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Autonomous driving systems involved in perception and planning require large volumes

of carefully annotated data for learning and validation. These same systems also must be aware

of failure cases so that they can safely request and initiate control transitions to human drivers or

remote operators. In this dissertation, I present novelty detection as a unifying solution to both

of these problems. Through novelty detection, active learning algorithms can reduce annotation

costs by intelligently selecting informative data, which I demonstrate on tasks of 3D object

detection and vehicle trajectory prediction. Similarly, novelty detection acts as a requisite step

for safely handling hazardous scenarios. Lastly, I present the concept of salience as a property of
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road objects which expresses their criticality to control decisions, discussing the relevance of this

property in developing machine learning systems which have stronger learning and validation

over safety-critical scene elements for autonomous driving and can adapt to novelty found in the

open world.
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Part I

Finding Meaningful Representations of

Real-World Driving Scenes
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Chapter 1

Prologue: Novelty, The Long Tail, and
Data-Driven Autonomy in the Real World

Autonomous driving presents an open avenue for studying questions of how machines

might think about, interact with, and learn from the observed environment. But for all the ways

we can compare the algorithms of these intelligent robotic systems to humans, their momentum

carries dangerous physical consequences, meaning these robots cannot be only a playground for

developing machine intelligence, but rather a place for critical, safety-forward study.

As the story of machine intelligence continues unfolding, the power of data has become

exceedingly apparent. But, not just any data: “good" data, data which is free of noise and full of

all of the variance that we want our intelligent systems to learn. And, the touted solution to any

shortcoming of an intelligent system? More (good) data! As a result, larger and larger datasets

have been released to address an increasing number of autonomous driving subtasks, so much

so that a variety of review papers and repositories exist just to keep track of the wealth of data

available [5–7]. Further emblematic of the power of data, foundation models have now entered

center stage, with large-language and vision models trained on enormous online repositories

showing remarkable generative abilities and so-called “zero-shot learning", by which tasks can

be solved without any data collection1.

1In reality, this is a bit of a mischaracterization; the data has been collected previously, in such extreme
magnitude that these models show capabilities reflecting large-scale general knowledge of nearly everything one
might find on an internet search.
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While it may seem that a natural solution to the challenge of autonomous driving would

be to continuously collect data (evidenced by the deployment of fleets which repeatedly sweep

through cities, collecting videos, maps, and point clouds), the story of data does not stop

at collection. Equally important is the meaning ascribed to the data via human annotation.

For safety-driven development, this data annotation allows not only for supervised learning

techniques, but also for validation of methods in their ability to detect and perceive at levels

considered acceptable to humans who will be in and around these machines. However, this

annotation takes significant human labor [8]. Mathematician Hanno Gottschak walks through

one such illustration of the magnitude of this problem: how many driving scene frames must

be annotated to make the statistical claim that the autonomous vehicle is “safer" than a human

driver? To this end, he estimates the lower-bound number of hours collectively driven by humans

before an accident typically occurs [9]. Considering only errors in perception, a basic sub-task

for obstacle avoidance, Gottschalk poses that we must label at least the number of frames that

exceed the number of frames a human driver would see statistically prior to an accident, and

show perfect (safety-critical2) perception on at least this many frames. Using approximations

of bounding box and image segmentation labor costs (a subject I elaborate on in Chapter 4),

Gottschalk estimates a cost of 1.16 to 51,800 Euros for such safety-validating data annotation

(and, since publication, minimum wage has risen). Translating to USD at current exchange rates,

we find these values to range from $1.24 trillion to $55,407 trillion. For comparison, at the time

of writing, the market valuation3 of the top companies with autonomous driving ventures are:

1. NVIDIA at $2.19 trillion,

2. Alphabet at $2.14 trillion ($30 billion of which is associated with Waymo),

3. Tesla at $5.36 trillion,
2I will introduce this idea of safety-critical perception in later chapters on salience.
3https://companiesmarketcap.com/autonomous-driving/largest-autonomous-driving-companies-by-market-

cap/
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Figure 1.1. There will always be new, creative ways that humans and nature throw chaos into
the environment we navigate. Construction, protests, climate events, weather conditions, animal
migration, accidents, and natural disaster will continue to create long-tail events for human and
autonomous drivers, and systems must be able to respond to these events safely.

4. Mercedes-Benz at $85.15 billion, and

5. Mobileye at $23.54 billion.

So, while data itself can now be widely and massively collected, the labor necessary

to enable both supervised learning and validation must be used efficiently if these data-driven

systems are to be made feasible, accessible, reproducible, and verifiable. This presents a first

problem: for autonomous driving, available human labor limits our utilization of collected data.

But even if such a massive volume of data is annotated, and the case is made that a

vehicle is a “statistically safer driver than humans", this does not actually move us towards having

safer systems; it only makes the case that the state-of-the-art perception is safer than human

performance. Safety requires more than perception; systems must look beyond perception to

tasks of planning and control.

The Long-Tail Problem

Real-world autonomous driving is characterized as a “long-tail problem". This refers to

the long-tailed distribution of events which lie away from typical driving, and is especially a

problem when it comes to safety for autonomous driving, as it is not the familiar which poses a

risk, but rather encounters with unexpected or novel situations. This phenomenon has also been

called the curse of rarity, again referring to the difficulty of gathering samples of events that are

most likely to cause system safety failures [10]. Further confounding the issue, collected data

itself can be noisy, redundant, and uninformative.
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Figure 1.2. Novelty detection enables a variety of capabilities in the learning, control, and vali-
dation of autonomous driving systems, making possible improved safety, reliability, adaptability,
and explainability. This dissertation introduces the relationship between these connected system
algorithms, representations of the driving environment, and real-world safety outcomes.

This creates an interesting situation for data-driven development; on one hand, we have

an annotation bottleneck due to an overabundance of data, and on the other hand, we must

continue data collection to continue addressing long-tail events. But, these problems can both

be addressed in the same manner: data curation can allow for systems to intelligently identify

instances of criticality which are most important to annotate for resource efficiency, robust

learning, and safety validation, and this is the story I tell in this dissertation.

To be able to detect and respond to surprising occurrences is not a task to be solved

once by collecting and annotating enough data. It requires new systems of adaptive learning

which can recognize, understand, and respond to changes in the environment. My research

addresses these challenges through novelty detection, providing a framework (Figure 1.2) for

active learning, safe control transitions, and development of systems which are highly adaptable

to the ever-changing and chaotic real world.

This dissertation is organized as follows:

• In Part I, I will present algorithms for detecting novelty in visual datasets using vision-
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language representations, and in trajectory datasets using state and sequence clustering.

• In Part II, I will present the utility of such novelty detection as a means of active learning

in 3D object detection.

• In Part III, I will continue presenting the utility of novelty detection, but now for trajectory

prediction, and the relationship of trajectory prediction as an intermediate task between

object detection and path planning for safe autonomous driving.

• In Part IV, I will describe algorithms for modeling the transition between autonomous and

manual control, highlighting the need for novelty detection in these frameworks.

• In the concluding Part V, I will introduce the idea of road object salience, and how, paired

with novelty detection, a framework can support autonomous driving in the presence of

long-tail events.
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Chapter 2

Terminology and Approaches to Identify
Tail Cases

The idea of a “normal" driving scenario is an abstractly defined concept which varies

with respect to geographic, individual, and social influences; as humans, we are usually able to

notice when something is abnormal, but there are many dimensions by which this abnormality

can be characterized, leading to a lack of agreed terminology [11]. Related words include edge

cases, corner cases, extreme cases, boundary cases, outliers, anomalies, novelty, unexpected

events, unusual events, and long-tail events. In this section, I present definitions adopted in

prior literature to facilitate a common understanding toward the contents of this dissertation, and

include clarifying commentary on the relationship between these concepts.

• Outliers are situations which deviate from “normal" driving [12]. The term is used to

describe information with respect to the distribution of driving scenarios rather than the

system’s ability to handle such scenarios. When these are anticipated and addressed for

system handling, they are often called edge cases. The terminology of extreme cases and

boundary cases typically fall within this edge case concept.

• Situations which deviate from “normal" driving and are unexpected or unplanned for

system handling are often called corner cases. This definition assumes some agreed-

upon understanding of what constitutes “normal" driving. Robust detection of corner

cases is necessary for reliable and safe autonomous driving perception [11]. Heidecker
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et al. organize corner cases into three broad layers: content, temporal, and sensor. In the

content layer, edge cases can exist at the scene, object, or domain level. In the temporal

layer, the playout of a scenario can be a corner case. In the sensor layer, anomalous

cases at the pixel or point-cloud level are detected. Koopman et al. provide a different

definition, built around the idea of a corner, referring to corner cases as those which arise

from the combination of several normal situations coinciding simultaneously in a rare

combination [13]. Also aligned with these definitions, Bolte et al. define a corner case as

a case with a non-predictable, relevant object in a relevant location [14]. While the term

anomaly describes a deviation from normality, for autonomous driving, Heidecker et al.

clarify that this deviation is manifested in non-conforming behavior or patterns, making

the term nearly synonymous to corner case [11, 14–16].

• The term novelty is used to describe previously unseen instances [12, 17]. This can

arise from changes to the distribution underlying a process, or sampling from previously

unvisited area of a distribution. We note that corner cases are also essentially novel in this

regard, because they are unexpected and unaccounted for in the system. The definition of

novelty is especially useful for data-driven learning systems, as it can be used to refer to

instances which are “unseen" in training data.

To summarize the above: an unusual occurrence can be atypical with respect to the

distribution of driving scenarios found in the real-world, or atypical with respect to what an

autonomous driving system has been designed to handle. In the first case, when these are

accounted for in system design, they are referred to as “edge cases", while all cases unaccounted

for (whether typical or not) can be handled by the umbrella term “corner case". The long-tail

problem in autonomous driving assumes a coupling between scenario typicality and danger,

pairing normal driving scenarios with safety, and atypical scenarios with increased risk.

In this dissertation, I use novelty as an all-emcompassing term to describe data instances

which are yet-to-be-sampled but within the realm of normalcy (shown as discontinuities in
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Figure 2.1. A visual interpretation of the relationship between adopted terminology used to
describe unusual driving events and autonomous systems. In my dissertation, I use novelty
to refer to events that are unhandled by the autonomous system as well as events which are
completely unexpected within the distribution of existing driving events, reflecting that the world
(and sensors and systems) may present scenarios which are completely novel compared to that
which has been observed or existent prior.

Figure 2.1), as well as those which are yet-to-be-sampled within the outlying driving scenario

distribution, and then also those which exist beyond the range of expected data, introduced under

distribution shifts. In any case, this term “novelty" allows us to represent the idea of something

which is not yet part of training data or safe-handling system knowledge. We also make the

important note that these words can be used to describe occurrences in the scene or scenario, but

also occurrences (or failures) of sensors and hardware.

Prior research in autonomous driving corner case detection have used a variety of methods

with a variety of data modalities, such as:

• Images: CNN for overexposure detection [18], direct planar hypothesis testing [19] and

FCN [20] for small-object detection, learned embedding density estimation for uncertainty

in semantic segmentation [21], unexpected scene object detection by synthetic image

reconstruction [22],
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• Video: image prediction of future frames for anomaly detection [14],

• LiDAR: CNN on point clouds for open-set instance segmentation [23] and object detection

[24], and

• Radar: CNN features for open-set radar waveform classification [25].

The utility of curating or mining novelty is multifaceted: (1) Efficiency within data

pipelines is improved when data collection fleets can be selectively deployed, data analysis

and storage can be filtered to particular instances, and human annotation labor can be reduced;

(2) Model performance can be increased by curating data in instances of uncertainty, a topic

I address in Chapter 4; and (3) Novel cases, once curated and annotated, can be presented to

models during validation to assess safety robustness. Heidecker et al. reinforces this value,

stating that "[corner cases] provide both the appropriate training, and the crucial test data to

successfully develop and validate robust perception methods" [11], and again by Hanselmann

et al., who state “Due to the high consequences of failure, [autonomous driving systems] have

to satisfy extraordinarily high standards of robustness in the face of unseen and safety-critical

scenarios. However, real-world data collection and validation for these situations is dangerous

and lacks the necessary scalability." [26]

With a case made for the value of curation of novelty in driving scenarios, in the next

chapter, I introduce a method for this curation using language-based representations of visual

data, and in following chapters, I continue the search for novelty through representations of

perception model uncertainty and trajectory diversity.
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Chapter 3

Towards Explainable, Safe Autonomous
Driving with Language Embeddings for
Novelty Identification and Active Learn-
ing: Framework and Experimental Analy-
sis with Real-World Data Sets

3.1 Introduction: Novelty in Autonomous Driving

Unique failure cases of autonomous vehicles frequently make current news headlines,

sometimes for their absurdity, other times for their tragedy; together, such news highlights that

there are many situations autonomous vehicles are unable to navigate [27], and sometimes with

grave consequence.

We can imagine, as human drivers, certain situations which are unexpected and require

careful decision-making; driving into a patch of intense and sudden fog, interacting with a

construction worker guiding a detour around an active site, pulling over safely when an ambulance

needs to pass or police officer needs our attention, airport construction changing the contour

of the usual dropoff and pickup zones, etc. In these cases, for an autonomous system trained

to adhere to lane flow and avoid obstacles may be missing the higher-level reasoning abilities

required of a human driver, and may, rightfully, provide a human takeover request [2, 3, 28]. But,

how does the system recognize when such a control takeover is necessary, especially when a
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metric like time-to-collision oversimplifies the problem of safety for complex scenes?

In this case, it becomes important for the system to have an onboard method of novelty

detection, recognizing when an unfamiliar or uncertain scene is presented.

The benefit of novelty detection does not stop at takeover requests; novelty detection

serves a dual purpose in active learning. Active learning systems seek to select training data

from a large, unlabeled pool to make machine learning more data-efficient. These methods are

broadly classified by their acquisition functions into those which select data based on uncertainty

and those that select data based on novelty.

Why research methods of sampling based on novelty instead of uncertainty? Uncertainty-

based methods deal with the task-specific confidence of models in localizing or classifying

objects or task-related instances. On the other hand, the novelty method proposed in this paper

handles input at the scene level, observing the field of view agnostic of the number of objects

proposed by a specified task learner. This provides the dual purpose of novelty detection to

initiate takeover responses for safety, rather than a measure of effectiveness of an object detector.

Further, even as exemplified in the second paragraph of this article, we are able to

express our scene understanding (in particular, describing novel features) through the modality

of language, as illustrated in Figure 3.1. We propose that a language-based representation of a

scene is a useful representation for novelty detection and, by extension, active learning.

In this research, we present an experiment by which we organize a large autonomous

driving dataset into sets united by presence of notable features, and use clusters of language

descriptor embeddings to identify scenes as novel. Having a language-based means of assess-

ing scene complexity or novelty may be useful not only for handling model regime changes

(autonomous modes for different settings) [29], human takeover requests (remote or in-cabin),

and active learning methods for data collection, curation, and annotation, but also for doing

the above in a way which may be explainable through decoding of language embeddings. We

demonstrate this explainability by presenting an algorithm for generating text descriptions of

what sets novel-identified scenes apart from their surrounding pool, leveraging large language
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Figure 3.1. Natural language serves as a form of feature extraction, whereby data can be
represented by meaningful description immediately understandable to a human reader. Such
representations can also be generated by machines using vision-language models, and we present
algorithms by which such representations (in both final and intermediate forms) can serve tasks
of novelty identification in autonomous driving, useful towards anomaly detection and active
learning tasks.
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Figure 3.2. There are many important tasks to solve for the autonomous vehicle in this scene:
detection of obstacles and external agents, prediction of agent trajectories for safe planning, and
interpretation of traffic control elements for control decisions. For a limited data budget, at what
point does it become more beneficial for a learning model to bring in new scenes instead of
variants of old scenes? Does the information gain of data in new scenes exceed the information
gain of variants of old scenes across all tasks?

and language-vision models in the process and providing qualitative results on the autonomous

driving dataset.

