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Summary

Multistate models are used to characterize individuals’ natural histories through diseases with 

discrete states. Observational data resources based on electronic medical records pose new 

opportunities for studying such diseases. However, these data consist of observations of the 

process at discrete sampling times, which may either be pre-scheduled and non-informative, or 

symptom-driven and informative about an individual’s underlying disease status. We have 

developed a novel joint observation and disease transition model for this setting. The disease 

process is modeled according to a latent continuous-time Markov chain; and the observation 

process, according to a Markov-modulated Poisson process with observation rates that depend on 

the individual’s underlying disease status. The disease process is observed at a combination of 

informative and non-informative sampling times, with possible misclassification error. We 

demonstrate that the model is computationally tractable and devise an expectation-maximization 

algorithm for parameter estimation. Using simulated data, we show how estimates from our joint 

observation and disease transition model lead to less biased and more precise estimates of the 

disease rate parameters. We apply the model to a study of secondary breast cancer events, utilizing 

mammography and biopsy records from a sample of women with a history of primary breast 

cancer.
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1. Introduction

Multistate modeling is a statistical tool that allows medical researchers to characterize the 

evolution of disease natural histories through discrete states, including progressive diseases 

(like HIV (Longini and Clark, 1989)) and episodic diseases with reversible transitions (like 

asthma (Saint-Pierre et al., 2003)). Many methods exist for modeling disease processes with 

known transition times and trajectories (Andersen and Keiding, 2002; Meira-Machodo et al., 

2009). However, recent interest in mining large databases of electronic medical records 

(Dean et al., 2009) poses new statistical and computational challenges. In such data, 

patients’ disease statuses are recorded only at clinic visits, and exact transition times are 

unknown. Our goal is to develop a multistate disease modeling framework that 

accommodates the complexities of observational data from electronic medical records. 

Features of this type of data include panel observation of disease trajectories, duration-

dependent hazard functions, misclassified disease observations, and random visit times that 

may depend on the disease trajectory.

There are many options for modeling discretely observed multistate processes when visit 

times are non-informative. The simplest, most tractable models for panel data are time-

homogeneous continuous-time Markov chains (CTMCs) (Kalbfleisch and Lawless, 1985). 

However, CTMCs are limited by an assumption of constant hazard functions that is 

frequently unrealistic. More flexible models used for panel data include inhomogeneous 

CTMCs (Kay, 1986; Titman, 2011; Hubbard et al., 2008) that allow hazard functions to vary 

with respect to time since the process origin. Although these models expand the 

functionality of CTMCs, for many diseases, hazard functions vary with disease state sojourn 

duration, not just external time. In these cases, semi-Markov models are appealing, yet 

estimation for such models proves less tractable in the presence of reversible transitions 

(Chen and Tien, 2004; Kang and Lagakos, 2007). Recent research has suggested advantages 

of using latent CTMCs in the discrete observation setting (Titman and Sharples, 2010; 

Lange and Minin, 2013). These models have the backbone of standard CTMCs, retaining 

their tractability; but multiple latent states map to each disease state, yielding duration-

dependent sojourn time distributions. Moreover, it is easy to extend latent CTMC models 

into continuous-time hidden Markov models (HMMs) to allow for misclassification error. 

This is the disease modeling framework we will assume.

Most methods developed for panel observed multistate processes treat visit times as non-

informative — an assumption that often does not hold in observational studies. Visits 

scheduled in advance, even those based on observations at previous time points, are 

ignorable; but times of patient-initiated, symptom-based visits cannot be ignored in the 

analysis because these times depend on the underlying disease process (Gruger et al., 1991). 

Non-ignorable visit times necessitate joint modeling of the disease process and visit times. 

However, existing joint models of this sort, capable of analyzing panel data (Chen et al., 

2010; Chen and Zhou, 2011, 2013; Sweeting et al., 2010), assume pre-designated visits with 

informative missingness, which is appropriate for clinical trials but not for observational 

clinical data with random visit times.
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In this paper, we develop a joint model of a discretely observed multistate disease process 

and a random observation time process. We treat the random, patient-initiated visit times as 

a temporal point process, which consists of a time series of binary events that occur in 

continuous time (Daley and Vere-Jones, 2003). Due to their tractability and flexibility, 

inhomogeneous Poisson processes are commonly used to model observation time point 

processes jointly with a longitudinal outcome, including continuous (Sun et al., 2005) and 

panel-count variables (Li et al., 2013). However, in these models the dependence of 

observation times and the disease process is specified by modeling the disease process 

conditional on the observation process. In contrast, we flip the conditioning, assuming that 

the observation process is a doubly stochastic Poisson process with rates that depend on the 

disease state. Our multistate-disease-driven observation (multistate-DDO) model can be 

viewed as an extension of the “preferential sampling” approach for spatial data to multistate 

disease processes (Diggle et al., 2010).

Our joint modeling framework is as follows. The disease process follows a latent CTMC 

trajectory. We condition on all scheduled visits and assume that patient-initiated DDO times 

accrue according to a Markov-modulated Poisson process with rates that depend on the 

patient’s current disease status. The disease process is observed, with possible 

misclassification error, at informative and non-informative visit times. Our multistate-DDO 

model is similar to the earthquake timing model of Lu (2012), but our model also allows for 

observations at non-informative times. We demonstrate that the likelihood of our joint 

model is computationally tractable. Moreover, we develop an efficient expectation-

maximization (EM) algorithm to fit our joint multistate-DDO model to panel data. Via 

simulations, we demonstrate the importance of accounting for random informative sampling 

times in preventing bias and increasing precision of estimates of disease process parameters.

