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1Department of Electrical & Computer Engineering, McGill University

2Department of Psychology, McGill University

Abstract

The Frame Problem (FP) is a puzzle in philosophy of mind
and epistemology, articulated by the Stanford Encyclopedia of
Philosophy as follows: “How do we account for our apparent
ability to make decisions on the basis only of what is relevant
to an ongoing situation without having explicitly to consider
all that is not relevant?” In this work, we focus on the causal
variant of the FP, the Causal Frame Problem (CFP). Assuming
that a reasoner’s mental causal model can be (implicitly) repre-
sented by a causal Bayes net, we first introduce a notion called
Potential Level (PL). PL, in essence, encodes the relative po-
sition of a node with respect to its neighbors in a causal Bayes
net. Drawing on the psychological literature on causal judg-
ment, we substantiate the claim that PL may bear on how time
is encoded in the mind. Using PL, we propose an inference
framework, called the PL-based Inference Framework (PLIF),
which permits a boundedly-rational approach to the CFP, for-
mally articulated at Marr’s algorithmic level of analysis. We
show that our proposed framework, PLIF, is consistent with
several findings in the causal judgment literature, and that PL
and PLIF make a number of predictions, some of which are
already supported by existing findings.
Keywords: Frame Problem; Time and Causality; Bounded
Rationality; Algorithmic Level of Analysis; Rational Process
Models

1 Introduction
At the core of any decision-making or reasoning task, re-
sides an innocent-looking yet challenging question: Given
an inconceivably large body of knowledge available to the
reasoner, what constitutes the relevant for the task and what
the irrelevant? The question, as it is posed, echoes the well-
known Frame Problem (FP) in epistemology and philosophy
of mind, articulated by Glymour (1987) as follows: “Given
an enormous amount of stuff, and some task to be done
using some of the stuff, what is the relevant stuff for the
task?” Fodor (1987) comments: “The frame problem goes
very deep; it goes as deep as the analysis of rationality.”

The question posed above perfectly captures what is really
at the core of the FP, yet, it may suggest an unsatisfying ap-
proach to the FP at the algorithmic level of analysis (Marr,
1982). Indeed, the question may suggest the following two-
step methodology: In the first step, out of all the body of
knowledge available to the reasoner (termed, the model), she
has to identify what is relevant to the task (termed, the rele-
vant submodel); it is only then that she advances to the second
step by performing reasoning or inference on the identified
submodel. There is something fundamentally wrong with this
methodology (which we term, sequential approach to reason-
ing) which bears on the following understanding: The rele-
vant submodel, i.e., the portion of the reasoner’s knowledge
deemed relevant to the task, oftentimes is so enormous (or
even infinitely large) that the reasoner—inevitably bounded

in time and computational resources—would never get to the
second step, had she adhered to such a methodology. In other
words, in line with the notion of bounded rationality (Simon,
1957), a boundedly-rational reasoner must have the option, if
need be, to merely consult a fraction of the potentially large—
if not infinitely so—relevant submodel.

Icard and Goodman (2015) elegantly promote this insight
when they write: “Somehow the mind must focus in on some
“submodel” of the “full” model (including all possibly rele-
vant variables) that suffices for the task at hand and is not too
costly to use.”1 They then ask the following question: “what
kind of simpler model should a reasoner consult for a given
task?” This is an inspiring question hinting to an interesting
line of inquiry as to how to formally articulate a boundedly-
rational approach to the FP, at Marr’s (1982) algorithmic level
of analysis.