3.2 Novelty as Active Learning

Here we adopt the definition of Cohn et al., where active learning is any form of learning

in which the learning program has some control over the inputs on which it trains [1]. In their

research, they qualify that “selective sampling is active learning"; they propose a method by

which all samplings is done from the so-called region of uncertainty. In Figure 3.3, we adapt their

original framing of query sampling to the larger, multi-task problem of safe autonomous driving.

In the original framing, one of the largest problems the authors point out is that as a class model

becomes more complex, it becomes difficult to compute an accurate approximation of the region

of uncertainty. In this research, we propose language-embedding novelty as a suitable analogy to

uncertainty for these purposes, avoiding the active learning collapse to random sampling.

In general, active learning acquisition functions can be separated into categories of

model-dependent uncertainty measurement, in which a function quantifies uncertainty based on

some task-dependent measurement from a model, and novelty measurement, in which data is

sampled independent of the model on some other property or properties. One downside of using

a model-dependent uncertainty-related acquisition function is that different tasks may select

different data to be included in the task training pool. In the cases where the active learning
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Figure 3.3. In [1], Cohn et al. use an abstract setting like the figure shown on left to suggest that
there are many possible models (black rectangles) which could be used to classify the points,
but that this model performance does not necessarily indicate a complete and accurate learning
of the appropriate concept. By sampling in the spaces where the model may be uncertain, a
stronger refining of the model boundary can occur, leading to improved generalizability. On
right, we abstractly show how this manner of thinking might be applied to similar active learning
for autonomous driving. In the center, we have scenes which contain pedestrians, as opposed
to scenes without outside. A region shaded in yellow indicates a hypothetical region where the
model could benefit from sampling, to narrow its hypothesis of what separates pedestrian scenes
from others. However, the general problem of safe autonomy is much more complex, where
multiple tasks (such as object detection, tracking, and localization) must all be met with high
performance, and a point sampled as uncertain toward one task may be redundant to another.
Further, the high-dimensional nature of the data does not reduce to such an easily-separable
space. In this research, we propose that language-based embeddings of scene images are a useful
reduction for identification of novel qualities, on the premise that sampling novelty may be useful
towards multi-task model improvement.
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method may be driving large-scale data collection, curation, and annotation, it is better that the

expensively acquired data be strongly beneficial to many required tasks [30]. While acquiring

data based on a novelty heuristic may not guarantee optimality for a particular task, its task

independence may be useful in serving a variety of models simultaneously. As another benefit

toward a novelty-based method of active sampling, it has been shown that under low data budgets,

sampling typical examples gives the greatest performance gains, but beyond a certain budget

(which would reasonably be expected of a safety-centric autonomous driving system), learning

gains actually come from the sampling of atypical examples [31].

There are a variety of strategies toward identifying novel samples in the data pool for

inclusion in the training set; a prototypical approach may include handcrafting a descriptor of

each sample, and using some unsupervised method, such as clustering or overfitting single-

sample learners, paired with a thresholding function, to identify what is most dissimilar to what

is already in the training set. We show an example of such a method in Figure 3.4, where a

feature vector of each sample image is mapped to some latent space, and included in the training

pool if satisfactorily distinct from existing training points. In the methods presented in this

paper, rather than using a handcrafted feature descriptor for each sample, we propose using a

pre-trainined language-based feature descriptor, as such models are effective toward captioning

(i.e. describing and explaining) visual input. Such a method assumes that details which differ

between samples are distinct enough that they may be described and distinguished verbally from

their image representations.

3.2.1 What makes autonomous driving imbalance different than other
class imbalance problems?

Much of machine learning research treats the class imbalance problem as an issue of

having feature-represented and labelled samples to classify, with some classes appearing more

often than others [32]. In our domain, the problem is at a different level of abstraction. Each

driving scene is unique with its own high-dimensional fingerprint, and there does not exist a
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Figure 3.4. If we view deep learning (and machine learning in general) as a process by which
parameters algorithmically extract useful features from data (by means of converting data from
its original structure to a structure of abstract, lower-dimensional, intelligent meaning), then
we can consider each data point to be projected into a variety of spaces of varying dimension
throughout the forward process. For a model to be successfully fit to its task (i.e. not overfit nor
underfit), at some point, the data must reach a meaningful, useful projected representation. An
example projection is depicted in the two graphs on right. Presumably, each point carries with it
some “coverage" of the latent space, shown with a black radius, such that similar points not found
in the training set would receive similar prediction by the model. When we add new data to train
a model, such as the candidates shown in yellow and red in the middle graph, we would like to be
efficient, adding only data which improves the model’s coverage of the problem latent space. The
driving question of this research is: what descriptors or features make a useful representation,
such that an algorithm can quickly identify points which are less useful (such as the point shown
in red)? Do these descriptors come from high-level abstract meaning, as we show on the left with
human-understandable features like number of pedestrians, speed, and weather? Or, should these
descriptors emerge from an embedded, learned feature directed from the raw sensor input and
the model’s own transformations of this input, trading explainability for optimality? How can
these descriptors be leveraged towards active learning, and what implications do these choices
make towards curating and annotating such datasets?
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standard and fixed taxonomy by which we sort driving encounters. Even in driver monitoring

alone, the problem is considered open-set due to its real-world placement and the natural ability of

drivers to be creative, independent agents, who may make decisions to hold an object, maneuver

through a trajectory, or drive to a location that has never been observed before [33]. In the words

of Calumby et al., “[L]ow-level visual features are usually not able to properly describe the rich

semantic intent of a query nor the high-level concepts found in the images of a collection (the

well-known semantic gap)." [34]

There are a multitude of approaches that can be taken to resolve this over-representation

problem, but there also exists a necessary relationship between the solution and the intended

task’s data-driven method. For example, a technique as simple as filtering to limit records from

a particular GPS coordinate may be helpful to ensure a geographical spread, which might be

helpful for mapping traffic signs and lane systems, but such an approach does not help for a task

around estimating traffic flow or predicting driver lane change behavior, where scene factors like

traffic density and speed play a greater role than geographic location.

Methods which reallocate learning priority to samples to turn a distribution from un-

balanced to uniform are at a non-start, because there is not such a distribution framework to

draw from (abstractly) from these enormous, high-dimensional datasets. Low-level descriptive

scene features such as lighting and ego position can be readily extracted from the raw data, but

many notable features which make a driving scene ‘novel’ exist as high-level descriptors, such as

driving maneuvers [35]; presence, location, and count of surrounding pedestrians and vehicles;

and irregular road events [36]. Thus, we propose the development of such a taxonomy as a valid

intermediate step, such that the wealth of research in low-level data imbalance methods can be

applied and explored. This would enable the use of standard methods such as class-balancing

oversampling and undersampling, and weighted loss functions which associate higher loss values

with data derived from safety-critical or under-represented scenes. A natural question for this

domain is, should such a taxonomy be explicitly defined in explainable form, or can a latent,

self-organized representation of all driving scenes be learned that creates an informative sampling
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space? We propose here that the latent embeddings which encode language suffice to form this

organized space, building from the assumption that there are observable patterns in the data that

we can use towards our decision, and that the words that we use to describe a scene may help

point towards features we have not seen before. A collateral benefit of such a representation is

the ability to explain data inclusion through language itself.

3.2.2 Data Imbalance from Scene Redundancy

To motivate this style of learning, consider the scene shown in Figure 3.2; the data

collecting vehicle repeatedly visits the same intersection. At some point, the vehicle will have

observed a great variety (perhaps a near-exhaustive variety) of scene agent configurations, vehicle

types, and visibility conditions at this location. Once the location ceases to be novel, is the

vehicle’s time (and data capture) better spent in another location to improve its driving abilities?

Data sampling methods are commonly used to overcome data imbalance, such as random

under-sampling (to remove majority cases from training data), and random over-sampling (having

under-represented classes appear more frequently during training). In principle, standard data

augmentation serves this same purpose, on the basis that the collected data is has sufficient

examples of prototypical data but under-represents the variance of the complete population of

data along some parameter which is being augmented for (e.g. lighting, translation, reflection).

Naturally, augmentation methods can be applied to minority-class data to build a stronger

representation within a training dataset, but this relies on sufficient examples of the minority-

class’s principal patterns. By sampling for novelty, our method may introduce new instances of

minority-class data by providing only data which can be described or captioned in a way unlike

what is already in the training set.

Because autonomous driving data is heavily multimodal, polling multiple modes for

uncertainty is complex; selecting data which supports learning is not only task-dependent, but

even modality dependent, which makes the task of guiding data collection for improved learning

outcomes even more difficult when certain sensors have disagreement on what regions of a map
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or types of encounters carry the most uncertainty within their respective data modality.

3.2.3 Solutions in Active Learning

Active learning is the process by which a learning system interactively selects which data

points should be added from the unlabeled data pool to the labeled training set, assisted by the

intervention of a human expert providing associated annotations [37]. If this process is done

with no information about the model, we refer to this as data curation. In the data cycle, such a

step naturally exists between collection and annotation.

For the purpose of active learning, low-level descriptive scene features such as lighting

and ego position can be readily extracted from the raw data, but many notable features which make

a driving scene ‘novel’ exist as high-level descriptors, such as driving maneuvers [35]; presence,

location, and count of surrounding pedestrians and vehicles; and irregular road events [36].

Accordingly, in this research we investigate feature definition, extraction, and effectiveness for

active learning algorithms.

How does active learning relate to these problems? We can view active learning as a

method of intelligent oversampling. In this frame, the range of knowledge which the model has

learned serves as a training “majority", while knowledge the model has yet to learn serves a

training “minority". In the process of determining which samples to draw from the available

(unlabeled) data pool, we intend to oversample from those which are underrepresented in the

training data.

3.3 Related Research

3.3.1 Diversity and Novelty

To clarify between related active learning sampling concepts, [38] categorizes data

by informativeness (have the most uncertainty as viewed by a particular model), diversity

(minimal redundancy between like-data, e.g. maximizing angle between representation for
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angular metrics), and representativeness (measure of similarity of one unlabeled data point

to the rest of the unlabeled pool). As an example, Calumby et al. [34] re-rank images for

retrieval by text queries by seeking to increase diversity of returned sets using visual and textual

descriptors so that the system can better learn relevant retrieval from human feedback. In this

research, we explore the related concept of novelty, which we may conceptualize as a neighbor

to representativeness; where representativeness assesses an unlabeled datum’s ability to represent

others in the unlabeled pool, our novelty assesses an unlabeled datum’s ability to different

than the labeled set. Liang et al. [39] even show that active learning with sampling based on

spatial and temporal diversity (i.e. drawing samples from non-overlapping locations and times)

show improvements in 3D object detection on the NuScenes dataset. Elhafsi et al. [40] show

that language models can be effective in finding significant semantic anomalies in simulated

autonomous driving and robotic manipulation.

Novelty is useful not only in efficient learning paradigms, but also in direct safety

applications. For example, the measurement of Bayesian surprise (or KL divergence between an

expected and observed distribution) has been used to detect novelty in the form of unexpected

obstacles for autonomous driving of a warehouse robot [41]. The ability of an autonomous

system to recognize novel or unfamiliar settings also allows such systems to request human

intervention or guidance, especially important for safety [42, 43]. Currently, graph-based

methods comprise the state of the art in autonomous driving, and the heterogeneity of data

sensors and corresponding methods, as well as the formalization of sufficient ontologies to

capture the nuances and complexity of real-world scenarios, make this an important open safety

challenge [11, 44].

3.3.2 Explainability

The integration of interpretability/explainability and active learning has been considered

in prior research; for example, Mahapatra et al. [45] use interpretability salience maps from

training a model for classifying lung disease from chest x-ray images, and actively selecting
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samples classified to the highest level of ‘informativeness’ from these maps. Language has been

shown to be a promising medium of explainability in autonomous driving, for tasks such as

scenario interpretation [46], decision-making [47], and intention prediction [48], even allowing

for passenger queries to these systems.

3.3.3 Efficient Learning

Learning from non-task-specific features is a characteristic of self-supervised learning;

as an example, Saeed et al. [49] show the ability of a model to learn semantic representations

of accelerometer data in an unsupervised way through transformation recognition networks,

leveraging the invariance (or, known alterations) of signals through certain transformations, then

using this learning for human activity recognition. Rather than transferring the learned patterns

directly from the non-task-specific pretraining, in our presented research, we instead utilize these

representations of data directly as a means of active selection of informative samples. These

methods share in common a benefit toward multi-task learning.

Li and Guo, discussing model uncertainty-based active learning [50], state, with our

added emphasis:

These works however merely evaluate the informativeness of instances with
most uncertainty measures, which assume an instance with higher classification
uncertainty is more critical to label. Although the most uncertainty measures are
effective on selecting informative instances in many scenarios, they only capture
the relationship of the candidate instance with the current classification
model and fail to take the data distribution information contained in the
unlabeled data into account. This may lead to selecting non-useful instances
to label. For example, an outlier can be most uncertain to classify, but useless to
label. This suggests representativeness of the candidate instance in addition to the
classification uncertainty should be considered in developing an active learning
strategy.

Because there are so many models which must operate successfully over the same

data for safe autonomous driving (e.g. lane detection [51], 3D object detection [52], sign

and light recognition [53–55], multi-object tracking [56], path planning [57–59], trajectory

prediction [60–66], intention prediction [35, 67, 68]), having data which supports all models
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is necessary, but impractical when the sampling method depends on any one task or model.

By leveraging language-based descriptors of the data itself, we do not sample using model

uncertainty, but rather from the representativeness of a data point in relation to all other data

points.

CLIP (Contrastive Language–Image Pre-training) [69] is a multi-modal neural network

architecture trained on a wide variety of images and associated language description. Its

pretraining allows it to adapt to a variety of zero-shot learning tasks [70], with a multitude of

applications in image search and retrieval. It typically uses two Transformer backbones; one

which acts as an image encoder and another which acts as a text encoder, projecting the features

to a shared vector space. Images are handled by splitting into non-overlapping patches, linearly

embedded, and concatenated with positional encodings. During training, contrastive loss is used

to maximize the similarity (dot product) between encodings of image-text pairs:

a ·b
∥a∥ · ∥b∥

, (3.1)

where a is the image encoding and b is the text encoding.