To illustrate the multistate-DDO model, we apply it to an observational study of secondary 

breast cancer events (SBCEs) in women who have had a unilateral primary breast cancer. 

We use data on screening and diagnostic mammograms subsequent to the primary breast 

cancer as well as biopsies to characterize transitions between breast cancer states. The 

disease model has a competing risks framework, with terminal competing events 

corresponding to ipsilateral SBCE (same side as original cancer), contralateral SBCE 

(opposite side to original cancer), or death prior to SBCE. Patient visits occur either at 

scheduled screening examinations or at diagnostic examinations triggered by signs or 

symptoms of an SBCE, necessitating modeling of informative visit times. While 

conventional studies of SBCEs view time of diagnosed secondary cancer as the target of 

inference (Chapman et al., 1999; Geiger et al., 2007; Buist et al., 2010), we focus on latent 

onset time of a mammographically-detectable SBCE prior to diagnosis. Estimates from our 

model are clinically meaningful, as they provide information about prevalence of undetected 

SBCEs in the growing population of breast cancer survivors (Siegel et al., 2012) as well as 

screening accuracy in this population.
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2. Modeling framework

2.1 Joint model for disease process and disease driven observation process

The disease process, denoted X(t) and modeled as a time homogeneous CTMC, has state 

space S = {1,…,s}, infinitesimal generator matrix Λ = {λij}, and initial distribution π. Jumps 

in X (t) correspond to an individual’s transitions between states in the disease process. The 

observation process, denoted N(t), is a Markov-modulated Poisson process with piecewise 

constant rates q(t) = q(X(t)) that depend on the underlying disease state. N(t) has state space 

{0,1,…,∞}, corresponding to the accrual of patient-initiated disease-driven observations 

(DDOs): the process jumps and the state increases by one each time a DDO occurs. Rates of 

DDOs corresponding to disease states {1,…,s} are denoted q = (q1,…, qs).

Jointly, the disease process and counts of DDOs evolve according to a bivariate time-

homogeneous continuous-time Markov chain, Y (t) = (X(t),N(t)) (Mark and Ephraim, 2013). 

The state space for Y (t) is the Cartesian product of the state space of X(t) and N(t),

Figure 1A shows an example of a joint three-state disease and observation process 

trajectory. Supposing Q = diag(q1,…, qs), the transition generator matrix for the joint 

process Y (t) is

The structure of R follows from the assumption that DDOs and changes in disease states 

cannot occur simultaneously. The first Λ – Q block yields the transition rates between states 

(i,0) and (j,0) and the first Q block yields the rates between state (i,0) and (j,1); the rest of 

the generator matrix is structured similarly (Fearnhead and Sherlock, 2006).

2.2 Likelihood for observed data

Our observed data consist of partial observations of the joint disease and DDO process, 

since we only see an individual’s disease status at DDO times or scheduled visit times. The 

observation times are t1,…,tn, and DDO times are distinguished from scheduled visit times 

via indicator functions h = (h1,…, hn). We denote the collection of DDO event times as τ = 

{ti : hi = 1, i = 1,…, n}. Disease states at the observation times are x1,… xn.

We first consider the likelihood where we observe X(t) at DDO and scheduled visit times 

without misclassification error (Figure 1B). The likelihood conditions on scheduled visit 

times. The random variable hk is a censoring indicator that denotes whether a DDO 

observation occurred before or after the next scheduled visit time from time tk −1. The 
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Markov property and time-homogeneity of Y (t) enables us to obtain the likelihood of the 

observed data as a product of density or survival functions for the first passage time of Y (t) 

into state (j,k + 1), given Y (tk) = (i, k) across each observation interval [tk − 1,tk]. Given the 

time-homogeneity of Y (t) and the structure of R, it suffices to consider Wi0, j1, the first 

passage time into state (j, 1), given state (i, 0) at time 0. When tk is a DDO time, the 

contribution to the likelihood for the interval [tk− 1,tk] is the density of Wi0, j1, fi j(Δtk), where 

Δtk = tk+1 − tk. When tk is a scheduled visit time, we know that Wi0, j1 > Δtk, and the 

contribution to the likelihood is the survival function for Wi0, j1, Si j(Δtk). Thus, the 

likelihood based on the observed data is

More generally, the disease process is observed with misclassification error at scheduled 

visits and DDO times (Figure 1C). Thus, we observe o = (o1,…, on) rather than x1,…, xn. 

We assume that disease process observations are conditionally independent given X(t). The 

relationship between observed and latent states is described by an emission matrix E = {e(i, 

j)} with entries e(i, j) = P{ot = j|X (t) = i}. The likelihood includes emission probabilities and 

sums P(x1,…, xn, o, τ, h) over the possible values of x:

(1)

One can derive the density and survival functions fi j(t) and Si j(t) explicitly in terms of Λ and 

Q using standard CTMC techniques (Freed and Shepp, 1982). First passage time Wi0, j1 has 

the same distribution of the absorption time of an auxiliary process Y′(t), corresponding to Y 

(t) for {t :N(t) ∈ {0,1}}, with state space {(1,0),…(s,0),(1,1),…(s,1)}, absorbing states (1,1)

…(s,1), and rate matrix

The survival function for Wi0, j1 is

and the density function is
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via the Kolmogorov forward equation. Web Appendix A describes modifications to the 

observed data likelihood (1) for data containing known transition times to absorbing states, 

such as death. Web Appendix B describes efficient methods for calculating the observed 

data likelihood (1) based on recursions developed for hidden Markov models and Markov-

modulated Poisson processes (Baum et al., 1970).