In this work, we focus on the causal variant of the FP, the
Causal Frame Problem (CFP), stated as follows: Upon being
presented with a causal query, how does the reasoner manage
to attend to her causal knowledge relevant to the derivation
of the query while rightfully dismissing the irrelevant? We
adopt Causal Bayesian Networks (CBNs) (Pearl, 1988; Gop-
nik et al., 2004, inter alia) as a normative model to represent
how the reasoner’s internal causal model of the world is struc-
tured (i.e., reasoner’s mental model). First, we introduce the
notion of Potential Level (PL). PL, in essence, encodes the
relative position of a node (representing a propositional vari-
able or a concept) with respect to its neighbors in a CBN.
Drawing on the psychological literature on causal judgment,
we substantiate the claim that PL may bear on how time is
encoded in the mind. Equipped with PL, we embark on in-
vestigating the CFP at Marr’s algorithmic level of analysis.
We propose an inference framework, termed PL-based In-
ference Framework (PLIF), which aims at empowering the
boundedly-rational reasoner to consult (or retrieve2) parts of
the underlying CBN deemed relevant for the derivation of
the posed query (the relevant submodel) in a local, bottom-
up fashion until the submodel is fully retrieved. PLIF allows
the reasoner to carry out inference at intermediate stages of
the retrieval process over the thus-far retrieved parts, thereby
obtaining lower and upper bounds on the posed causal query.

1In an informative example on Hidden Markov Models (HMMs),
Icard and Goodman (2015) present a setting wherein the relevant
submodel is infinitely large—an example which highlights what is
wrong with the sequential approach stated earlier.

2The terms “consult” and “retrieve” will be used interchange-
ably. We elaborate on the rationale behind that in Sec. 5, where we
connect our work to Long Term Memory and Working Memory.
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We show, in the Discussion section, that our proposed frame-
work, PLIF, is consistent with several findings in the causal
judgment literature, and that PL and PLIF make a number of
predictions, some of which are already supported by the find-
ings in the psychology literature.

In their work, Icard and Goodman (2015) articulate a
boundedly-rational approach to the CFP at Marr’s computa-
tional level of analysis, which, as they point out, is from a
“god’s eye” point of view. In sharp contrast, our proposed
framework PLIF is not from a “god’s eye” point of view and
hence could be regarded, potentially, as a psychologically
plausible proposal at Marr’s algorithmic level of analysis as
to how the mind both retrieves and, at the same time, carries
out inference over the retrieved submodel to derive bounds
on a causal query. We term this concurrent approach to rea-
soning, as opposed to the flawed sequential approach stated
earlier.3 The retrieval process progresses in a local, bottom-
up fashion, hence the submodel is retrieved incrementally, in
a nested manner.4 Our analysis (Sec. 4.1) confirms Icard
and Goodman’s (2015) insight that even in the extreme case
of having an infinitely large relevant submodel, the portion
of which the reasoner has to consult so as to obtain a “suffi-
ciently good” answer to a query could indeed be very small.

2 Potential Level and Time
Before proceeding further, let us introduce some preliminary
notations. Random Variables (RVs) are denoted by lower-
case bold-faced letters, e.g., x, and their realizations by non-
bold lower-case letters, e.g., x. Likewise, sets of RVs are de-
noted by upper-case bold-faced letters, e.g., X, and their cor-
responding realizations by upper-case non-bold letters, e.g.,
X . Val(·) denotes the set of possible values a random quan-
tity can take on. Random quantities are assumed to be dis-
crete unless stated otherwise. The joint probability distribu-
tion over x1, · · · ,xn is denoted by P(x1, · · · ,xn). We will use
the notation x1:n to denote the sequence of n RVs x1, · · · ,xn,
hence P(x1, · · · ,xn) = P(x1:n). The terms “node” and “vari-
able” will be used interchangeably. To simplify presenta-
tion, we adopt the following notation: We denote the prob-
ability P(x = x) by P(x) for some RV x and its realiza-
tion x ∈ Val(x). For conditional probabilities, we will use
the notation P(x|y) instead of P(x = x|y = y). Likewise,
P(X |Y ) = P(X = X |Y = Y ) for X ∈ Val(X) and Y ∈ Val(Y).
A generic conditional independence relationship is denoted
by (A ⊥⊥ B|C) where A,B, and C represent three mutually
disjoint sets of variables belonging to a CBN. Furthermore,
throughout the paper, we assume that ε is some negligibly
small positive real-valued quantity. Whenever we subtract ε

from a quantity, we simply imply a quantity less than but ar-
bitrarily close to the original quantity. The rationale behind
adopting such a notation will become clearer in Sec. 4.