The pre-trained representations in the CLIP model have been shown to be effective at a

variety of zero-shot learning tasks, such as 3D object detection, classification, and segmentation,

by combining textual features with standard point clouds and depth maps prior to performing the

detection, classification, or segmentation tasks [71]. Impressively, embodied AI agents which

use CLIP information can even autonomously navigate to objects that were not used as targets

during training [72]. By using learned language embeddings, such a system acts as a multi-label

learner (i.e. data may have more than one class label, which a model should be able to assign

simultaneously), which have been effective for active multitask learning in prior research [73,74].
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Figure 3.5. An overview of the method presented in this chapter. Scene images from a pool
of driving scenarios are input to a Contrastive Language-Image Pretrained image encoder. The
resulting embedding could be used in a text decoder for image captioning, but instead, we
perform clustering over the resulting embedding vectors from a large pool of samples, as shown
at right. Images whose representation appears independent of the identified clusters, such as
the one in white at the center of the representation space, are considered to be novel. The
experiments shared in this research describe whether or not the novelty identified by this method
aligns with the concepts of novelty reflected in the organization of the datasets.
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Algorithm 1: Image Encoding and Clustering
Data: Set of images I
Result: Novelty set N

1 Step 1: Encode all images into vectors using CLIP model
2 for each image I in I do
3 vI ← CLIP_encode(I);

4 Step 2: Cluster vectors using hierarchical clustering with threshold t
5 C ← Hierarchical_Clustering({vI}, t);

6 Step 3: Add unclustered vectors to novelty set N
7 for each vector v in {vI} do
8 Add v to N if v is not in any cluster;

Figure 3.6. Images from each set of the TUMTraf dataset. From left to right, the figure shows
normal traffic, accident, pre-accident, dense fog, and snow scenes.

3.4 Algorithm for Novelty Identification by Clustering over
CLIP Embeddings

We present our algorithm for novelty identification in Algorithm 1, with illustration in

Figure 3.5. This algorithm is used to create a set of novel scenes from a group of scene images.

While the presented algorithm utilizes the pre-trained CLIP encoder and hierarchical clustering,

the same procedure can be applied for alternative descriptor vectors and clustering algorithms.

3.5 Experimental Evaluation

3.5.1 Datasets

LAVA

For this experiment, we sample scenes from the LAVA dataset [75]. We define 12 sets of

data, each containing 500 images:
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Figure 3.7. Images from each set and opposite set are shown next to each other. Some features are
easier to spot-the-difference than others. In order from top to bottom, the figure shows day-night,
with/without pedestrians, with/without construction, with/without traffic lights, with/without
traffic signs, and on/off college campus.
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1. Scenes with street signs,

2. Scenes without street signs,

3. Scenes with active construction signs and/or workers,

4. Scenes without active construction signs and/or workers,

5. Scenes captured around a college campus,

6. Scenes captured away from a college campus,

7. Scenes captured during daytime,

8. Scenes captured at night,

9. Scenes with traffic lights,

10. Scenes without traffic lights,

11. Scenes with pedestrians, and

12. Scenes without pedestrians.

Representative images from the sets are shown in Figure 3.7.

We note that these sets vary in level of abstraction; some contain specific objects, and

others contain a higher-level idea not necessarily exemplified by the presence of a particular

object. Further, some sets are defined on the presence of an object, while others are defined on

the absence of those objects.

Each of the sets above has a clear antithesis set. Using this property, we create twelve

near homogeneous sets, where each set contains its original 500 images, plus one image randomly

sampled from its antithesis set. This additional image, within the near homogeneous set, is

guaranteed to be novel on the feature which defines the set.
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TUM Traffic

While the LAVA dataset is taken from a vehicle-mounted camera, we perform another

set of experiments from the infrastructure-mounted cameras of the TUM Traffic (TUMTraf)

dataset [76] [77], which observes freeway activity along the A9 autobahn in Germany. This

dataset also includes a rare traffic accident event. We isolate the following subsets of data:

1. Scenes in normal traffic (175 images),

2. Scenes in dense fog (358 images),

3. Scenes in snowy conditions (375 images),

4. Scenes just before a traffic accident, and

5. Scenes just after a traffic accident.

In the case of “Scenes just before a traffic accident", we include images where it would

be evident to an omniscient observer that something so anomalous is happening that an accident

is surely to occur in the near future, illustrated in Figure 3.6. For the before-and-after accident

scenes, since there is only one accident occurence, we only form two sets from this data: all

normal + one pre-accident, and all normal + one accident. For the other two novelties (snow and

fog), we form all normal + one snow, all normal + one fog, and their opposites all snow + one

normal and all fog + one normal. Examples of images from each scene type are shown in Figure

3.6.

3.5.2 Implementation Details

For CLIP encoding of images [74], we utilize the Vision Transformer (ViT) backbone [78],

with the “large" model size and image patches of size 14x14 pixels (in general, smaller patch

sizes require more total model parameters, but may lead to better performance). We use an

embedded vector size of 512.
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Table 3.1. LAVA Experiment Results

Set Category Set Size with Novel Element
Without Traffic Signs 3
Without Construction 2

Around College Campus 2
Away from College Campus 1

Daytime 2
Nighttime 3

Traffic Lights 4
Without Traffic Lights 2
Without Pedestrians 3

Table 3.2. TUMTraf Experiment Results

Set Category Set Size with Novel Element
Normal (One Accident) 1

Normal (One Pre-Accident) 1
Normal (One Snow) 1
Normal (One Fog) 1

Snow 1
Fog 1

We compute the cosine distance

arccos
(

a ·b
∥a∥ · ∥b∥

)
(3.2)

between each pair of vectors for clustering, and apply the hierarchical clustering algorithm

[79, 80]. We use the average distance of all points in a cluster in re-assigning cluster distances

when constructing the dendrogram (i.e. unweighted pair group method with arithmetic mean). A

threshold τ is applied to estimate the flat clusters, such that the cophenetic distance between any

pair within one of the flat clusters is no greater than τ . We explore values of τ between 0.22 and

0.75 empirically, and optimize for each trial for this experiment, selecting values between 0.35

and 0.65 depending on the experimental set.
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3.6 Zero-Shot Novelty Classification Results

Results of our LAVA experiments are provided in Table 3.1 and results of our TUMTraf

experiments are provided in Table 3.2. In the data pool for each set category, one element belongs

to the opposite set. The column at right describes the size of the algorithmically-determined

“novel set" which contains this one unique element (as well as any true set elements classified as

“novel"). In the ideal case, only one element (i.e. the novel element) would remain unclustered

at the end of the algorithm, and in the worst case, 500 elements would be unclustered (i.e. the

algorithm considers all elements unique). Our values are promising; on the LAVA dataset, novel

set sizes range from 1 to 88, with an average size of 14 (approximately 3% of the available data

pool). On the TUMTraf dataset, all novel set sizes are 1! This indicates that the algorithm is able

to isolate, based on our set construction criteria, the unique element of the set without making

false-positive novelty identifications.

Further, we observe that in general, the algorithm is more successful at identifying the

presence, rather than the absence, of its defining property. This is naturally reflected in language;

when humans describe a scene in natural language, we describe what the scene contains, not the

long list of everything not found in the scene. Notable examples, reflected in the Challenge Cases

in Table 3.3, include difficulty in identifying that one sample was missing traffic signs (novel

set size of 35, as opposed to 3 when finding the one that did have a traffic sign), pedestrians

(novel set size of 88, as opposed to 3 when finding the novel set that did have a pedestrian),

and construction (novel set size of 17, as opposed to 2 when finding the novel set that does

feature construction). We note that the identification of the scene without pedestrians was made

especially hard by the inclusion of 3 nearly identical images that did feature pedestrians (same

neighborhood, in the distance) as illustrated in Figure 3.8; considering the similarity of the target

image to the other three, the fact that these four were not clustered at the point when the target

image was labeled ‘novel’ is great. We also note that the construction category may be difficult

by the fact that many elements that define a construction site (cones, signs, and people wearing
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Figure 3.8. An example of a challenge case; the dataset contains four images which are nearly
identical (among the 500 total), and the pedestrians when present are far in the distance, making
the scene in the same neighborhood (albeit with no pedestrians) different to discern as unique.

Table 3.3. Results on Challenge Cases

Set Category Set Size with Novel Element
Pedestrians 88

Traffic Signs 35
Construction 11

orange) may also be found in non-construction scenes, making it more of a challenge to identify

the construction scene as particularly unique, since it is the combination of all these elements

that creates this uniqueness. Further, chance “novelty" also appears in some of these datasets,

such as a rare nighttime scene occurrence in an otherwise mostly-daytime set.

As an unexpected but exciting result, we also found that in some cases, the additional

samples “mistakenly" marked as novel were in fact novel for a different reason: the camera

became occluded due to rain, fog, light saturation, or motion blur. We show some of these

interesting novelty detections in Figure 3.9, which, for purposes of novelty detection, we would

consider to be unexpected successes of the algorithm.

3.7 Machine Explainability

Rather than trusting the machine to identify novelty correctly using language embeddings,

we add one further layer of explainability to our experiment: we ask the machine to state what

makes the selected ‘novel’ image different from all other clusters. Consider all observable

features of the scene, we would like to find:

Fnovel \ (F1∪F2∪ . . .∪FN), (3.3)
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Figure 3.9. Certain images were not novel along the intended set quality, but were nonetheless
novel to their set. Especially promising is that some of these novel captures reflect a failure
or occlusion of the sensor, rather than a novel scene element, suggesting that these embedded
representations may also be useful in providing information about the sensor state. The above
images include cases of condensation blur, passing under a bridge, light saturation, motion blur,
and even surprising debris in the vehicle’s path.

where Fnovel is the set of observable features in the novel scene, and Fi indicates the set of

observable features from scene i, from the total pool of N scenes, excluding the novel scene.

The Large Language and Vision Assisnt (LLaVA) is an end-to-end trained large multi-

modal model that connects a vision encoder and LLM for general-purpose visual and language

understanding [81]. This multimodal model forms the basis for the decoding of our images from

their visual embedding to a language form. We use the Mistral 7-billion parameter LLM [82] as

our text embedding backbone1. After generating text associated with images, we use the GPT-3.5

LLM model from OpenAI to connect information between images, prompting the system to

identify what features from the “novel" image distinguish it from the other images in its pool.

Encoding all observable features of an image to a textual description provides our first

loss of information (essentially the opposite action of the adage “A picture is worth a thousand

words"). Referring to our text-described features as T , we now update our goal as:

Tnovel \ (T1∪T2∪ . . .∪TN), (3.4)

1The algorithms we present can be used with even stronger backbones for systems with more computational
power.
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where Tnovel is the set of text-described features in the novel scene, and Ti indicates the set of

text-described features from scene i, from the total pool of N scenes, excluding the novel scene.

We now reach an interesting limit, illustrated in Figure 3.10. The more images we

compare to, the more of our (language-limited) information we may exclude from the possible

description of novelty. However, we still need to compare to enough images so that only the

novel features are left in the description. Fortunately, to mitigate this tradeoff, we can leverage

the clustering that has already been performed on the image embeddings; we assume that each

cluster is united on some feature(s), and that by selecting an element from each cluster, we may

effectively sample for that feature, thereby eliminating that feature as a possible novelty of the

novel image.

With this, we update our goal once more as:

Tnovel \ (Tc1∪Tc2∪ . . .∪Tcn), (3.5)

where Tnovel is still the set of text-described features in the novel scene, and Tci indicates the

set of text-described features from one image of cluster i, from the total pool of n < N clusters,

excluding the novel scene.

Algorithm 2: Generating Explanation of Scene Novelty
Data: Novel scene image, clustered scene images, language-vision model, LLM
Result: String description explaining what is novel in the input scene relative to the

other scenes

1 Generate a detailed description of the novel scene using the language-vision model;
2 foreach cluster of scenes do
3 Sample one scene from the cluster;
4 Generate a detailed description of the scene using the language-vision model;

5 Prompt the LLM to identify what makes the novel image description different from
all other images;

6 Return description explaining novelty.

This procedure is summarized in Algorithm 2. We also provide discussion of further
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Figure 3.10. In attempting to identify the features which make one scene novel from the rest,
there is a tradeoff induced by the reduction of images to a text space. Each scene’s observable
feature set is represented by a circle. Only a discrete number of those features may also be
represented by generated language descriptions, indicated as colored diamonds associated with
each feature set. In the top scenario, we see that by accounting for commonalities, it is possible
to identify a remaining language-describable feature available to explain the novelty of the novel
scene (identified by the red arrow). However, in the bottom scenario, by introducing another
scene into the comparison, we have eliminated all language-describable features. In the ideal
scenario, we have an infinitely-strong vocabulary to fully describe the set of all observable
features, making this a non-issue, but to overcome the challenges still present in state-of-the-art
vision-language models, we present a sampling algorithm to allow for explainable results of
scene novelty.
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enhancements in the Future Work section, using repeated sampling for more robust descriptions

of novel elements.

We utilize this algorithm to generate an explanation for what makes each of the novel set

elements novel, and reach the qualitative descriptions presented as captions next to each image

in Figures 3.11 and 3.12. In addition to identifying the novelty that we constructed into the

sets, we also provide examples where the algorithm identifies other sources of novelty, shown

qualitatively in Figure 3.13.

3.8 Concluding Remarks

The real world is an open set; there will always be new elements, and things that appear

in unexpected ways. We cannot create a discrete class system which accurately accounts for (and

describes) the variety of what we might encounter while driving; yet, we can identify when we

are encountering something new, and we can find ways to describe our encounter with natural

language. For these reasons, the use of language-driven embeddings as a means of novelty

detection provide great promise toward continued development in safe takeovers, data curation,

active learning, and explainability.

3.8.1 Future Research

In this research, we show that language embeddings are sufficient for identifying novelty

in a collection of datasets. As a next step towards understanding the role of this novelty in

active learning, future work should apply this novelty measure as a means of selection for

elements to add to the training pool for a large autonomous driving dataset, preferably training

on multiple tasks with the same pool, as a means of measuring improvement in multi-task active

learning [30].

In generating explanations of novelty, we recommend use of the evolving state-of-the-art

as the modular language-vision model and LLM within our algorithmic framework. Further,

as the field of visual question answering (VQA) and image difference description continues
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Figure 3.11. LAVA images correctly identified as novel within the construction of the experi-
mental sets. The novel image is shown enlarged, with three examples from the characteristically
“normal" pool shown next to each novel image. Next to each image is the explanation of novelty
generated by Algorithm 2 for the image. We add emphasis for phrases which describe the specific
feature we used in constructing the set (e.g. discussion of nighttime scenery for the night image
imposed on the daytime set). We note that the unique urban architecture referred to in the bottom
image is a reflection of the “college campus" data pool.
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Figure 3.12. TUMTraf images correctly identified as novel within the intent of our experimental
design. The novel image is shown enlarged, with three examples from the characteristically
“normal" pool shown next to each novel image. Next to each image set is the explanation of
novelty generated by Algorithm 2 for the image. We add emphasis for phrases which describe
the specific feature we used in constructing the set.
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Figure 3.13. Images identified as novel, but based on some feature outside the defining feature
used in set construction. These images are still be novel relative to their pool, just not along the
dimension in which the set was originally constructed. Next to each image is the explanation
of novelty generated by Algorithm 2 for the image. We add emphasis for phrases which
describe features which are most likely novel within the larger pool, illustrating the algorithms
effectiveness.
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growing, we recommend applying such techniques to image data, avoiding the bottleneck of

language in describing differences. As an intermediate step toward robustness, statistical passes

of the description generating algorithm may be useful; by resampling a variety of images in

each cluster and generating difference descriptions, the LLM could effectively take a consensus

among multiple candidate descriptions.

Continuing towards safety, if novelty is identified at the scene level, there remaining open

questions in mediating between the severity of the situation outside the vehicle, the readiness of

the driver in the vehicle, and the ability of the vehicle to autonomously navigate the scenario.

