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Ontogeny of alkaline phosphatase activity
in infant intestines and breast milk
Ye Yang1,2, Emilee Rader3, Michele Peters-Carr4, Rebecca C. Bent5, Jennifer T. Smilowitz6,7, Karen Guillemin1

and Bethany Rader8*

Abstract

Background: Necrotizing enterocolitis (NEC) is a devastating disease of intestinal inflammation that primarily affects
premature infants. A potential risk factor for necrotizing enterocolitis is exposure of the premature neonatal intestine to
environmental bacteria and their proinflammatory products such as lipopolysaccharide. The metalloenzyme alkaline
phosphatase (ALP) has been shown to reduce lipopolysaccharide-mediated inflammation. Additionally, premature rat
pups have reduced alkaline phosphatase activity and expression as compared to full term pups. To explore the
possibility that the human premature neonatal intestine has a paucity of alkaline phosphatase activity, we measured
endogenously produced intestinal alkaline phosphatase activity in meconium as a function of gestational age. To test
whether breast milk could serve as a source of exogenous alkaline phosphatase to the neonatal intestine through
ingestion, we measured alkaline phosphatase activity in breast milk across a range of time points post-birth.

Methods: Alkaline phosphatase activity was quantified in 122 meconium samples from infants of gestational
ages ranging from 24 to 40 weeks and in 289 breast milk samples collected from 78 individual mothers
between days 2–49 post-birth.

Results: We observed a strong positive correlation between the meconium alkaline phosphatase activity and
gestational age, with preterm infants having lower meconium alkaline phosphatase activities than early term
or term infants. Breast milk alkaline phosphatase activity was highest in the first week post-birth, with peak
alkaline phosphatase activity at day 2 post-birth, followed by relatively low alkaline phosphatase activity in
weeks 2–7.

Conclusions: Our results are consistent with the two major risk factors for necrotizing enterocolitis
development, preterm birth and lack of breast milk feeding, both contributing to a paucity of alkaline
phosphatase activity and impaired capacity to detoxify proinflammatory bacterial products such as
lipopolysaccharide.

Keywords: Necrotizing enterocolitis (NEC), Meconium, LPS detoxification, Gestational age

Background
Infants born prematurely are at risk of developing necro-
tizing enterocolitis (NEC), a multifactorial disease char-
acterized by overly exuberant inflammatory responses in
the immature intestine and a leading cause of late mor-
tality and morbidity in very preterm infants [1, 2]. As
there is no known cure for NEC, current research on
the disease is in part focused on identifying risk factors

for disease development in neonates with the eventual
goal of identifying new treatment options and preventing
the disease [3]. It has been suggested that the aberrant
inflammation associated with NEC is due in part to the
inability of the immature intestine to adapt to the pre-
mature establishment of the microbiota [4, 5]. After
birth, microbes rapidly colonize the newborn intestine
and introduce numerous antigens and toxins including
endotoxin, or lipopolysaccharide (LPS), a constituent of
the Gram-negative bacterial cell wall. LPS binds to the
innate immune receptor Toll-like receptor 4 (TLR4) and
induces inflammatory responses [6, 7]. Increased levels
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of LPS/TLR4 signaling have been proposed to contribute
to the pathogenesis of NEC [4, 8–11]. Indeed, bacterial
colonization has been identified as a primary risk factor
for development of NEC in preterm infants [3, 12].
Alkaline phosphatases (ALPs) are conserved metalloen-

zymes that hydrolyze the release of inorganic phosphates
from a variety of substrates [13]. ALPs have been shown
to “detoxify” Gram-negative bacterial LPS by removing
phosphates from the lipid A moiety, thereby decreasing its
stimulation of TLR4 [14–18]. ALPs are found in a wide
range of human tissues, including the gastrointestinal tract
where ALP protein is localized to the apical membrane of
enterocytes and enters the lumen through the secretion of
microvillar vesicles [13, 19]. Interestingly, a dynamic tran-
sition of ALP isozyme forms is associated with the matur-
ation of fetal intestines [13], suggesting that ALP activity
may change during human fetal development. Further-
more, supplementation of the neonate rat pup intestine
with ALP was protective against both LPS induced inflam-
mation and experimentally induced NEC [20, 21], These
data, in conjunction with a recent report showed that pre-
maturity in rat pups was associated with reduced intestinal
ALP expression and activity [22], identify ALP deficiency
as a risk factor for the development of NEC in premature
infants, however there are no studies to date reporting
ALP activity of the developing human intestine as a func-
tion of gestational age.
ALP is also a known component of breast milk [23–