2.3 Latent CTMC model parameterization

Disease process models based on standard CTMCs assume that disease state sojourn times 

are exponentially distributed. To permit more flexibility, we assume a latent CTMC 

framework for the disease process. We denote the disease process V (t), with state space G = 

{1,2,…,g}. Underlying V (t) is a latent time-homogeneous CTMC X(t), with transition 

intensity matrix Λ and initial distribution π and state space S = {11, 12,…, 1s1}∪{21, 22,…, 

2s2}∪···∪ {g1, g2,…, gsg}. Each observable disease state corresponds to multiple states in 

the latent state space, such that V (t) = j <=> X(t) ∈ {j1, j2,…, jsj}. The mapping of multiple 

latent states in S to a single disease state in G yields phase-type sojourn distributions of V(t), 

which can be used to approximate distributions with hazard functions having different 

shapes (Aalen, 1995). We assume a Coxian structure for Λ for its flexibility and the fact that, 

up to trivial permutation of states, it is uniquely parametrized when the latent space has a 

minimal dimension (Titman and Sharples, 2010; Cumani, 1982).

Latent CTMC models can be specified in the framework of the observed data likelihood (1) 

through use of an emission matrix with observed state space G and hidden state space S that 

equates emission probabilities e(j1, k) = e(j2, k),…, e(jsj, k) for all j, k ∈ G, permitting the 

mapping of the latent disease space onto the observed disease space.

To incorporate baseline subject-level covariates w(k) in the disease model, we relate log-

rates to a linear predictor, , where k denotes the individual. In latent 

CTMCs, different constraints on covariate effects provide different interpretations. Adding 

the same covariate parameter to all latent transitions originating from disease state p, i.e., 

{λi j : i ∈ {p1,…, psp}}, implies a multiplicative effect on the sojourn time in state p. To 

represent covariate effects on cause-specific hazard functions, one can add a separate 

covariate parameter for each transition out of disease state p to disease state r, i.e., {λi j : i ∈ 

{p1,…, psp, j ∈ {r1,…, rsr}}. This specification does not, however, represent a proportional 

hazards parameterization without additional non-linear constraints (Lindqvist, 2013).

One can also add covariates to DDO, emission, and initial distribution parameterizations. 

This is achieved by relating log rates of DDOs to a linear predictor; i.e., . 

Initial distributions and emission distributions are multinomial. Assuming S has s total 

states, the initial distribution π has natural parameters {ηi = log {πi/π1)} : i = 2,…, s}, and 

the emission distribution ei has natural parameters {ηi j = log {e(i, j)/e(i, 1)} : j = 2,…, g}. 

Subject-level covariates w(k) are added to the multinomial models via a linear predictor, e.g., 

specifying .

Lange et al. Page 6

Biometrics. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Model selection

We recommend selecting models via the Bayesian information criterion (BIC), given its 

good performance for selecting general mixture models (Steele and Raftery, 2010) and 

applicability to comparing non-nested models. The BIC can assist in choosing the dimension 

of latent space as well assessing parameter constraints in the DDO rates. Finally, hypothesis 

tests for covariate effects based on likelihood ratio or Wald tests are appropriate, provided 

parameter identifiability holds under the null model (Sundberg, 1973), which is achievable 

by constraining covariate effects rather than estimating them separately for each latent 

disease state.

4. Parameter Estimation

The parameters of interest in the multistate-DDO model, θ = (π, Λ,E,q), characterize the 

initial distribution, the disease process, the misclassification probabilities, and the DDO 

process rates, respectively; we will condition on h1 rather than estimating its distribution. 

The standard approach for Markov-modulated Poisson processes and partially-observed 

bivariate CTMCs (Ryden, 1996; Mark and Ephraim, 2013) is to use an EM algorithm to 

arrive at the maximum likelihood estimates (MLEs) of model parameters (Dempster et al., 

1977), as this algorithm exploits the ease of maximizing a “complete data” likelihood 

compared to the observed data likelihood.

In the multistate-DDO model, the complete data are (x, τ,o), the full disease trajectory, the 

DDO trajectory, and observed disease statuses at the discrete times, respectively. The 

complete data log-likelihood has exponential family form and is a linear function of 

complete data sufficient statistics. These sufficient statistics include nT (i, j), the total counts 

of transitions from state i to state j; dT (i), the total time spent in state i; zi, the initial disease 

state indicator; , the total number of DDOs that have occurred 

while X(t) was in state i; and , the total co-occurrences of 

latent state i and observed state j. As described by Lu (2012), the complete data log-

likelihood for an individual is

(2)

This likelihood is additive across multiple independent individuals, yielding the complete 

data likelihood for an entire sample.

The expectation step (E-step) requires computing the expectation of the complete data log-

likelihood (2) conditional on observed data (o, τ,h). Methods for obtaining these 

expectations are described in Web Appendix C. The maximization step (M-step) maximizes 

the conditional expectation of the complete data likelihood, calculated in the E-step, with 
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respect to θ. Covariate-free models admit closed-form M-steps (Lu, 2012). For covariate-

parameterized models, we optimize the complete data likelihood via the Newton-Raphson 

method. Lange and Minin (2013) provide a full description of such a numeric M-step in the 

context of discretely observed latent CTMCs; the extension to multistate-DDOs is 

straightforward, as complete-data score and information functions for the q parameters are 

identical to those for Λ.