How does an autonomous system evaluate uncertainty in its ability to safely handle a novel

scene? Are detection, segmentation, prediction, and planning metrics sufficient, or must we rate

the novelty of a scene we encounter, and at what time horizons should a vehicle perform these

assessments?

While we may never be able to gather enough data to account for all possible long-tail cases,

with the methods presented in this research, we may be able to at least identify when we are

encountering a long-tail event, and make safer choices in our use and training of machine

autonomy at these important moments.
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Chapter 4

The Why, When, and How to Use Active
Learning in Large-Data-Driven 3D Object
Detection for Safe Autonomous Driving:
An Empirical Exploration

4.1 Introduction

Many autonomous driving tasks rely on supervised learning, and task performance under

such methods is heavily dependent on accurate, high-volume data annotation. The conventional

approach for most autonomous driving tasks, such as 3D object detection [83–87], is to ask

humans to label (or supervise the labeling of) all data collected in driving, then train learning

machines using the labeled data.

However, such annotation often requires meticulous treatment and expensive labor from

expert human annotators [88]. When the volume of the data grows faster than the available human

resources, annotating data becomes a challenging bottleneck to better-performing models. This

is especially the case for autonomous driving, where the data itself can be collected quickly and

diversely from fleets or even a single vehicle [89]. In fact, a German study in autonomous vehicle

data estimated the annotation cost to produce direct statistical evidence of reliable AI-perception

ranges in the scale of 1.16 trillion to 51,800 trillion Euro – 14,800 times Germany’s gross

domestic product! [8, 90] In this research, we explore and evaluate an entropy-based querying
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Figure 4.1. Novel safety-critical events occur with low probability while driving, making data
collection of such events an enormous cost, especially since the number of instances required
to teach a high-dimensional model scales exponentially with the number of data dimensions.
While the left region of this curve may represent scenarios encountered in normal driving, as we
progress to the right, we would expect to find not only unexpected driving environments and
interactions, but also those of near-miss accidents and catastrophic failures. Collecting real-world
data on dangerous accidents (and, at that, sufficient instances of this data to build models via
supervised learning in high-dimensional vector spaces) is an extremely challenging task. The
blue curve carries the moniker of “long-tail events".

active learning solution to this annotation bottleneck with consideration to the multimodal,

multitask, and safety-critical nature of intelligent vehicle learning systems.

4.1.1 Redundancy and Data Imbalance

As a motivating example, consider a fleet which seeks to gather data in a particular region.

By the nature of our roadway system, over time, vehicles will likely encounter the same roads

in the same conditions and same context multiple times (e.g. a 5 o’clock rush hour traffic jam

on southbound I5 near Exit 26B). For this reason, many data points collected for autonomous

driving may be redundant or similar between capture sessions.

Why is this redundancy, or data imbalance, a problem to begin with? When nearly-

identical, highly-repeated samples are used to train a model (and distinct samples are significantly

less present), the data imbalance can cause the model to overfit parameters to be sensitive to

the minor deviations in the over-represented data instead of solving the intended problem – an

issue addressed with active learning [1] [91]. Additionally, in a well-designed model trained on a

sufficiently diverse dataset, the model learns a latent space which interpolates between encoded

samples, allowing the model to generalize to noisy data in the wild [92]. While collecting large

amounts of data is important, there comes a point when further data collection of similar samples

42



Figure 4.2. The amount of carefully annotated data available during training is closely tied to
the success of the learned model. This is an image from the nuScenes dataset, whose camera
and LiDAR measurements are used as input to the BEVFusion 3D Detection model discussed in
this paper. When the model is trained with 10% of the available training data, we can see a high
rate of false positive detections throughout the scene, and failure to note even the obvious-but-
partially-occluded vehicle. As we increase the training data to 35% of the available pool, under
random sampling, the false positive detections remain confounding, but the pedestrians on the
sidewalk are missed altogether, and there is a general difficulty to capture the precise position,
size, and orientation of these objects. On the other hand, when using the entropy querying
active learning method detailed in this paper, under the same data budget, the pedestrian on
the sidewalk is found and the false positive detections are significantly reduced relative to the
ground truth. The ground truth, depicted on right, shows the ideal detection, which requires the
careful selection of additional data points to further boost trained model performance without
incurring expensive demand for extensive data annotation. In this research, we present methods
for intelligently querying the available data pool for new training samples using active learning.

becomes redundant as the learning of the latent space sufficiently covers the real-world pattern

for similar samples. This is especially the case when it comes to safety for autonomous driving,

as it is not the familiar which poses a risk, but rather encounters with unexpected or novel

situations, so-called “long-tail" (infrequent) driving events. At a practical level, because ML

systems optimize over a loss function summed over each training sample, in cases of severe class

imbalance, catering to the “majority" serves to place the learner in a comfortable local minimum

of loss. Further, when it comes to safe autonomy, these non-majority cases are often the most

significant from a safety standpoint. This challenge is shared with biomedical research, earning

the name curse of rarity, referring to the difficulty of gathering samples of events that are most

likely to cause system safety failures [10]. This is also referred to as the “long-tail problem".

Data sampling methods are commonly used to overcome data imbalance, such as random

under-sampling (to remove majority cases from training data), and random over-sampling (having

under-represented classes appear more frequently during training). In principle, standard data
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augmentation serves this same purpose, but on the basis that the collected data under-represents

the variance of the complete population of data. Naturally, augmentation methods can be applied

to minority-class data to build a stronger representation within a training dataset. However, here

we seek solutions which add more to a model’s knowledge than crafted re-use of existing training

data, such that a system can continually learn from new examples, finding “useful novelty"

through examining the entropy of considered data [93].

4.1.2 Dealing with High-Dimensional Data

In addition to data imbalance, data for intelligent vehicle tasks tends to be high- dimen-

sional. For example, a typical testbed may be collecting data along dimensions of time, arrays

of pixels from 2D spatial cameras, sweeps of 3D spatial lidar measurements, and a variety of

additional sensors such as GPS, INS, and CAN.

By learning an expansive low-to-high-level feature set, this scale and variety of infor-

mation has proven to be helpful towards a variety of tasks such as lane detection [51], vehicle

and VRU detection and tracking [94], traffic sign and light classification [53, 55, 95], trajectory

prediction [64, 96], vehicle landmark identification [97], driving maneuver and driver style clas-

sification [98]; such tasks are important not only towards autonomous driving, but also towards

effectiveness of ADAS systems [99]. While this data provides a wealth of information to learn

from, the infamous “curse of dimensionality" puts systems at risk of improperly fitting models

to complex data (requiring exponential amount of increased data with each new dimension

introduced). Further, even annotating this data at a high-quality, frame-by-frame, pixel-by-pixel,

voxel-by-voxel level is a monumental task, near impossible to complete exhaustively given

resource constraints and costs in human annotation, discussed further in later sections.

In essence, much of machine learning involves reducing the dimensionality of data from

its high-dimensional observed form to a task-useful form. Sometimes we do this before the data

enters the learning mechanism (e.g. pre-processing the data by selecting features to learn from),

sometimes we do this inside the learning mechanism (e.g. an early bottleneck layer in a neural
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Table 4.1. Percentage of nuScenes 3D object dataset possible to be annotated by 40 hours of
work, calculated from rate estimates in recent research.

Method % of nuScenes objects annotated in 40 Hours (est.)
3D-BAT [100] 6.86%
Lee et al. [101] 2.78%

Without assistance average [102] 0.09%
With assistance average [102] 0.34%

Table 4.2. Percentage of nuScenes 3D object dataset annotated by 40 hours of work per week,
with the number of weeks shown in the left column, calculated using the average rate of Table
4.1. We use this dataset size as the allowed size of our training sets to evaluate the effectiveness
of active learning approaches.

Weeks of Annotation % of nuScenes dataset in Training Pool
1 2.52%
2 5.04%
3 7.56%
4 10.08%
5 12.60%
6 15.12%
7 17.64%
8 20.16%
9 22.68%

10 25.20%
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network, which learns lower-dimensional encodings of feature combinations). Sometimes we do

this explicitly (e.g. extract particular features, such as one color channel for a task like brake

light extraction [97]), often termed selecting, other times letting the system learn the features

(e.g. neural network which outputs a low-dimensional vector for system inference [103]), often

termed mapping.

In addition to implications toward the theoretical limits of a systems ability to learn,

high-dimensional data also contributes to a lack of explainability in systems, and complicates

the process of safety regulation on a practical level. Techniques in intelligent data selection and

feature extraction help to resolve these challenges, but as information is discarded, a tradeoff is

induced between system performance and system explainability. Pes et al. [91] categorize three

types of feature selection methods:

• Filter methods, which remove data according to some non-learned criteria,

• Wrapper methods, which essentially search over different feature subsets to optimize

performance, and

• Embedded methods, which, critically, make use of learning algorithm internal information

in the process of searching for optimal features. For example, while a wrapper method

might make use of system accuracy over a test set to select a best feature set, an embedded

method may examine the uncertainty values of logits during classification to drive its

selection criteria.

As expected, filter methods bear the least computational cost, but show the most con-

strained performance (albeit, sometimes this constrained performance may be sufficient towards

a task). In this research, we explore an embedded method, accepting increased computational

complexity to enhance model performance.
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4.1.3 Using Active Learning

Active learning is the process by which a learning system interactively selects which data

points should be added from the unlabeled data pool to the labeled training set, assisted by the

intervention of a human expert providing associated annotations. Within this framework, in the

case of classification tasks, we consider the information gain of a new datum to be a measure of

the decrease in entropy when that datum is added to the training set.

This problem is therefore twofold: (1) for model cost and performance, a large set of

these non-informative data points increases the time and decreases effectiveness of the training

process and model tuning, and (2) for annotation cost, in situations where a data corpus has

high levels of redundancies, annotating all collected data may waste a lot of human resources on

non-informative samples.

4.2 Related Research

Cohn et al. engage in a particular style of active learning as concept learning via queries,

by which the learner requests from an oracle a label for a particular sample [1]. In particular, their

work examines the effectiveness of such methods in improving generalization behavior. One of

the goals in active learning is to label a small subset of collected unlabeled data so as to maintain

or achieve better performance given the cost of labeling or requesting human oracle. Conventional

query strategies usually evaluate informativeness based on handcrafted functions or heuristic

selection methods, such as query-by-committee [116], uncertainty sampling [117,118], region of

uncertainty and version space [1], and expected model change [119]. Empirical studies [120,121]

have shown that the best strategy or informativeness measure may be application specific.

Moreover, the effectiveness of such heuristic methods is limited and varies across different

datasets.

Due to the variability in datasets, models, and query selection methods, it is difficult

to form a noticeable consensus for the state of the art in active learning. Accordingly, through
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this paper, we show the clear utility of one such method towards the detection safety goals of

autonomous driving systems. Early works in the literature applying active learning in autonomous

driving tasks mostly utilized handcrafted features such as Haar wavelets and the histogram of

oriented gradients on SVMs or Adaboost [122–124]. As deep learning became a dominant

approach in computer vision [125], more works have resorted to DNNs as models in active

learning to further boost performance. In [126], four active learning methods (sum of entropy,

maximum entropy, average entropy, and Monte Carlo dropout) are applied to the Apollo Synthetic

dataset and Waymo Open dataset on 2D object detection and instance segmentation tasks, using

R-CNNs appropriate for each task, and finding that active learners beat baselines in these

autonomous driving tasks, and that summation-entropy learners tend to bring forward samples

with the most instances, which seem to have the strongest effect on learning. While these insights

are valuable, in this research, we focus on the task of 3D object detection, reflecting the need for

vehicles to recognize an object’s relative position for purposes of safe planning; accordingly, our

discussion of related works will continue with active learning towards this task. We highlight

relevant literature towards effective detection and efficient annotation of such datasets in Table

4.3, and discuss particular methods in the following paragraphs.

In [104], Feng et al. use active learning to find the fewest number of labeled training

samples to improve the performance of 3D object detection by convolutional neural networks

(CNNs) trained on LiDAR point clouds, using Monte Carlo Dropout and Deep Ensembles to

measure entropy in predictive labels and mutual information between model weights and class

predictions. Moses et al. [105] coin a “LOCAL" acquisition function, utilizing both classification

and localization-based uncertainty and summing values across all objects in a sample as inclusion

criteria. They adapt the exclusive Basic Sequential Algorithmic Scheme (BSAS) clustering

scheme for per-object matching to allow for entropy calculation, and use variance of spatial

estimation as measure of spatial uncertainty. However, their training and evaluation is carried out

on a limited 41 LiDAR point clouds of data from a private, government-owned airborne-collected

dataset, and they point out the important difference in scale compared to autonomous driving
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datasets such as KITTI [127], Waymo, and nuScenes. Luo et al. [106] show that maximizing

the kernel coding rate as criteria for data selection can strongly outperform most generic (task-

agnostic) active learning methods, and marginally improves over task-specific active learning

methods for 3D detection, at lower running time than near performers. Hekimoglu et al. [128]

use active learning on a monocular-input for the 3D detection task, quantifying uncertainty

using (1) the variance of predicted Gaussian localizations, and (2) the variance in predicted

position when an image undergoes a variety of intensity and sharpness transforms to form a

query-by-committee, and perform experiments using a fixed training size, showing that the

combinations of data augmentation query-by-committee and heatmap uncertainty lead to clear

improvement over random sampling. Hekimoglu et al. are later the first to use a teacher-student

paradigm for active learning data selection and semi-supervised training, this time combining

LiDAR measurement with monocular images to form this teacher-student relation, and setting

a new state of the art for “monocular" (since the LiDAR is technically used without label) 3D

object detection on KITTI [107]. Hwang et al. [108] exploit the ability to localize 3D objects

under flips, rotations, and scalings so that unlabeled data can be used to train the model to be

consistent in assessing object locations, using this value as both an additional training term and

uncertainty measurement towards active learning. These papers are all united on the theme

that active learning leads to higher 3D detection performance at lower data budgets, shown in a

general sense on a limited number of object classes.

From our search, Liang and et al. [39] provide the only prior investigation of active

learning on the nuScenes dataset. While we study uncertainty-based active learning in this

research, Liang et al. study diversity-based active learning, finding that spatial and temporal

diversity of samples are effective strategies. They importantly highlight the differences of

annotation costs being variable between scenes, due to the varying number of objects that may

appear in each; accordingly, they define the annotation budget by a combined scene-object

formulation. They also hypothesize that these entropy-based methods may introduce redundant

samples in a scene, since having a high-entropy class at any one pooling round would likely
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identify all members of that class to be high entropy, when a smaller representative amount

would suffice for learning. Further, their diversity-based active learning approach allows for

a “warm start" to their base training pool, as the diversity criteria can be established without a

trained model. Under their annotation budget, the entropy-based method appears to underperform

compared to random sampling (and, this makes sense given that a scene’s entropy is formed

by the sum of the detected object entropies). However, we do recommend that entire scenes

be annotated at once (even if highly crowded), due to the difficult task of the model to identify

all objects within any annotated scene; state-of-the-art models are not trained to look for single

objects in a field of many, but rather to identify all instances simultaneously, and the task of

identifying instances within a crowd warrants appropriate data. Accordingly, we show that at

the scene-sampling level budget, entropy-driven active learning actually does exceed a random

baseline.

