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Abstract

A simplified solution for the shear lag analysis of simple and continuous beams with
wide flanges is presented in this investigation. Convergence of the solution and the shear lag
effect upon the stress resultants distribution are studied. A computer program, SHLAG, by

which the stresses in flanges can be calculated for various load cases, is also described.
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Notation

(See also Section 8)

a=nn/l
o =(G-n)r/l
m = integral part of w, see Eq. (39) and (41)
j = integral part of o’
¢(y) = coshay /coshab
¢'(y') = coshay’/coshab’
_ (+p)ab-(1-w)t
Y= TS (1 +v)abt
. (U+v)ab’-(1-w)t’
YT T 0+ )abt

t = tanhab

t' = tanhad’
e, e’ = distance from center of the web to middle surface of top and bottom flange

d, = vertical distance from center of web to point of application of longitudinal load,

positive upward

A =piq; - pqy
' = w(for T-beam)

_wo_d
W= 3 (e+e’) (for I and box beam)
A, I = Area and moment of inertia of the web
R; = 4bhe?/I

R, = 4bh /A



1. Introduction

Stress distribution in wide beam flanges and the related problems of effective
width or stress ratio, have been studied for a long time experimentally and also
theoretically by harmonic analysis and by finite element analysis [7], [6], [4], [1], [3],
[5]. Some problems on this topic, however, still need further investigation.

Since this is basically a stress concentration problem, the convergence or
accuracy of the solution is a very important problem to be considered both in
harmonic and finite element analyses. Unfortunately, a detailed study of this
problem has not been given in the published references.

Based on some rational assumptions for the behavior of the web of the beam, a
simplified shear lag analysis for the stresses in the flanges, which is convenient for a
wide range of problems is presented in this study. The convergence of the solution
for peak stresses in the flanges is studied in detail. It is found that the convergence is
not good in some cases and thus an effective technique to improve the convergence
and solution is developed.

Theoretically, due to the shear lag effect, the longitudinal distribution of the
bending moment in a continuous beam with wide flanges is different from that for a
prismatic beam analysed by elementary beam theory. A general procedure for
determining the stress resultants in a continuous beam, considering the shear lag
effect, is also presented.

Some typical numerical examples are given and the results are compared with
the known results by other authors.

The input and output for a computer program, SHLAG, which was written for
the shear lag analysis of simple and continuous beams with single cell box section
and isolated I- or T-sections is described. This program requires only a minimum
amount of input data for the calculation of the stress distribution and the stress
ratios in the flanges of these beams for a variety of loading cases.

2. Solution for Beams with Symmetric Flanges

It is assumed tha:c the flange and the web are infinitely flexible out of their own
plane and the stresses in the web can be determined by elementary beam theory.

For a simple beam, the stress function in the flange can be taken as
$=2¢,
¢n=Sn(y)sin nxx/l
f,,(y)=c, coshay +c; sinhay +c3 aycoshay +c4 aysinhay (1)

;l‘he boundary conditions at the longitudinal edges of the flanges (Fig. 1) are as
ollows:



a) For I-Beam and T-Beam (Fig. 1a)

at the free edge
y=0, 0,=0, 7,,=0 ?2)
at the junction of the flange and the web,

y=b, displacement v=0 3)
and
(ex )/Iange =(¢x Yweb (4)

b) For Box-Beam (Fig. 1b), along the symmetry face,

y=0, 7,,=0, v=0 &)
at the junction

y=b, ¢,=0,

(ex) ftange =(€x )wep (6)

The t'otal beam bending moment and axial force at any section a distance x
from the simple support can be expressed as

M=M(x)= % m, sinax (7)

n=1

N=N(x)= X n,sinax
n=1

For I-Beam or T-Beam, from conditions (1), (2) and (3) we can obtain:

oy=- 2 Anc(y) [eytanhay +v (ay -tanhay)] sinax A
n=1
Ox==0,+2 EA,,c(y) (1 ++ytanhay) sinax & (8)
n=1
Tay=— 2 Apc(y) [tanhay +ay(1++v tanhay)] cosax )

n=1

For the flange

(Eex)yep=2 An(2+(1+v) abt +v [(1-v)t +(1+v)ab]) sinax

n=1

For the web of a T-Beam (Fig. 2)
1 e? e,, N
E€x= (7*—7) T—-I‘M+'-A—
T is the total shear transfer from the flange and

