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Abstract

Advances in whole-genome sequencing (WGS) promise to enable the accurate and comprehensive structural variant (SV) discovery.
Dissecting SVs from WGS data presents a substantial number of challenges and a plethora of SV detection methods have been
developed. Currently, evidence that investigators can use to select appropriate SV detection tools is lacking. In this article, we have
evaluated the performance of SV detection tools on mouse and human WGS data using a comprehensive polymerase chain reaction-
confirmed gold standard set of SVs and the genome-in-a-bottle variant set, respectively. In contrast to the previous benchmarking
studies, our gold standard dataset included a complete set of SVs allowing us to report both precision and sensitivity rates of the SV
detection methods. Our study investigates the ability of the methods to detect deletions, thus providing an optimistic estimate of SV
detection performance as the SV detection methods that fail to detect deletions are likely to miss more complex SVs. We found that SV
detection tools varied widely in their performance, with several methods providing a good balance between sensitivity and precision.
Additionally, we have determined the SV callers best suited for low- and ultralow-pass sequencing data as well as for different deletion
length categories.

Keywords: Variant calling, Structural Variant, Bioinformatics

Introduction
Structural variants (SVs) are genomic regions that con-
tain an altered DNA sequence due to deletion, dupli-
cation, insertion, or inversion [1]. SVs are present in
approximately 1.5% of the human genome [1, 2], but
this small subset of genetic variations has been impli-
cated in the pathogenesis of psoriasis [3], Crohn’s dis-
ease [4] and other autoimmune disorders [5], autism
spectrum and other neurodevelopmental disorders [6–
9] and schizophrenia [10–13]. Specialized computational
methods—often referred to as SV callers—are capable of
detecting SVs directly from sequencing data. At present,
although several benchmarking studies have been pre-
viously carried out [14, 15, 16], our study is the first
to utilize a complete polymerase chain reaction (PCR)-
validated gold standard with respect to the alignment
file. We benchmarked currently available whole-genome
sequencing (WGS)-based SV callers to determine the
efficacy of available tools and find methods with a good
balance between sensitivity and precision.

The lack of comprehensive benchmarking makes it
impossible to adequately compare the performance of
SV callers. In the absence of benchmarking, biomedical

studies rely on the consensus of several SV callers [17,
18]. In order to compare SV callers given the current lack
of a comprehensive gold standard dataset, a recent study
[19] used long read technologies to define a ground truth
in order to evaluate a large number of currently available
tools [20, 21]. However, a comprehensive gold standard
dataset is still needed; current long read technologies
are prone to producing high error rates, which confounds
efforts to detect SVs at single-base pair resolution. In
response to the pressing need for a comprehensive gold
standard dataset, our article presents a rigorous assess-
ment of the sensitivity and precision of SV detection tools
when applied to both mouse and human WGS data.

Results
Preparing the mouse gold standard data and
WGS data
Over the last decade, a plethora of SV detection methods
have been developed (Table 1 and Supplemental Table
S1), but the relative performance of these tools is
unknown [22–28]. In order to assess the precision
and accuracy of the currently available SV callers, we
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Table 1. Overview of SV-detection methods included in this study

Software tool Version Under lying
algorithm

Published
year

Tool’s webpage Bioconda
version

Format

GASV [29] 1.4 RP 2009 http://compbio.cs.brown.edu/projects/GASV/ No Custom
Pindel [30] 0.2. 5b9 RP + S R SR (2015,

0.2.5 b9)
2009 http://gmt.genome.wustl.edu/packages/pindel/ Yes Custom

RDXplorer [31] 3.2 RD 2009 http://RDXplorer.sourceforge.net/ No Custom
CLEVER [32] 2.4 RP 2011 https://bitbucket.org/tobiasmarschall/CLEVER-

toolkit/wiki/Home
Yes Custom

DELLY [33] 0.8.2 RP + SR 2012 https://github.com/DELLYtools/DELLY Yes Custom
BreakDancer [34] 1.3.6 RP 2012 https://github.com/genome/BreakDancer Yes Custom
indelMINER [35] N/A RP + SR 2014 https://github.com/aakrosh/indelMINER No VCF
GRIDSS [30] 2.5.1 RP + SR 2015 https://github.com/PapenfussLab/GRIDSS Yes VCF
MiStrVar [4] N/A N/A 2015 https://bitbucket.org/compbio/MiStrVar No VCF
LUMPY [36] 0.2.4 RP, SR, RD 2016 https://github.com/brentp/smoove Yes VCF
PopDel [37] 1.1.3 RP 2017 https://github.com/kehrlab/PopDel Yes VCF
CREST [38] 1.0 SR 2017 https://www.stjuderesearch.org/site/lab/zhang No Custom
Manta [39] 1.6.0 SR 2017 https://github.com/Illumina/manta Yes VCF
Genome STRiP
[40]