We provide an implementation of the EM algorithm in R (R Core Team, 2013), in the form 

of the R package cthmm, available at http://r-forge.r-project.org/projects/multistate/. As with 

all local optimization methods, convergence to the true maximum log-likelihood is not 

guaranteed, and the method is sensitive to starting values. To make it likely that the true 

maximum is obtained, we run the EM algorithm from multiple sets of initial values, such as 

random deviates around sensible values based on prior knowledge or MLEs obtained from 

fitting simpler, e.g., covariate-free, models. Finally, we use numerical differentiation, 

implemented in the R package “NumDeriv” (Gilbert and Varadhan, 2012), to obtain 

standard errors for parameter estimates from the observed Fisher information matrix.

5. Simulation Study

We used simulated data to characterize the bias incurred by fitting models that condition on 

the visit times rather than jointly modeling them with the disease trajectory. We considered 

three disease models: 1) a standard CTMC reversible disease model with two states (healthy 

and diseased); 2) a latent CTMC reversible disease model; and 3) a latent CTMC competing 

risks model similar to the SBCE application, where absorbing states I and C correspond to 

mammographically-detectable ipsilateral and contralateral SBCEs (Web Appendix Figure 

D-1). After simulating disease trajectories from these models, we used the Markov-

modulated Poisson process DDO models to generate discretely-observed datasets with 

informative observation times, specifying comparatively higher DDO rates in the diseased 

states than in the healthy states. The competing risks model allowed for potentially 

misclassified observations, corresponding to disease surveillance tests with 70% sensitivity 

and 98% specificity. See Web Appendix Tables D-1 and D-2 for details.

To investigate bias resulting from ignoring DDO times, we fit data generated from the 

reversible models with correctly specified multistate-DDO models and with misspecified 

panel data models that condition on the observations times. The multistate-DDO models 

yielded unbiased estimates of the disease hazards. Under the misspecified panel models, bias 

in rate estimates from the reversible standard CTMC followed a consistent pattern: hazard 

rates for healthy → diseased transitions and diseased → healthy transitions were over- and 

under-estimated, respectively (Figure 2). Intuitively, informative observation times lead to 

more observations in the diseased state and fewer in the healthy state than would be 

expected under scheduled visits. Bias declined when non-informative times were included 

with the informative observations (Figure 2A vs 2C) and when DDO rates were less 

discrepant between healthy and diseased states (Figure 2B vs 2C). Ignoring informative 

times in the latent CTMC reversible models also led to underestimates of diseased → 

healthy hazard rates, but healthy → diseased hazard rates were overestimated only near the 

state origin time.
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In the competing risks disease model similar to the SBCE application, we focused on 

estimates of the cumulative incidence functions of disease of events I and C. Again, to 

investigate bias, we either fit correctly-specified multistate-DDO models or misspecified 

panel data models. The correctly-specified multistate-DDO model produced unbiased 

cumulative incidence estimates. The bias resulting from ignoring informative visit times was 

consistent with results from reversible models: the hazard rates for healthy → I/C events 

were overestimated, yielding left-shifted cumulative incidence curves (Web Appendix 

Figure D-2). Moreover, bias decreased with increasing numbers of scheduled visits added to 

supplement informative visits. Misspecification of the informative sampling times also 

dramatically underestimated mammography sensitivity estimates, e.g., sensitivity was 

estimated at 40% when 20% of visits were informative, versus the data-generating 

sensitivity of 70%. Finally, in addition to investigating bias given model misspecification, 

we also observed that cumulative incidence estimates based on the properly specified DDO 

model were shifted left relative to those based on a simulated time of diagnosis, i.e., the time 

of the first true-positive mammogram (Web Appendix Figure D-2). This is consistent with 

diagnosis being a left censoring event for screen-detectable disease.

Via simulation, we also examined the precision of estimates of disease process parameters 

under informative and non-informative observation schemes. Informative visit times 

mitigate the uncertainty about the underlying disease states at discrete observations with 

misclassification error, enabling more precise estimates. We generated data from the 

reversible standard and latent CTMC disease models (Web Appendix Figure D-1) and 

simulated misclassified observations either in data sampled at DDO times or at pre-

designated visit times with equivalent average observation frequencies (Web Appendix 

Table D-1). The simulated data were fit with correctly specified multistate-DDO models or 

panel models, and we observed less variability in multistate-DDO estimates than their in 

panel model equivalents (Web Appendix Figure D-3).

Covariate effects on disease transition parameters are often a study’s scientific target. We 

used data simulated from the latent CTMC competing risks disease model to consider the 

sensitivity of estimated covariate effects to correctly specifying the informative sampling 

time model vs. ignoring informative sampling times (see Web Appendix D for setup details 

and results). Under the correctly specified multistate-DDO model, the MLEs of covariate 

effects appear valid in terms of bias and and confidence interval coverage (Web Appendix 

Table D-3). Interestingly, under misspecified models, estimates of covariate effects retained 

the same sign and order of magnitude as their data-generating values, and the nominal 95% 

confidence interval coverage was ≤90%. These results are plausible as the covariate effects 

reflect relative rates of transitions between states across covariate levels rather estimates of 

the absolute rates. While these simulations are limited in scope, they support the idea that 

covariate effect estimates may be relatively robust to misspecification of the sampling time 

model. That said, bias in the intercept terms will still yield biased predictions of state 

occupancies for different covariate levels.