3We elaborate more on this in the Discussion section.
4The term “nested” implies that the thus-far retrieved submodel

is subsumed by every later submodel (provided that the reasoner pro-
ceeds with the retrieval process).

Before formally introducing the notion of PL, we articu-
late in simple terms what the idea behind PL is. PL simply
induces a chronological order on the nodes of a CBN, al-
lowing the reasoner to encode the timing between cause and
effect.5 As we will see, PL plays an important role in guiding
the retrieval process used in our proposed framework. Next,
PL is formally defined, followed by two clarifying examples.

Def. 1. (Potential Level (PL)) Let par(x) and child(x)
denote, respectively, the sets of parents (i.e., immediate
causes) and children (i.e., immediate effects) of x. Also let
T0 ∈ R ∪ {−∞}. The PL of x, denoted by pl(x), is de-
fined as follows: (i) If par(x) = ∅, pl(x) = T0, and (ii) If
par(x) 6= ∅, pl(x) is a real-valued quantity selected from
the interval (maxy∈par(x) pl(y),minz∈child(x) pl(z)) such that
pl(x)−maxy∈par(x) pl(y) indicates the amount of time which
elapses between intervening simultaneously on all the RVs
in par(x) (i.e., do(par(x) = parx)) and x taking its value x
in accord with the distribution P(x|parx). If child(x) = ∅,
substitute the upper bound of the given interval by +∞. �

Parameter T0 symbolizes the origin of time, as perceived
by the reasoner. T0 = 0 is a natural choice, unless the rea-
soner believes that time continues unboundedly into the past,
in which case T0 =−∞. The next two examples further clar-
ify the idea behind PL. In both examples we assume T0 = 0.

y

z

pl(x) = 4

pl(z) = 5

x

(a)

pl(y) = 4.7

pl(x) = 4

pl(t) = 5.6

(b)

pl(y) = 4.7

x

y
z

t

pl(z) = 5

+∞

−∞

+∞

−∞

Figure 1: Relation between PL and time. Three hollow dots
signify that the depicted CBNs extend into the past and future.

For the first example, let us consider the CBN depicted
in Fig. 1(a) containing the RVs x,y, and z with pl(x) =
4, pl(y) = 4.7, and pl(z) = 5. According to Def. 1, the
given PLs can be construed in terms of the relative time be-
tween the occurrence of cause and effect as articulated next.
Upon intervening on x (i.e., do(x = x)), after the elapse of
pl(y)− pl(x) = 0.7 units of time, the RV y takes its value y in
accord with the distribution P(y|x). Likewise, upon interven-
ing on y (i.e., do(y = y)), after the elapse of pl(z)− pl(y) =
0.3 units of time, z takes its value z according to P(z|y).

For the second example, consider the CBN depicted in Fig.
1(b) containing the RVs x,y,z, and t with pl(x) = 4, pl(y) =
4.7, pl(z) = 5, and pl(t) = 5.6. Upon intervening on x (i.e.,
do(x = x)) the following happens: (i) after the elapse of
pl(y)− pl(x) = 0.7 units of time, y takes its value y according
to P(y|x), and (ii) after the elapse of pl(z)− pl(x) = 1 unit of

5More precisely, PL induces a topological order on the nodes of
a CBN, with temporal interpretations suggested in Def. 1.

3047



time, z takes its value z according to P(z|x). Also, upon inter-
vening simultaneously on RVs y,z (i.e., do(y = y,z = z)), af-
ter the elapse of pl(t)−maxr∈par(t) pl(r) = 0.6 units of time,
t takes its value t according to P(t|y,z).