2.0 RP+SR+RD 2017 http://software.broadinstitute.org/software/
genomestrip/

Yes VCF

Ocotopus [41] 0.7.4 SR 2018 https://luntergroup.github.io/octopus/ Yes VCF
Deep Variant [42] 1.2.0 N/A 2018 https://github.com/google/deepvariant Yes VCF
Tardis [43] 1.04 RP + RD + SR 2019 https://github.com/BilkentCompGen/tardis Yes VCF
GROM [44] 1.0.3 RD 2021 https://osf.io/6rtws/ No VCF

Surveyed SV detection methods sorted by their year of publication from 2009 to 2018 are listed along with their underlying algorithm: read-depth (RC),
read-pair algorithms (RP), split-read approaches (SR), discordant pairs (DP) or a combination of algorithms. We documented the version of the software tool
used in the study (‘Version’), the year the software tool was published (‘Published year’), the webpage where each SV detection method is hosted (‘Tool’s
webpage’) and whether or not the Bioconda package of the software was available (‘Bioconda version’), Geometric Analysis of Structural Variants (GASV),
clique-enumerating variant finder (CLEVER), Clipping REveals STructure (CREST), Genome Rearrangement OmniMapper (GROM), Variant caller format (VCF).

simplified the problem presented to the SV callers
using a set of homozygous deletions present in inbred
mouse chromosomes. More specifically, we chose to
limit our analysis to mouse chr19 as it is the smallest.
We used a PCR-validated set of deletions, in which the
mouse deletions were manually curated, and targeted
PCR amplification of the breakpoints and sequencing
were used to resolve the ends of each deletion to the
base pair [45, 46]. The same read alignment file which
was used for the manual curation of the deletions was
used as an input to the SV callers, making our gold
standard complete and containing all possible true
deletions [true positives (TPs)]. To ensure that our gold
standard is complete with respect to the alignment file,
we first examined all possible deletions manually, and
then validated each deletion by PCR. Thus, although
our gold standard may not be universally complete, it
was complete with respect to the alignment files which
were provided to the SV callers as all deletions which
could be possibly detected from the alignment were
recorded and further examined using PCR. Details about
the preparation of the gold standard are provided in the
supplementary material.

The set of deletions we used among seven inbred
strains, called with reference to C57BL/6J, is shown in
Figure 1A and listed in Supplemental Table S2 [45].
We filtered out deletions shorter than 50 bp as such
genomic events are usually detected by indel callers
rather than SV callers. In total, we obtained 3710
deletions with lengths ranging from 50 to 239 572 base
pairs (Supplemental Figure S1 and Table S2). Almost
half of the deletions were in the range of 100–500 bp.

Almost 30% of deletions were larger than 1000 bp
(Supplemental Figure S1). High-coverage sequence data
were used as an input to the SV callers in the form
of aligned reads. Reads were mapped to the mouse
genome (GRCm38 Mouse Build) using BWA with the
- a option. In total, we obtained 5.2 billion 2 × 100 bp
paired-end reads across seven mouse strains. The
average depth of coverage was 50.75× (Supplemental
Table S3). Details regarding the gold standard and raw
data preparation and analysis are presented in the
supplementary materials.

Preparing the human gold standard data and
WGS data
We used public benchmark data for the Ashkenazi Jew-
ish Trio son (NA24385/HG002) from the genome-in-a-
bottle (GIAB) consortium. The alignment files were pub-
licly available from the GIAB website and were used
as an input to the variant callers. The average depth
of coverage was 45×, and the reads were 2 × 250 bp
paired-end reads. We used the GIAB preliminary vari-
ant set containing deletions in HG002 as our gold stan-
dard. The preliminary HG002 deletion set available is the
first reference set that is near complete within defined
high-confidence regions of the genome defined by a bed
file and hence allowed us to systematically benchmark
the performance of variant callers within those high-
confidence regions. The set contained 37 412 deletions,
out of which 10 159 deletions remained after extracting
the high-confidence regions. Similar to mouse data, we
filtered out deletions shorter than 50 bp. Almost 30% of
the deletions were in the range of 100–500 bp. Around

