for construction of efficient estimators (e.g. Robins and 

Rotnitzky, 1992; van der Laan and Robins, 2003; van der Laan and Rose, 2012; Hernan and 

Robins, 2014), providing us with theorems establishing asymptotic consistency, normality, 

and efficiency of highly data adaptive estimators in large statistical models. Let us use a 

concrete demonstration of such a type of theorem concerning the estimation of a pathwise 

differentiable target parameter  with canonical gradient/efficient influence curve 

(P, O) → D*(P)(O) at P. Given this Ψ and D*(P) one obtains, by definition of pathwise 

differentiability, that

where R2(P, P0) is a second-order difference between P and P0 that can be explicitly 

determined for each choice of target parameter Ψ and model M [see for example, van der 

Laan, 2012 (2014), for a detailed demonstration]. It is assumed that we select the statistical 

model M so that one feels confident that P0 ∈ M.

Consider a substitution estimator , such as a TMLE based on an initial super-learner-

based estimator  (van der Laan and Dudoit, 2003; van der Vaart et al., 2006; van der Laan 

et al., 2006, 2007; Polley et al., 2012) that is then updated into a targeted estimator . The 

estimator  might also be a parametric g-computation estimator relying on a parametric 

model-based MLE  of P0. As shown in van der Laan and Rubin (2006) (or many other 

subsequent articles, including (van der Laan and Rose, 2012))  asymptotically 

normally distributed and efficient for Ψ(P0) if

,

(ii)  falls in a P0-Donsker class with probability tending to 1,

(iii)  in probability, and

.

If one uses the TMLE, then condition (i) is automatically satisfied. Condition (ii) would be 

satisfied, for example, if  falls in the class of multivariate real-valued functions with 
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uniform sectional variation norm bounded by some M < ∞ (Gill et al., 1995), a much less 

stringent assumption from requiring that  is estimated in a parametric model. In addition, 

if one uses a CV-TMLE (Zheng and van der Laan, 2011; Rose and van der Laan, 2011), 

then condition (ii) can be removed. Let us consider such a CV-TMLE so that the only 

conditions for asymptotic efficiency are the weak asymptotic consistency condition (iii) and 

condition (iv). Clearly, condition (iv) is the condition to worry about (if (iv) holds one 

certainly expects (iii) to hold).

If  is based on a misspecified parametric model, then there is no hope that 

will converge to zero, i.e. (iv) will not hold. To make this crucial condition as realistic as 

possible we have promoted the use of super-learning, a cross-validated ensemble learner 

which incorporates the state of the art of machine learning algorithms and possibly a large 

variety of parametric model-based estimators. The oracle inequality for the super-learner 

(see above references) teaches us that we make this condition more and more likely to hold 

by selecting a library of diverse estimators that grow in size polynomial in sample size. That 

is, there is no trade off such as that we cannot be too data adaptive, but, on the contrary, we 

have to push the envelope as much as possible to be maximally data adaptive in order to 

ensure that . In addition, under this condition (iv), the estimator is 

asymptotically efficient and thus also asymptotically regular, a nice by-product for reliable 

confidence intervals.

In order to move our field forward, we need to fully acknowledge these issues and start 

defining the estimation problem truthfully. In our work, we defined the field Targeted 

Learning as the subfield of statistics that is concerned with theory, estimation, and statistical 

inference (i.e. confidence intervals) for target parameters (representing the answer to the 

actual scientific question of interest) in realistic statistical models (i.e. incorporating actual 

knowledge). By necessity, Targeted Learning requires integrating the state of the art in data 

adaptive estimation, beyond incorporation of subject-matter driven estimators and requires 

targeting the estimation procedure toward the target parameter of interest. Given these 

estimators, Targeted Learning requires targeting the estimation procedure toward the target 

parameter of interest. Targeted minimum loss-based estimation (and its variants such as CV-

TMLE, C-TMLE), combined with Super-Learning, provides a general template to construct 

such targeted substitution estimators (van der Laan and Rubin, 2006; van der Laan and 

Rose, 2012).

An example of this methodology, relevant to the paper under discussion, is the longitudinal 

TMLE of summary measures of the mean outcome under dynamic interventions (such as 

defined by working MSM) in Gruber and van der Laan (2012), Petersen et al. (2013). The 

TMLE for this problem is inspired by important double robust targeted estimators 

established in earlier work of Bang and Robins (2005). This TMLE is implemented by the 

R-package ltmle and fully utilizes the important sequential regression representation 

presented in Bang and Robins (2005). This TMLE is easily extended to TMLE of summary 

measures of mean outcomes under stochastic interventions. The extended g-computation 

formula corresponds with an estimated stochastic intervention, so that the statistical 

inference will now also need to take into account that the stochastic intervention was 
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estimated. On the other hand, if we go after the mean outcome under a data adaptive fit of 

the desired stochastic intervention, then the statistical inference is identical to treating the 

fitted stochastic intervention as known. In this manner, by extending the current ltmle R-

package to stochastic (and possibly unknown) interventions (instead of only dynamic 

interventions), this method would now be accessible to many practitioners, thereby allowing 

data analysts to significantly improve on the parametric extended g-computation formula 

approach and IPTW estimators relying on parametric models for the treatment mechanism.

We again commend the excellent work of the authors. The field needs more important 

observations such as this one, which allow the straightforward application of previously 

described identifiability results and robust estimators to new problems. We further advocate 

the consideration of newly developed data adaptive target parameters, which often similarly 

allow for the application of existing estimators to interesting new problems.
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