In sum, the notion of PL bears on the underlying time-grid
upon which a CBN is constructed, and adheres to Hume’s
principle of temporal precedence of cause to effect (Hume,
1748/1975). A growing body of work in psychology liter-
ature corroborates Hume’s centuries-old insight, suggesting
that the timing and temporal order between events strongly
influences how humans induce causal structure over them
(Bramley, Gerstenberg, & Lagnado, 2014; Lagnado & Slo-
man, 2006). The introduced notion of PL is based on the
following hypothesis: When learning the underlying causal
structure of a domain, humans may as well encode the tem-
poral patterns (or some estimates thereof) on which they rely
to infer the causal structure. This hypothesis is supported
by recent findings suggesting that people have expectations
about the delay length between cause and effect (Greville &
Buehner, 2010; Buehner & May, 2004; Schlottmann, 1999).
It is worth noting that we could have defined PL in terms of
relative expected time between cause and effect, rather than
relative absolute time. Under such an interpretation, the time
which elapses between the intervention on a cause and the oc-
currence of its effect would be modeled by a probability dis-
tribution, and PL would be defined in terms of the expected
value of that distribution. Our proposed framework, PLIF, is
indifferent as to whether PL should be construed in terms of
absolute or expected time. Greville and Buehner (2010) show
that causal relations with fixed temporal intervals are con-
sistently judged as stronger compared to those with variable
temporal intervals. This finding, therefore, seems to suggest
that people expect, to a greater extent, fixed temporal inter-
vals between cause and effect, rather than variable ones—an
interpretation which, at least to a first approximation, favors
construing PL in terms of relative absolute time (see Def. 1).6

3 Informative Example
To develop our intuition, and before formally articulating our
proposed framework, let us present a simple yet informative
example which demonstrates: (i) how the retrieval process
can be carried out in a local, bottom-up fashion, allowing for
retrieving the relevant submodel incrementally, and (ii) how
adopting PL allows the reasoner to obtain bounds on a given
causal query at intermediate stages of the retrieval process.

Let us assume that the posed causal query is P(x|y) where
x,y are two RVs in the CBN depicted in Fig. 2(a) with PLs
pl(x), pl(y), and let pl(x) > pl(y). The relevant information
for the derivation of the posed query (i.e., the relevant sub-
model) is depicted in Fig. 2(e).

6There are cases, however, that, despite the precedence of cause
to effect, quantifying the amount of time between their occurrences
may bear no meaning, e.g., when dealing with hypothetical con-
structs. In such cases, PL should be simply construed as a topo-
logical ordering. From a purely computational perspective, PL is a
generalization of topological sorting in computer science.

(a) (b)

pl(y)

pl(x) x

t1

t2

y

x

t1pl(t1)

pl(t2)

(c)

x

t1

t2

(d)

x

t1

t2

+∞

−∞

y y y

(e)

x

t1

t2

y

Figure 2: Example. Query variables are shown in orange.

Starting from the target RV x in the original CBN (Fig.
2(a)) and moving one step backwards,7 t1 is reached (Fig.
2(b)). Since pl(y) < pl(t1), y must be a non-descendant of
t1, and therefore, of x. Hence, conditioning on t1 d-separates
x from y (Pearl, 1988), yielding (x ⊥⊥ y|t1). Thus P(x|y) =
∑t1∈Val(t1)P(x|y, t1)P(t1|y) = ∑t1∈Val(t1)P(x|t1)P(t1|y) imply-
ing: mint1∈Val(t1)P(x|t1) ≤ P(x|y) ≤ maxt1∈Val(t1)P(x|t1). It
is crucial to note that the given bounds can be computed
using the information thus-far retrieved, i.e., the informa-
tion encoded in the submodel shown in Fig. 2(b). Taking
a step backwards from t1, t2 is reached (Fig. 2(c)). Using
a similar line of reasoning to the one presented for t1, hav-
ing pl(y) < pl(t2) ensures (x ⊥⊥ y|t2). Therefore, the fol-
lowing bounds on the posed query can be derived, which,
crucially, can be computed using the information thus-far re-
trieved: mint2∈Val(t2)P(x|t2) ≤ P(x|y) ≤ maxt2∈Val(t2)P(x|t2).
It is straightforward to show that the bounds derived in terms
of t2 are equally tight or tighter than the bounds derived in
terms of t1. Finally, taking one step backward from t2, y is
reached (Fig. 2(d)) and the exact value for P(x|y) can be de-
rived, again using the submodel thus-far retrieved (Fig. 2(d)).

We are now ready to present our proposed framework.

