
Lawrence Berkeley National Laboratory
LBL Publications

Title

A case study on parallel HDF5 dataset concatenation for high energy physics data analysis

Permalink

https://escholarship.org/uc/item/6544n9p0

Authors

Lee, Sunwoo
Hou, Kai-yuan
Wang, Kewei
et al.

Publication Date

2022-05-01

DOI

10.1016/j.parco.2021.102877

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6544n9p0
https://escholarship.org/uc/item/6544n9p0#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


ART ICL
Keywords:
Parallel I/O
HDF5
MPI I/O

alyzed,
en cap-
rder to
tageous
ess can
ed files
paper,
egation
during
eriment
ling of
nt task.

1. Intro
In high

mental dat
immense, i
for I/O and
flows have
In this env
is achieved
separate fil
to be used
data. In o
fer, and an
to aggrega
However, t
cant time a
of HEP exp
translation

In this
componen
periment th
the particle
based dete
ing environ
chical Data
groups, ea
files have t
sured data
aggregatio
of HDF5 fi

∗Corresp
ORCID(s

con-
analy-
douts
ntains
muni-
users
t and
with
com-
anal-
al I/O
on ra-
0× to
] with
chun-
ivides
DF5)
inde-
hunks
artial
trans-
Tun-

ce im-
rmine
d I/O.
mbers
esses
pera-

S Lee et a

/

Energ
Sunwoo 
Kowalko
Quincey
aNorthwester
bFermi Natio
cLawrence B
dArgonne Na
E INFO ABSTRACT
In High Energy Physics (HEP), experimentalists generate large volumes of data that, when an
helps us better understand the fundamental particles and their interactions. This data is oft
tured in many files of small size, creating a data management challenge for scientists. In o
better facilitate data management, transfer, and analysis on large scale platforms, it is advan
to aggregate data further into a smaller number of larger files. However, this translation proc
consume significant time and resources, and if performed incorrectly the resulting aggregat
can be inefficient for highly parallel access during analysis on large scale platforms. In this
we present our case study on parallel I/O strategies and HDF5 features for reducing data aggr
time, making effective use of compression, and ensuring efficient access to the resulting data
analysis at scale. We focus on NOvA detector data in this case study, a large-scale HEP exp
generating many terabytes of data. The lessons learned from our case study inform the hand
similar datasets, thus expanding community knowledge related to this common data manageme

duction
energy physics (HEP), the quantities of experi-

a generated from large-scale instruments are often
mposing demands on scalable software solutions
data analysis [11, 15, 16]. Traditional HEPwork-
been designed for a grid-oriented environment.
ironment, parallelism in data reduction programs
by having many independent processes handling
es, thus producing large numbers of output files
for the final statistical analysis of the reduced
rder to better facilitate data management, trans-
alysis on large-scale platforms, it is advantageous
te the data into a smaller number of larger files.
he data aggregation process can consume signifi-
nd resources. Considering the fast growth in size
erimental data, the bottleneck introduced by this
process is becoming increasingly expensive.
paper we present a case study of a data analysis
t of the NuMIOff-axis �e Appearance (NOvA) ex-at is designed to study neutrino oscillations using
collision event data recorded by two accelerator-
ctors [4]. Because of their grid-oriented process-
ment, NOvA produces a large number of Hierar-
Format (HDF5) files. Each HDF5 file has many

ch of which contains many datasets. All NOvA
he same groups and datasets and contain the mea-
from separate time periods. We consider the data
n process such that, given hundreds to thousands
les, each dataset is concatenated across all the
onding author
):

input files and written into a single shared file. This
catenation is a critical step enabling the NOvA data
sis component to search through the entire detector rea
in parallel and identify an often-small fraction that co
neutrino interactions of interest [11, 15].

HDF5 [21], a popular I/O library in scientific com
ties since the late 1990s [1, 2, 3, 6, 13, 16, 24], enables
to store data in a portable, self-describing file forma
has started supporting parallel I/O for data compression
version 1.10.3. In addition, many open-source and
mercial software packages for data visualization and
ysis read and write HDF5 files1, making HDF5 an ide
method for analysis within the NOvA experiment.

NOvA data is highly compressible: the compressi
tios of most of the data variables can range from 3
1000× if compressed by using the ZLIB software [5
the default level 6. HDF5 requires users to use the “
ked” storage layout to enable the compression, which d
amultidimensional array (referred to as a “dataset” inH
into equal-size subarrays, each of which is compressed
pendently.

For parallel write operations, compressed dataset c
are assigned to an exclusive owner process, and then p
accesses to the chunk by any other process must be
ferred to the owner before compression can be applied.
ing chunk parameters can have a significant performan
pact because the chunk size and its dimensions dete
the degree of parallelism for data (de)compression an
For instance, large chunk sizes resulting in small nu
of chunks can create unbalanced workload among proc
due to the chunk’s unique access ownership of write o
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Leea,∗, Kai-yuan Houa, Kewei Wanga, Saba Sehrishb, Marc Paternob, James 
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table organization with one entry per slice.
ubrun Event Sub- distallpngtop ... 35 more

event ...
61 6124 35 nan
61 6124 36 -0.7401
61 6124 37 nan
61 6125 1 nan
61 6125 2 423.633
61 6125 3 -2.8498

he other hand, large numbers of chunks increase
of I/O parallelism but can also dramatically in-
metadata size and chunk searching time. There-
parameters optimized for parallel writes may of-
poor performance for parallel reads when the ac-

ns are orthogonal to each other. These facts make
ging task to select a chunk setting that can achieve
rmance for both reads and writes.
lore a subset of HDF5 features used to implement
data concatenation, and we present our evalua-
alysis of their performance impacts. The discus-
es on metadata operations, raw data operations,
d-to-end performance. Metadata operations un-
dy include opening input files, creating output
ving dataset metadata (dimension sizes and data
creating datasets. These operations are exam-
the two HDF5 metadata I/O modes, independent
tive, and different settings for metadata caching.
ar, we study HDF5 chunk size settings and dis-
mpacts on the degree of I/O parallelism and cost
data operations.
dy of raw data operations includes performance
reads, collectivewrites, and use of small I/O buffer
ry out the concatenation in multiple rounds in or-
ent running out of memory. Our analysis is sum-
the end of the paper, giving a list of features stud-
ir effectiveness for certain I/O operations. The
rned from this case study can provide a guideline
cientific applications that use HDF5 as their pri-
ethod.
per is organized as follows. In Section 2 we de-
A experiment detector data. Section 3 defines the
set concatenation workflow, and Section 4 sum-
e experimental settings. Section 5 discusses how
variety of HDF5 features related to metadata op-
ection 6 explains how we designed our parallel
y to achieve a scalable raw data I/O performance.
he end-to-end dataset concatenation performance
est-tuned HDF5 feature settings and discuss the
learned in Section 7 and Section 8. In Section 10
rize our work and briefly discuss future topics for