X

T=2 l(rxy)y‘bhdx=—2bh 3 An (141 +1/ab)sinax
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Substituting in Eq. (4), we can find
{ 2+(1+v) abt +vy [(1-v) t+(1+v) ab] +(R;+R, )1+t +t/ab)/2 ) A,

=Em,+—=
I"™" 4

For I-Beam, similarly,

(2+(1+v)abt +v [(1-v)t +(1 +v)ab]+R;(1+yt +1 /ab))}A, =-§m,l

(2+(L+@abz+7((L-nz+(L+»ab]+Ra(r+7z+z/ab)L4n=%§L

For Box-Beam (Fig. 1b) we can obtain

oy= 3 Anc(y) (abt -aytanhay) sinax

n=1

oo
ox==-0,+2 X A,c(y) sinax

n=1

Ty =2 Anc(y) [(abt -1)tanhay —ay Jeosax

n=1
T=-bhY, A,(1-t*+t/ab) sinax
) n=1
e

R; 2. ¢
[2+_2_’(1‘t + b )] A, “_Tmn

R, 2, 1 ny
[2+—2—(l—l +ab)] A, = y

3. Solution for Beams with Nonsymmetric Flanges

(9)
(10)
, (11)
# (12)

For a general box beam in which the cross section consists of top, bottom, edge
flanges and webs, from the boundary conditions shown in Fig. 3, we can obtain:

[~ o}
ab= Y Anc(y) (2-abt +aytanhay) sinax

n=1

o= 2 B,c(y) [B+n(2+aytanhay)] sinax

n=1

[~ o}
0x°=2, B,c' (') [2+ay’ +(A+ay’ Jtanhay’] sinax

n=1

for bottom, top and edge flanges respectively, where

N

> (13)
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p=1+AN’
R A
ﬁ-—ab[)\(—b——tt—ab)+bt t)

(14)
__(+n)[ab’(1+1t)+ab(1-1)])-(1-v) 1 +1)
(1+)[ab’(t +1")+abt’ (1-1%)]-2(1+11")

The total shear transfer from the bottom, top and edge flanges are equal to
w .
Ty=- EA,,fsinax

n=1

(15)
T,+T,=- ) B,gsinax

n=1
’ i e
A, =—A-[-(e q1+€qz)_li+(Q2‘QI)7n]

. (16)
Bn=—[e'P1+eP2)z"n‘+(ﬂx-P2)n—"]
A I A
A=p,492-P2 49,
f=bh’ (1-t>+t/ab)

- L A -8 ,

g-bh[(ﬁ+n)ab +nt =gt (1400)]
1 ee’

pPi= (7'—1 )14

2
q,= (-/:—+e7)g +(1+v)8+[2+(1+v)abt]n

> (17)
1 e?
p2= 2+('Z+—I—)f

1 ee’
42-(A- 7 )g

For an I-Beam or T-Beam, from the boundary conditions shown in Fig. 4 (b’ or
h'=0 for T-beam) we can obtain:
Qo
ox°=2 An,c’ () [2+(¥'+ay’) tanhay’+v'ay’] sinax
n=1

2 (18)
ox'= 2 B,c(y)[2+(y+ay)tanhay +yay] sinax
n=1

A, B, have been shown in Eq. (16), but in which:
1 ee’
Px-(‘;f——l—)f
1 e?
ql—ﬁ+(7+—1-)g

(19)
2
pr=B+(+50)f

1 ee’
qz-(A- 1 )g
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[=2b"h'(1+'t'+1t’/ad’)
g=2bh(1+~t+t/ab) v (20)
B=2+(1+v)abt +v [(1-»)t +(1+v)ab]

B=2+(1+v)ab’t’+y [(1-v)t'+(1+v)abd’]

4. Fourier Coefficients of Internal Forces
Three elementary loadings are analysed as the basic cases.

a) For a concentrated load P acting at any point x=¢ of a simple beam, the
bending moment at any section can be expressed as a Fourier series:

- 2 . .

M (x).-:PI"E=1 . sinatsinax (21)
b) For a uniform load w, distributed from x=a to x=b, the Fourier series for

the bending moment can be obtained by integration of Eq. (21), hence

M(x)=2w 122 s:lr;_:;r (cos aa -cosab) (22)

n=1

c) For a pair of longitudinal forces, acting at sections x=a and x=b and at a
distance d, from the center of the web, the axial force and the bending moment at
any section are

N(x)=N2 2(cosaa —cosab) sinax/n« (23)

n=1

M(x)=-N(x)d,=-Nd, D, 2(cosaa -cosab) sinax /n= | (24)

n=1

All other loading cases can be obtained by superposition of the above three
basic loadings.