http://compbio.cs.brown.edu/projects/GASV/
http://gmt.genome.wustl.edu/packages/pindel/
http://RDXplorer.sourceforge.net/
https://bitbucket.org/tobiasmarschall/CLEVER-toolkit/wiki/Home
https://bitbucket.org/tobiasmarschall/CLEVER-toolkit/wiki/Home
https://github.com/DELLYtools/DELLY
https://github.com/genome/BreakDancer
https://github.com/aakrosh/indelMINER
https://github.com/PapenfussLab/GRIDSS
https://bitbucket.org/compbio/MiStrVar
https://github.com/brentp/smoove
https://github.com/kehrlab/PopDel
https://www.stjuderesearch.org/site/lab/zhang
https://github.com/Illumina/manta
http://software.broadinstitute.org/software/genomestrip/
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Figure 1. Comparison of inferred deletions across SV callers on mouse data. (A) Length distribution of molecularly confirmed deletions from
chromosome 19 across seven strains of mice. (B) Number of molecularly confirmed deletions (‘true deletions’ black color) and number of deletions
detected by SV callers. (C) Bar plot depicting the total number of TP calls across all error thresholds for each SV caller. (D) Scatter plot depicting the
number of correctly detected deletions (TP: true positives) by the number of incorrectly detected deletions (FP: false positives) at the 100 bp threshold.
Deletion is considered to be correctly predicted if the distance of right and left coordinates are within the given threshold from the coordinates of true
deletion. An SV caller was considered to detect a given nondeletion if no deletions were reported in a given region.

8% of deletions were larger than 1000 bp (Figure 6). The
complete details of how the human gold standard was
prepared are provided in the Methods section.

Choice of SV callers
For this benchmarking study, we selected methods
capable of detecting SVs from aligned WGS reads. SV
detection algorithms typically use information about the
coverage profile in addition to the alignment patterns of
abnormal reads. We excluded tools that were designed to
detect SVs in tumor-normal samples (e.g. Patchwork [47],
COpy number using Paired Samples (COPS) [48], recursive
Smith-Waterman-seq (rSW-seq) [49], bic-seq [39], seqCBS
[51]) and tools designed to detect only small (less than
50 bp in length) SVs (e.g. GATK [52, 53], Platypus [54],
Varscan [37]). Some tools were not suitable for inclusion
in our dataset as they were unable to process aligned
WGS data (e.g. Magnolya [55]). Other tools were designed
solely for long reads (e.g. Sniffles [56, 57]). The complete
list of tools excluded from our analysis is provided in
Supplemental Table S4. In total, we identified 61 suitable
SV methods capable of detecting deletions from WGS
data (Table 1 and Supplemental Table S1).

Our benchmarking study produced an analysis of the
results generated by 15 SV detection tools for mouse
data and 14 tools for human data (Table 1). We were
able to internally install and run all tools. The remaining
42 tools could not be installed and were not included
in this study. Supplemental Table S4 presents detailed
information about the issues that prevented us from
installing these software tools. Commands to install the
tools and details of the installation process are provided
in the supplementary materials.

Comparing the performance of SV callers on
mouse WGS data
We compared the performance of 15 SV callers with
respect to inferring deletions. The number of deletions
detected varied from 899 (indelMINER [35]) to 82 225
(GASV [37]). In all 53% of the methods reported fewer
deletions than are known to be present in the sample
(Figure 1B). We allowed deviation in the coordinates
of the detected deletions and compared deviations
with the coordinates of the true deletions. Even at a
relaxed stringency, the best method correctly detected



4 | Sarwal et al.

Figure 2. Length distribution of deletions detected by each SV caller
for mouse data. True deletions are indicated in black. Tools were sorted
in increasing order based on their median deletion length. The vertical
dashed line corresponds to the median value of true deletions.

the breakpoints of only 20% of known deletions in our
curated dataset.

The majority of SV callers typically detect deletions
whose coordinates differ from the correct positions
by up to 100 bp. Figure 1C shows the TP rates for
the SV callers at four different resolution values. The
total number of false negative (FN) and false positive
(FP) calls decreased with an increase in the threshold
(Supplemental Figure S2). The FP rate for pindel Popdel
[52] was more susceptible to changes in the threshold
as compared with Pindel [30] and GASV [29]. In general,
the length distribution of the detected deletions varied
across tools and was substantially different from the
distribution of true deletions across multiple SV detec-
tion methods (Figure 2 and Supplementary Table S2).
Deletions detected by BreakDancer [34] were the closest
to the true median deletion length whereas 7 out of 15
SV callers overestimated the deletion lengths (Figure 2).