Experiment Detector Data
vA experiment has a near detector (ND), located
ilab site in Batavia, IL, and a far detector (FD),

NOvA data table organization with one entry per vertex
Run Subrun Event Sub- vtxid npng3d ... 6 m

event
433 61 6124 35 0 0
433 61 6124 36 0 1
433 61 6124 36 1 1
433 61 6124 36 2 5
433 61 6125 1 0 1
433 61 6125 3 0 0

located in Ash River, MN. Both detectors observe n
nos from a beam generated at Fermilab. Approximate
ery 1.3 seconds, a 10 �s pulse of neutrinos is genera
the Fermilab accelerator complex and directed to the N
detectors. The data collection period corresponding t
such pulse is called a spill. A slice is a fixed-duration
window around a period of detector activity discovered
a spill. A run is a period of data collection that repr
a stable period of detector operations. Runs have a t
temporal duration of a few hours to a maximum of 24 h
A subrun is a subdivision of a run period that limits o
file sizes to allow for the application of fine-grained ca
tion. Subruns range from a few minutes to a maxim
1 hour. Data collection runs for the ND are independ
runs for the FD. For each detector, the data from all sp
a subrun are written to a single file.

NOvA data processing proceeds through several
yielding increasingly detailed descriptions of the ph
processes that have been observed. In order to redu
complexity of the management of metadata external
files, these processing steps each process a single file
thus a single subrun). The final step in the processing
includes writing out a high-level summary of each s
forms suitable for statistical analysis of the data. One
output forms chosen for the data is HDF5.

In the HDF5 files, a spill is referred to as an even
a slice as a subevent. The high-level summary data is
nized in the form of different tables, suitable for the H
format. Two examples, each depicting a different le
data, are shown in Tables 1 and 2. In Table 1, there
row per subevent and data showing one run, one subru
events, and six subevents. In Table 2, there are zero or
rows per subevent and one row per vertex. Subevents 3
2 (row 3 and row 5, respectively in Table 1) have no ve
since there is no entry in Table 2. There are more n
levels of data, and in each corresponding table the firs
eral columns identify runs, subruns, events, and sube
for this level.

When storing NOvA data in HDF5 files, each ta
defined as an HDF5 group and each column as an H
dataset. All NOvA files used in the case study have the
schema, which consists of the same number of group
datasets in each file. All datasets are two-dimensional
of integer, float, or double-precision data types. Datas
the same group share the first dimension size. The ma
of the datasets (more than 99%) have the second dime
of size equal to 1. In this paper we refer to these datas
.: Preprint submitted to Elsevier Page 2 of 14
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f NOvA ND and FD data files.
ND data files FD data files

# of files 165 6,400
roups per file 999 701
tasets per file 15,965 12,925
tasets per file 8 6
mpty datasets 13,396 9,374
Compression GZIP-level 6 GZIP-level 6
Chunk size 128-element based 128-element based

before compr. 97.9 GB 413.3 GB
s after compr. 21.4 GB 69.8 GB
before compr. 903.2 GB 16.6 TB
s after compr. 2.1 GB 32.1 GB
before compr. 1001.1 GB 17.0 TB
ll after compr. 23.5 GB 101.9 GB
Total file size 35.2 GB 212.5 GB
Metadata size 11.7 GB 104.1 GB
Raw data size 23.5 GB 108.1 GB

ts’ and the others as ‘2D datasets’.
NOvA data analysis workflow, only subsets of
e usually selected to be analyzed together. Once
atasets stored in different HDF5 files are collected
tiguous space to be accessed as single entities.
ing data analysis in parallel, individual datasets
ned among processes based on their temporal IDs,
event or subevent datasets in the same group. In
hieve a good parallel efficiency and maintain data
g flexibility, the same datasets among all the in-
e individually concatenated and saved in a new
oncatenation is a critical step enabling the NOvA
is component to search through the entire detec-
s in parallel and identify an often-small fraction
ns neutrino interactions of interest [11, 15].
work, we study the HDF5 dataset concatenation
ce using both ND and FD files. Table 3 presents
s we collected from ND and FD data files. Both
in a large number of datasets with various sizes.
ics can be helpful to better understand the input
sign good heuristics for parallel dataset concate-
tegy. Each ND file in this study consists of about
asets; each FDfile consists of about 13,000 datasets.
ere are so many datasets, a small improvement
g metadata parameters yields a significant result
le file.
teresting fact is that about 84% of the datasets in
files used in this work are zero in size. The zero-
ts represent simulation information, so detector
ill never have them. When this data schema was
was thought that having identical schema for sim-
put and detector data would be convenient. Al-
h datasets do not contain any data, we create them
ut file to provide a consistent tabular form of the
ta analysis applications.
pact of dataset concatenation – As stated ear-
section, the size and content of files written by
ent are dictated by the length of the period of

tion (the subrun) and the size of the data written
period. The file size limitation is imposed due to

disk caching systems, as well as the grid processing
that are used to process the data. As a result, the raw
are stored into many small files. The raw data go thro
multi-step processing workflow before analysis-level
ple”) data files are written. These data files are written
formats, one of which is the HDF5 format described
Because the experiment’s workflow is (for many reason
related to HDF5) limited to processing a single subrun
thus a single file) at each step, the HDF5 files written d
this processing are limited to containing the data for a
subrun. The HDF5 dataset concatenation is an offlin
processing that does not affect the data collection proc
or the ntuple-generation workflow.

A typical analysis task is the generation of a set o
tograms. With their current system, the production o
of histograms for one analysis is done by running man
tentially thousands) of batch jobs on the grid, each of
processes a few of the small ntuple files. Each of thes
would write out a file with the set of histograms corres
ing to the subruns that job processed. Another job tha
forms a reduction operation must then be run, summing
of the histograms in the set across all the thousands o
puts written in the first step. When aspects of the analy
modified (which happens frequently), the entire set of
jobs and the reduction operation must be repeated. Wi
data available in a single HDF5 file, resulting from the
catenation described in this paper, the equivalent set o
tograms can be created by a single (MPI parallel) pro
run on the full data set, with no additional reduction pr
needed afterward. This is a direct improvement on th
ductivity of end-users.