Finally, all of our simulation studies have assumed that we have correctly specified the 

number of latent states in the disease models. In general, choosing the number of latent 

states is an important component of model selection, and we have recommended using the 
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BIC for this purpose. To evaluate the performance of the BIC, we conducted simulation 

experiments based on data generated from the latent CTMC competing risks multistate-

DDO model (see Web Appendix D for details). Upon fitting models that varied in the 

specification of latent disease and DDO model, we found that the BIC was able to correctly 

select the data-generating model for 50 out of 50 simulated data sets.

6. Application

We apply the multistate-DDO model to a study of secondary breast cancer events (SBCEs) 

in women with a history of unilateral breast cancer. The target of inference is onset of 

mammographically-detectable ipsilateral or contralateral SBCE, which are unobserved 

events that occur prior to diagnosis. The dataset consists of the sequence of mammograms 

and biopsies following completion of treatment for a primary breast cancer. These data are 

suited for multistate-DDO models, as mammograms have misclassification error, and 

observation times include both scheduled screening and patient-initiated visits. 

Scientifically, we are interested in differences in estimates of cumulative incidence of 

mammographically-detectable versus diagnosed SBCEs, estimates of mammography 

misclassification, and estimates of covariate effects on disease process parameters.

The study population consists of women diagnosed with unilateral primary breast cancer 

between 1994 and 2009 who were members of Group Health, an integrated health care 

system in Washington state, at the time of their primary cancer diagnosis. Women were 

followed from 180 days after their first cancer until the earliest of the first positive biopsy 

for a SBCE, death, or disenrollment from the Group Health cohort. Women in this 

population were recommended to undergo annual screening mammograms in an effort to 

detect SBCEs before they become symptomatic. Women were also recommended to receive 

diagnostic evaluations for symptoms that arise in between scheduled surveillance intervals. 

Mammograms that are positive were followed up with further imaging workup, and, if 

warranted, biopsies. Mammography visit times were considered to be scheduled screening 

visits unless the woman and radiologist reported that the visit was for “evaluation of a breast 

problem,” or only the radiologist coded it as such, but the woman endorsed an additional 

variable indicating symptoms. Web Appendix E provides additional details on outcome 

variable definitions and exclusion criteria.

6.1 Data description

There are 2,936 women in the analysis sample, with a median follow-up time of 5.8 years 

(IQR 2.8–9.2). Web Appendix Table E-1 provides a description of baseline sample 

characteristics. There were 14,288 contralateral and 10,468 ipsilateral mammograms and 

241 contralateral and 212 ipsilateral biopsies. There are fewer ipsilateral than contralateral 

mammograms because some women were treated for their primary cancer with mastectomy 

and thus no longer require disease surveillance on the ipsilateral side. The results of the 

mammograms and biopsies are shown in Table 1. There were 84 women diagnosed with 

contralateral SBCEs and 64 diagnosed with contralateral SBCEs. Approximately 7% of all 

mammograms and 33% of biopsies were positive. Overall, there were 280 days coded as 

patient-initiated informative visits. On average, women had 0.98 scheduled mammogram 

Lange et al. Page 10

Biometrics. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



visits per person-year. In contrast, rates of informative visits were low: 0.018 per person-

year.

6.2 SBCE Models

The disease model is a competing risks model with three absorbing states: ipsilateral SBCE, 

contralateral SBCE, and death before SBCE. We considered both a standard CTMC with 

state space {H = healthy,I = Ipsilateral SBCE,C = contralateral SBCE,D = death before 

SBCE} and a latent model with state space {H1, H2, I,C, D}, where H1, and H2 are two 

latent states that map to the healthy disease state. The latent model is biologically plausible 

as it allows for SBCE hazard rates to be higher near the time of primary breast cancer 

diagnosis, reflecting recurrences of the primary breast cancer, and to level out over time, 

reflecting novel cancer events (Demicheli et al., 1996). The transitions in the two models are 

depicted in Figure 3. All women are assumed to be disease free at the beginning of the 

study, and start in either the H or H1 state, depending on the disease model.

Covariates were added to the disease model assuming an additive effect on the log-rates, i.e., 

, where X are the covariates and ζi j the coefficients for transition i, j. To 

ensure parameter identifiability, we constrained parameters in the latent model ζH1, j = ζH2, j, 

j ∈ {I,C, D} and did not add covariates to the H1 → H2 transition. Thus, for each covariate, 

there is one parameter each affecting transition rates from the healthy state to ipsilateral 

SBCEs, contralateral SBCEs and death prior to SBCE. The specific covariates we focused 

on included age at diagnosis, dichotomized to age<50 versus age>50; American Joint 

Committee on Cancer, Version 6, stage of the primary breast cancer (0=in-situ, 1, 2+); 

adjuvant endocrine therapy for the original cancer (yes or no); and race (White versus non-

White), based on prior evidence in the literature (de Bock et al., 2006; Andreetta and Smith, 

2007; Moran et al., 2008).