Increasing the resolution threshold increases the num-
ber of deletions detected by the SV callers (Figure 1C).
Several methods detected all deletions in the sample at
10 000 bp resolution but overpredicted deletions leading
to a precision close to zero (Figure 3B). We used the
harmonic mean between precision and sensitivity (F-
score) rates to determine the method with the best
balance between sensitivity and precision. Several
methods (e.g. Manta [39], LUMPY [36]) offered the
highest F-score for deletion detection, consistently

Figure 3. Comparing the performance of SV callers based on WGS data
across seven inbred mouse strains. A deletion is considered to be cor-
rectly predicted if the distance of right and left coordinates are within
the threshold τ from the coordinates of a true deletion. (A) Sensitiv-
ity of SV callers at different thresholds. (B) Precision of SV callers at
different thresholds. (C) F-score of SV callers at different thresholds.
Figures (A–C) are sorted in increasing order based on their performance
at the 100 bp threshold. Results for other thresholds are presented in
Supplemental Figure S6.

between 100 and 10 000 bp resolution across all the
mouse strains (Supplemental Figure S3). For a resolution
of 10 bp, the method with the best performance
for all the samples was LUMPY [36] while at higher
resolutions the best performing method was Manta
[39](Supplemental Figure S3). The method with the best
precision for a threshold of 100–1000 bp was PopDel [37],
but the sensitivity rate of PopDel [37] did not exceed 50%
(Figure 3A, Supplemental Figures S4 and S5).
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Methods that produced a higher F-score are the most
balanced in precision and sensitivity; few methods
skewed towards just one of the metrics (Supplemental
Figures S7 and S29). Manta [39], LUMPY [36] and CLEVER
[32] were the only methods able to successfully balance
precision and sensitivity, with rates above 50% for
each metric (Figure 3E and Supplemental Figure S7).
CLEVER [32] was able to achieve the highest sensitivity
rate at the majority of thresholds (Figure 3A and
Supplemental Figure S5). The most precise method we
observed was PopDel [37], with rates exceeding 80% for
thresholds 1000 bp onwards, but the sensitivity of this
method was two times lower than the majority of other
tools (Figure 3B).

We examined whether the SV callers included in this
study maintained similar SV detection accuracy across
the different mouse strains. We compared results from
each tool to study how consistent the results were across
the samples. Among the tools with a sensitivity rate
above 10%, LUMPY [36] maintained the most consistent
sensitivity rate across samples with the highest rate of
60% when applied to both C3H/HeJ and CBA/J strains.
The lowest sensitivity rate achieved by LUMPY [36]
was 58% for A/J and DBA/2J strains. Sensitivity rates
were the most stable across the seven different strains
(Supplemental Figure S5). Precision shows the second
highest variability across the strains, with the most
stable results provided by Pindel [30] and indelMINER
[35] (Supplemental Figure S4).

We have also compared CPU time and the maximum
amount of RAM used by each of the tools. Across all
tools, GASV [29] required the highest amount of RAM
whereas PopDel [37] required the lowest amount of RAM
to run the analysis. CREST [38] required the longest
time to perform the analysis. Breakdancer [34] was the
fastest tool. We have also compared the computational
resources and speed of SV callers based on datasets
with full coverage and those with ultralow coverage
(Supplemental Figure S9).

Performance of SV detection tools on low- and
ultralow- coverage mouse data
We assessed the performance of SV callers at different
coverage depths generated by downsampling the original
WGS data. The simulated coverage ranged from 32× to
0.1×, and 10 subsamples were generated for each cov-
erage range. For each method, the number of correctly
detected deletions generally decreased as the coverage
depth decreased (Supplemental Figure S10). Some of the
methods were able to call deletions from ultralow cover-
age (≤0.5×) data. Although tools like Manta [39] reached
a precision of 82%, the overall sensitivity and F-score val-
ues were less than 8% for all tools. None of the methods
were able to detect deletions from 0.1× coverage.

As suggested by other studies [51], most tools reached
a maximum precision at an intermediate coverage
(Figure 4B). Both the sensitivity rate and the F-score
improved as the coverage increased (Figure 4A and C).

Figure 4. Performance of SV detection tools on low- and ultralow-
coverage mouse data. (A) Heatmap depicting the sensitivity based on
the 100 bp threshold across various levels of coverage. (B) Heatmap
depicting the precision based on the 100 bp threshold across various
levels of coverage. (C) Heatmap depicting the F-score based on the 100 bp
threshold across various levels of coverage.