3. Dataset Concatenation Workflow
We use the following notations to describe the wor

of dataset concatenation operation. F is the number of
files. D is the total number of datasets in each file.
the number of MPI processes. The parallel HDF5 d
concatenation workflow is given below.

1. Evenly distribute F input files to P processes.
2. Collect and aggregate dimension sizes of D da

from all input files.
3. Create a new shared output file.
4. Create D datasets of aggregated sizes in the o

file.
5. For each dataset, read the dataset from all ass

input files to a memory buffer by appending one
another, and then write the concatenated buffer
output file.

To balance the workload, we first evenly distribu
given F input files to P processes such that each proc
assigned with F

P different files. Then, each process ope
assigned files. In step 2, each process collects the data
and array sizes of individual datasets from the assigned

The locally collected array sizes are aggregated among all P

.: Preprint submitted to Elsevier Page 3 of 14
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create a new output file. In step 4, all processes
create D datasets with the aggregated sizes. In

each dataset all the processes independently read
from the assignedF∕P files into amemory buffer
ing one after another and then collectively write
nated buffer to the shared output file. The output
e same data object schema as the input files use,
ords, the same groups, datasets, and their mem-

imental Settings
experiments are conducted on Cori, a Cray XC40
uter at NERSC. We ran only on Haswell nodes
ey have larger memory and faster I/O speed than
des have. EachHaswell node has 128GiBDDR4
memory, compared with 96 GiB on KNL. Each
de has two sockets of Intel Xeon E5-2698v3CPUs
es each. In our experiments, all the input files and
are stored on a disk-based Lustre parallel file sys-
a file stripe size of 1 MB and a file stripe count
arallel HDF5 library used in our experiments is
0.5.

data I/O
of the workflow described in Section 3 performs
ead operations for collecting data type and array
l the datasets. The array size metadata is then
into a global size, which is then used to create
ts in the output file in steps 3 and 4. Reading and
nked and compressed raw data in step 5 also in-
data operations that traverse the internal B-trees.
s a self-balancing tree data structure adopted by
fast data object lookup, such as searching for ob-
and locations of data chunks. For each I/O re-
unked datasets, HDF5 traverses the relevant B-
d all the chunks whose space intersects with the
iven 13K ∼ 16K datasets in each input file and
o thousands of files, concatenating all individual
expected to be metadata operational expensive.
ion, we focus on studying various HDF5 features
ing their impact on the metadata operation perfor-

ing Metadata from Input Files
r to concatenate individual datasets, their data types
izes must be first collected and aggregated across
les. In step 2 of the workflow, each MPI process
metadata from the assigned files. Since each pro-
gned a distinct subset of the input files, metadata
independently. Once the metadata is collected,

rray sizes are summed among all the processes
I collective communication call to MPI_Allreduce.
ated array sizeswill be used to define new datasets
In HDF5, a file can be opened in either POSIX

Metadata collection time (sec) for the 165 ND files.
42 compute nodes and 165 MPI processes were used
evaluation, and in each case the MPI processes are even
signed to the compute nodes. Compared with the on-
I/O method, the in-memory I/O method shows signifi
lower costs in reading the metadata.
# of processes 3 6 11 21 42 83

# of nodes 1 2 3 6 11 21
On-the-fly I/O 4099 2188 1122 663 304 131
In-memory I/O 61.9 26.8 16.3 8.9 4.9 3.6

Table 5
Metadata collection time (sec) for the 6,400 FD files.
400 compute nodes and 1,600 MPI processes were used
evaluation, and in each case the MPI processes were
assigned to the compute nodes. Compared with the on-
I/O method, the in-memory I/O method shows signifi
lower costs in reading the metadata.

# of processes 100 200 400 800 1600
# of nodes 25 50 100 200 400

On-the-fly I/O 355.8 180.2 93.4 55.0 37.1
In-memory I/O 42.1 21.3 13.9 8.7 5.7

to using the MPI I/O mode with the communicator
MPI_COMM_SELF. If the MPI I/O mode is used, a negligib
ditional cost over the POSIX mode is expected, due to
ment sanity checks performed in the MPI library.

In-memory I/O vs. On-the-fly I/O – HDF5 ad
flexible file format that allows metadata and raw data o
vidual data objects to be stored separately in locations a
anywhere in the file. Thus, collecting metadata in s
may result in read operations on noncontiguous file re
Given the large number of datasets in NOvA files, step
become expensive if the number of noncontiguous me
file blocks is high. To mitigate the I/O cost, HDF5 pro
an in-memory I/O feature that can load the entire file in
memory at file open time, so the successive requests
file can be fulfilled through memory copy operations
HDF5 in-memory I/O feature is enabled by specifyin
core file driver with a call to H5Pset_fapl_core API, an
entire file is loaded into an internal buffer when openi
file. Note that in-memory I/O is currently supported on
POSIX I/O mode.

Tables 4 and 5 compare the metadata read perform
between in-memory and on-the-fly I/O methods for th
and FD files, respectively. We used up to 165MPI proc
on 42 compute nodes for the 165 ND files and up to
processes on 400 nodes for the 6,400 FD files. The t
results show that the in-memory I/O significantly imp
the metadata read performance. Such a big gap is re
by checking the metadata locations for individual da
in the input files, revealing a high number of nonconti
file regions.