The DDO models specify rates of informative sampling times according to the individual’s 

underlying disease state. For model comparison and sensitivity analysis we considered 

different restrictions on these DDO rates, i.e. assuming that the rate was the same in more 

than one state (for details, see Web Appendix Table E-2). All models assumed that the DDO 

rate in the death state was zero. Models that assume DDO rates are identical across the 

healthy and ipsilateral and contralateral states suggest that the sampling times are not 

informative about the disease process: this assumption yields estimates that are quite similar 

to models that condition on the times, but allows for model comparison via the BIC.

Each mammogram and biopsy was classified as ipsilateral or contralateral. To model 

mammog-raphy misclassification, we assumed a zero probability of detecting an SBCE with 

a discordant procedure laterality; e.g., detecting an ipsilateral SBCE via a mammogram on 

the contralateral side. In order to promote parameter identifiability in the overall model, we 

estimated mammography sensitivity and specificity but fixed the biopsy false negative rate 

at 0.02 and false positive rate at 0, which are reasonable given modern biopsy accuracy rates 

(Dillon et al., 2005). To accommodate different misclassification probabilities depending on 

the procedure type and side, we used a time-dependent emission distribution.
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6.3 Model fitting results

The BIC is lowest for the latent CTMC disease model and H1/H2/I,C DDO model, where 

rates of DDO times are allowed to vary in the two healthy states, but are equal in ipsilateral 

and contralateral SBCE states (see Web Appendix Table E-3 for model comparison). The 

estimated DDO rate in state H1 is 0.046/person-year (95% CI (0.036,0.058)); in H2 it 

declines to 0.009/person-year (95% CI (0.007,0.012)); and in the SBCE disease states it is 

0.076/person-year (95% CI (0.047,0.11)). These rate estimates are plausible given that 

patients may be more likely to exhibit symptoms or to initiate visits close to their primary 

breast cancer diagnosis, as well as after they have developed an SBCE.

Figure 4 plots estimates of cumulative incidence of mammographically-detectable SBCEs 

based on the BIC-preferred multistate-DDO model, in addition to empirical cumulative 

incidence of diagnosed SBCE events. The multistate-DDO model estimates that at five years 

after diagnosis 3.7% (95% CI [2.6,4.8]) of women will have a mammographically-detectable 

ipsilateral SBCE, whereas 2% (95% CI [1.14,2.6]) will have been diagnosed. Likewise, at 

five years, the multistate-DDO model estimates 3.6% (95% CI [2.6,4.5]) will have a 

contralateral SBCE, whereas 2.4% (95% CI [1.9, 2.9]) will have been diagnosed. In general, 

the BIC-preferred DDO model estimates that a range of 25–45% of prevalent SBCEs are 

undiagnosed from five to ten years after the primary BC, demonstrating the potential benefit 

of a more sensitive test for improvement of early disease detection.

The multistate-DDO models allow us to estimate true and false positive rates for 

mammograms. Based on the BIC-selected multistate-DDO model, the estimate of the true 

positive rate is 69% (95% CI (55%,81%)), and the false positive rate is 5.6% (95% CI 

(5.3%, 5.9%)). These results are comparable with empirical estimates of mammography 

sensitivity of 65.4% (95% CI, (61.5%, 69.0%)) and specificity of 98.3% (95%CI (98.2%, 

98.4%)) from the Breast Cancer Surveillance Consortium, of which Group Health is a 

participating institution (Houssami et al., 2011), as well as a recent meta analysis reporting 

mammography sensitivity ranges of 64–67% and specificity ranges of 85–97% across 

studies (Robertson et al., 2011).

The multistate-DDO models are parametric, and results are sensitive to model 

parameterization. Moreover, misspecification of either the observation time, 

misclassification, or disease model will affect estimates of all components. We examined 

how results differed if we had assumed a CTMC disease model or a non-informative 

observation model for the patient-initiated visit times. Unlike the BIC-selected latent disease 

model, the standard CTMC disease model was unable to capture higher SBCE cumulative 

incidence in the first five years after breast cancer diagnosis (Web Appendix Figure E-1). 

Further, assuming no informative observations yielded left-shifted cumulative incidence 

estimates relative to models allowing for DDO rates to differ across disease states. While 

these results are consistent with the simulation studies examining bias due to ignoring 

informative sampling times (Web Appendix Figure D-2), the magnitude of the shift is much 

more subtle, probably attributable to the low incidence of DDO times. Estimates of 

mammography true positive rates are also sensitive to choice of disease and DDO model 
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(Web Appendix Table E-4). Indeed, higher sensitivity estimates are associated with lower 

estimates of the cumulative incidence of SBCEs across the observation period.

6.4 Covariate effects

Point estimates for the covariate parameters within the BIC-selected multistate-DDO model 

are shown in Table 2. For the purpose of comparison, we also estimated covariate effects for 

an analogous latent CTMC disease model based on time of diagnosis, the modeled event in 

conventional studies of SBCEs. Estimates for covariate effects were quite similar between 

the multistate-DDO and diagnosis-time models, with the exception of effect sizes for age 

and primary cancer stage on ipsilateral SBCEs. Interestingly, covariate effects were not only 

similar between diagnosis and multistate-DDO models, they also were relatively robust to 

misspecification of the informative sampling time model (Web Appendix Figure E-2). The 

models indicated overall significant covariate effects on rates of ipsilateral disease (Wald 

test (p<0.001), but not contralateral SBCEs (Wald p-values ranged from 0.6–0.84). Our 

findings on covariate effects are compatible with an exploratory data analysis we conducted 

looking at the marginal effects of covariates on cumulative incidence of diagnosed SBCEs 

(Web Appendix Figure E-3), as well as the Breast Cancer Surveillance Consortium’s study 

on diagnosed SBCEs (Buist et al., 2010). Further, although the chosen covariate 

parameterization does not imply proportional hazards, inspection of estimated hazard ratios 

revealed they were very near constant over time. Thus exponentiated coefficient estimates 

are approximately interpretable as having multiplicative effects on hazards. For example, 

hormone treatment for primary cancer was associated with a reduced hazard of ipsilateral 

SBCEs, by a factor of exp(−0.89) = 0.41 (95% CI [0.23,0.76]), adjusting for other 

covariates.