27], and implicated as an anti-inflammatory factor in the
newborn intestine [28]. Previous studies of ALP in breast
milk have suggested a trend of decreasing ALP with time
post-birth, but these studies have only surveyed small
numbers of samples or limited time points [29–32]. In
this study, we hypothesized that ALP activity in the in-
fant intestine increases with gut maturation, and that a
lack of ALP, and thus insufficient LPS detoxification,
could contribute to the increased susceptibility of pre-
term neonates to NEC. Additionally, we hypothesized
that ALP content in breast milk would be highest at
earlier lactation stages when it would serve to supple-
ment the infant intestine with LPS-detoxifying activity
during the initial period of intestinal colonization by mi-
crobes. Using ALP activity as a proxy for ALP content,
we conducted two separate studies, first characterizing
the ALP activity in meconium samples from infants at
different gestational ages, and second characterizing
ALP activity in breast milk from seventy-eight mothers
of full-term infants not associated with the previous
study at different time points post-birth.

Methods and materials
Patients and meconium and breast milk samples
The use of meconium samples for this study was reviewed
by the University of Oregon Institutional Review Board

and Research Compliance Services and determined to
qualify for an exemption as per Title 45 CFR Part 46.101
(b). A total of 122 meconium samples from infants of ges-
tational ages ranging from 24 to 40 weeks (except 30
weeks) were obtained from the Peacehealth Neonatal In-
tensive Care Unit and the Peacehealth Nurse Midwifery
Birth Center (Springfield, OR). Samples were frozen at −
80 °C upon collection and subsequently analyzed. A total
of 289 frozen milk samples were collected on post-birth
days 2–49 from 78 individual mothers who had given
birth to term infants enrolled in the UC Davis FFHI Lacta-
tion Study [16, 33, 34]. Colostrum and breast milk samples
were collected by hand expression from one breast by the
trained participant and frozen immediately in participants’
homes and transported to the lab on ice and stored at − 80
°C. Samples were de-identified to protect patient privacy
and ensure blinding during the ALP analysis. The Univer-
sity of California Davis Institutional Review Board approved
all aspects of the study and informed consent was obtained
from all subjects. Analysis of breast milk ALP was approved
by the University of Oregon Institutional Review Board and
Research Compliance Services (protocol #11052013.003).
This trial was registered on clinicaltrials.gov (ClinicalTrials.-
gov Identifier: NCT01817127).

Analysis of ALP activity in infant meconium
Meconium samples were homogenized in double dis-
tilled water and centrifuged at 16,000 g for 15 min at 4 °
C to collect the supernatants. The supernatants were di-
luted and then assayed for protein concentrations using
the Bio-Rad protein assay kit (Bio-Rad Laboratories Inc.)
and for ALP activities using the PNPP substrate kit
(Thermo Fisher Scientific Inc.). ALP activities were com-
pared to standard shrimp alkaline phosphatase (SAP)
(Thermo Fisher Scientific Inc.) and normalized to meco-
nium protein concentrations. Data were grouped by
weeks of completed gestation at birth, and analyzed
using the Prism software (GraphPad software). Correl-
ation between the meconium ALP activity and gesta-
tional age was analyzed using one-way ANOVA, posttest
for linear trend. Meconium ALP activities in preterm
newborns (gestational age ≤ 36 weeks), early term (37–
38 weeks) and term (39–40 weeks) were compared using
one-way ANOVA, followed by Bonferroni’s Multiple
Comparison Test.