S. Bending Moment in a Continuous Beam

Unlike a simple beam, the longitudinal distribution of the bending moment in a
continuous beam is different depending on whether the shear lag effect is neglected or
included.

Including the shear lag effect, the beam can be analysed by the force method in
which the nr reactions at the interior supports are adopted as the unknown
redundant forces. The bending moment in the web of the basic structure (a simple
beam), produced by the external loadings, can be expressed as (Fig. 5):



M,=2 m,’sinax
n=1
Under the unknown reactions R, R, - - Ry --- R, (Fig. 5), in the web

nr oo

M,.=2 Ryl 2sinax;sinax/n’x?
k=1 n=1

can be found by using Eq. (21).

The bending moment in the web, produced by shear transfers from the flanges,
can be obtained by using Eq. (15) as:

M;=Tye'-(T,+T,) e= 2, ( geB,-fe'A,)sinax

n=1

The corresponding deflections of the basic structure can then be found as:

Elw,=3 m,°!? sinax /m?x? W
n=1

nr oo
Elw, =3 R, I* 3 2sinax;sinax /nn? >  (25)

k=1 n=l

Elwg=3, [ (geB,-fe'A,) sinax )
n=1

A, and B, can be found from Eq. (16) in which the effect of the unknown
reactions should be added:

e'q,+e o
A, =- ___q_'z]_‘ll(mn °+ 2 2R;Isinax, /n’r?)
k=1
epi+epy : 5 5
B,,=T(m,, + 2 2R;Isinax; /n*n?)
k=1
hence,
<« 2 « 2Rl .
EIw/='§l —3 K,(m,°+ g}l -’2—27-r-2—sxnaxk) sinax
K, =[eg(e'p,+epr)+e'f(e'q,+eq2)]/ Al (26)

At the i-th interior support, the final deflection should be equal to zero, hence
when x=x; w=w, +w,+w;=0,
El |5 m,° T8 21+K,) | '
—IT n§ (1+Kn)n2r21 Sinax; + k‘z:] Rk nz=] —n“T:—slnaxks"Jaxi =0



P .
 EBAKEI
™
£ E
.Y |
|
x/1 0.1 | 0.2 0.3 0.4 0.5
stress ratio at 448 .840 944 1.025( 1.198
web-flange junction T* 1.2*
effective width b,/b | 3.49 | 1.383| 1.121 .950 .666

* rough values estimated from Fig. 5 of Ref. [3]

Fig. 8 Cantilever Beam under Uniform Load



For all interior supports we can then obtain:

nr

2 6ikRk=—Aip (i=la2s ”"nr) 3

k=1
13 n’

8p=%7 E (1+K) 2 - sinax; r 27
B2 2A1+K,)

b= 7 ’E e sinax; sinax; J

When longitudinal forces are acting, Eq. (27) can also be used, provided K, is
replaced by

H,=[eg(p1-p2)+e'f(a1-q2)] /A4 (28)

Eq. (26) to (28) can be used for both Box and I or T beams, provided Eq. (17)
and (19), (20) are adopted respectively.

Constants K, and H, represent the effect of shear lag. If this effect is neglected,
K,=H,=0.

For a two-span continuous box beam with equal spans a, some numerical
results for the reaction R and the bending moment M, at the center support for
different a/b ratios can be found as shown in Fig. 5.

Neglecting shear lag, R=1.25wa and M,=-.125wa®. It can be seen that only for a
beam with very small a/b and I/2bhe?, is the shear lag effect upon the bending
moment distribution very pronounced. Thus, this effect can be neglected in most
~ practical engineering structures.

6. Convergence Study and Improvement

Because the analytical technique in this study is based on harmonic analysis, it
is, therefore, desirable to study the convergence for various cases and its
improvement, if necessary.

6.1 Convergence Study of Loads and Displacements

The following conclusions can be made from the numerical results in Tables 1,
2 and 3. For uniform loads, the convergence of series (22) is very good for all points
including the discontinuous points of loading. For a concentrated load, the
convergence of series (21) is also generally good, although in the vicinity of the
concentrated load it is somewhat poor. For the case of a pair of longitudinal forces,
however, the convergence of series (23) is not good, especially in the vicinity of the
points ﬁf application of the forces and also when the two forces acting are close to
each other.
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In Tables 4 and 5, the redundant reactions are calculated by Eq. (27) and the
bending moments are then found by statics. It can be seen that the convergence of
series (27) is excellent for calculating the redundant reactions and bending moments.
For a two to three span continuous beam, only 11 harmonics are needed for good
convergence. For the most critical case of a ten span continuous beam, 21
harmonics are needed.