Note that when in-memory I/O is enabled, the raw
is also loaded into memory, increasing the memory
prints. This in-memory approach may become infe
for files containing very large raw data. In our conc
mode. Using POSIX I/O mode is equivalent
.: Preprint submitted to Elsevier Page 4 of 14
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the increased memory footprint required by each
n limit the number of processes running on each
de. Many HDF5 features also consume memory,
le’s metadata cache, raw data chunk cache, and
emory buffers for data compression and decom-
s shown in Tables 4 and 5, we were able to run up
ses on each compute node without encountering
memory error. More discussion on the memory
nalysis will be presented in Section 6.3.
Dataset Creation
4, new datasets of concatenated sizes are created
ut file based on the metadata collected in step 2.
er two possible design options for parallel dataset
ne is to let a single process create all the datasets
ed by having all the processes open the created
llectively. In this approach, the creating process
e output file in POSIX I/Omode and create all the
thout MPI communication cost. The other option
all the processes open the output file in MPI I/O
collectively create all the datasets.
1 presents timing breakdowns for creating all the
ing these two options. The left chart is for the 165
d the right for the 6,400 FD files. We observed
gle-process creation option spendsmuch less time
te than the collective creation option does. How-
s more time to reopen the datasets in parallel I/O
end-to-end time for both options shows a similar
ce. This behavior can be explained by the HDF5
he dataset fill mode.
DF5 implementation, a compression-enabled new
st be first filled with either a predefined or a user-
ll value. When the file is created in nonparallel
HDF5 policy is to delay the file space allocation
tasets to when they need to be written. Since the
n option does not write any raw data, the new
e not filled in the file. Later, when opening the
parallel, HDF5 detects the file space yet to be allo-
tarts filling the datasets in the file. This approach
hy the first option has a shorter creation time and a
ning time. On the other hand, when the file is cre-
allel mode, the HDF5 policy is to allocate the file
new dataset and fill it immediately during the call
e. The fact that the same data-filling operation is
HDF5 at either H5Dcreate or H5Dopen explains the
ings observed for the two dataset creation options.
igate the data-filling cost, HDF5 is considering
he implementation by moving the filling opera-
first call of H5Dwrite, when the write patterns to
chunks are known. For instance, if a chunk is en-
en, then data filling for that chunk can be skipped.
such an optimization will significantly reduce the
ation cost.
ndent vs. collectivemetadata I/Omode –HDF5
o I/O modes for metadata operations: indepen-
llective. The default setting is independent mode.
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Figure 1: Timing breakdowns for creating all the da
when concatenating 165 ND files (left) and 6,400 FD
(right). Bars labeled with ‘single’ and ‘collective’ rep
timings of the single-process creation method and col
creation method, respectively.

Collective metadata operations can be enabled through
H5Pset_coll_metadata_write and H5Pset_all_coll_metad

The former is for write operations and the latter for
To achieve a better parallel performance, the HDF G
suggests collective metadata I/O mode, especially wh
metadata size is large [19]. In our experiments we obs
no noticeable difference between the two I/Omodes for
creation time (less than 1 second), but a large disparity
close time, H5Fclose.

HDF5 performs internal metadata caching and can
matically adjust the cache buffer size to accommodate
metadata [19, 20]. Cachedmetadata is flushed to the fil
tem when the accumulated size increases beyond a d
threshold or at the file close time. In our case, evenwhe
ating 16K datasets, the accumulated metadata size ap
to be small enough to be kept in the cache without trigg
a flush during the dataset creation loop. On the other
we observe 4.97 seconds spent on H5Fclose for indepe
mode and 0.32 seconds for collective mode, when ru
165 processes on the ND files.

Such behavior can be explained by how the me
flushing mechanism is implemented differently for ind
dent and collectivemodes. For independentmode, each
data block is written to the file by a call to the indepe
MPI file write function. For collective mode, HDF5
an MPI derived data type to describe the memory lay
multiple (noncontiguous) metadata blocks, so they c
written in a single call to the collective MPI file write
tion. A performance benchmark for metadata cachin
be found in [20].
5.3. Chunking and Compression Strategy

HDF5 datasets must use the chunked layout to e
compression of data elements. Parameter tuning for
chunk size and compression can have a significant i
on the parallel I/O performance scalability. Chunk s
set by using the API H5Pset_chunk and compression
H5Pset_deflate. The current HDF5 implementation sup
only the collective I/Omode for writing compressed da
in parallel.
.: Preprint submitted to Elsevier Page 5 of 14
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iming breakdown for writing 1D ND datasets (a), 2D ND datasets (b), 1D FD datasets (c), and 2D FD datase
g chunk sizes. For ND files, we ran 165 processes on 42 nodes. For FD files, we ran 800 processes on 200
5 performs ‘read-modify-write’ for chunks that are not written completely by their owners, ‘MPI file read’ repr
e for such I/O operations.

ownership – For parallel write operations, HDF5
s each chunk of a dataset to a unique ‘owner’ pro-
hunk owner is responsible for collecting write re-
all other processes, compressing the chunk, and

the file. The assignment policy for chunk owner-
ssign the chunk owner to the process whose write
ers the largest part of the chunk. If a chunk is
multiple processes in parallel, data for each chunk
sferred from non-owners to the owner. Once all
ers complete, chunk owners compress the chunks
xternal compression library, such as ZLIB (de-
r SZIP [25]. Because of the uniqueness of chunk
data compression can be performed concurrently
wners. The compressed data chunks are then col-
ritten into the output file.
rallelism – The HDF5 dataset write API routine
lows access to a single dataset at a time. Because
ue chunk ownership policy, the degree of write
to a dataset is determined by the number of its
cording to the HDF5 User Guide, the chunk size
ufficiently small so that there are enough chunks
the processes busy in performing compression
particular, if there are fewer chunks than the num-
esses, then only a subset of processes will com-
write the chunks while others stay idle. On the
, chunk size should be big enough to obtain good
n ratios.
nally, too many chunks due to small chunk sizes
e the metadata operation cost. Currently, tuning
size can be done only by the user, because of the
y of access patterns involved. Factors that should
red include dataset size, data partitioning pattern,
application processes, and compression level. By
unks of a dataset are indexed with a B-tree data
r fast lookup. Deep B-trees aremore expensive to
wever, B-trees with larger nodes and a shallower
more memory for each node. In HDF5, the size
node can be adjusted by setting the rank (called
es with the H5Pset_istore_k API. HDF5 uses 2k
imum number of entries before splitting a B-tree

node. The default value of k for chunk index B-tree no
32, and the maximum allowed value is 32, 768. In thi
study, we used the default value only.

Figure 2 presents the timing breakdown for writin
and 2D datasets when concatenating 165 ND files (a a
and 6,400 FD files (c and d). For ND files, we mea
the write timings using chunk sizes between 256 KB
256 MB. Note that HDF5 limits each dataset to at mo
chunks. For FD files, the number of chunks for the l
dataset can go over the limit if the chunk size is less t
MB. Therefore, we set the chunk sizes to between 1 M
64 MB for FD files. In HDF5, a read-modify-write o
tion is performed for chunks that are not completely w
by their owners. This design choice is to consider th
sibility of a chunk that is partially written. ‘MPI file
indicates the time spent on such read operations. ‘Oth
calculated by subtracting all the labeled times from th
to-end time of H5Dwrite. It mainly represents the me
operation time.