Analysis of ALP activity in breast milk
To assay for ALP activity in breast milk, we modified a
fluorometric detection method already published [35, 36].
Briefly, the samples were thawed, then vortexed to
re-incorporate any separated cream, and diluted 1:10 in
100mM Tris, pH 9.5. 50 μl of diluted sample was added
to 50 μl of 2.5 mM 4-methylumbelliferone phosphate
(4MUP) substrate in 100mM Tris, pH 9.5 in a 96-well
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plate. Samples were incubated at room temperature for 5
min and then fluorescence was detected at 460 nM (exci-
tation at 355 nM) using a FLUOstar Omega microplate
reader (BMG Labtech, Cary, NC). Negative controls were
sample wells with 4MUP and Tris alone and milk samples
heated at 100 °C for 5 min to inactivate endogenous ALPs.
All samples were analyzed in triplicate. To calculate ALP
content, all ALP activity measurements were compared to
a standard curve using shrimp alkaline phosphatase
(Thermo Fisher Scientific Inc.). Sample data from one in-
dividual was removed from the data set as the first weeks
measurement was three standard deviations away from
the mean. Data for week 1, week2, weeks 3–4 and weeks
6–7 were analyzed with R version 3.3.2, with package
‘lme4’ version 1.1.13 and package ‘lmerTest’ version
2.0.33, using a mixed-effects regression with ALP activ-
ity as the dependent variable and week of sample col-
lection as a fixed effect, categorical predictor and
participant as the random effect. The intercept in this
model (coefficient = 6.423, SE = 0.258) represents the
level of ALP activity in the first week. The remaining
model coefficients represent the difference between the
ALP activity in the first week and ALP activity in Week
2, Week 3–4, and Week 6–7. The standard error for all
coefficients was 0.33, and all coefficients in the model
are statistically significant at the p < 0.001 level. This
model is a better fit for the data than a baseline model
having only the random effect for mother (F = 61.018,
df = 3214; p < 0.001). A Levene’s Test of equality of vari-
ance in the samples collected in the four sampling win-
dows was statistically significant, F(3,281) = 18.882, p <
0.001, indicating that the variances are not equal. A
second linear regression model analyzed ALP content

by day during the first week, with ALP activity as the
dependent variable and day of sample collection as a
categorical predictor. Only one sample per mother was
collected during the first week, so this model does not
include a random effect for participant. The intercept
(coefficient = 10.198, SE = 0.884) represents the level of
ALP activity in day 2.

Results
Meconium ALP activity is positively correlated with
gestational age
To investigate the amount of ALP in the infant intestine,
we quantified ALP activity in meconium samples col-
lected from infants at gestational ages 24–40 weeks. We
observed a strong positive correlation between the
meconium ALP activity and gestational age (P < 0.0001,
R2 = 0.3416; one-way ANOVA and posttest for linear
trend) (Fig. 1 A). The average meconium ALP activities
from preterm (up to 36 weeks of gestation), early term
(37–38 weeks of gestation) and term (39–40 weeks of
gestation) infants (term definitions as reported in [37])
were determined to be 19.34, 49.85 and 45.64 units ALP/
g protein, respectively. The preterm infants had signifi-
cant lower meconium ALP activities than early term or
term infants (P < 0.0001; one-way ANOVA followed by
Bonferroni’s Multiple Comparison Test) (Fig. 1 B).