6.2 Convergence Study and Improvement of Stresses

It can be observed from Eq. (8), (13) and (18) that the series for the stresses in
the flanges will converge rapidly when the calculated point is at a short distance from
the junction with the web since c(y) decreases very rapidly. The problem of
convergence, therefore, will be important and is studied in detail only when y=4 in
following.

Some ideas of convergence of the stress can be obtained from the numerical
results in Tables 6 and 7 for the longitudinal stress ratio at the flange-web junction.
The stress ratio is defined as the stress calculated by shear lag theory, divided by the
stress at the same point found by elementary beam theory. For a short two-span
continuous beam (//b=8) under bending, the error of the stress in the supported
section is 1.7% even when the total harmonic number k = 400. If the beam is
longer, this convergence is poorer. However, at all other sections some distance from
the concentrated force, the convergence is very good.

The convergence of stress at the junction of a box beam with symmetric flanges
will be studied carefully at first. For the top flange, when y=b Eq. (11) yields:

o,= 2 2A4,sinax (29)
n=1
When ob is sufficiently large, we can take r= 1 and from Eq. (12) we can obtain if
n,=0:
e my
2= T Tru/m

he?l
o= @y

(30)

It can be seen from Eq. (7), (29) and (30) that at section x=¢, directly under a
concentrated load P, the convergence of ¢, is poorer than that of M(x), especially
when w is large. However, it can be improved as follows.
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Table 1 M(x)/wi? by Eq. (22)

x/1
Loading No. 1/8 1/4 3/8 172 3/4
Harmonic
w
- ' 19 019544 | .039064 | .050766 | .046880 | .023432
“/frl A 1 29 019535 | .039064 | .050780 | .046875 | .023437
o 019531 | .039063 | .050781 | .046875 | .023438
o ——
Table 2 M(x)/P! by Eq. (21)
x/1
Loading No. 0.2 0.4 0.45 0.5
Harmonic
i, P 19 | .09998 | .19980 | .22559 | .24494
————-—-l 49 .10000 | .20002 | .22524 | .24797
99 22501 | .24899
[ J 199 24849
| . 10000 | .20000 | .22500 | .25000
Table 3 N(x) by Eq. (23)
x/1
Loading No. 0.1 0.19 0.3 0.41 0.7
Harmonic
Nt—-—’ﬂ— N=/ 19 02507 | .2805 | .8998 | .2821 | .0051
A 49 01064 | .0634 | 1.0414 | .0634 | -.0021
f 2£|' 1 199 00537 | -.0838 | .9792 | -0842 | .0010
1 L A © 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000
- |
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Table 4 (total harmonic number = 11) *

Beam and Loading | //b R, M, M,

c
; (1) | 60.006 | -144.07 | 80.61
zt' /2 1| 48 | 2) | 60.000 | -144.00 | 80.64

~

| | (3) | 59.974 | -143.69 | 80.76

hezy 345
FH (1) | 10.001 | -4.002 | 2.239
o5l ) |2 8 | (2| 10000 | -4.000 | 2.240
L (3) | 9.858 | -3.717 | 2.353

Table 5 //b = 100 h/b = 0.05 *
¢ 53m.

.
ekt N L *‘[/""5

ob ol ol ve] 4]
I I N ML

.

No. Harmonic M, M; M, M, M M,
11 -11.45 | -7.12 | -8.54 | -8.65 | -7.84 | 4.23
(N 21 -10.63 | -7.70 | -8.48 | -8.25 | -8.34 | 4.20
39 -10.58 | -7.74 | -8.50 | -8.28 | -8.37 | 4.17
(2) -10.57 | -7.73 | -8.49 | -8.29 | -8.36 | 4.14
3) 39 -10.49 | -7.76 | -8.47 | -8.28 | -8.33 | 4.19

* Results in row (1) and row (3) are computed by Eq. (27)
without and with shear lag effect, those in row (2) are
computed by ordinary theory.
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At section x =¢, from Eq. (21), (29) and (30), we can write:
k

o= ) 24,sinat+Ao,™ (32)
n=1
m < : e Pl
Ao, = n=§+l 2A,,s1na£=——I-?Sm (33)
where k is a large number and then
2sin?at

Sp=

n=k+1 n’+wn

If  1s replaced approximately by its integral part m, then

[ k
1 1 cos2at
Sm= - - —_—2cs
2 W) " E W) 2, wenm 34
in which
s _ 1 _r. -
> wnem) - x°/6 (when m= 0)

n=1
-l—(l+—l-+....+-l—) (when m> 0)
m 2 m
The third term in Eq. (34) converges rapidly and accuracy within 1% can be
obtained for S,, using only about 20 terms of this series.