Impact of chunk size to the costs of compressio
data transfer – For the 1D datasets as shown in Fig
(a) and (c), setting the chunk size to larger than 1 M
creases the end-to-end write time. This is due to t
creasing compression time. For example, there are
ND datasets of size smaller than 128 MB after the co
nation. Setting chunk size larger than 1 MB results
number of chunks being smaller than the number o
cesses, which makes some processes owning no chunk
the 2D datasets shown in Figures 2 (b) and (d), since
sizes are much bigger than those of the 1D datasets, s
chunk sizes smaller than 4MB increases the B-tree size
cost of metadata operation. The chunk sizes larger th
MB also degrade the write performance because of t
creased time spent on data transferring from non-own
the chunk owners.

Cost of read-modify-write –We observe that 1D d
have a longer ‘MPI file read’ time than 2D datasets. T
because the number of write requests from each proc
the whole chunks is small in 1D datasets and large
datasets. For both ND and FD files, the majority
.: Preprint submitted to Elsevier Page 6 of 14
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of zero-size dataset creation time among 3 data
ngs, when concatenating 165 ND files running 165
n 42 nodes.

Layout contiguous chunked compact
eation time (sec) 30.9 39.2 30.9

Metadata size 29.3 MB 39.2 MB 29.3 MB
Raw data size 15.0 GB 15.1 GB 15.0 GB

Overall file size 15.0 GB 15.2 GB 15.0 GB

of zero-size dataset creation time among 3 data
ngs, when concatenating 6,400 FD files running 800
n 200 nodes.

Layout contiguous chunked compact
ation time (sec) 64.1 73.8 64.0
Metadata size 93.8 MB 119.5 MB 93.8 MB
Raw data size 77.4 GB 77.4 GB 77.4 GB

Overall file size 77.6 GB 77.6 GB 77.6 GB

e small in each input file. Since the dataset sizes
ut file represent the write amount in the collective
tions, write requests for 1D datasets mostly cover
nks. For 2D datasets, write requests from each
much larger, resulting in most of them covering

chunks. We also observe a small amount of time
PI file write’. This is because the NOvA data is
pressible, which results in a small write amount
ontributes insignificantly to the end-to-end write
ct data layout for zero-size datasets – NOvA
in a large number of zero-size datasets. For ex-
h ND data file has 15,973 datasets in total, and
hem have their first dimensions of size zero. The
ed file uses the same data object schema as the in-
; that is, the same names and hierarchies of groups
ts as the concatenated file will also be used by
data analysis applications. HDF5 supports three
outs—contiguous, chunked, and compact—with
being the default. Datasets in contiguous layout
raw data in a single contiguous block, at an arbi-
in the file. The raw data of a dataset in chunked
lit into multiple chunks, which are stored at arbi-
s in a file. The file locations storing chunks may
e in an increasing file offset order, since HDF5
the allocations of chunks to prevent any wasted
. Chunked layout allows applications to define
th extendible dimensions and is also required for
g raw data. Compact layout stores the raw data of
ithin its object header but is available only when
a size is smaller than 64 KB, the maximumHDF5
er size.
o-size datasets, we evaluated the dataset creation
ce of using three data layouts and studied their
the concatenated output file size. Tables 6 and
dataset creation time and data sizes in the con-

output file, respectively. Using chunked layout
e datasets results in a larger metadata size and a

Comparison of parallel write performance and output fi
when using different compression levels to concatenate 16
files running 165 processes on 42 nodes.

Compression level 2 4 6 8
Compression time (sec) 89.4 92.6 100.0 181.2

MPI File write time (sec) 31.6 32.7 35.3 26.9
Output file size (GB) 19.0 15.2 15.0 14.9

Table 9
Comparison of parallel write performance and output fi
when using different compression levels to concatenate
FD files running 800 processes on 200 nodes.

Compression level 2 4 6
Compression time (sec) 95.3 249.4 278.6 364

MPI File write time (sec) 22.6 13.9 8.3 8
Output file size (GB) 142.0 78.8 77.6 75

slower dataset creation time than those of the other tw
outs. The reason is that HDF5 still generates the chu
metadata such as B-trees, regardless of the data size
cause the majority of 16K datasets are of size zero, t
cumulated chunking metadata amount and time for cr
the metadata can become significant. HDF5 develope
aware of this behavior and currently are developing a
avoid B-tree allocation for zero-size datasets; the fix
pected to be available in the next release (version 1.
When using the contiguous layout, HDF5 produces th
put file of size exactly the same as the compact layout,
both layouts neither create B-tree metadata nor occup
data space. With the same metadata sizes and opera
these two layouts also exhibit similar dataset creation

Data compression level – All NOvA files used
compression of level 6 when they were generated.
supports 10 levels (0 ∼ 9) of data compression. The
pression level can be set by using H5Pset_deflate API.
a lower compression level, a faster compression time
pected but with a lower compression ratio. In this
we measure the compression ratio as the ratio of the un
pressed size over the compressed size. Tables 8 and 9
the write performance and output file sizes for 165 ND
and 6,400 FD files, respectively. The concatenation ra
MPI processes on 42 nodes for ND files and 800 MP
cesses on 200 nodes for FD files. For ND files, we ob
that level 2 achieves the shortest MPI file write time bu
duces the largest file size. As the compression leve
up, the compression time increases, and both write tim
sizes are reduced. When using level 8, the file size
much smaller than using level 6, but the compression
significantly increases. For FD files, level 2 results
longest write time due to the poor compression ratio.
lar to the ND case, level 8 suffers from a longest compre
but produces the smallest output file.
5.4. Metadata Caching

Given the fact that there are about 16K datasets to b
ated in our case study, the number of metadata creation

ations is expected to be high. Caching metadata in memory

.: Preprint submitted to Elsevier Page 7 of 14
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e comparison (seconds) between the default meta-
size and larger cache size setting for concatenating
s running 165 processes on 42 nodes. The default
an initial cache size of 2 MB and is automatically
sed on the cache hit rate. Our setting is with an
of 128 MB and disables automatic cache size ad-