Breast milk ALP activity is inversely correlated with days
post-birth
We quantified ALP activity in serial breast milk samples
from women at day 2 post-birth though week 40 post-birth.
We found that the absolute amount of ALP activity varied
extensively among individual mothers. Despite this

Fig. 1 (a) Meconium ALP activity increases with gestational age (P < 0.0001, R2 = 0.3416; one-way ANOVA and posttest for linear trend). (b)
Meconium ALP activities are significantly lower in preterm (up to 36 weeks of gestation) infants than those in term (37–38 weeks) or term (39–40
weeks) infants. (***, P < 0.0001; one-way ANOVA followed by Bonferroni’s Multiple Comparison Test). Error bars represent standard deviations, n is
sample size
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inter-individual variation, we found that breast milk sam-
pled in the first week post-birth had 250% more ALP activ-
ity on average (6.40 units) than breast milk sampled in
week 2 (2.50 units). A linear hypothesis test on the regres-
sion model coefficients showed that the difference between
week 1 and week 2 is statistically significant (Wald χ2 =
139.912, df = 1, p < 0.001). Linear hypothesis tests compar-
ing week 1 with weeks 3–4 and weeks 6–7 were also statis-
tically significant (week 1 v. 3–4: Wald χ2 = 133.523, df = 1,
p < 0.001; week 1 v. 6–7: Wald χ2 = 100.168, df = 1, p <
0.001). ALP activity remained within 25% of the week 2
average through weeks 3–4 (2.57 units) and weeks 6–7
(3.08 units) (Fig. 2), and comparisons between week 2 ver-
sus weeks 3–4, and weeks 3–4 versus weeks 6–7 were not
statistically significant.
Within the first week, the earliest samples, collected at

day 2 post-birth, had higher ALP activity than those col-
lected on days 3, 4, and 5 (Fig. 2). The coefficients for day
3, day 4 and day 5 are all negative and statistically signifi-
cant (day 3: coefficient = − 3.362, SE = 1.432, p < 0.05; day
4: coefficient = − 4.774, SE = 1.07, p < 0.001; day 5: coeffi-
cient = − 5.492, SE = 1.208, p < 0.001). All individuals for
whom we had samples in all 4 time intervals displayed the
same trend of decreasing ALP activity over time (Fig. 3).

Discussion
In this study, we discover for the first time that prema-
ture infants have reduced intestinal ALP activity at birth
as compared to early term or term infants (Fig. 1). These
results are consistent with a recent study in premature
rat pups [22] and provide a possible contributing factor
in the etiology of NEC, a devastating disease impacting
12% of very low birth-weight infants [38]. After birth, in-
testinal ALP activity is likely to be up-regulated by

environmental factors such as microbes and food com-
ponents [17, 39]. The ALP deficiency we have docu-
mented in the preterm newborn intestine would be
expected to impact early innate immune responses to
bacterial colonization of this organ. While our study is
limited in scope compared to the multifactorial nature
of NEC, we propose that the reduced capacity of pre-
term infant intestines to dephosphorylate
pro-inflammatory LPS may lead to excessive inflamma-
tory responses to bacteria and thus increase the risk for
developing NEC. Consistent with our prediction, analysis
of the transcriptional profiles of intestinal tissue from
NEC and control infants, as well as those of an experi-
mental mouse model of NEC, revealed LPS as the top
predicted upstream regulator of the NEC-specific pro-
files [40]. A corollary of our prediction is that early gut
microbial communities high in LPS-containing
Gram-negative bacteria would be another risk factor for
NEC. Indeed, several studies have identified high levels
of the Gram-negative phylum of Proteobacteria in infant
stools as a hallmark of the onset of NEC [41-44].
In addition to endogenously produced ALP, infants who

are breast fed or fed non-pasteurized donor breast milk
may receive exogenous ALP. ALP is a reported compo-
nent of breast milk, and a review of literature in which
ALP activity is quantified in breast milk suggests a de-
creasing trend in ALP activity over time post-birth [23–
25]. In addition, several studies have demonstrated that
breast milk reduces susceptibility to NEC in comparison
to formula or a combination of breast and bovine milk
[45]. In fact the 2012 American Academy of Pediatrics
policy statement recommended the use of human milk for
preterm, term or other high risk infants [46]. We reasoned
that breast milk may be designed to supplement ALP