From Tables 6 and 7 it can be observed that the improvement is very effective
if Eq. (33) is used.

Under axial forces, the convergence of Eq. (29) is not good for any section, but
it can be improved effectively by using Eq. (32) provided aAs,” is replaced by (see
Appendix):

2N, S,
—;(—A~+§d.,sm) | (35)

Ag," =

where

4
o : .
Sp= 2 -j[(w— | 8i | JeosjB; +sinj | B; | In2(1-cosB;)]
i=1
I, cosa’ a-cosa’ b . X cosaa-cosab .
+ > sing’ x - Y, ———————sinax (36)
n nel j+n

n=1
J =integral part of o’
o =_‘."_(_d.)2
Bi=(x+a)x/ 1
Br=(x-a)x/ 1 > (37)
Bi=—(b+x)w/ I
Ba=(b-x)x/ 1 J




-15-

Table 6 Longitudinal Peak Stress Ratios for Simple

Beam with Section Shown in Table 4

case concentrated load at axial forces in Table
midspan (h = .2) 3(h=.1%5

/b w k x/1=511/b k x/1=.3
24 37.3 39 1.098 24 39 .842
99 1.136 99 929
400 1.163 300 977 .

39* 1.180 39* 963

99* 993

8 12.4 39 1.420 4 39 1.855
99 1.472 99 1.970

400 1.503 300 2.024

39+ 1.521 39* 2.043

99* 2.058

* Ao,™ in Eq. (33) or As,” in Eq. (35) is included.

Table 7 Longitudinal Peak Stress Ratio for Two-span
Continuous Beam with Section Shown in Table 4

case

uniform load

a pair of axial forces at x=.3/

(h =.2) and x=.7] (h = .15)
1/b w k x/1=5 | x/1=2 | 1/b k x/1=.5 | x/1=.35
48 74.3 39 1.129 1.020 48 39 932 .854
400 1.386 1.021 99 .965 1.079
2000 1.428 300 .987 1.031
39* 1.439 39+ 976 951
99* 992 1.019
8 12.38 39 2.786 1.636 8 39 977 1.307
400 3.201 1.636 99 1.034 1.610
2000 3.257 300 1.061 1.550
39* | 3.259 39+ 1.065 1.497
99+ 1.074 1.523

* Ag,™ in Eq. (33) or Ao,” in Eq. (35) is included.
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1 (when B;> 0)
8 =< 0 (when ;=0 or Bi=2x)
-1 (when B;< 0)
S,.» can be calculated by Eq. (36) by replacing j with m.
For T-beam or I-beam with symmetric flanges, similarly:
3+<v _ePl I (38)

3+v 2N S L€
G-v)(1+v) = 7 énSmn)
S,., S» and S, can also be expressed by Eq. (34) and (36), but

Ao,"

, 4 he? I
©=C =B+ 7l ’) (T-beamn) W
8 hel L
= 39)
3- ")(“’ v) = (symmetric I -beam)
o =2 (dy
12 e _ J

For beams with nonsymmetric flanges,

A01m= "e_:'c'"}')'i{ Sm
I ™ w
m e +c Pl
Agp" = 7 —;2— Sm
_2N S L (40)
——Smnl
S d,, :
AU'b ='2'ﬁ[_+(e +C) 1 mn] - J

are used approximately for top and bottom flanges respectively. Eq. (34) and (36)
can also be used for S,, S, and S,,,. but

w:%;ll-[(l-p!’—’)h(e —c)?+h’ (e'+c)?] (Box —beam)
4 I
(3-v)(1+v) =l

, w, d
=3 e+e')

should be used.

It can be concluded that for simple or two to three-span continuous beams, the
total harmonic number & may be chosen at 39 and Ao” as well as Ac™ may be ac’ided
if necessary. If the //b of the beam is very large, k should be greater, for instance
we can take k=I//b and the calculation work will be increased considcrablyj
Fortunately, if a/b (a = length of the span) is very large, the value of & is not
important, because in this case the shear lag effect is negligible.