Overall, DELLY [33] showed the highest F-score for
coverage below 4× (Figure 4C). For coverage between
8 and 32×, Manta [39] showed the best performance.
LUMPY [36] was the only tool to attain precision above
90% for coverage 1× to 4×. However, a decreased
sensitivity in coverage below 4× led to a decreased
F-score when compared with DELLY [33]. Precision in
results from DELLY [33] for ultralow-coverage data was
above 90% when the threshold was set at 1000 bp, but
changing the threshold had no effect on LUMPY [36]
(Supplemental Figure S11).
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Length of deletions impacts the performance of
the SV callers
As different variant callers are designed for different
deletion length categories, we separately assessed the
effect of deletion length on the accuracy of detection
for four categories of deletions (Figure 5). The perfor-
mance of the SV callers was significantly affected by
deletion length. For example, for deletions shorter than
100 bp, precision and F-score values were typically
below 40%, regardless of the tool (Figure 5B and C
and Supplemental Figures S12, S14 and S15) whereas
sensitivity values were above 50% for several tools
(Figure 5A) (Supplemental Figure S13). For deletions
longer than 100 bp, the best-performing tool in terms of
sensitivity and precision significantly varied depending
on the deletion length (Figure 5A and B). CLEVER [32]
provided a sensitivity of above 60% for deletions
less than 500 bp; however DELLY [33] provided the
highest sensitivity for deletions longer than 500 bp
(Figure 5A and Supplemental Figures S17, S21 and S25).
LUMPY [36] delivered the best precision for deletion
lengths from 50 to 500 bp, and CLEVER [32] per-
formed well for longer deletion lengths (Figure 5B and
Supplemental Figures S14, S18, S22 and S26). indelMINER
[35] provided the high precision rate of detection of
deletions in the range of 100–500 bp and when longer
than 1000 bp, but the precision of detecting deletion
in the 500–1000 bp range was lower than that of other
tools (Figure 5B). In general, Manta [39] and LUMPY
[36] were the only methods able to deliver an F-
score above 30% across all categories (Figure 5D and
Supplemental Figures S15, S19, S23 and S27).

Comparing the performance of SV callers on
human WGS data
We compared the performance of 14 SV callers with
respect to inferring deletions. The number of deletions
detected varied from 342 (LUMPY [36]) to 1 371 466
(CLEVER [32]). Although tools like BreakDancer [34],
GenomeSTRiP [40], LUMPY [36] and PopDel [37] reported
fewer deletions than the gold standard and gasv,
rdxplorer and clever reported higher deletions than the
gold standard, consistently for both mouse and human
data, a reverse trend was observed for CREST [32], Manta
[39] and DELLY [33] (Figure 6).

We analyzed the TP rates for the SV callers at four
different resolution thresholds (Figure 6). In general,
the length distribution of detected deletions varied
across tools and was substantially different from
the distribution of true deletions across multiple SV
detection methods (Supplemental Figure S28). Deletions
detected by Manta [39] were the closest to the true
median deletion length. In contrast to mouse data,
a majority of the SV callers overestimated deletion
lengths, with only 3 out of 14 callers underestimating
deletions. A possible explanation for this could be the
large number of FP calls by the tools, which could skew

Figure 5. Comparing the performance of SV callers across various dele-
tions lengths on mouse data. (A) Sensitivity of SV callers at the 100 bp
threshold across deletion length categories. (B) Precision of SV callers at
the 100 bp threshold across deletion length categories. (C) F-score of SV
callers at the 100 bp threshold across deletion length categories.

the distribution towards a longer median deletion length
(Supplemental Figure S28).

Similar to mouse data, we analyzed the ability of
the tools to balance precision and sensitivity (Figure 7).
Although Manta was able to achieve the highest sensitiv-
ity for thresholds less than 100 bp, CLEVER [32] was the
best performing tool for 10 000 bp threshold (Figure 7A).
Octopus [41] was able to maintain a high sensitivity
rate across the majority of thresholds at the cost of
decreased precision. Similarly, Manta [39] achieved the
highest precision for thresholds less than 100 bp, and
PopDel [37] for thresholds 1000 and 10 000 bp (Figure 7B).
In concordance with the results on mouse data, Manta
[39] was the top-performing tool in terms of F-score,
achieving the best balance between sensitivity and
precision (Figure 7C). Other tools achieving a high F-score
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Figure 6. Comparison of inferred deletions across SV callers on human data. (A) Length distribution of molecularly confirmed deletions from the human
whole genome. (B) Number of molecularly confirmed deletions (‘true deletions’ black color) and number of deletions detected by SV callers. (C) Bar plot
depicting the total number of TP calls across all error thresholds for each SV caller. (D) Scatter plot depicting the number of correctly detected deletions
(TP: true positives) by the number of incorrectly detected deletions (FP: false positives) at the 100 bp threshold.

on human data, consistently across all thresholds were
DELLY [33] and GROM [44] (Supplemental Figure S30).