Fig. 2 Alkaline phosphatase activity of breast milk as a function of time. Average ALP units in breast milk samples obtained in postnatal days 2–5,
week 2 (days 8–13), week 3–4 (days 17–22) and week 6–7 (days 40–49). Error bars represent standard deviation and n is sample size. All
coefficients in the model are statistically significant at the p < 0.001 level using a mixed-effects regression model in which model coefficients
represent the difference between the ALP activity in the first week and ALP activity in week 2, week 3–4, and week 6–7
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activity and provide protection against LPS-mediated in-
flammation to the neonatal intestine during the critical
window of bacterial colonization that occurs during the
first few days after birth. Therefore a second objective of
our study was to characterize in detail ALP levels in breast
milk as a function of time post-birth.
Our data demonstrate high levels of ALP activity in

breast milk in the first few days post-birth, with a rapid
decrease after the first week (Fig. 2). This early time
period corresponds to the initial colonization of the
naïve infant intestine by environmental microbes, in-
cluding LPS containing Gram-negative bacteria. By day
2 post-birth, infants can have a dense microbial commu-
nity [16, 47]. Our data therefore supports the hypothesis
that high levels of ALP in breast milk may be one of
many factors that promote tolerance to the high load of
LPS experienced by the naïve infant intestine during ini-
tial colonization, prior to the infant’s endogenous innate
immune system’s up-regulation of tolerance promoting
mechanisms. Although the trend of highest ALP activity
in week 1 breast milk is consistent across all samples,
there is considerable between-mother variation in the
amount of ALP activity (Fig. 3). We speculate that these
inter-individual differences, which could be due to both
genetics and environmental factors such as maternal diet
and immune status, contribute to the infant’s overall re-
sistance to intestinal inflammation upon initial
colonization after birth. If ALP contributes to this pro-
tection, our data suggests that donor breast milk from
pooled postpartum ages would be unlikely to contain
significant amounts of this enzymatic activity prior to
pasteurization. Donor milk is mainly pasteurized using
heat at temperatures that will inactivate ALP activity as

well as other bioactive milk components [48]. To com-
pensate, both donor milk and mother’s milk, which may
lack some of these components due to natural decrease
correlated with post-partum date of expression, are often
fortified with commercially available pre-term or low
birth weight formulas [49]. However, to our knowledge,
these formulas to not contain ALP specifically. In
addition, many premature infants are exclusively fed
intravenously until feeding tolerance is determined clin-
ically [50]. It is therefore unlikely that pre-term infants
not receiving mother’s milk within the first week of life
will receive appreciable amounts of exogenous ALP.

Conclusions
Our findings suggest that there is a coordinated mother-infant
program of defense against the pro-inflammatory insults of in-
testinal bacterial colonization that occurs after birth. We
hypothesize that the higher ALP activity in the full-term
neonatal intestine, combined with high ALP activity of
breast milk within the first few days post birth, provides
adequate capacity to detoxify the LPS of initially coloniz-
ing bacteria. We suggest that paucity of this activity in the
preterm intestine and in the absence of early post-birth
breast milk feeding, increases the risk of excessive inflam-
mation and progression to NEC. A limitation of our study
is that we did not have meconium and breast milk sam-
ples from mother-infant pairs. We anticipate that our ini-
tial findings will motivate prospective studies on the
interplay between intestinal ALP, breast milk ALP, gut
microbiota, and NEC development in premature infants.
Such studies may generate support for prophylactic ALP
supplementation to premature infants as an effective
therapeutic for NEC prevention.

Fig. 3 Trends in alkaline phosphatase activity by individual. Lines represent trends in ALP activity in serial breast milk samples from the 56
individual donors for which 4 milk samples were available. Each dot represents ALP units from each of the 4 individual milk samples, one from
postnatal week 1, week 2, week 3–4, or week 6–7. Sample sizes are as follows, day 2, n = 13; day 3, n = 7; day 4, n = 23; day 5, n = 13; day 10, n =
7; day 12, n = 47; day 13, n = 2; day 17, n = 2; day 19, n = 50; day 20, n = 2; day 21, n = 2; day 42, n = 53; day 43, n = 1; day 49, n = 1
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