Steps Default Our setting Performance gain
ollection 1.5 1.5 -
creation 30.7 29.3 4.5%
ets Read 15.5 15.9 -
ets Write 255.2 167.2 34.5%
ets Read 17.2 17.3 -
ets Write 54.1 48.2 10.9%
Overall 374.3 279.4 25.3%

ushing the metadata in bigger, aggregated write
pears to be a good strategy to achieve good per-
HDF5 enables metadata caching by default and
tial metadata cache size of 2 MB, which is auto-
djusted based on the cache hit rate. The metadata
plemented with a hash table that indexes a pool
size metadata entries.
luate its performance impact, we tested and set
cache size to 128 MB, the maximum cache size
the hash table size in HDF5. We also disabled
tic size adjustment feature so that the metadata
is fixed to 128 MB. With this configuration, we
minimize the cost of memory operations to ex-
che size and data movement between buffers dur-
creation and the collective write operations. Note
also allows the hash table size to be increased,
etadata cache larger than 128 MB. However, in
udy we found that using a larger cache size does
improve the performance, particularly after the
nk size, for example, 1 MB based, is used to ef-
duce the size of B-trees for dataset chunk indices.
10 and 11 present the performance gains of using
ata cache setting over the default setting for ND
es, respectively. For ND files, the case shown in
for concatenating 165 ND files using 165 pro-
2 nodes. For FD files, the case is for concatenat-
D files using 800 processes on 200 nodes. The
dataset creation and parallel writes are reduced
etadata cache size increases. In particular, 1D
te performance is significantly improved because
tion of the write time is taken by the metadata
. With a large metadata cache size, the frequency
a eviction can be reduced. In addition, when the
ache is sufficiently large, the B-tree metadata cre-
ached in step 4 can be reused in step 5. Thus,
metadata cache size effectively improves the per-
or the dataset concatenation in our case study.
stment of Metadata Block Size
5, metadata blocks are contiguous regions in a
ore the metadata, and HDF5 attempts to aggre-

Performance comparison (seconds) between the default
data cache setting and larger cache size setting for conca
ing 6,400 FD files running 800 processes on 200 nodes
default setting has an initial cache size of 2 MB and is
matically adjusted based on the cache hit rate. Our set
with an initial size of 128 MB and disables automatic
size adjustment.

Steps Default Our setting Performance
Metadata collection 6.8 6.9

Dataset creation 69.7 64.0 8
1D dsets Read 11.6 10.9
1D dsets Write 444.6 281.9 36
2D dsets Read 17.2 17.3
2D dsets Write 412.4 272.0 34

Overall 1000.9 690.7 31

block sizes increase the flexibility for dynamically a
new data objects, since they provide HDF5 a better c
of finding a free location among spaces occupied by
ing data objects to accommodate the new metadata
However, this flexibility can also result in many me
blocks spread out in the file in noncontiguous locatio
HDF5 the metadata block size is 2 KB by default, wh
adjustable through a call to the H5Pset_meta_block_size

Note that if the metadata cache size is smaller than the
data block size, a metadata block can be written in mu
rounds.

Our study shows that increasing the metadata bloc
for input files does improve the metadata read perform
in step 2. In step 2, we measured the time spent on H5O

API that traverses over all the objects in the input files
callback function used for H5Ovisit reads the dataset
headers to retrieve the information about dimension
and data types. If such metadata is stored contiguous
H5Ovisit performance can be improved. With the d
block size, collecting the metadata from 165 ND files
165 processes on 42 nodes takes about 11 seconds.
the metadata block size is adjusted to 32 MB, the me
collection time is reduced to about 4 seconds. Note th
justing a file’s metadata block size can be done in a po
cessing step with the HDF5 utility program h5repack a
-M command line option. This evaluation indicates th
metadata block size should be appropriately increased
number of objects is large and visiting all of them is pla

6. Raw Data I/O
HDF5 supports parallel I/O for both shared and

rate files. For parallel I/O to separate files where eac
cess accesses a unique set of files, one can use the d
POSIX I/O file access property when opening the file
parallel I/O to shared files, all processes must use an
communicator in the file access property when openin
file with H5Fopen. As with collective and independe
modes available for metadata operations, HDF5 also a
users to select the two I/O modes for raw data opera
Furthermore, HDF5 allows different I/O modes for in
metadata entries into each block. Small metadata ual datasets. Specifically, the collective or independent data

.: Preprint submitted to Elsevier Page 8 of 14
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iming breakdowns for reading 1D datasets from 165 ND files (a), 6,400 FD files (b), 2D datasets from 165 N
400 FD files (d). We compare the performance between dataset-based partitioning (DP) and file-based partit

represents the FP with in-memory I/O. ‘others’ includes the metadata operation time.

perty can be usedwhen performing I/O to a dataset.
l read operations in this case study, we imple-
strategies, using separate- and shared-file reads.
l write operations, we use the collective mode and
option only.
llel Read
ssible parallel read strategy is to open the input
I I/O mode and collectively read every dataset in
In this approach, the number of collective reads
the number of input files multiplied by the num-
sets, namely, |F ||D|. For large datasets, this read
ould perform reasonably well. For small datasets,
he collective read operations can underperform
ailable I/O bandwidth. NOvA files have many
at are smaller than 1 MB in each file. Based on
se, we implement two read strategies. One reads
2D datasets collectively, and the other reads them
tly. Both strategies write the 2D datasets collec-
e output file. Since the 1D datasets in NOvA files
ly small, both strategies let each process read the
s independently from the disjointly assigned input
rite them collectively to the output file. We refer
trategy as dataset-based partitioning and the sec-
based partitioning. The dataset-based partition-
requires all processes to open all input files so
datasets can be read collectively. The file-based
g only requires each process to open the assigned
sed partitioning has two advantages. First, be-
process accesses a distinct subset of the input
atasets can be independently read using POSIX
ions, avoiding synchronization delays. Second,
r of read operations is FD

P ; therefore, as the num-
esses P increases, the datasets are read frommore
e, and thus the overall number of read operations
One potential drawback of this approach is the
workload among the processes when datasets in
are very different in size. If a dataset has a high
f size among the input files, some processes will

handlemore data than the other processes, causing poo
ing efficiency.

We compare the read performance between the tw
allel read strategies. Figure 3 presents timing breakd
for 1D datasets in 165 ND files (a), 1D datasets in 6,40
files (b), 2D datasets in ND files (c), and 2D datasets
files (d). In the charts, DP and FP represent dataset-
partitioning and file-based partitioning, respectively. F
is the file-based partitioning with in-memory I/O. Eac
consists of the three workloads: data decompression
File read, and others (metadata operations).

We observe that the in-memory I/O improves the
performance for both 1D and 2D datasets. When in-me
I/O is enabled, the entire input files are preloaded into
ory space when collecting the metadata in step 2. Thu
I/O operations become memory operations, and the
File read’ timing is reduced. We also see that for 2D da
file-based partitioning outperforms the dataset-based
tioning, as shown in Figures 3(c) and 3(d). The perform
difference between the two strategies comes mainly
the number of I/O operations. The dataset-based par
ing performs a collective read for every dataset in a
files, whereas the file-based partitioning performs ind
dent reads on the assigned files only.