—[h(e-c)*+h’ (e’+c)2] (I -beam) (41)

w=
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Finally, some remarks regarding the assumptions for the web, which in this
study has been analysed by elementary beam theory. When ad=nxd/! is very large,
beam theory is no longer accurate. If the web is analysed by the theory of elasticity,
then under an antisymmetric vertical loading about web mid depth, Eq. (12) should

be replaced by

_h_(coshad-1){t+(1-1%)ab] |, _ 14v _ sinhad | Pn
l“hw 2sinhad—od)  |"~C2 " sinbad-ad k. (42)

where p, is the Fourier coefficient of the distributed load.
When ad— 0, Eq. (42) will be identical with Eq. (12). When od and «b are

sufficiently large, then

h 1-v DPn
(HE)A"——_Z—-I-{W— (43)

This is essentially different from Eq. (30).

7. Numerical Examples

7.1 Example 1 - Two Span Continuous Box Girder Bridge, Ref. [1]

A two span continuous box girder, Structure B in Ref. [1], was analysed by the
computer program SHLAG (total harmonic number k=100, as in Ref. [1]) of this
study. The longitudinal membrane forces in the flanges are plotted and compared
with those of Ref. [1] in Figs. 6 and 7.

From Fig. 6 we can observe: A

1. The two analytical results agree well except at the junction point b and t,
where N, and N, of SHLAG are somewhat greater than those of Ref. [1]
because in SHLAG, Ao™ of Eq. (32) has been accounted for. It can be
expected that if a greater number for k is used in Ref. [1], these two results
will be closer.

2. The lower estimate of the peak stresses in Ref. [1] results in the total
internal bending moment (24670 kip-ft) in Ref. [1] being smaller than the
correct one (25453 kip-ft) and the moments contributed by the stresses in
the flanges are also smaller than those found by SHLAG (see the
comparison in Fig. 6).

3. In SHLAG, it is assumed that the web is infinitely flexible out of its own
plane and it is considered as a beam on the vertical plane. The other small
discrepancy of the above two results may be produced by this approximate
assumption.

For the case of prestress load (Fig. 7), a similar observation can be obtained.
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Table 8 Stress Ratio in Bottom Flange of Structure
B of Ref. [1] and Its Equivalent I-Beam

-20-

distance A ‘ ¢ '———d ¢ _??
from web ’ I a /
edge = __q ___q

Poisson’s Ratio v=.15 v=.15 v=0

0 1.534 1.539 1.525

1.384* 1.383* 1.371*

.586 1.243 1.255 1.247
1.172 1.139 1.159 1.154
1.758 1.060 1.085 1.082
2.344 .999 1.025 1.025
2.930 950 977 .979
3.516 911 .936 .940
4.102 .878 .902 .908
4.688 .851 .873 .881
5.273 .829 .848 .858
5.859 811 .826 .838
6.445 .796 .807 .822
7.031 .784 .791 .808
7.617 775 .776 .796
8.203 .769 .763 .786
8.789 .765 751 777
9.375 .764 .740 .769

* Ac™ in Eq. (32) is ignored.
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P elolb/in [
} 125 1
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100’ . L 4o
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X
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”ﬁ 4[ 2000 Lb [
/oo Joo"
[ =200"
x/l 0.1 | 0.2 0.3 0.4 0.5
stress ratio at .448 .840 944 | 1.025] 1.198
web-flange junction 7* 1.2%
effective width b,/b | 3.49 | 1.383 | 1.121 950 .666

* rough values estimated from Fig. 5 of Ref. [3]

Fig. 8 Cantilever Beam under Uniform Load
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For comparison, the bottom flange stress ratios for the box girder of Structure B
in Ref. [1] and for an equivalent I-beam are analysed by SHLAG for dead load. The
latter section is obtained by joining together the two webs of the former section.
From the results in Table 8 it can be concluded that the stress distributions in the
bottom flange are almost the same for the two sections. Also the effect of Poisson’s
ratio is negligible as can be seen by comparing the results in the last two columns.

7.2 Example 2 - Cantilever Box Beam under Uniform Load

A symmetrical cantilever tube in Ref. [3] (Fig. 8a) can be replaced by an
equivalent simple beam (Fig. 8b). The calculated results by SHLAG are compared
with those of Ref. [3] in Fig. 8.