7. Discussion

The increasing availability of electronic medical resources presents new opportunities for 

modeling multistate diseases. However, as patients’ disease statuses are only assessed at 

discrete clinic visit times – and visit times may be informative about the patients’ disease 

histories – these data pose challenges for inference. The multistate-DDO model provides a 

novel and flexible approach for modeling such data: it applies to a broad class of disease 

models, including chronic diseases with reversible transitions and duration-dependent 

hazard functions; allows for covariate effects; and accommodates both patient-initiated 

random visit times and scheduled non-informative visits.

Our application of the multistate-DDO model to the study of SBCEs represents a new 

analysis method in this setting. Existing studies of secondary breast cancers focus on 

diagnosis as the primary outcome (Chapman et al., 1999; Geiger et al., 2007; Buist et al., 

2010), our method uses patient mammography data to model onset of mammographically-

detectable disease, a clinically relevant outcome that indicates the fraction of a screened 

population at a given time with undetected disease. Further, others have studied 

mammography visit patterns in breast cancer survivors (Wirtz et al., 2014), as well as the 

relationship between screening mammography and mortality (Buist et al., 2013), but our 

approach is unique in its joint modeling of disease and mammography visit processes.
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The multistate-DDO approach for the SBCE data bears similarities to models developed for 

disease screening trials (Boer et al., 2004); both model onset of screen-detectable disease 

and estimate screen sensitivity. However, there are important differences between the two 

approaches. Disease screening models consider progression to a single disease state that is 

divided into symptom-free pre-clinical and symptomatic clinical sub-states. In contrast, the 

multistate-DDO model can handle more complicated disease frameworks, such as the SBCE 

model’s competing risk scenario, but does not distinguish between pre-clinical and clinical 

sub-states. Indeed, the multistate-DDO model reflects symptom-development implicitly 

through the informative visit process; DDOs based on symptoms occur more frequently in 

diseased states but may also occur when the patient is healthy. Ultimately, while estimating 

pre-clinical sojourn duration is desirable for developing screening protocols, the multistate-

DDO model’s flexibility invites its use in contexts where screening models do not apply.

The multistate-DDO model also has limitations. For one, the latent structure means 

parameters are not always identifiable: model building requires compromises between 

parameterizations that retain estimability but are rich enough to describe the disease process. 

Furthermore, the model’s parametric assumptions make it sensitive to model-

misspecification. In particular, misspecification of the disease model impacts both estimates 

of disease cumulative incidence and mammography sensitivity — an observation also made 

in reference to disease screening models (Etzioni and Shen, 1997). To probe parametric 

assumptions of the multistate-DDO model, it will be important to develop goodness of fit 

evaluation strategies. The informative sampling times mean that the methods aimed at 

goodness of fit assessment for discretely observed multistate models are no longer 

applicable (Titman and Sharples, 2008). In our setting, the observed disease states at the 

disease driven observation times can be construed as a multivariate point process (Gerhard 

et al., 2011). Transforming event times in a multivariate point process by the events’ 

cumulative hazard functions yields independent Poisson processes, one for each event 

category (Meyer, 1971), enabling goodness of fit evaluation via testing the Poisson process 

assumptions. We plan to adapt this strategy to the multistate-DDO model in the future.

Another concern is the requisite of identifying patient-initiated visits. In absence of such 

information, we advise against modeling all visit times via the Markov-modulated Poisson 

process, due to clustering of scheduled visit times. Visit indication is often available from 

insurance claims as well as clinical records, although different sources may conflict (Fassil 

et al., 2014; Fenton et al., 2014). In this situation, we recommend performing sensitivity 

analyses using various visit definitions. There is also the potential for expanding the 

multistate-DDO model to include visit status as an additional latent component.

We note the potential for other model extensions, including allowing disease transition 

parameters to have time-dependent covariates. Accommodating piecewise constant covariate 

effects is straightforward, since one can split individual records on times that the covariate 

values change. More generally, the models could also include time-dependent covariates that 

vary in a continuous fashion, but such an approach would require calculating transition 

probabilities by numerically solving the Kolmogorov forward equations and numeric 

optimization to obtain MLEs (Titman, 2011). It would also be possible to expand the DDO 

model to accommodate prior and future visit times as time-dependent covariates, allowing 
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for additional temporal dependence in the DDO process. In general, estimation in a Bayesian 

framework might also be useful, as it would allow incorporation of prior information about 

the disease process or misclassification probabilities and might mitigate concerns about 

parameter identifiability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. Example of a joint informative observation and disease process, Y (t) = (X (t), N(t)). B. 

The informative observation time process and the disease process observed at DDO and 

scheduled times. C. Same as B, with misclassification error.

Lange et al. Page 18

Biometrics. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Simulation results demonstrating bias that occurs when informative visit times are ignored. 