4 PL-based Inference Framework (PLIF)
In this section, we intend to elaborate on how, equipped
with the notion of PL, a generic causal query of the form8

P(O = O|E = E) can be derived where O and E denote, re-
spectively, the disjoint sets of target (or objective) and ob-
served (or evidence) variables. In other words, we intend to
formalize how inference over a CBN whose nodes are en-
dowed with PL as an attribute should be carried out. Before
we present the main result, a few definitions are in order.

Def. 2. (Critical Potential Level (CPL)) The target vari-
able with the least PL is denoted by o∗ and its PL is re-
ferred to as the CPL. More formally, p∗l :,mino∈O pl(o) and

7Taking one step backwards from variable qqq amounts to retriev-
ing all the parents of qqq.

8We do not consider interventions in this work. However,
with some modifications, the presented analysis/results can be ex-
tended to handle a generic causal query of the form P(O = O|E =
E,do(Z = Z)) where Z denotes the set of intervened variables.
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o∗ :, argmino∈O pl(o). E.g., for the setting given in Fig. 2(a),
o∗ = x, and p∗l = pl(x). Viewed through the lens of time, o∗
is the furthest target variable into the past, with PL p∗l .

There are two possibilities: (a) p∗l > T0, or (b) p∗l = T0,
with T0 denoting the origin of time; cf. Sec. 2. In the sequel,
we assume that (a) holds.9

Def. 3. (Inference Threshold (IT) and IT Root Set (IT-
RS)) To any real-valued quantity, T , corresponds a unique
set, RT , obtained as follows: Start at every variable x∈O∪E
with PL ≥ T and backtrack along all paths terminating at x.
Backtracking along each path stops as soon as a node with PL
less than T is encountered. Such nodes, together, compose
the set RT . It follows that: maxt∈RT pl(t) < T . T and RT
are termed, respectively, Inference Threshold (IT) and the IT
Root Set (IT-RS) for T .

For example, the set of variables circled at the stages de-
picted in Figs. 2(b-d) are the IT-RSs for T = pl(x)− ε,
T = pl(t1)− ε, and T = pl(t2)− ε, respectively. Note that
instead of saying T = pl(x)− ε we could have said: for any
T ∈ (pl(t1), pl(x)). However, expressing ITs in terms of ε

liberates us from having to express them in terms of inter-
vals, thereby simplifying the exposition. We would like to
emphasize that the adopted notation should not be construed
as implying that the assignment of values to ITs is such a sen-
sitive task that everything would have collapsed, had IT not
been chosen in such a fine-tuned manner. To recap, in simple
terms, T bears on how far into the past a reasoner is con-
sulting her mental model in the process of answering a query,
and RT characterizes the furthest-into-the-past concepts en-
tertained by the reasoner in that process.

Next, we formally present the main idea behind PLIF, fol-
lowed by its interpretation in simple terms.

Lemma 1. Let P(O|E) denote the posed causal query,
with O and E denoting, respectively, the disjoint sets of
target and observed variables. For any chosen IT T <
p∗l and its corresponding RT , define S :, RT \ E. Then
the following holds: minS∈Val(S)P(O|S,E) ≤ P(O|E) ≤
maxS∈Val(S)P(O|S,E). Crucially, the provided bounds can be
computed using the information encoded in the submodel re-
trieved in the very process of obtaining the RT . �

The message of Lemma 1 is quite simple: For any chosen
inference threshold T which is further into the past than o∗,
Lemma 1 ensures that the reasoner can condition on S and
obtain the reported lower and upper bounds on the query by
using only the information encoded in the retrieved submodel.

It is natural to ask under what conditions the exact value
to the posed query can be derived using the thus-far retrieved
submodel, i.e., the submodel obtained during the identifica-
tion of RT . The following remark bears on that.10

Remark 1. If for IT T , RT satisfies either: (i) RT ⊆ E,
or (ii) for all r ∈ RT , pl(r) = T0, and mine∈E pl(e) > T , or

9For a discussion on the special case (b), the reader is referred
to: https://arxiv.org/pdf/1701.08100

10For a formal proof of Lemma 1, and the rationale behind Re-
mark 1, the reader is referred to: https://arxiv.org/pdf/1701.08100

(iii) the lower and upper bound given in Lemma 1 are iden-
tical, then the exact value of the posed query can be derived
using the submodel retrieved in the process of obtaining RT .
Fig. 2(d) shows a setting wherein (i) and (iii) are both met.