It can be seen that the results by SHLAG agree qualitatively with those in [3]
and in a certain zone the effective width is greater than b and the stress ratio is
smaller than 1 as pointed out in Ref. [3].

7.3 Example 3 - Parameter Study of Single Cell Box Beam

Computer analyses of some single cell box beams with different spans and
various cross sections shown in Fig. 9 were performed using the SHLAG program.
From the results in Table 9, we can conclude:

1. The shear lag effects at a section located under a concentrated force are
much more pronounced than those at other sections.

2. The stress ratios at point b and t (Fig. 9) at the interior support sections of
a continuous beam are much greater than those at a section just under a
concentrated load on a simple beam with the same dimensions.

3. As pointed out by many authors, an increase of the ratio a/b (a=span)
results in a decrease in the stress ratio.

4. Under uniform load, the stress ratios at the interior support section of a
two span continuous beam are somewhat smaller than those for a ten-span
beam with the same span. The intermediate spans of a ten-span
continuous beam can be approximated by a fixed-end beam.

5. In a ten-span continuous beam under uniform load, it can be seen from
Table 9 that the stress ratio at the support sections x//=0.2 and 0.4, where
the bending moments are smaller, are greater than those at other support
sections.

6. The stress ratios for sections 1, 2 and 3 at point b are quite similar, but at
point t they are somewhat different.
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Table 9 Ratio of ¢, under Uniform Load

a Beam Cross x/1 Ratio of g,
(Span Type Section | x = Dist. from | point | point wﬁfzz
Length) Left Supp. b t
Simple * 2 .5 1.180 | 1.155
.5 1.439 | 1.439 | -.1250
Two- 1 2 1.021 | 1.021 | .070
span S5 1.422 | 1.352 | -.1250
Continu. 2 2 1.109 | 1.017 .070
24 Ten- .1 1.473 | 1.421 | -.1056
span 2 1.550 | 1.490 | -.0774
Continu. 3 1.525 | 1.467 | -.0851
(Table 5) 2 4 1.533 | 1.474 | -.0828
5 1.530 | 1.471 | -.0837
.45 1.028 | 1.023 | .0418
Two-Span 3 .5 1.432 | 1.532 | -.1250
Continu. 2 1.021 | 1.025 | .070
.5 3.259 | 3.259
1 2 1.636 | 1.636
Two- .5 3.167 | 2.805
4 span 2 2 1.616 | 1.470
Continu.
.5 3.149 | 3.828
3 2 1.628 | 1.726

* under a concentrated load at x =0.5/.




224

8. Computer Program SHLAG

In the program, the distribution of longitudinal stress s, and "Stress
Ratio” in flanges of a simple and multiple-span continuous beam with Box,
I or T shape cross section can be computed for various loadings (Fig. 10).
The "Stress Ratio” at a point is defined as the ratio of the stresses
calculated with and without considering the shear lag effect. The latter
stress is given by elementary beam theory. For a continuous beam, the
redundant reactions can be determined with and without considering the
shear lag effect. The various loadings can be obtained by superposition of
three basic loadings:

a) a concentrated load of any magnitude and acting at any point.

b) a uniform load of any intensity and distributed over any length
of the beam.

c) a pair of equal and opposite longitudinal forces acting at any
point of any two sections.

8.1 Input Data
SHLAG was written for the micro-computer, CP/M2 for TRS-80
Model II. All input data can be read from the console directly.

1. Title (20 A 4) - 1 line
Title of the problem to be printed with output

2. Control data (916) -1 line
k  Total harmonic number to be used (< 300)

nx Number of prescribed cross sections at which results are required
except for the intermediate supported sections which have been
chosen as prescribed sections automatically (< 40)

ny Number of points for calculation, located at equal transverse
dist;mces, in bottom, top and edge flange of each prescribed section
>1

nr Number of redundant reactions (< 10)

n/  Number of concentrated loads (< 20)

nw Number of uniform loads (< 20)

nn Number of pairs of longitudinal loads (< 20)

ntb Type number of beam. For box beam, ntb=0 or I (Fig. 11). For I
and T beams, ntb=2 and 3

3. Geometry data (8 F 12.5) - 1 line
l Total overall beam length
h  Thickness of top and edge flange
h'  Thickness of bottom flange
h, Thickness of web
b  Half width of top flange see Fig. 11
b Half width of bottom or edge flange
d  Depth of beam
v Poisson’s ratio
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Fig. 10 Loads Considered in Program SHLAG
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xx(1), xx(2), ..., xx(nx) - x-coordinates of prescribed sections

at which results are required except supported sections (6 F 16.8).
Data in one line cannot exceed 6.