Data were simulated from discretely observed 2-state standard and latent CTMC multistate-

DDO models on the interval t=[0,8] at DDO times or a combination of DDO and scheduled 

visits (See Web Appendix Figure D-1 and Table D-1 for simulation details). Data were fit 

with correctly specified multistate-DDO models and incorrectly specified panel models. Box 

plots/functional box plots are shown for hazard estimates of H →D and D →H transitions 

from both DDO and panel models. The different DDO rates in the model states varied across 

simulations, with more discrepant rates inducing more bias under model misspecification. A. 

DDO rates are qD = 2, qH = .25; data also included fixed observation times t = (0, 2, 4, 6, 8). 

B. DDO rates are qD = 2, qH = .25. C. DDO rates are qD = .35, qH = .25. D. DDO rates are 

qH = .25 and qD = 2.
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Figure 3. 
SBCE competing risks disease models. A. Standard CTMC, where H=healthy, 

C=contralateral SBCE, I=ipsilateral SBCE, and D=death before SBCE. B. Latent CTMC 

with Coxian structure. States H1 and H2 map to the healthy state.
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Figure 4. 
Estimated cumulative incidence for ipsilateral and contralateral SBCEs and death, via 

empirical estimates of the diagnosis times or using the BIC-selected multistate-DDO model 

(Web Appendix Table E-2, model 6). The bands are point-wise standard errors. 

Abbreviations: Dx empirical=empirical estimate of cumulative incidence of diagnosed 

SBCE events; SE=standard error.

Lange et al. Page 21

Biometrics. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lange et al. Page 22

T
ab

le
 1

O
ut

co
m

es
 f

or
 m

am
m

og
ra

m
s 

an
d 

bi
op

si
es

 b
y 

pr
oc

ed
ur

e 
la

te
ra

lit
y.

O
bs

er
ve

d 
re

su
lt

P
ro

ce
du

re
 t

yp
e

L
at

er
al

it
y

T
ot

al
H

ea
lt

hy
Ip

si
.

C
on

tr
a.

M
am

m
.

C
on

tr
a.

14
,2

88
13

,3
05

0
98

3

Ip
si

.
10

,4
68

9,
80

0
66

8
0

B
io

ps
y

C
on

tr
a.

24
1

15
7

0
84

Ip
si

.
21

2
14

8
64

0

Biometrics. Author manuscript; available in PMC 2015 April 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lange et al. Page 23

T
ab

le
 2

C
oe

ff
ic

ie
nt

 e
st

im
at

es
 f

or
 a

 c
ov

ar
ia

te
-p

ar
am

et
er

iz
ed

 v
er

si
on

 o
f 

th
e 

B
IC

-s
el

ec
te

d 
SB

C
E

 m
ul

tis
ta

te
-D

D
O

 (
M

-D
D

O
) 

m
od

el
 (

W
eb

 A
pp

en
di

x 
T

ab
le

 E
-2

, 

m
od

el
 6

) 
an

d 
an

 a
na

lo
go

us
 la

te
nt

 C
T

M
C

 c
om

pe
tin

g 
ri

sk
s 

di
se

as
e 

m
od

el
 b

as
ed

 o
n 

tim
e 

of
 d

ia
gn

os
is

 (
D

x)

Ip
si

la
te

ra
l

C
on

tr
al

at
er

al
D

ea
th

95
%

 C
I

95
%

 C
I

95
%

 C
I

M
od

el
E

st
.

L
ow

.
U

pp
.

E
st

.
L

ow
.

U
pp

.
E

st
.

L
ow

.
U

pp
.

E
nd

oc
ri

ne
 th

er
ap

y
D

x
−

0.
89

−
1.

50
−

0.
28

−
0.

06
−

0.
52

0.
40

−
0.

19
−

0.
45

0.
07

M
-D

D
O

−
0.

87
−

1.
47

−
0.

27
−

0.
07

−
0.

52
0.

38
−

0.
21

−
0.

47
0.

05

A
ge

 <
 5

0
D

x
0.

45
−

0.
09

0.
99

−
0.

36
−

0.
98

0.
26

−
0.

81
−

1.
20

−
0.

42

M
-D

D
O

0.
69

0.
18

1.
20

−
0.

28
−

0.
89

0.
33

−
0.

80
−

1.
20

−
0.

40

St
ag

e 
1 

(r
ef

 s
ta

ge
 0

)
D

x
−

0.
60

−
1.

18
−

0.
02

0.
32

−
0.

31
0.

95
0.

50
0.

07
0.

93

M
-D

D
O

−
0.

84
−

1.
40

−
0.

28
0.

33
−

0.
32

0.
98

0.
49

0.
06

0.
92

St
ag

e 
2+

 (
re

f 
st

ag
e 

0)
D

x
−

0.
46

−
1.

18
0.

26
0.

09
−

0.
65

0.
83

1.
17

0.
73

1.
61

M
-D

D
O

−
0.

47
−

1.
15

0.
21

0.
22

−
0.

52
0.

96
1.

17
0.

72
1.

62

N
on

-w
hi

te
 e

th
ni

ci
ty

D
x

−
0.

18
−

0.
92

0.
56

−
0.

14
−

0.
80

0.
52

−
0.

35
−

0.
76

0.
06

M
-D

D
O

−
0.

14
−

0.
87

0.
59

−
0.

13
−

0.
79

0.
53

−
0.

33
−

0.
74

0.
08

Biometrics. Author manuscript; available in PMC 2015 April 30.