Consistent with results on mouse data, the sensitivity
of the SV callers on human data was substantially
affected by deletion length (Figure 8). For example,
Octopus [41] was able to achieve the highest sensi-
tivity of 0.745 in the 50–100 bp category; however its
sensitivity dropped to 0.009852 in the 500–1000 bp
category (Figure 8A). Manta [39] had the highest sensi-
tivity for 100–500 bp, DELLY [33] for 500–1000 bp and
GenomeSTRiP [40] for deletions larger than 1000 bp.
While Manta [39] consistently provided the highest
values of precision for 100–500 bp and greater than
1000 bp, Octopus [41] was the highest performing tool
for the 500–1000 bp category (Figure 8B). For shorter
deletions less than 100 bp, GROM [44] achieved the
highest precision. Manta [39] achieved the highest F-
score for the 100–500 bp category (Figure 8B).

Discussion
In this article, we performed a systematic benchmarking
of algorithms to identify SVs from WGS data. In contrast
to methods that are used to identify single nucleotide
polymorphisms and have coalesced around a small

number of approaches, there is currently no consensus
on the best way to detect SVs in mammalian genomes.
Indeed, we were able to find 61 different methods, each
claiming relatively high sensitivity rates in the original
publication.

In comparison to previous benchmarking efforts based
on simulated data [22, 24, 28, 58], we obtained and
employed a set of molecularly defined deletions for
which breakpoints are known at base pair resolution.
Other benchmarking studies have employed long–
read-based gold standard datasets with approximate
coordinates of deletions [19]. Our benchmarking method,
using a gold standard set of molecular-defined deletions,
overcomes the limitations of simulated data and incom-
plete characterization. Thus, our benchmarking study
represents a robust assessment of the performance of the
currently available SV detection methods when applied
to a representative dataset.

In order to assess the precision and accuracy of the
currently available SV callers, we simplified the problem
presented to the detectors by using a set of homozy-
gous deletions present in inbred mouse chromosomes.
Although homozygous strains do not fully reflect the
biology of real data, we use it in our mouse model as
an easy-to-detect simple baseline. SV callers rely on the
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Figure 7. Comparing the performance of SV callers on human data. A
deletion is considered to be correctly predicted if the distance of right and
left coordinates are within the threshold τ from the coordinates of a true
deletion. (A) Sensitivity of SV callers at different thresholds. (B) Precision
of SV callers at different thresholds. (C) F-score of SV callers at different
thresholds.

presence of the deletion allele and/or the read pairs
affected by the deletion. A homozygous deletion, having
only the deletion allele, can therefore be expected to
have a stronger signal for split reads and discordant read
pairs [44]. A stronger signal makes a homozygous variant
easier to detect than a heterozygous variant. Methods
failing to detect homozygous variants are unlikely to
detect heterozygous variants. Among SVs, we limit our
analysis to the detection of deletions. We exclude other
types of SVs because of the lack of a PCR-validated gold
standard. We excluded insertions because of the poor
reliability of variant calling methods to detect them.
Medium-sized indels, such as the FLT3-ITD, have proved
difficult to detect by most methods [60].

Figure 8. Comparing the performance of SV callers across various dele-
tions lengths on human data. (A) Sensitivity of SV callers at the 100 bp
threshold across deletion length categories. (B) Precision of SV callers at
the 100 bp threshold across deletion length categories. (C) F-score of SV
callers at the 100 bp threshold across deletion length categories.

When installing the majority of SV callers, we noticed
significant difficulties due to inadequate software imple-
mentation and technical factors [61]. Deprecated depen-
dencies and segmentation faults were the most com-
mon reasons preventing successful tool installation [62].
The majority of the tools have a consensus on the out-
put format to be used (Supplemental Table S6), but the
requirements for the format varied among tools. The
lack of documentation about format requirements may
further limit the use of SV callers. In our benchmarking
study, we only considered methods with a novel variant
detection algorithm. Benchmarking of consensus-based
algorithms such as parliment2 [63], svclassify [64, 65]
and SURVIVOR [66] that combine individual tools has
already been performed [67] and were excluded from
our analysis. Although we were able to run 15 tools on
mouse data, we had to exclude indelminer and pindel for
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our analysis on human data. This is because of excep-
tionally high computational resources required by these
tools, both in terms of running time and memory, on the
human data.

In contrast to existing benchmarking studies, we
did not filter the output of the SV callers. Filtering is
extremely context specific and may vary significantly
for different experiments, and good post-hoc filtering
would require individual consideration of each tool’s
quality metrics and thresholds to get comparable results.
Although it may be acceptable to tolerate a few FPs in
studies in which it is vital to detect as many true variants
as possible, others may be very conservative require only
high-quality variants. As different tools have different
variant quality cut-offs, keeping the cutoff too low could
result in many potential FPs. We do not exclude any
variants based on the filter field and leave it up to the
end users to decide the feasible filtering cut-offs which
are best for their study. Additionally, we intentionally
did not apply any quality control measures such as
filtering on genotype and genotype quality to ensure
all the tools evaluated in the study were restricted to
homozygous deletions as choosing settings appropriate
for homozygous deletions would have advantaged those
tools that allow this option. Our aim was to perform a fair
comparison of the performance of the tools in situations
where the genotypes are unknown. As the detection of
homozygous deletions is an easier task as compared
with the detection of heterozygous deletions, we believe
this provided for a fair comparison. We used Truvari
(https://github.com/spiralgenetics/truvari), a tool widely
adopted by the community for the evaluation of SV calls
to compute the metrics of this study.