Therefore, given the same data size, the file-base
titioning is expected to provide a shorter I/O time.
tionally, the dataset-based partitioning suffers from e
sive metadata operations. When the dataset-based par
ing is used, for every dataset in each input file, all th
cesses calculate the intersection between the requeste
regions and the dataset chunks and then perform an
process communication to synchronize the informatio
contrast, the file-based partitioning allows all the proc
to access only the assigned files in POSIX mode an
much cheaper metadata operations.

In our experiments, we set the stripe count of the
tre parallel file system to 128. When using the dataset-
partitioning, the collective read operations can take a
tage of the distributed file system storage. In contrast,
using file-based partitioning, every process independ
.: Preprint submitted to Elsevier Page 9 of 14
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iming breakdowns for writing 1D datasets of 165 ND files (a), 2D datasets of 165 ND files (b), 1D datasets of
, and 2D datasets of 6,400 FD files (d). For ND and FD files, the datasets are concatenated using up to 165 pro
s and 1,600 processes on 400 nodes, respectively.

ssigned files, and many processes can try to ac-
me storage server, potentially causing congestion.
ect a better read performance of file-based parti-
en the stripe count is reduced.
llel Write
h 1D and 2D datasets, once all the processes read
rom their assigned input files, they collectively
oncatenated dataset into the output file. HDF5
lications to read or write only a single dataset at
unbalanced workloads among processes may ap-
case. When writing compressed datasets, only

that own chunks perform data compression and
o write. For small datasets, when the number of
ers is less than the number of MPI processes, pro-
do not own any chunks will participate the col-
tes but have no data to write. The more processes
, the worse the scalability for parallel write per-
In our case study, there are many small datasets
les. For ND files there are 2,573 1D datasets and
s there are 3,552 1D datasets, most of them being
kilobytes per file.
4 presents the timing breakdowns for writing 1D
165 ND files (a), 2D datasets of 165 ND files (b),
s of 6,400 FD files (c), and 2D datasets of 6,400
). Since the size of the 1D datasets is small, we
or scalabilities for writing 1D datasets for both
files. In contrast, each input ND file has six large
s of size ranging from 200 MB GB to 6.1 GB.
s, there are five large 2D datasets of size ranging
B to 7.1 GB. Concatenating the large 2D datasets
ND and 6,400 FD files can certainly produce a
large number of data chunks that they will be
among all processes, producing a more balanced
Thus, the timings of writing 2D datasets show
r scalability as the numbers of processes increase.
e that the write patterns are different for the two
ies described in Section 6.1. When using dataset-
itioning, all the processes collectively read each
write it to the output file one after another. Thus,

the aggregate access file region of each collective wri
cupies a contiguous file region. When using file-base
titioning, if a dataset is written in multiple rounds due
I/O buffer size limit, the aggregate access region of eac
lective write consists of noncontiguous regions. The r
is that the entire dataset of an input file must be app
one after another from a different file, and a process’s
request in each round covers only partial dataset. W
larger I/O buffer size is used, fewer noncontiguous c
tive writes will be required. We will next discuss the i
of the I/O buffer size on the write performance.
6.3. Memory Footprint

In our study presented so far, we used an I/O buffer
enough to store all the data for the largest dataset in t
signed input files. If the application’s memory space
large enough, concatenation will have to complete in
ple rounds of read and write, each handling a partial am
of the concatenated dataset. Thus, the larger the I/O
size per process, the fewer the I/O rounds to concate
dataset.

In our dataset concatenation case, the I/O buffer siz
resents the memory footprint of each process, which al
termines the number of processes that can run on each
pute node without encountering the out-of-memory
On Cori, each Haswell node has a memory of size 12
For example, if each process allocates an I/O buffer of
then only up to 16 processes can run on each node. Be
the memory space is used by other programs as well, t
tual allowed number of processes per node is lower th
Additionally, if the in-memory I/O feature is enabled f
HDF5 files, the memory footprint becomes even large

For ND files, our experiments show that the max
I/O buffer size per process to allow the concatenation
dataset to complete in a single run is 8 GB. Given th
GB memory size on a Haswell node, up to 4 MPI proc
per node can be allocated. If running more process
node is desired, the I/O buffer size must be proportio
reduced.

Table 12 presents the maximum numbers of I/O r
.: Preprint submitted to Elsevier Page 10 of 14
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umber of rounds of reads and writes among all the
r different I/O buffer sizes. The total number of
ses and input ND files is fixed at 128, while the
processes per node varies between 4 and 32. The
size allocated in each process is 8 GB when running
per node, and it proportionally decreases as the

processes run on each node increases.
mber of processes 4 8 16 32 64 128ode I/O buffer

4 8 GB 24 12 6 4 2 1
8 4 GB - 24 12 7 4 2

16 2 GB - - 24 13 7 4
32 1 GB - - - 25 13 7

datasets for different I/O buffer sizes. For easy
ing of the impact of the I/O buffer size on the
ce, we set the numbers of files and processes to
f 2. While keeping the total number of processes
8, we vary the number of processes per node be-
d 32. As expected, when increasing the number
es running on each node, the maximum number
ds increases. For example, the largest dataset in
D file is about 7.2 GB. If each process allocates
er of size 1 GB, then all the processes are re-
ake 8 collective writes when concatenating that
r large datasets, using smaller I/O buffer size re-
emory footprint, but it can increase the number
ds and degrade the performance of concatenation.
ata chunk caching – HDF5 supports caching of
unks. The size of this cache can be adjusted by
H5Pset_cache API. In general, caching can im-
rmance for data that is repeatedly accessed. For
d access patterns, caching can also help perfor-
nabling I/O aggregation to reduce the number of
ts to the file system.
case study, the concatenation operation accesses
sets no more than once. The only possibility for
take effect is if HDF5 can aggregate the raw data
a single collective MPI file write call, with each
an MPI derived data type to describe the non-
memory layouts of raw data chunks. However,
implementation of HDF5 does not appear to ag-
data chunks across more than one dataset, and
observe a significant performance change when
the raw data cache size.

o-End Performance Evaluation
section we study the performance scalability us-
st HDF5 feature settings found in the preceding
he end-to-end time used in calculating the speedups
d from the beginning of opening the input files till
losing the output file. In this experiment the input
enly distributed to all the processes and opened
I/O mode. The metadata is collected by using
I/O. Chunk size is set to 1 MB for 1D datasets

the same first dimension chunk size of 128 for 2D
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Figure 5: End-to-end performance of dataset concate
across 165 ND files (left) and 6,400 FD files (right). F
files, we use up to 165 processes on 42 nodes. For FD
we use up to 1,600 processes on 400 nodes.