We point out key differences between our research and the research of [104], [106], [128],

[107], [108], and [39]:

• We experiment over the nuScenes [129], while other works experiment on KITTI [104,106–

108, 128] and Waymo [106, 107]; by experimenting on an additional strongly-established

dataset, we further enhance their case for the benefits of entropy-driven querying and

active learning in autonomous driving.

• Accordingly, while the KITTI and Waymo-based approaches [104, 106–108, 128] divide

objects into five or less classes (for example, small vehicle, human, truck, tram, and

miscellaneous), we divide objects into 10 classes1, better capturing the distribution of

minority classes and the effects of active learning on less-represented data.

• Some of the above prior works do not include orientation [39,104] or classification [128] of

objects in their detection. These attributes are important for the purposes of understanding

1Pedestrian, Bicycle, Car, Bus, Construction Vehicle, Motorcycle, Barrier, Traffic Cone
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possible direction-of-travel and behavioral patterns for an object [130]. We include and

evaluate these predictions in our network output.

• [104] uses ground-truth and pre-trained image 2D detectors in their 3D detection pipeline,

while [39, 106, 108] utilize LiDAR only and [128] utilizes monocular camera only. By

contrast, we train our image-based 2D detector as part of a two-stage (image + LiDAR)

network; thus, active learning decisions influence the complete network performance.

We create an active learning framework for autonomous driving to jointly minimize

redundant, expensive annotation while avoiding the risk introduced by domain adaptations and

overfitting. Such an approach allows autonomous vehicles to efficiently learn new knowledge for

unseen environments under constrained resources.

4.2.1 How long does it take to annotate 3D bounding boxes?

3D object detection is a very relevant and important task to autonomous driving because

unlike 2D object detection, the object’s position and orientation in space is inferred. However, the

task of drawing 3D bounding boxes to train models for such tasks can be more time consuming

than 2D annotation. In this section, we highlight just how expensive this data can be to make a

case for active learning as a cost-reducing measure so these systems can be developed safely at

scale.

To assist in this annotation task, tools such as Zimmer et al.’s 3D-BAT [100] have been

developed for semi-automatic labelling. In the 3D-BAT test case, they find that the most efficient

expert human annotator is able to use the system to annotate approximately 57 objects per minute,

and the average among users is approximately 40 objects per minute. However, IoU with ground

truth is very low for these fast annotations, with the best annotator reaching only around 20%.

Lee et al. design a system where annotators provide object anchor clicks to generate instance

segmentation results in 3D, reporting 3.7 seconds per bounding box [101]. To motivate their

auto-labelling system MAP-Gen, Liu et al. report statistics that an experienced annotator takes
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Figure 4.3. An illustration of Active Learning setup with the BEVFusion model.

Table 4.4. Class Frequencies in NuScenes, ordered most to least present.

Class Frequency (%)
Car 42.30

Pedestrian 19.05
Barrier 13.04

Traffic Cone 8.40
Truck 7.59
Trailer 2.13

Bus 1.4
Construction Vehicle 1.26

Motorcycle 1.08
Bicycle 1.02

around 114 seconds per 3D bounding box, and those using a 3D object detector assistant around

30 seconds [102]. While auto-labelling may eventually be a viable solution toward massive data

annotation, here we emphasize the importance of expert annotators in the loop for the purpose of

human-validated safety in such a risky domain.

NuScenes contains 1.4M camera images and 390k LIDAR sweeps of driving data,

originally labeled by expert annotators from an annotation partner. 1.4M objects are labelled with

a 3D bounding box, semantic category (among 23 classes), and additional attributes. In Table 4.1,

we form estimates of the portion of nuScenes dataset that annotators utilizing above-described

methods could annotate in 40 hours, again noting that the quality of annotation for some of these

methods is substandard.

Though this paper demonstrates the utility of active learning towards the task of 3D object

detection, we would like to stress that this paper is not about improved 3D object detection, but
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rather about systematically selecting data in a way that improves model learning under limited

resources. There are many additional tasks in autonomous driving beyond 3D object detection;

for example, Motional has accompanying semantic visual and LiDAR segmentation tasks, which

are even more time-intensive during annotation (for example, Schmidt estimates up to 90 minutes

to fully segment an autonomous vehicle domain image [131]). The benefits demonstrated on our

sample task are applicable towards other tasks; active learning is used to increase efficient utility

of data towards improving any task model, especially in the cases of multi-task active learning

frameworks [30, 132].

4.3 Data Methods

Because the rate of newly collected data is faster than the rate of annotation, prioritizing

data for learning new knowledge is expected to boost performance in a more optimal rate per

datum. Therefore, we formulate the autonomous driving tasks as pool-based active learning

problems [133]. We assume that large collections of unlabeled data are collected continuously

in the pool and associate queries for the accurate annotation by expert human annotators with

some costs. To minimize the total cost while maximizing the autonomous driving performance,

our proposed algorithms only request humans to annotate data points when they are novel to the

existing dataset and influential to the current model. The other data points are assigned with the

label generated by the current model or have their annotation delayed. For evaluation, the model

is trained with a few steps in each cycle based on the union of the requested labels and a subset

of assigned labels of data points.

4.3.1 Active Learning for NuScenes

NuScenes comprises 1000 scenes. In order to maintain complete control over the scenes

within the dataset, we will be making slight adjustments to the fundamental database setup. These

modifications are necessary to accommodate the presence of unlabeled data and the computations

associated with active learning queries. The specific adjustments will depend on the selected
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method. This alteration is a crucial step in the process of sampling underrepresented data from

the current labeled pool.

Towards reproducability of our methods, throughout the training and testing of the chosen

model we will use the trainval split of the dataset, which containes 850 scenes. We will split this

into labeled, unlabeled and validation subsets, where the validation set will contain 150 scenes

used to evaluate and test the model. We will discard the provided test subset for our experiments,

as the labels are not provided by the creators.

The remainder of the scenes in trainval will initially be part of the unlabeled subset

and iteratively be sampled approximately 5% at the time into the labeled set. This process will

proceed until models have been trained on the labeled subset containing up to 50% of the original

scenes present in the trainval dataset.

4.3.2 Baseline: Random Sampling

We create a baseline budget using the average of the statistics surveyed in Table 4.1,

or 2.52% of the nuScenes dataset annoted with a 40-person-hour labelling budget. We create

10 iterative batches of such labels, representing in a figurative sense the amount that one (very

dedicated) annotator might label over 10 weeks, shown in Table 4.2.

For each baseline trial, we randomly sample a percentage of scenes described in Table

4.2 and train the model to N epochs. We will start with 10.08% scenes and add 5.04% for every

round representing a start with 4 weeks worth of work and an increase of 2 weeks worth of work

for every sampling round.

4.3.3 Active Learning Method: Entropy Querying

We aim to investigate the implications of utilizing a commonly employed uncertainty

measure for sampling from an unlabeled data pool [104], [128], [107], [108].

While certain methods, like "least confidence" and "smallest margin," derive their acqui-

sition function based on individual or paired confidence values across all semantic classes, our
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Table 4.5. Performance across standard 3D object detection metrics at different training dataset
sizes, training by Random Sampling and Entropy Querying.

Round Pool mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓ NDS ↑
Random Entropy Random Entropy Random Entropy Random Entropy Random Entropy Random Entropy Random Entropy

1 10% 0.3095 0.3106 0.4665 0.4588 0.3494 0.3669 1.108 1.030 1.236 1.420 0.3794 0.3187 0.3353 0.3409
2 15% 0.3419 0.3639 0.4392 0.4144 0.3397 0.3386 0.9418 0.8909 1.223 1.347 0.3095 0.3074 0.3679 0.3868
3 20% 0.380 0.4041 0.4041 0.3994 0.3503 0.3270 0.8296 0.8131 1.317 1.060 0.3017 0.2955 0.4014 0.4185
4 25% 0.4236 0.4217 0.3921 0.3786 0.3136 0.3319 0.7685 0.6780 0.8695 0.9803 0.277 0.2942 0.4497 0.4446
5 30% 0.4494 0.4557 0.3713 0.3552 0.3112 0.3169 0.6989 0.6563 0.7764 0.7106 0.2485 0.2287 0.4841 0.5011
6 35% 0.4474 0.4676 0.3498 0.3679 0.3168 0.3066 0.6569 0.6152 0.8830 0.6354 0.2941 0.2324 0.4736 0.5181

SOA 100.00% 0.750 - - - - - 0.761

specific focus lies on the "entropy querying" method. This method takes into account a model’s

uncertainty across all conceivable classes. Our objective is to uncover potential enhancements

that the entropy query method could bring about, given that the informativeness measure is

determined by comparing a sample’s probability of belonging to a class across all possible

classes. [134]

This process starts by conducting inference on the unlabeled subset and strategically

selecting samples found to be the most informative. The criterion for informativeness is deter-

mined by the entropy scores associated with each sample. These scores are calculated, generally,

using the formula expressed in Equation 4.1.

Φx = ∑
y

P(y|x) log2 P(y|x) (4.1)

In the equation, Φx represents the entropy score for a given sample x. The calculation

involves the summation over all possible class labels y, where P(y|x) represents the probability

of class y given the input x. The resulting entropy score serves as a quantitative measure of

uncertainty, guiding the selection of samples for active learning.

By adopting the entropy sampling approach, we aim to enhance our understanding of

its impact on the selection process within the context of 3D datasets. The utilization of entropy

scores provides a nuanced perspective on uncertainty, enabling the selection of samples that

contribute most significantly to the model’s learning process.
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4.3.4 BEVFusion Model for 3D Object Detection

For the purpose of designing and experimenting on data selection and learning schemes,

in this paper we consider the fundamental driving task of 3D object detection. This is an essential

task for obstacle avoidance and path planning.

More specifically, we consider the recent BEVFusion approach to 3D object detec-

tion [135]. At the time of writing, this method holds third place in the NuScenes tracking

challenge and seventh place in the detection challenge, with newer variants of the BEVFusion

architecture populating additional high rankings. While there are many techniques to find a uni-

fied representation of image and LiDAR data, LiDAR-to-Camera projection methods introduce

geometric distortions, and Camera-to-LiDAR projections struggle with semantic-orientation

tasks. BEVFusion is meant to create a unified representation which maintains both geometric

structure and semantic density.

The Swin-Transformer [136] is used as the image backbone, while VoxelNet [137] is

used as the LIDAR backbone. To create the bird’s-eye-view (BEV) features for images, first

a Feature Pyramid Network (FPN) [138] is applied to fuse the multi-scale camera features.

This produces a feature map 1/8 of the original size. After this, images are downsampled to

256x704 and the LiDAR point clouds are voxelized to 0.075m to get the BEV features needed

for object detection. These two modalities are fused using a convolution-based BEV encoder

to prevent local misalignment between LiDAR-BEV features and camera-BEV features under

depth estimation uncertainty from the camera mode. The full architecture with active learning

can be seen in 4.3.

4.3.5 Explanation of nuScenes Metrics

We summarize here some common metrics in 3D object detection for conceptual descrip-

tion, and direct the reader to the nuScenes documentation for implementation thresholds and

class-specific details:
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• Mean Average Precision (mAP): for the nuScenes dataset, AP is computed by taking the

2D center distance on the ground plane, filtering predictions beyond a certain threshold,

and integrating the recall-precision curves for values over 0.1. These values are averaged

over match thresholds of 0.5, 1, 2, 4 meters, and then averaged across classes.

• Average Translation Error (ATE): Euclidean center distance in 2D in meters.

• Average Scale Error (ASE): 1− IOU after aligning centers and orientation.

• Average Orientation Error (AOE): Smallest yaw angle difference between prediction and

ground-truth in radians.

• Average Velocity Error (AVE): Absolute velocity error in m/s.

• Average Attribute Error (AAE): Calculated as 1−acc, where acc is the attribute classifica-

tion accuracy.

These metrics are all positive (or zero) valued, and translation and velocity errors can

grow unbounded. For metrics presented in this paper, we take a mean over all classes when

presenting general statistics in Table 4.5, and also examine per-class performance to observe the

effects of active learning on minority classes in further analysis.

4.4 Experimental Evaluation

Experiments are conducted to test if entropy sampling performs better than random

sampling. The initial dataset contains approximately 10% of the original dataset, we add

approximately 5% of data for each subsequent round of training.

A single round involves training one model with six epochs on the current labeled training

set. Following this training phase, the checkpoint file from the last round is employed to perform

inference on the unlabeled dataset pool. Thereafter, the employed active learning method will be

used on the obtained results. This process identifies the samples to be included in the labeled
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Table 4.6. Merged table with samples from random and entropy sampling.

Data [%] 10 15 20 25 30 35
Random Entropy Random Entropy Random Entropy Random Entropy Random Entropy Random Entropy

Car 31,940 32,488 42,308 42,942 56,415 53,760 71,209 64,451 88,131 74,933 108,562 82,911
Pedestrian 20,356 24,448 30,636 31,994 40,901 39,679 46,442 48,129 54,062 58,708 61,281 62,752

Barrier 7,915 15,224 24,166 20,335 28,904 22,117 34,338 28,117 38,903 34,791 44,906 38,639
Truck 7,972 6,128 11,467 10,184 14,354 15,555 18,267 19,871 21,503 22,796 25,908 25,926

Traffic Cone 3,767 6,165 10,283 8,921 12,539 10,225 15,628 13,028 18,584 15,179 20,584 18,007
Trailer 2,562 1,635 2,779 2,977 3,801 5,750 5,580 7,658 6,448 8,237 7,486 9,591

Bus 1,698 1,574 2,172 2,447 2,729 3,112 3,774 3,808 4,496 4,556 5,475 5,084
Construction Vehicle 1,262 1,401 2,138 2,253 2,877 2,903 3,678 3,634 4,595 4,366 5,145 4,752

Bicycle 762 954 1,468 1,427 2,090 1,750 2,378 2,042 2,659 2,508 2,967 2,917
Motorcycle 1,539 802 1,016 1,364 1,400 1,749 1,852 2,255 2,489 2,721 2,875 3,095

Figure 4.4. Overview of per-class results, with Random Sampling on left and Entropy Querying
on right. While the ordering of classes remains intact and nearly identical to the frequency of
appearance of respective classes in the dataset, under entropy sampling, the margin between best
and worst performing classes decreases.

training dataset for the subsequent round. Each experiment will involve six rounds, as seen in

Table 4.5. We note that in general, the more training data sampled, the stronger the model learns

to generalize to real-world test data.

The Active Learning strategy dominates on 26 of the 35 checkpoints and metrics in Table

4.5. A sampling of qualitative examples are provided in Figure 4.7.

Table 4.4 describes the class frequencies of appearance in the nuScenes dataset. We

collapse the pedestrian class to contain adults, children, construction workers, those using

personal mobility devices, wheelchairs, or strollers, and wearing construction or police uniforms.

From Figure 4.4, we observe that the ordering of classes by highest-to-lowest mAP approximately

matches the ordering of class appearance in Table 4.4 (car, pedestrian, traffic cone, barrier, truck,

bus, motorcycle, construction vehicle, trailer, bicycle). While this ordering is preserved by active

learning, we notice that the gap between the lowest mAP and greatest mAP is smaller under
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Figure 4.5. Class-separated analysis of mAP performance between random sampling and entropy
query active learning. Entropy query active learning shows a tendency to outperform random
sampling on mAP, shown on the six minority classes in these graphs.
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active learning, and progressively tightens as more data is added to the pool. Class-specific

comparisons are illustrated in Figure 4.5. In general, entropy-driven active learning shows

improved precision over random selection on all classes, especially beyond early data pool sizes.