Use as many lines as necessary.

In the following, items 5-7 are used for applied loads. Loads per one

web are used for input. Items 8-9 are needed for continuous beam only.

5.

Concentrated load data (2 F 16.8) - 1 line for each load
pv(i) Magnitude of the i-th concentrated load
pl(i) x-coordinate of the i-th load
i=1, 2, ...., n/, are needed only when n/#0.

Uniform load data (3 F 16.8) - 1 line for each load
u/(i,1) Intensity of the i-th uniform load
u/(i,2) x-coordinate of left end of load
u/(1,3) x-coordinate of right end of load
i=1, 2, ..., nw, are needed only when nw 0.

Longitudinal load data (4 F 16.8) - 1 line for each pair of loads
af(i,1) Magnitude of the i-th pair of longitudinal loads
af(i,2) x-coordinate of point of application of left load
af(i,3) x-coordinate of point of application of right load
af(i,4) Vertical distance from web center to point of application of load,
positive upward.
i=1,2, ..., nn, are needed only when nn#0.

mm harmonic number for calculating displacement (I6) - 1 line

. Intermediate interior supports data (6 F 16.8) - data in one line cannot

exceed 6. Use as many lines as necessary.
xr(i) x-coordinates of the i-th intermediate interior support.

8.2 Output Data

1.
2.

Nowaw

All input data are written according to the input order for checking

RI=bhe?/I

FT/M, FB/M = Beam theory stress coefficient for top and bottom flange

¢ = Distance from web center to centroid of total cross section, positive upward
TA, TI = Area, moment of inertia of total cross section

. o (See Eq. (41), (39))

R, = Intermediate reactions calculated without considering shear lag effect
R = Intermediate reactions calculated with considering shear lag effect
x/L = Relative x-coordinates of prescribed sections

MB, MS = Total bending moment at section x, calculated without
and with considering shear lag effect

N = Total axial force at section x

BSB, BST = Beam theory stress in bottom and top flange at section x
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8. Y, YP =y, y’' - coordinates of points at which stress is computed
SST//RST = Shear lag stress and stress ratio of top flange at point
with coordinate (x,y)

SSB//RSB = Shear lag stress and stress ratio of bottom flange at point
with coordinate (x,y) for box beam or with coordinate (x, y’)

for I beam

SSE//RSE = Shear lag stress and stress ratio of edge flange at point
with coordinate (x, y’)

At point (x,b) and (x, b’), where peak stresses occur, the stresses and
stress ratio are printed three times. First, Ac™ and A¢" of Eq. (33) and (35)
are not included. Second, A¢” is included. Third, both A¢” and Ac™ are
included.

Items 6-8 are printed repeatedly for each prescribed section.
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Appendix

When m, =0 and y=b, from Eq. (10), (12) and (23) we can obtain:

il 3 _2N
Aov" =7 § l+w TRETR: (A-1)
[~ 2] 4 o :
cosada - cosab 1 sinn g,
Sn-ngﬂ n+-’ —2 1§l n=§+l n+j (A-Z)
in which, 8, has been shown in Eq. (37).
®  sinng;, & sinng, k sinng;
— = — - - A-3
,,E, n+j o on+j El n+j (A-3)
and
i sinn g; g cosjB;sin(j +n)B; —sinjB;cos(j +n)B;
nol MHJ n=l Jj+n
but
S sinG+n)f smnﬁ, J. sinng,
§ j+n 2 ,,2_, n
hence
* sinn g, X sinnp; ® ¢ : i sin(i-n)8.
> é' = cosjB; nbi sinjg; Y osn B, +3 sin(j -n)8;
n=1 NtJ n=1 n=1 N n=1 n

where the infinite series can be determined from Ref. [2]:

x Sinnﬁ,' T - ﬁ,‘

n=1 n - 2 (0< ;< 27)
% cos:ﬁi _ -%an(l—cosﬁi) (0< B;< 27)
n=1
hence
,.E=1 n+j 2 [(x= | Bi | )cosjB; +sinj | B; | In2(1-cosB;)] +

z, sin(j-n )8,
2 n

n=1

Substituting in Eq. (A-3) and (A-2), we can obtain S, as shown in Eq. (36).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