4.1 Case Study
Next, we intend to cast the Hidden Markov Model (HMM)
studied in (Icard & Goodman, 2015, p. 2) into our frame-
work. The setting is shown in Fig. 3(left). We adhere to the

xt+1

xt

xt-1

xt-2

yt

yt-1

yt-2

yt-3

xt-3 pl(xt−3) = −5

+∞

−∞

pl(xt+1) = −1

pl(xt) = −2

pl(xt−1) = −3

pl(xt−2) = −4

-1-0 -2-0 -3-0 -4-0 -5-0 -6-0 -7-0 -8-0 -9-0 -10-0
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0.4

0.5

0.6

0.7

0.8

0.9

P
(x

t+
1
jy
!

1
:t
)

Figure 3: Left: The infinite-sized HMM discussed in (Icard
& Goodman, 2015) with parameterization: P(xt+1|xt) =
P(x̄t+1|x̄t) = 0.9, and P(yt |xt) = P(ȳt |x̄t) = 0.8. Right: Ap-
plying PLIF on the HMM shown in left. Vertical and hori-
zontal axes denote, respectively, the value of the posed query
P(xt+1|y−∞:t) and the adopted IT T . The vertical bars de-
pict the intervals within which the query lies due to Lemma
1. The dotted curves—which connect the lower and upper
bounds of the intervals—show how the intervals shrink as IT
T decreases.

same parameterization and query adopted therein. All RVs in
this section are binary, taking on values from the set {0,1};
x = x indicates the event wherein x takes the value 1, and
x = x̄ implies the event wherein x takes the value 0. We
assume pl(xt+i) = i− 2.11 We should note that the assign-
ment of the PLs for the variables in {yt−i}+∞

i=0 does not af-
fect the presented results in any way. The query of interest is
P(xt+1|y−∞:t). Notice that after performing three steps of the
sort discussed in the example presented in Sec. 3 (for the IT
T =−3−ε), the lower bound on the posed query exceeds 0.5
(shown by the red dashed line in Fig. 3(right)). This obser-
vation has the following intriguing implication. Assume, for
the sake of argument, that we were presented with the follow-
ing Maximum A-Posterior (MAP) inference problem: Upon
observing all the variables in {yt−i}+∞

i=0 taking on the value 1,
what would be the most likely state for the variable xt+1? In-
terestingly, we would be able to answer this MAP inference
problem simply after three backward moves (corresponding
to the IT T = −3− ε). In Fig. 3(right), the intervals within

11Note that the trend of the upper- and lower-bound curves as well
as the size of the intervals shown in Fig. 3(right) are insensitive with
regard to the choice of PLs for variables {xt−i}+∞

i=−1.
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which the posed query falls (due to Lemma 1) in terms of the
adopted IT T are depicted.

Our analysis confirms Icard and Goodman’s (2015) insight
that even in the extreme case of having infinite-sized relevant
submodel (Fig. 3(left)), the portion of which the reasoner has
to consult so as to obtain a “sufficiently good” answer to the
posed query could happen to be very small (Fig. 3(right)).