The margin of performance varies by class.

We make a few observations over these class performances. Most of the worst performing

classes (trailer, construction vehicle, bicycle, motorcycle) perform better under entropy sampling

than in random sampling. The trailer class performed the worst in random sampling and a

little better in entropy sampling, and when looking at Table 4.6, it can be observed that entropy

sampling focuses on querying trailer data for every round. The Construction Vehicle class is

another class which did not do well in either entropy or random sampling, however, we again see

in the table that entropy sampling still outperforms random sampling by a small margin in all

rounds, even though the random sampling method draws more examples of this class beyond

30%, suggesting that the active learning algorithm was not finding better “informative" samples

beyond this point (corroborated by random sampling’s greater sampling amount still not besting

the performance of entropy querying). As a more classic case, in the motorcycle class, for the

initial round the mAP result for this class is comparable to the lowest accuracies observed in

other classes. But, under entropy querying, there is a rapid growth in the amount of samples

present for this class and as a result the mAP performance consistently increases as the training

pool grows.

To what extent does entropy querying resolve uncertainty by corrective sampling of

minority classes? As shown in Figure 4.6, for each class in each graph, the entropy-driven

method tends to pull the distribution to the right toward underrepresented classes as the training

pool size increases. We observe the margin between methods for the majority class (car) being

widened as the active learning method samples larger pool sizes, with this difference being

distributed among the minority classes. The non-normalized data values are presented in Table

4.6.
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Figure 4.6. Distribution of samples among classes for each method, varying with training pool
size. Entropy sampling methods tend to reduce the addition of majority class (car) samples to
the training pool, opting instead to distribute this budget towards the remaining classes. Note
that the columns for the respective methods are normalized, as sample sizes will not necessarily
sum to the same value since sampling is performed at the scene level, and different scenes may
have different numbers of objects.
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Figure 4.7. Qualitative examples from nuScenes, comparing the initial training on a randomly
selected 10% of nuScenes, followed by random sampling to 35% of nuScenes versus 35%
selected using entropy queries, and finally the ground truth annotations. Different color boxes
refer to different object classes. A few notable observations under entropy-driven AL: in the first
and second row, we see a better handling of orientation-error; in the third row (night), the barrier
class is more readily detected; in the fifth row, the presence shape of the bicycles are better
inferred; in the sixth row, the truck class and size is correctly inferred; finally, in the last row, the
nearby bicycle is detected and correctly classified, where it is missed altogether or mistaken to
be a car via random sampling.

63



4.5 Concluding Remarks

Based on the observed results, it is evident that the integration of the entropy querying

method with the Birds-Eye-View Fusion model constitutes a favorable combination, demonstrat-

ing the effectiveness of active learning.

One limitation of this analysis is the robustness of results, containing a single method

with six iterations of training, each comprising six epochs. To address this limitation, it is

recommended that future testing and analysis involve a more extensive approach, where several

runs would be conducted for each method. Taking an average of these runs would yield more

reliable and comprehensive results. Additionally, the decision to increase the number of epochs

from six to ten in future experiments is motivated by the anticipation that a more distinct pattern

which more closely matches the fine-tuned state of the art performance of such models may

emerge with extended training. Specifically, this adjustment also aligns with the amount of

epochs used in the BEVFusion paper, facilitating better direct comparisons with their outcomes.

4.5.1 Future Research in Active Learning

Future research unexplored in active learning in this field includes the learning of query

policies directly from autonomous driving tasks and data, instead of relying on handcrafted

policies. This could be done using deep reinforcement learning approaches to learn the query

policy in the active learning framework. Because the query selection has been shown as a

decision process, reinforcement learning can be applied to learn the query [139]. Query strategies

learned by reinforcement learning have been shown to outperform the heuristic selection methods

such as uncertainty sampling and random sampling in a natural language processing task [139].

However, to the best of our knowledge, such data-driven query strategies have not been explored

in autonomous driving. This is especially important considering the necessity of such systems to

efficiently adapt to new environments [29, 140].
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In conclusion, the findings in this research give an affirmation that entropy querying effectively

samples the most informative instances from classes with lower accuracies and limited available

data, showcasing its utility in the active learning framework, encouraging the adoption of active

learning approaches to simultaneously reduce annotation costs and increase data efficiency in

learned models for autonomous driving tasks.
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Chapter 5

Language-Driven Active Learning for
Diverse Open-Set 3D Object Detection

5.1 Introduction

Object detection is critical for safe autonomous driving. Data-driven approaches currently

provide the best performance in detecting and localizing objects in the 3D driving scene. Detec-

tion models perform best on objects which are most represented in driving datasets. This creates

challenges when some objects are less represented (minority classes), or unrepresented within the

annotation scheme (“novel" objects [141], relevant for “open-set" learning [142]), and becomes

especially important when minority objects are most salient to driving decisions [53–55, 143].

Further, from a pragmatic standpoint, the collection, curation, and annotation of such datasets

can be extremely expensive [75,144], motivating the use of heuristics and algorithms which limit

annotation efforts while maximizing model learning, illustrated in Figure 5.1.

5.2 Related Research

Active learning methods are driven by a query function which selects relevant data from

an unlabeled pool to be annotated and joined to the training set. These methods broadly divide

into two classes: uncertainty-based and diversity-based methods [145]. In uncertainty-based

methods, data is selected by the query function’s assessment of how confusing the datum is to

66



Figure 5.1. Choosing the most informative data can impact object detection model performance.
Images in the left column are the results of a model trained on 50% of nuScenes data, selected at
random. Images in the right column are the results on the same images of a model trained on
50% of nuScenes data, but selected using our VisLED active learning query strategy. In the top
two rows, we see cases where challenging pedestrians are missed on the left image (preparing
to cross on the right side of the road, and standing behind the crossing pole, respectively), but
correctly detected on the right. Similarly, in the bottom two rows, the under-represented classes
of motorcycle and truck are more readily detected using our active learning strategy.

the existing model. On the other hand, in diversity-based methods, data is selected by being

distinct from existing training data by some measure, and this can be done without consideration

of the learning model.

5.2.1 The Role of Uncertainty and Diversity-Based Methods in Closed
and Open Set Learning

In closed-set learning, it is assumed that a system should classify or learn about a fixed

set of target classes. By contrast, in open-set learning, the system assumes that it may encounter

novel data which belongs to a class unrepresented by its current target set. Naturally, this brings

up many research challenges in recognizing this novelty when it appears, determining when to

define a new set construct, and integrating new constructs into the learning mechanism.

Here, we suggest that diversity-based methods are particularly well-suited for these

open-set learning tasks. Because uncertainty-based methods select relative to their existing

world model, there is an inductive bias imposed in relating new data to existing patterns. On

the other hand, in diversity-based methods, data is compared only to other data, analogous to

unsupervised learning. This does create a tradeoff: closed-set learning excels under uncertainty-

67



New Data

Labeled
Data

Detection Model Training

Inference

New Data

Labeled
Data

Detection Model Training

Inference

New Data

Labeled
Data

Detection Model Training

Inference

New Data

Labeled
Data

Detection Model Training

Inference

New Data

Labeled
Data

Detection Model Training

Inference

New Data

Labeled
Data

Detection Model Training

Inference

New Data

Labeled
Data

Detection Model Training

Inference

New Data

Labeled
Data

Detection Model Training

Inference

Diversity Sampling

Closed-World Scenario

Open-World Scenario

Cluster 1
Cluster 2

Cluster 3 Uniques

Diversity Sampling

Closed-World Scenario

Open-World Scenario

Cluster 1
Cluster 2

Cluster 3 Uniques

Diversity Sampling

Closed-World Scenario

Open-World Scenario

Cluster 1
Cluster 2

Cluster 3 Uniques

Diversity Sampling

Closed-World Scenario

Open-World Scenario

Cluster 1
Cluster 2

Cluster 3 Uniques

Diversity Sampling

Closed-World Scenario

Open-World Scenario

Cluster 1
Cluster 2

Cluster 3 Uniques

Diversity Sampling

Closed-World Scenario

Open-World Scenario

Cluster 1
Cluster 2

Cluster 3 Uniques

Diversity Sampling

Closed-World Scenario

Open-World Scenario

Cluster 1
Cluster 2

Cluster 3 Uniques

Diversity Sampling

Closed-World Mining

Open-World Exploring

Cluster 1
Cluster 2

Cluster 3 Uniques

Hierarchical Clustering

Car

Truck

Bus

N

Text Encoder

T1 T2 T3 ... TN

I1*TN...I1*T3I1*T1
I1

...

I1*T2

Image Encoder

Cluster
1

Cluster
2Cluster

1

Cluster
2Cluster

1

Cluster
2Cluster

1

Cluster
2Cluster 1

Cluster 2

Cluster 3 Uniques

Hierarchical Clustering

Zero-Shot Learning

Unlabeled
Data

Unlabeled
Data

Unlabeled
Data

Unlabeled
Data

Unlabeled
Data

Unlabeled
Data

Unlabeled
Data

Unlabeled
Data

Queried
Samples

CLIP Indexing

Pre-process Images Using a Vision-
Language Model

Image Embeddings

Figure 5.2. VisLED System Overview. For both Open-World Exploring and Closed-World
Mining, the system begins with the processing of the unlabeled data pool into vision-language
embedding representations. In Open-World Exploring, these embeddings are clustered and used
as the basis for a query. In Closed-World Mining, the embeddings are first used in zero-shot
learning to classify scenes based on object appearance, and then further clustered per-class,
offering a chance to sample from particular classes which are known to be minority in the labeled
training set.

driven sampling, since these methods are optimized for the current world model and target set,

but cannot treat the world as “open" as diversity-driven sampling. But, critically, we show in this

research that diversity-based active learning still provides a strong benefit to the learning system

(even if not “optimal" to the particular model and set definition), and is suitable for open-set data

selection.

5.2.2 Learning from Vision-Language Representations

Prior research has shown that vision-language representations such as embeddings from

contrastive language-image pretraining (CLIP) [69] can be used to identify novelty of an image

relative to a set (and, as a bonus, can be decoded into a verbal explanation of novelty) [146].

In our research, we utilize this representation and corresponding ability to select novel images

as a proxy for the amount of useful, previously-unexplored information within a complete
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multimodal driving scene, allowing for an active learning query to select diverse samples based

on vision-language encodings of scene images.

5.3 Algorithm

Here, we present our algorithm named Vision-Language Embedding Diversity Querying

(VisLED-Querying), which can be viewed in Figure 5.2. The algorithm can be used in two

different settings:

1. Open-World Exploring: this method imposes no particular class expectations on the data.

It is suitable for cases when the model seeks to include information which is most novel

relative to data it has seen previously.

2. Closed-World Mining: this method utilizes a zero-shot learning [69] step to sort data

between a fixed set of classes before evaluating for novelty, filtering any points estimated

to not belong to one of the closed-set classes. This method is suitable for mining new and

different instances of existing classes, but may also filter out the most difficult or unusual

instances even from known classes if the zero-shot method fails to recognize the object.

Algorithm 3: Open-World Exploring VisLED-Querying
Input: Unlabeled pool of egocentric driving scene images
Output: Updated training set

1 Embed each egocentric driving scene image from the unlabeled pool using CLIP;
2 Use hierarchical clustering to separate the embeddings;
3 Sample new data points from the unclustered set for addition to the training set;

In the closed-world mining setting, when employing CLIP’s [147] zero-shot learning

technique for classification, the algorithm examines each sample image to identify objects which

are predicted to belong to one or more of the model’s predefined classes. Each sample is assigned

to a single class, in this case taken as the argmax class over all classes considered using the zero-

shot learning method. We note that, in our experiments, this method predominantly identifies
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Algorithm 4: Closed-World Mining VisLED-Querying
Input: Unlabeled pool of egocentric driving scene images
Output: Updated training set

1 Embed each egocentric driving scene image from the unlabeled pool using CLIP;
2 Encode each class label using a text encoding;
3 Applying zero-shot learning by maximizing the product of the embeddings, sort the

embedded images by class;
4 For each class, apply hierarchical clustering;
5 Sample new data points from the unclustered set associated with the desired class,

and add to the training set;

one class with high accuracy. In instances where other classes may also be identified, their

confidence scores are typically low enough to risk false positives, rendering them inadequate

for threshold-based classification; therefore, we use a single-class assignment for simplicity and

accuracy. We do note that, as an algorithm variant, it is reasonable to distribute scene images to

multiple classes if respective confidence values for the additional classes are sufficiently high.

Once the samples for each class have been identified, embeddings will be generated

separately for each class, followed by hierarchical clustering. Subsequently, a number of samples

will be selected from each class, with a focus on sampling from clusters with minimal data

representation. Initially, the algorithm will prioritize unique samples (clusters with only one

sample present), matching them with corresponding scene names until the desired number of

unique scenes is achieved in the training set. Upon inclusion of all scene-names from unique

samples, the algorithm will proceed to clusters containing pairs of images, and so on, until the

required number of scenes have been sampled for the training set.

In the open-world exploring setting, this same procedure is followed beginning with

sampling embeddings from unique singleton clusters, without any pre-classification step to

prioritize drawing from particular classes.
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Figure 5.3. BEVFusion models are trained using three different data selections: Random (dot
markers and solid line), VisLED-Closed-World (x-markers and dashed line), and VisLED-Open-
World (+-markers and dotted line). The top graph illustrates detection performance, while
the bottom graph illustrates performance difference relative to the random-selection baseline.
Performance is averaged over 5 complete data selection + training runs of each model at each
training pool size.
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5.4 Experimental Evaluation

5.4.1 Dataset

We use the nuScenes object detection dataset [148] for our experiments. nuScenes

contains 1.4M camera images and 400k LIDAR sweeps of driving data, originally labeled by

expert annotators from an annotation partner. 1.4M objects are labeled with a 3D bounding

box, semantic category (among 23 classes), and additional attributes. nuScenes comprises 1000

scenes. In order to maintain complete control over the scenes within the dataset, we modify the

fundamental database setup slightly, using the method introduced in [32, 37] to accommodate

active learning queries. We use the trainval split of the dataset for public reproducibility.

5.4.2 3D Object Detection Model

We explore the BEVFusion approach to 3D object detection [85], which has demonstrated

notable performance, ranking third in the nuScenes tracking challenge and seventh in the

detection challenge, and the top performing method which has been made publicly reproducible.

While various methods exist to integrate image and LiDAR data into a unified representation,

LiDAR-to-Camera projection methods often introduce geometric distortions, and Camera-to-

LiDAR projections face challenges in semantic-orientation tasks. BEVFusion addresses these

issues by creating a unified representation that preserves both geometric structure and semantic

density.

In our implementation, we utilize the Swin-Transformer [136] as the image backbone

and VoxelNet [137] as the LiDAR backbone. To generate bird’s-eye-view (BEV) features

for images, we employ a Feature Pyramid Network (FPN) [138] to fuse multi-scale camera

features, resulting in a feature map one-eighth of the original size. Subsequently, images are

down-sampled to 256x704 pixels, and LiDAR point clouds are voxelized to 0.075 meters to

obtain the BEV features necessary for object detection. These modalities are integrated using

a convolution-based BEV encoder to mitigate local misalignment between LiDAR-BEV and
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camera-BEV features, particularly in scenarios of depth estimation uncertainty from the camera

mode. We provide a comprehensive overview of the architecture, including its integration with

VisLED-Querying, in Figure 5.2.