We identified a series of factors that determined
the performance of the SV caller methods. The most
important factors were the size of deletions and the
coverage of WGS data. For example, BreakDancer [34]
only detected deletions larger than 100 bp. Some tools
achieved excellent sensitivity with the caveat that their
precision was close to zero. For example, Pindel [34]
achieved the highest sensitivity rate among all the
tools with a precision rate of less than 0.1%. Other
tools (e.g. PopDel [37]) employ a more conservative SV
detection approach, resulting in higher precision at
the cost of decreased sensitivity for smaller deletion
events. A few tools were able to maintain a good
balance between precision and sensitivity. For example,
Manta [39], CLEVER [32], LUMPY [36] and BreakDancer
[34] maintained both precision and sensitivity rates
above 40%. In addition to differences in the accuracy
of SV detection, we observed substantial differences
in run times and required computational resources
(Supplemental Figure S9). We studied the effect of the SV
detection algorithm on performance, including split read,
read depth and read pair. We found that most tools were
a combination of different algorithms (Table 1). We did
not find any correlation between the algorithm used and
the performance of the tool. Although we have explored

the effect of coverage, resolution threshold, organism
and deletion length on variant detection, a study of
the distribution of the variants location wise across
the genome, the copy number of the variants and the
different subcategories within deletions is an important
area that needs to be explored by future studies.

Our reported top-performing variant caller-based on
the F-score, Manta [39], is consistent with prior studies
[66, 68]. Although other studies [68] use concordance
as a comparison metric and do not adjust for the
incompleteness of the human gold standard, we chose
to make the gold standard complete by extracting the
high-confidence regions defined in the bed file, allowing
us to report metrics like sensitivity and precision.

We envision that future SV caller methods should
enable the detection of deletions with precise coordi-
nates. The inability of current methods to precisely
detect breakpoints was related to the issue of the
majority of tools underestimating the true size of SVs.
Given the variation in the performance of the callers
based on deletion length, coverage and organism, the
results in this analysis can be combined to create an
integrated SV calling method that has the potential
to outperform individual callers. We acknowledge the
existence of numerous implementations of an ensemble
calling approach, such as Parliament2 [63] and FusorSV
[69]. Although it has been shown to be easy to improve
the sensitivity of the set of SVs by taking either the
intersect or union of the calls created by the various
callers, we note it is a nontrivial task to find universal
thresholds and rules for the integration of the set
of SVs into an ensemble set that maximizes both
precision and recall at the same time. We hope that
the results reported in this benchmarking study can
help researchers choose appropriate variant calling tools
based on the organism, data coverage and deletion
length.

Methods
Run SV detection tools
Commands required to run each of the tools and the
installation details are available in Supplemental Table
S5. LUMPY [36] was run using smoove as recommended
by the developers of smoove. The diploidSV vcf files were
used for Manta based on the recommendation of the
developers.

Convert the output of the SV detection tool to a
universal format
We have adopted the VCF format proposed by VCFv4.2 as
the universal format used in this study. Custom formats
of the SV detection tools were converted to VCFv4.2. The
description of custom formats is provided in Supplemen-
tal Table S6. The scripts to convert custom formats of SV
detection tools to VCFv4.2 are available at https://github.
com/Mangul-Lab-USC/benchmarking_SV

https://github.com/spiralgenetics/truvari
https://github.com/Mangul-Lab-USC/benchmarking_SV
https://github.com/Mangul-Lab-USC/benchmarking_SV


10 | Sarwal et al.

Generate high-confidence vcf files for human
data
The human high-confidence vcf file for the gold standard
was generated using a Python script. The script directly
compares the high-confidence bed file to the csv file, by
chromosome number. Then, high confidence vcf dele-
tions were extracted if the deletion was fully contained
within a high confidence region in the bed file, i.e., if
the start position of the bed file was smaller than the
start position of the vcf file and the end positions of
the bed file was larger than the end position of the vcf
file. These VCF files contained regions where the gold
standard was high confidence and complete, meaning
that it contained all possible deletions. Similar to the
gold standard, the tool’s high-confidence vcf files were
produced to extract regions that were fully contained
within the high-confidence regions defined by the bed
file. These true high-confidence files were then used as a
gold standard to estimate the accuracy of the SV callers.
The script and true high-confidence vcf file for the HG002
sample are available at: https://github.com/Mangul-Lab-
USC/benchmarking_SV