5 Discussion
To our knowledge, PLIF is the first inference framework pro-
posed that capitalizes on time to constrain the scope of causal
reasoning over CBNs, where the term scope refers to the por-
tion of a CBN on which inference is carried out. PLIF does
not restrict itself to any particular inference scheme. The
claim of PLIF is that inference should be confined within and
carried out over retrieved submodels of the kind suggested
by Lemma 1 so as to obtain the reported bounds therein. In
this light, PLIF can accommodate any inference scheme, in-
cluding Belief Propagation (BP), and sample-based inference
methods using Markov Chain Monte Carlo (MCMC), as two
prominent classes of inference schemes. MCMC-based meth-
ods have been successful in simulating important aspects of a
wide range of cognitive phenomena and accounting for many
cognitive biases; cf. (Sanborn & Chater, 2016). Also, work in
theoretical neuroscience has suggested mechanisms for how
BP and MCMC-based methods could be realized in neural
circuits; cf. (Gershman & Beck, 2016; Lochmann & Deneve,
2011). For example, to cast BP into PLIF amounts to re-
stricting BP’s message-passing within submodels of the kind
suggested by Lemma 1. In other words, assuming that BP
is to be adopted as the inference scheme, upon being pre-
sented with a causal query, an IT according to Lemma 1 will
be selected—at the meta-level—by the reasoner and the cor-
responding submodel, as suggested by Lemma 1, will be re-
trieved, over which inference will be carried out using BP.
This will lead to obtaining lower and upper bounds on the
query, as reported in Lemma 1. If time permits, the reasoner
builds up incrementally on the thus-far retrieved submodel so
as to obtain tighter bounds on the query.12 MCMC-based in-
ference methods can be cast into PLIF in a similar fashion.

The problem of what parts of a CBN are relevant and what
are irrelevant for a given query, according to (Geiger, Verma,
& Pearl, 1989), was first addressed by Shachter (1988). The
approaches proposed for identifying the relevant submodel
for a given query fall into two broad categories (cf. Ma-
honey & Laskey, 1998, and references therein): (i) top-down
approaches, and (ii) bottom-up approaches. Top-down ap-
proaches start with the full knowledge of the underlying CBN
and, depending on the posed query, gradually prune the irrel-
evant parts of the CBN. In this respect, top-down approaches
are inevitably from “god’s eye” point of view—a character-
istic which undermines their cognitive-plausibility. Bottom-

12The very property that the submodel gets constructed incremen-
tally in a nested fashion guarantees that the obtained lower and upper
bounds get tighter as the reasoner adopts smaller ITs; see Fig. 3(left).

up approaches, on the other hand, incrementally construct a
submodel (by moving backwards from the query variables),
using which the posed query can be computed. It is crucial
to note that bottom-up approaches cannot stop at interme-
diate steps during the backward move and run inference on
the thus-far constructed submodel without running the risk
of compromising some of the (in)dependence relations struc-
turally encoded in the CBN, which would yield erroneous in-
ferences. This observation is due to the fact that there ex-
ists no local signal revealing how the thus-far retrieved nodes
are positioned relative to each other and to the to-be-retrieved
nodes—a shortcoming circumvented in the case of PLIF by
introducing PL. It is worth reiterating again that PLIF sub-
scribes to what we call the concurrent approach to reasoning
(as opposed to the flawed sequential approach mentioned ear-
lier), whereby retrieval and inference take place in tandem.
The HMM example analyzed in Sec. 4.1, with infinitely large
relevant submodel, stresses the importance and shows the ef-
ficacy of the concurrent approach.

Work on causal judgment provides support for the so-
called alternative neglect, according to which subjects tend
to neglect alternative causes to a much greater extent in pre-
dictive reasoning than in diagnostic reasoning (Fernbach &
Rehder, 2013; Fernbach, Darlow, & Sloman, 2011). Alter-
native neglect, therefore, implies that subjects would tend
to ignore parts of the relevant submodel while constructing
it. Recent findings, however, seem to cast doubt on alterna-
tive neglect (Cummins, 2014; Meder, Mayrhofer, & Wald-
mann, 2014). Meder et al. (2014), Experiment 1 demon-
strates that subjects appropriately take into account alterna-
tive causes in predictive reasoning. Also, Cummins (2014)
substantiates a two-part explanation of alternative neglect ac-
cording to which: (i) subjects interpret predictive queries as
requests to estimate the probability of the effect when only
the focal cause is present, an interpretation which renders al-
ternative causes irrelevant, and (ii) the influence of inhabitory
causes (i.e., disablers) on predictive judgment is underesti-
mated, and this underestimation is incorrectly interpreted as
neglecting of alternative causes. Cummins (2014), Experi-
ment 2 shows that when predictive inference is queried in a
manner that more accurately expresses the meaning of noisy-
OR Bayes net (i.e., the normative model adopted by Fernbach
et al. (2011)) likelihood estimates approached normative esti-
mates. Cummins (2014), Experiment 4 shows that the impact
of disablers on predictive judgments is far greater than that
of alternative causes, while having little impact on diagnostic
judgments. PLIF commits to the retrieval of enablers as well
as disablers. As mentioned earlier, PLIF abstracts away from
the inference scheme operating on the retrieved submodel,
and, hence, leaves it to the inference scheme to decide how
the retrieved enablers and disablers should be weighted and
subsequently integrated. In this light, PLIF is consistent with
the results of Experiment 4 in (Cummins, 2014).