Table 13
Performance summary and data statistics of the larges
to-end runs for concatenating the ND and FD files.
the tuned chunk size, the compression ratio is signifi
improved over the sum of the input files, as shown in Ta
The overall metadata size is also reduced.

Data 165 ND files 6,400 FD fil
Number of processes (nodes) 165 (42) 1600 (400)

Timing 279.4 sec 611.8 sec
Data size before compression 1 TB 16.9 TB

Output file size 15.1 GB 77.9 GB
Metadata size 57.7 MB 93.8 MB
Raw data size 15.0 GB 77.4 GB

datasets as the input files. All the datasets are chunke
compressed with ZLIB default level 6. Four MPI proc
per compute node are allocated to run the evaluation,
increasing the number of nodes.

Figure 5 presents the strong-scaling performance r
of the end-to-end dataset concatenation for 165 NOv
files (left) and 6,400 NOvA FD files (right). Note that w
the smallest case of 100 MPI processes for FD files be
any number less than 100 will result in the out-of-me
error. For 165 ND files, it takes 4467.98 seconds whe
ning 3 processes on a single node. When it scales up t
processes on 42 nodes, the execution time is reduced to
seconds. For 6,400 FD files, the dataset concatenation
2343.13 seconds when running 100 processes on 25 n
With our fine-tuned HDF5 feature settings, it scales
1,600 processes on 400 nodes taking 611.79 seconds to
catenate all the 6,400 HDF5 files.

Table 13 summarizes the experimental results an
data statistics of the output file. We see that the outp
size is much smaller than the sum of all the input file
shown in Table 3. In addition, the metadata in the o
file is significantly smaller than the sum of metadata
the input files. These differences show the effectiven
tuned chunk dimension sizes.

8. Summary of HDF5 Feature Tuning
We have discussed various HDF5 features and the

pacts on the performance of the parallel datasets conc

tion. Below is a list of such features used in our study that

.: Preprint submitted to Elsevier Page 11 of 14
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IX I/O mode for reading input files that are dis-
ly partitioned among processes
emory I/O for metadata collection
ective dataset creation
nk size set to 1 MB-based for 1D datasets and 128
based (2 MB ∼ 44MB) for 2D datasets
pression level between 4 and 6

ase in the metadata cache size to 128 MB
ase in the metadata block size to at least 4 MB
pendent POSIX I/O for reads and collective MPI
or writes
ing the timings and memory footprints is a deli-
hile using in-memory I/O can significantly im-
etadata collection speed, it can consume a large
memory space. If the number of data objects in a
ery large and the raw data takes most of the file
in-memory I/O may not be feasible. An ideal so-
DF5would be to prefetch themetadata blocks into
buffer, so H5Ovisit can look up the metadata in
ithout reading from the file for each data object.
size is another delicate parameter that can sig-
mpact the parallel I/O performance and compres-
. Chunk size should be sufficiently small to en-
h chunks to be shared by the processes for bet-
compression/decompression parallelism. How-

k size should not be too small, because that can
e number of chunks causing expensive metadata
nt. For NOvA files, the chunk size of 1 MB for
s provided a good trade-off between the workload
d the metadata operation cost. Chunk size also
arge enough to achieve a good compression ratio.
study, a chunk size between 4 MB and 64 MB
good compression ratio as well as a reasonable
peration cost for 2D NOvA datasets.
implements several caching mechanisms for both
nd raw data; and adjusting the metadata cache
ata block size, and raw data cache size can ef-
prove the performance. In our case, when using
cache size of 128 MB with the automatic cache
ment turned off, we observed that thewrite per-
ncreased by about 25%. However, we observed
le difference when the size of the raw data chunk
w data I/O was increased. HDF5 does not yet ap-
e advantage of opportunities to aggregate chunks
n one dataset whenwriting cached dataset chunks.
tion to these feature settings in HDF5, we found
plication I/O buffer size affects the parallel I/O
ce. If each process allocated a buffer large enough
full dataset read from the locally assigned input
the dataset can be concatenated in a single round

rounds of I/O, reading and writing partial datasets on
time. Depending on the system hardware’s available
ory space, using large I/O buffers may limit the num
processes running on a single compute node in order to
out-of-memory errors.

Moreover, we found that the following two setting
little performance impact in our dataset concatenation
study: metadata collective or independent I/O mode an
data chunk cache size. Because of the expensive com
sion and decompression costs, themetadata I/O does no
up a large portion of the overall execution time. Usin
lective metadata I/O mode shows a minor improveme
flushing the cached metadata at file close. However, w
ticipate that HDF5 will soon fix the implementation to
use of MPI derived data types to aggregate multiple
requests. As for the raw data cache size, because the
catenation workflow in this case study does not acce
same data more than once, increasing raw data chunk
size showed no impact to the performance.

9. Related Work
PnetCDF [9] is a high-level parallel I/O library t

popularly used in scientific communities. Currently, Pn
does not support data compression. The NOvA data u
this case study is large (1 ∼ 17 TB) and highly compres
requiring data compression. Thus, PnetCDF is conside
be inappropriate for handling this large-scale HEP dat

Adaptive I/O System (ADIOS) [7] is another high
parallel I/O library used in scientific communities. A
supports only BP file format that does not store the dat
their canonical order. Specifically, in a parallel write o
tion, ADIOS simply appends the data from one process
data from another process. In addition, there are not
third party software that support I/O to BP format.
its rich third-party software ecosystem, HDF5 has be
the primary choice for data storage and parallel I/O e
rations within the HEP community. The NOvA resea
chose HDF5 because of this exact reason.

To the best of our knowledge, there is only a limited
ber of published papers that discuss the parallel I/O p
mance of HDF5 when the data compression feature
abled. While they show a performance comparison a
five different compression settings, they only consid
parallel write performance for a relatively small amo
data (the compressed data size is 2 ∼ 3 GB). Pokhrel
also shows a comparison of parallel I/O performance a
different compression algorithms [12] using up to 38
cesses only. Most of the previous works that studied th
allel HDF5 performance using I/O benchmarks, such a
[10], do not study the impact of data compression on th
allel I/O performance [14, 17, 18, 22, 23]. Kunkel et al
lyzed the impact of different compression algorithms o
parallel I/O performance using climate data [8]. We p
a comprehensive empirical study on the HDF5 parall
performance, especially focused on how to exploit a v
write. If the buffer size is limited, however, the

.: Preprint submitted to Elsevier Page 12 of 14
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