Compare deletion inferred from WGS data with
the gold standard
We compared the deletions inferred from SV callers from
WGS data (inferred deletions) with the molecular-based
gold standard (true deletions) using Truvari. Start and
end positions of the deletion were considered when com-
paring true deletions and inferred deletions. Inferred
deletion was considered to be correctly predicted if the
distance of right and left coordinates are within the res-
olution threshold τ from the coordinates of true deletion.
We consider the following values for resolution threshold
τ : 0, 10, 100, 1000 and 10 000 bp. As most tools had
zero matches when the threshold was kept at 0 bp, the
starting threshold in the figures is kept as 10 bp. TPs
were correctly predicted deletions, and were defined as
deletions reported by the SV caller that were also present
in the gold standard. In case an inferred deletion matches
several true deletions, we randomly choose one of them.
Similarly, in case a true deletion matches several inferred
deletions, we choose the first deletion that matches. The
deletion predicted by the SV caller but not present in
the golden standard was defined as a FP. Similarly, each
deletion present in the gold standard was matched with
only one deletion predicted by the software. The SVs
that were not predicted by the SV caller were defined
as FN. SV detection accuracy was assessed using various
detection thresholds (τ ). The accuracy at threshold τ is
defined as the percentage of SVs with an absolute error
of deletion coordinates smaller or equal to τ . We have
used the following measures to compare the accuracy of
SV- callers:

• Sensitivity = TP/(TP + FN).
• Precision = TP/(TP + FP).
• F-score = 2×Sensitivity×Precision/(Sensitivity + Pre-

cision).

Compare computational performance of SV
callers
The CPU time and RAM of each tool were measured to
determine its computational performance. The statistics
were measured for 1× coverage and full-coverage bam
files, with sample A/J and BALB/cJ for mouse data.
The CPU time was computed using either the GNU
time program that is inbuilt in make bash terminals
or the Hoffman2 Cluster qsub command. For GNU
time, we used this specific command /usr/bin/time
-f ‘%e\t%U\t%S\t%M’ which we had to run either
manually on an interactive qsub session or through
another method that was not a qsub. This GNU time
command would output one line containing Wallclock
time in seconds, user-time in seconds, kernel-space
time in seconds, and peak memory consumption of the
process in kilobytes. The CPU time was calculated by
adding user-time and kernel-space time. RAM usage was
equivalent to peak memory consumption in the case of
this command. For qsubs on the Hoffman2 Cluster, we
used the command qsub -m e which would email the
user a full list of records when the tool finished running.
This list included CPU-time and Max mem which was
designated as RAM usage for each tool.

Downsample the Wgs Samples
We have used a custom script to downsample the full
coverage bam file to desired coverage. Existing tools (e.g.
samtools) are not suitable for this purpose as they treat
each read from a read pair independently, resulting in
singletons reads in the downsample bam file.

Data Availability
WGS mouse strains for the samples A/J, AKR/J, BALB/cJ,
C3H/HeJ, DBA/2 J and LP/J used for benchmarking of the
SV callers are available under the following accession
numbers in the European Nucleotide Archive: ERP000038,
ERP000037, ERP000039, ERP000040, ERP000044 and
ERP000045. The output VCFs produced by the tools, the
gold standard VCFs, the analysis scripts, figures and log
files are available at https://github.com/Mangul-Lab-
USC/benchmarking_SV. The human high-confidence bed
file can be found here https://www.nist.gov/programs-
projects/genome-bottle

The novoaligned bam data for the HG002_NA24385 son
genome were downloaded from https://ftp-trace.ncbi.
nlm.nih.gov/ReferenceSamples/giab/data/Ashkenazim
Trio/HG002_NA24385_son/NIST_Illumina_2x250bps/
novoalign_bams/

Code Availability
The source code to compare SV detection methods and
to produce the figures contained within this text is open
source and free to use under the Massachusetts Institute
of Technology (MIT) license. All code required to produce

https://github.com/Mangul-Lab-USC/benchmarking_SV
https://github.com/Mangul-Lab-USC/benchmarking_SV
https://github.com/Mangul-Lab-USC/benchmarking_SV
https://github.com/Mangul-Lab-USC/benchmarking_SV
https://www.nist.gov/programs-projects/genome-bottle
https://www.nist.gov/programs-projects/genome-bottle
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/NIST_Illumina_2x250bps/novoalign_bams/
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the figures and analysis performed in this article are
freely available at https://github.com/Mangul-Lab-USC/
benchmarking_SV
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