In an attempt to explain violations of screening-off re-
ported in the literature, Park and Sloman (2013) find strong
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support for the contradiction hypothesis followed by the me-
diating mechanism hypothesis, and finally conclude that peo-
ple do conform to screening-off once the causal structure they
are using is correctly specified. PLIF is consistent with these
accounts, as it adheres to the assumption that reasoners carry
out inference on their internal causal model (including all
possible mediating variables and disablers), not the poten-
tially incomplete one presented in the cover story; see also
(Rehder & Waldmann, 2017; Sloman & Lagnado, 2015).

Experiment 5 in (Cummins, 2014), consistent with
(Fernbach & Rehder, 2013), shows that causal judgments are
strongly influenced by memory retrieval/activation processes,
and that both number of disablers and order of disabler re-
trieval matter in causal judgments. These findings suggest
that the CFP and memory retrieval/activation are intimately
linked. In that light, next, we intend to elaborate on the ra-
tionale behind adopting the term “retrieve” and using it in-
terchangeably with the term “consult” throughout the paper;
this is where we relate PLIF to the concepts of Long Term
Memory (LTM) and Working Memory (WM) in psychology
and neurophysiology. Next, we elaborate on how PLIF could
be interpreted through the lenses of two influential models of
WM, namely, Baddeley and Hitch’s (1974) Multi-component
model of WM (M-WM) and Ericsson and Kintsch’s (1995)
Long-term Working Memory (LTWM) model. The M-WM
postulates that “long-term information is downloaded into
a separate temporary store, rather than simply activated in
LTM,” a mechanism which permits WM to “manipulate and
create new representations, rather than simply activating old
memories” (Baddeley, 2003). Interpreting PLIF through the
lens of the M-WM model amounts to the value for IT be-
ing chosen (and, if time permits, updated so as to obtain
tighter bounds) by the central executive in the M-WM and the
submodel being incrementally “retrieved” from LTM into M-
WM’s episodic buffer. Interpreting PLIF through the lens of
the LTWM model amounts to having no retrieval from LTM
into WM and the submodel suggested by Lemma 1 being
merely “activated in LTM” and, in that sense, being simply
“consulted” in LTM. In sum, PLIF is compatible with both of
the narratives provided by the M-WM and LTWM models.

A number of predictions follow from PL and PLIF. For in-
stance, PLIF makes the following prediction: Prompted with
a predictive or a diagnostic query (i.e., P(e|c) and P(c|e),
respectively), subjects should not retrieve any of the effects
of e. Introspectively, this prediction seems plausible, and
can be tested, using a similar approach to (Cummins, 2014;
De Neys, Schaeken, & d’Ydewalle, 2003), by asking subjects
to “think aloud” while engaged in predictive or diagnostic
reasoning. Also, PL yields the following prediction: Upon
intervening on cause c, subjects should be sensitive to when
effect e will occur, even in settings where they are not partic-
ularly instructed to attend to such temporal patterns. Recent
findings suggesting that people have expectations about the
delay length between cause and effect already provide some
supporting evidence for this prediction (Greville & Buehner,

2010; Buehner & May, 2004).
There is a growing acknowledgment in the literature that,

not only time and causality are intimately linked, but that
they mutually constrain each other in human cognition; cf.
(Buehner, 2014). In line with this view, we see our work also
as an attempt to formally articulate how time could guide and
constrain causal reasoning. While many questions remain
open, we hope to have made some progress towards better
understanding of the CFP at the algorithmic level.
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