5.4.3 Experiments and Results

We train the BEVFusion model in increasing training set sizes of 10% increments, using

four different acquisition modes: (1) Random Sampling, (2) Entropy-Querying, (3) VisLED-

Querying with Closed-Set Mining setting, and (4) VisLED-Querying with Open-World Exploring

setting. We repeat each VisLED method four times at each data pool size, taking the average

performance from four trials.

As hypothesized, active learning strategies outperform the random baseline, and the

entropy-querying method is dominant due to its nature of optimizing uncertainty with respect

to the model, as opposed to VisLED’s model-agnostic sampling. Yet, as illustrated in Table

5.1, VisLED still stays consistently ahead of random sampling, and offers a 1% gain over

random sampling mAP at 50% of the data pool, all without requiring any model training or

inference. Interestingly, the open-world exploration setting tends to marginally outperform the

closed-world mining setting at nearly all data pool sizes for both metrics, suggesting that the

novelty represented in the language embeddings is sufficient for identification of informative

samples, even without inducing any bias from categorizing samples beforehand. On the other

hand, it is also possible that the uncertainty in classifying the objects being mined for in fact

makes these objects less likely to be found in the closed-world mining setting, again encouraging

the use of the open-world exploring setting in any case.

Per-class performance is illustrated in Figure 5.3. As expected, class performance

correlates with class representation in the nuScenes dataset. Observing the differences in

VisLED-selected detection performance over the random selection baseline in the bottom graph

of Figure 5.3 reveals some interesting patterns; at 10% data, 4 of the 10 classes perform above

random. At 20% data, this increases to 7 of 10 classes above random, and by significantly
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higher margins of benefit than the opposing margins of detriment when underperforming. The

same “benefits-outweigh-costs" pattern repeats at the other data levels. The particular spike

in performance around 20% data may also have an interesting explanation, which relates to

performance on the two least-represented classes, illustrated in Figure 5.4. These classes,

motorcycle and bicycle, represent 1.08 and 1.02% of the nuScenes objects, respectively. When

VisLED-CW is used to sample uniformly from each class, it would actually run out of motorcycle

and bicycle samples around 20% training data, because at each 10% data increment, 1% of

nuScenes data should be coming from each of the 10 classes. This means that after two training

rounds, the data from the particular class should be exhausted, which explains why we see the

greatest margin in performance over random happening at this level - and, this is a strong gain,

around 10% mAP for bicycle and 5% mAP for motorcycle. This further explains the asymptotic

behavior we see as the data volume approaches 50%; there is less prototypical data for these

classes available for the detector to learn at this point. For similar reason, we see a consistent

boost in the performance on the truck class (illustrated in Figure 5.6); this class has 7.59%

representation in nuScenes, making it an excellent candidate for uniform gain throughout all

training rounds, and reaching almost its entire representative dataset by the 50% data round. This

balance of data proportionality and sampling may explain the consistent gains, even as high as

20% mAP improvement over baseline at intermediate rounds.

Besides the issue of dataset representation, we can also examine performance on classes

which may be generally difficult to learn. Looking at the two lowest-performing classes on

baseline (trailer and construction vehicle, representing 2.13 and 1.26% of nuScenes respectively),

Figure 5.5 shows that these classes indeed benefit from VisLED sampling - in fact, at 20, 40, and

50% training data, both closed-world and open-world methods dominate the random sampling

selection method.
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Table 5.1. This table shows the mean average precision (mAP) and nuScenes detection score
(NDS) metrics for the random sampling, and VisLED-querying (Closed-World Mining and
Open-World Exploring) in every round. It also shows the mAP and NDS scores for the full
training split when trained using one GPU.

Labeled Pool mAP NDS
Rounds % Random VisLED (CWM) VisLED (OWE) Random VisLED (CWM) VisLED (OWE)

Mean STD Mean STD Mean STD Mean STD
1 10% 30.95 28.94 0.37 32.14 0.76 33.53 32.59 0.33 34.85 0.71
2 20% 38.00 40.61 0.94 41.70 0.95 40.14 41.34 0.56 42.44 0.96
3 30% 44.94 45.28 0.93 46.94 0.25 48.41 48.82 0.86 50.84 1.16
4 40% 47.73 49.26 0.53 49.59 0.66 53.10 53.64 0.32 52.99 0.59
5 50% 49.90 50.98 0.13 51.74 1.08 55.64 56.40 0.40 56.61 1.09

100% 52.88 58.73

Figure 5.4. The bicycle and motorcycle classes are least represented in the nuScenes dataset,
which causes these classes to appear infrequently during training when selecting data with
random sampling. By using VisLED to sample, more bicycle and motorcycle instances are
drawn, leading to a performance gain at early data increments. This gain levels off as the training
pool aggregates all bicycle and motorcycle samples.

75



Figure 5.5. From class performance, the trailer and construction vehicle classes are most
challenging to learn. When VisLED querying is used, informative samples from these classes
are pulled into the training pool, giving stronger detection performance than random sampling at
nearly all data volumes.

Figure 5.6. Detection performance on the truck class provides a clear illustration of the benefits
of VisLED querying. Of special interest is the fact that the truck class would be nearly completely
sampled around 70% nuScenes training pool size, using the uniform sampling scheme of closed-
world-VisLED; in other words, once all instances of a particular class are sampled, the benefit
will begin to level off.
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5.5 Discussion and Conclusion

Our presented learning method, VisLED-Querying, samples without any information

about the model. This enables VisLED to select novel, informative data points, to the extent

that novelty is visibly identifiable, for any model. The benefit this offers is that a data point

may need to be annotated only once, and can then be used in a variety of models for additional

autonomous driving tasks instead of sampling and possibly forming an entirely different set

for annotation. While these gains may be marginal in the current data setting (< 1000 scenes),

at scale, these performance gains may translate to serious reductions in annotation costs and

safety-critical detection failures. Further, VisLED offers one key possibility that is otherwise

limited on uncertainty-driven approaches: VisLED will recommend unique samples without any

prior assumptions on class taxonomy, making it especially suited to open-set learning, where

new classes may be introduced at any time. This capability, when paired with methods of self- or

semi-supervised learning for object detection by fusing LiDAR and camera [107], may prove

especially beneficial in identifying and learning from novel encounters. In future research,

we plan to experiment on the effectiveness of VisLED in multi-task learning settings [30],

experiments on other benchmark datasets [77], and experiments in open-set and continual

learning. Further, experiments will also examine the benefits of VisLED querying over safety-

critical underrepresented classes in driving scenes, such as pedestrians using a stroller (0.09% of

nuScenes objects), mobility aid (0.03%), or wheelchair (0.04%), or emergency vehicles such as

an ambulance (0.00004%). In these cases, the ability to use zero-shot learning methods or even

the general, open-world VisLED querying approach, may lead to training data which is more

balanced and effective at capturing data which sits on the long tail of driving scenarios, making

for safer perception and planning.
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Part III

Learning from Trajectories: Novelty in

Motion
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It is important to collect and annotate copious volumes of data, as described in the

previous chapters, for robust perception of driving scenes. But, this perception is not necessarily

the end task of greatest importance. Safe driving comes down to a reduced task of determining

acceleration and steering inputs, but to be able to plan in a complex environment requires

perception of the driving scene.

Further, the driving environment is dynamic, containing agents which move capriciously,

and because of this, it is important for planners to have an idea of where these other agents may

be moving. This is accounted for in the task of trajectory prediction, which I present in this

chapter.

When the driving scene itself becomes input to learn the paths to predict or plan, having

high volumes of correctly-annotated driving scenes again becomes bottleneck to performance.

In this chapter, I again show the utility of active learning, this time in the context of trajectory

prediction, and again for the purpose of increasing data efficiency and saving annotation cost.
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Chapter 6

Trajectory Prediction in Autonomous
Driving with a Lane Heading Auxiliary
Loss

6.1 Introduction

To safely navigate complex city traffic, autonomous vehicles need the ability to predict

the future trajectories of surrounding vehicles. There is inherent uncertainty in predicting future

trajectories, making it a challenging task. In particular, the distribution of future trajectories is

multimodal. At a given instant in a traffic scene, a driver could have one of several plausible

goals, with multiple paths to each goal.

Recent work has addressed multimodality in trajectory prediction by learning models

that output multiple trajectories conditioned on the past motion of agents and the static scene

around them. Common approaches include learning mixture models [60, 61, 149–154], sampling

latent variable models [65, 155–167], or sampling stochastic policies trained using inverse

reinforcement learning [168–171]. However, defining appropriate evaluation metrics for models

that output multiple trajectories still remains an open challenge.

The most commonly used evaluation metric for multimodal trajectory prediction is the

minimum average displacement error over K trajectories (minADEK). This has the advantage of

not penalizing diverse, but plausible trajectories output by models. A limitation of minADEK is
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Figure 6.1. Motivating example: A vehicle of interest approaching an intersection (top-
left). The commonly used minADEK metric fails to penalize a diverse set of poor trajectories
(top-right). The off-road rate and off-road distance metrics partially address this (bottom-left),
but fail to penalize trajectories that violate lane direction. Our proposed off-yaw metric and
corresponding YawLoss seek to address this (bottom-right). Severity of imposed penalty is
illustrated by color, with green minimal and red maximal.
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that it fails to penalize models that output a diverse set of trajectories of poor quality (Fig 6.1b).

This has been addressed in prior work by additionally reporting sample quality metrics. Of

particular interest are the off-road rate and off-road distance metrics [172, 173] which penalize

predictions that fall outside the drivable area in a scene, visualized in Fig 6.1c. However, there’s

more structure to vehicle motion: vehicles typically follow the direction ascribed to lanes. A

naive formulation of the off-road rate or off-road distance metrics fails to penalize trajectories

wrongly predicted in the direction of oncoming traffic.

In this work, we define a new metric for sample quality of predicted trajectories termed

the off-yaw rate. The off-yaw rate measures the adherence of predicted trajectories to lane

direction, and penalizes predictions that violate lane direction (Fig 6.1d). Moreover, we show

that the off-yaw rate can be used as a differentiable loss function termed YawLoss, which can

serve as an auxiliary training loss for multimodal trajectory prediction models. Our formulation

of the YawLoss can be applied for training both mixture models as well as latent variable

models for trajectory prediction, and leads to predicted trajectories that better conform to the

lane direction, while also achieving lower minADEK values. We report results on the publicly

available NuScenes prediction benchmark by incorporating the YawLoss for training two vehicle

trajectory prediction models that represent the state of the art, namely MTP proposed by Cui et

al. [149] and Multipath proposed by Chai et al. [150].

6.2 Related Research

6.2.1 Multimodal trajectory prediction

A large body of recent literature has addressed the problem of human and vehicle

trajectory prediction. For comprehensive surveys we refer the reader to [174, 175]. Here,

we discuss models that output multimodal predictions. A common approach for multimodal

trajectory prediction is to learn mixture models. Each mixture component represents a mode of

the trajectory distribution. Models typically output mean trajectories for each mode and standard
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deviations, along with a categorical probability distribution over modes. Early work associated

modes of the trajectory distribution with pre-defined maneuvers or intents [60, 61]. The need for

pre-defined maneuvers was alleviated by the multiple trajectory prediction (MTP) loss proposed

by Cui et al. [149]. The MTP loss has a cross-entropy component for learning the categorical

probability distribution over modes, and a regression component that only penalizes the mode

that is closest to the ground truth.

This formulation has since been used by subsequent works [151–154]. More recently

Chai et al. [150] extended this idea to learn deviations from anchor trajectories as modes of

the trajectory distribution, rather than mean trajectories themselves, and Phan-Minh et al. [176]

proposed to discard regression outputs altogether while just assigning probabilities to a discrete

trajectory set. Another common approach for multimodal trajectory forecasting is learning

latent variable models. Conditioned on input context such as past trajectories and static scene,

latent variable models map samples from a simple latent distribution to trajectory samples. Prior

works have used generative adversarial networks [155–160], conditional variational autoencoders

[65, 161–163], and more recently normalizing flow based models [164–167]. Finally, some

approaches output multimodal predictions by sampling stochastic policies learned using inverse

reinforcement learning [168–171].

While our proposed off-yaw metric and YawLoss can be used in conjunction with any

approach that involves regression outputs, here we report results using the MTP and Multipath

models as baselines. Both models aim to predict the most likely trajectory of a vehicle from

a set of trajectories output by a neural network and their respective probabilities. In the MTP

network, a rasterized map containing an overhead view of the surrounding roadyway and vehicles

is passed through a CNN backbone, then flattened and concatenated with the ego vehicle’s state

vector (velocity, acceleration, and heading rate change). This combined vector is then passed

through a series of fully-connected layers, ending with an output of M modes comprised of

2H +1 values each, representing the H (x,y)-values per trajectory plus an associated probability.

Similarly, the Multipath model takes the same rasterized map as input, but utilizes a crop around
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the ego vehicle in between convolutional layers to better feed relevant mid-level features forward

in the network. However, the Multipath approach makes use of pre-computed anchors, taken to

be the K-mean clusters (or alternative cluster methodology) of the training set trajectories. The

network will output M modes comprised of 5H +1 values each, representing the offset from the

anchor in the x and y directions, the three parameters used to define the covariance matrix for the

prediction, and the associated mode probability.

6.2.2 Sample quality metrics and auxiliary loss functions for trajectory
prediction

As described in section 6.1, the commonly used minADEK metric for trajectory prediction

is a good measure for sample diversity, but can be a poor measure of sample quality or precision.

There is inherent tension between sample diversity and sample quality or precision [164]. Several

works have thus employed metrics in addition to minADEK for measuring sample quality of

trajectories. Rhinehart et al. [164] define a symmetric KL divergence metric with a component

that measures sample diversity, and a component that measures sample precision and also use

both metrics as loss functions for training. Some works [163, 165, 177] report collision rates for

trajectories predicted for multiple actors in the scene, penalizing falsely predicted collisions. Cui

et al. [178] report kinematic feasibility of predicted vehicle trajectories. Casas et al. [153] report

lane infractions via traffic light or lane divider violations in predicted trajectories, as well as

performance metrics for a downstream planner relying on these predictions. They also use prior

knowledge of reachable lanes and the route of the autonomous vehicle to define a reward function

for training the trajectory prediction model via the REINFORCE algorithm. Finally, closely

related to our work, a large number of approaches use the off-road rate and off-road distance

metrics [151, 152, 171–173, 179] for evaluating predicted trajectories. These metrics compute

the proportion of predicted points that lie outside the drivable region of the road and the nearest

distance of predicted points to the drivable region respectively. Niedoba et al. [172], Boulton

et al. [173] and Messaoud et al. [152] also use the off-road rate as a loss function for training
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trajectory prediction model. Our off-yaw rate and YawLoss improve upon the off-road rate by

explicitly reasoning about the direction of motion of lanes and penalizing predicted trajectories

that violate it.

6.3 Off-Yaw Rate as a Metric

6.3.1 Off-Yaw Rate

By accepted legal and social convention, when driving in a lane, the vehicle must move

in the direction of the lane heading as to not interfere with other traffic. The off-yaw rate is a

measure of a trajectory’s ability to orient in the direction of the nearest lane.

Define a vehicle’s initial position on trajectory τ as (xτ
0,y

τ
0) = (0,0), and its initial

orientation in the local frame as θ = 0 aligned with the standard y-axis. Given a trajectory of

points τ = {(xτ
0,y

τ
0),(x

τ
1,y

τ
1), ...,(x

τ
n,y

τ
n)}, where points 1 through n correspond to predicted future

points, we can estimate the vehicle heading relative to its initial orientation with the following

procedure. First, we assume the trajectory sample rate relative to map scale is sufficiently high

that we can accept a straight-line approximation between consecutive points. Let (x̂τ
i , ŷ

τ
i ) be the

midpoint of two consecutive points (xτ
i ,y

τ
i ),(x

τ
i+1,y

τ
i+1), defined by the function:

(x̂, ŷ)(x1,y1,x2,y2) = (
x1 + x2

2
,
y1 + y2

2
) (6.1)

The angle between the same two consecutive trajectory points surrounding (x̂τ
i , ŷ

τ
i ) is

found using

θ(x1,y1,x2,y2) = arctan(
x2− x1

y2− y1
). (6.2)

This angle θ(xτ
i ,y

τ
i ,x

τ
i+1,y

τ
i+1) is then paired with the midpoint (x̂τ

i , ŷ
τ
i ), illustrated in

Fig. 6.2. From a series of n estimated trajectory points, we create a series of n midpoints and

associated headings relative to the initial orientation, which can be converted directly from the

local frame to the global frame using the ego vehicle’s rotation matrix. We refer to the i-th
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Figure 6.2. The predicted trajectory of the ego vehicle (red) is shown in blue. The green circle
represents a midpoint i between two points of the trajectory. The angle θi, in the local frame, is
assigned to midpoint i.

heading of a trajectory in the local frame as θτ,i, and the same heading in the global frame as θ G
τ,i.

The angular difference between a trajectory midpoint heading in the global frame, θ and

the heading of the nearest lane, θNL(x,y) can be calculated as follows:

δ (x,y,θ) = min(θ −θNL(x,y),θNL(x,y)−θ). (6.3)

A successful measure of off-yaw driving should increase for any portion of the trajectory

τ which deviates from the lane orientation. Further, greater angular differences should be

assigned greater values than smaller angular differences. The off-yaw measure of an n-point

trajectory is:

Y (τ) =
n

∑
i=1

δ (x̂τ
i , ŷ

τ
i ,θ

G
τ,i). (6.4)

Extending over all m predicted modes, we reach the per-sample average off-yaw expres-

sion:

Y =
m

∑
τ=1

Y (τ) (6.5)
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6.3.2 Lane Change Approximations

There is a small margin of expected angular error, ε , for minor adjustments to the vehicle

heading in order to stay within the lane. In addition to lane-correcting error ε , a second exception

to the assumption of lane-aligned driving occurs when a driver changes lanes, during which their

vehicle may orient at an angle no more than (and typically much less than) 90◦ to perform the

lane change maneuver, with a 90◦ lane change occurring only when traffic is at a stop. Typical

lane changes occur at angles relative to the flow of traffic and vehicle dynamics such as turning

radius and velocity. Since a trajectory should not be considered off-yaw during a legal lane

change, nor during small-angle lane corrections, we therefore constrain the measure function to

only penalize angular differences which exceed a threshold, α . The modified angular difference,

δ̂i, has the following formula:

δ
α(x,y,θ) =


0 δ (x,y,θ)≤ α

δ (x,y,θ) δ (x,y,θ)> α

(6.6)

For our experiments, we selected a threshold of 45◦.

6.3.3 Off-Yaw in Intersections

When a vehicle passes through an intersection, the vehicle must cross over lanes which

flow in discordant directions (look no further than the existence of stoplights as proof). At these

moments, the nearest lane point to the vehicle may belong to a lane which flows in opposite

direction, even though it is perfectly reasonable for the vehicle to be in this position. To account

for these situations, the measure should not penalize deviation from the heading of the closest

lane for midpoints which lie in an intersection. Thus, the measure is modified to drop values

which occur in an intersection:

Y α(τ) =
1
n

n

∑
i=1

I(xτ
i ,y

τ
i )δ

α(xτ
i ,y

τ
i ), (6.7)
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where

I(xτ
i ,y

τ
i ) =


0 (xτ

i ,y
τ
i ) in intersection

1 otherwise
(6.8)

.

Summing the values computed for all m predicted modes, we reach the modified per-

sample off-yaw measure expression:

Ȳ α(T ) =
m

∑
τ=1

Y α(τ) (6.9)

The off-yaw rate for a set of samples and their predicted trajectory sets is the average

fraction of trajectories which contain off-yaw events, defined in the following equation:

Roff-yaw =
1
N

N

∑
i=1

1
m

m

∑
τ=1

Y α(τ) (6.10)

6.4 YawLoss

6.4.1 Off-Yaw Metric as a Loss Function

In this section, we show that the Off-Yaw Metric in Eq. (6.9) is differentiable, and is

therefore suitable as an auxiliary loss function which penalizes vehicle trajectories that move

against the flow of traffic, which we name YawLoss.

We begin with (6.9) and differentiate with respect to network output set of trajectories

T = {τ1,τ2, ...,τm}. For brevity, we abbreviate xτ
i ,y

τ
i ,x

τ
i+1,y

τ
i+1 as xτ

i .
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∇Ȳ α(T ) =
1
m

m

∑
τ=1

∇Y α(τ) (6.11)

=
1

mn

m

∑
τ=1

n

∑
i=1

∇I(xτ
i ,y

τ
i )δ

α(x̂τ
i , ŷ

τ
i ,θ(x

τ
i )) (6.12)

Since the sum of differentiable functions is differentiable, we continue our analysis with

the sum term:

g(xτ
i ) = ∇I(x̂τ

i , ŷ
τ
i )δ

α(x̂τ
i , ŷ

τ
i ,θ(x

τ
i )) (6.13)

Computing the gradient, first for xτ
i , we find:

∂g
∂xτ

i
=

∂ I(x̂τ
i , ŷ

τ
i )

∂xτ
i

δ
α(x̂τ

i , ŷ
τ
i ,θ(x

τ
i ))

+ I(x̂τ
i , ŷ

τ
i )

∂δ α(x̂τ
i , ŷ

τ
i ,θ(x

τ
i ))

∂xτ
i

(6.14)

Because the value of the function I in the expression

∂ I(x̂τ
i , ŷ

τ
i )

∂xτ
i

(6.15)

can only take on values of 0 or 1, the gradient function is simply 0 when the vehicle remains

on-road or off-road, and the positive or negative reciprocal of the displacement of xτ
i otherwise;

in any case, defined for all input.

The function δ α of
∂δ α(x̂τ

i , ŷ
τ
i ,θ(x

τ
i ))

∂xτ
i

(6.16)

will always give a value in the range [0, 360), so the rate change relative to any distance that

the xτ
i coordinate is displaced will be defined for all input. The same cases can be extended to

the remaining three variables of differentiation (yi,xi+1,yi+1), thus making the function Ȳ α(T )

differentiable and therefore a suitable loss function.
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Ultimately, this auxiliary loss function encourages trajectories to stay near lanes whose

headings they align with, and to adjust their own headings to more closely match that of the

nearest lane. For each midpoint between points in a trajectory, the loss function’s value increases

as the yaw associated with the midpoint turns further from the yaw of the nearest lane, reaching

a maximum when this difference is 180◦, and a minimum at 0◦ or within the provided tolerance

threshold.

Because a map-based trajectory should (in regular cases) not predict movement against

the flow of traffic, the loss function is appropriate to apply to all trajectories in multimodal

models such as MTP and Multipath. This is a unique quality, as other loss functions may be

used only for the most-likely mode per sample, to prevent changing a model’s prediction for

non-relevant trajectories. For example, a trained MTP model may produce a spread of trajectories

covering many possible actions as an intersection (left turn, straight, right turn, U-turn, etc.), but

during training, MTP loss would rightfully make adjustments to only its left-turn modes when

examining a left-turn sample. By contrast, YawLoss enforces a real-world constraint which must

apply across all trajectories (that is, a car must not turn into oncoming traffic), and is therefore

applicable to every mode simultaneously.

6.5 Experimental Analysis and Evaluations

6.5.1 Dataset

To train and evaluate our model, we use the public nuScenes dataset [180], containing

real-world inner-city drives conducted in Boston and Singapore, where each sample includes

a raster of the surrounding map, vehicle state information (velocity, acceleration, heading),

and target trajectory. Ego vehicle information is encoded with a color index (in this case, red)

while surround vehicles are provided a different color (yellow); darker shade renderings of

the respective vehicle are used to indicate vehicle location at past time samples, as a means of

illustrating prior motion from a single image. Our data is divided using the official benchmark
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split for the nuScenes prediction challenge; in total, we used 29889 instances in the train set,

7905 instances in the validation set, and 8397 instances in the test set.

6.5.2 Network Architecture and Implementation Details

As introduced in Section II, we perform experiments using both the MTP network

defined in [149] and the MultiPath network defined in [150]. For our experiments, we use

a network output of 15 modes with 12 predicted points per mode (representing 6 seconds of

travel) for MTP, and 12 predicted offsets per anchor for MultiPath. We use a base CNN of

ResNet-50 [181]. In accordance with the expected input to ResNet with ImageNet dataset

pretraining, we normalize our rasterized map images in RGB space prior to training. We use the

classification and regression loss functions as defined in [149], with an additive term for the lane

heading auxiliary loss (YawLoss) defined in this work, with a scaling hyperparameter of 1.

With earlier described rasterized map physical dimensions of 50 meters x 50 meters, using

a scale of 0.1 meters per pixel, we assume the lane and trajectory to be approximately straight

(i.e. of single uniform heading) on the pixel scale. Each scene map contains information on lane

placement and heading, drivable area, and surrounding vehicles and pedestrians. Vehicle state

is provided as a three-dimensional input. We use a batch size of 16 and Adam optimizer [182],

implemented using PyTorch [183].

6.5.3 Reducing Network Training Time & Memory Requirements with
Secondary Maps

Calculating this loss per-sample can be computationally expensive. For every predicted

mode of each sample instance, it is required to find the L2-nearest lane point to each midpoint on

the predicted trajectory, with predictions changing on every iteration.

This computational hurdle can be lowered through preprocessing; for each instance map,

which in our case extends 10 meters behind the vehicle, 40 meters ahead, 25 meters left, and

25 meters right, we generate a secondary orientation map, covering a larger area to account for
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trajectories which leave the original map. This secondary map extends 20 meters behind the

vehicle, 80 meters ahead, 50 meters left, and 50 meters right. On this map, each pixel location is

assigned a value which equals the orientation of the nearest lane point.

These secondary maps are generated and saved for each data sample prior to training.

Each grid location on the map represents a heading from the continuous range [0, 360) degrees

in the global frame. To represent each grid location as a 64-bit floating point value can quickly

become storage intensive for a large set of 500x500 maps. However, only a coarse precision

of the angle is required for this problem; we would never consider a driver to be going the

‘wrong way’ if their heading was off by just a few degrees. For this reason, a representation with

precision only to the scale of degrees is appropriate for this problem. With this in mind, we can

create a data-efficient representation which encodes each heading as an 8-bit grayscale integer

pixel value in the range [1, 255], with the value of 0 reserved for map locations corresponding

to intersections. Headings are mapped from range [0, 360) degree values to [1, 255] grayscale

values as follows:

θmap = 1+ ⌊254
360

θ⌉. (6.17)

Using the above function, we assign to each point on the secondary map the mapped value

of the heading of the L2-nearest lane, illustrated in Fig. 6.3. During training, when inversely

mapping from grayscale integer to degrees, there is a loss of precision that occurs as the 360

degrees are mapped to 254 values. In this sense, each ‘bin’ of the data representation actually

represents a span of approximately 1.417◦, a reasonable precision for this task.

6.5.4 Baselines and Metrics

Results are shown in comparison to the following baselines:

• Constant Velocity, Yaw: The predicted trajectory is a continuation of the vehicle’s current

velocity and heading.
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Figure 6.3. Left: The rasterized bird’s-eye-view RGB input map for a sample. Right: The
secondary map for the same sample, where each pixel maps to the approximate heading of the
nearest lane, or zero if in an intersection. Each pixel’s shade of gray represents the orientation of
the nearest lane to the pixel. Areas of intersection (i.e. multiple lanes converging or crossing) are
given a value of 0 in the grayscale map to represent the ambiguity between the nearest lane and
the driver’s intended lane in such situations.

Table 6.1. Results of comparative analysis of different models on the nuScenes dataset, over a
prediction horizon of 6-seconds. Variants of MultiPath and MTP are grouped for comparison
on nine selected metrics. In general, models using YawLoss (this research) improve over the
baseline on most metrics.

MinADE1 ↓ MinADE5 ↓ MinADE10 ↓ MinFDE1 ↓ MinFDE5 ↓ MinFDE10 ↓ MissRate5,2 ↓ MissRate10,2 ↓ O f f −RoadRate ↓
Constant Velocity, Yaw 4.61 4.61 4.61 11.21 11.21 11.21 0.91 0.91 0.14

Physics Oracle 3.69 3.69 3.69 9.06 9.06 9.06 0.88 0.88 0.12
MultiPath 4.06 1.63 1.50 9.34 3.36 3.00 0.75 0.74 0.40

MultiPath with YawLoss 3.95 1.63 1.50 9.08 3.33 2.95 0.75 0.74 0.38
MTP 4.59 2.44 1.57 10.75 5.37 3.16 0.70 0.55 0.11

MTP with Off Road Loss 4.51 2.16 1.60 10.44 4.73 3.23 0.72 0.58 0.13
MTP with YawLoss 4.16 2.23 1.57 9.65 4.85 3.14 0.69 0.56 0.10

• Physics Oracle: As introduced in [176], the proposed trajectory is selected as the best

trajectory from four dynamics models: constant velocity and yaw, constant velocity and

yaw rate, constant acceleration and yaw, and constant acceleration and yaw rate. Note that

this method is not used to make predictions, but rather provides a reference benchmark to

four simple physical models, to illustrate improvement from models which account for

more complex maneuvers.

• MultiPath: The predicted trajectories are the output of the MultiPath model, as described

in [150].

• MTP: The predicted trajectories are the output of the original MTP model, as described

in [149].
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Figure 6.4. Three examples of improved trajectory prediction using YawLoss. Each row
represents a naturalistic Boston driving scenario from the nuScenes dataset. The first column

contains the ground-truth trajectory, and the second column contains predictions by the standard
MTP model. In the third column, the model is extended with off-road loss. While all three

off-road loss examples show trajectories closer to a drivable area, trajectories in the third column
are incorrectly pushed into oncoming traffic. By contrast, examples trained with YawLoss
(fourth column) show trajectories restored to the drivable area into lanes with the correct

heading.
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Table 6.2. Results of comparative analysis of off-yaw rate between two versions of the nuScenes
dataset, over a prediction horizon of 6-seconds. The first version is the full validation set, and the
second version excludes trajectories whose ground truth contains points within an intersection or
off the rasterized map.

Off-Yaw Rates [rad] ↓: All Scenarios No Intersections
MultiPath 0.375 0.280

MultiPath with YawLoss 0.367 0.276
MTP 0.114 0.110

MTP with YawLoss 0.124 0.097

Reported metrics include minimum average displacement error (MinADEk), minimum

final displacement error (MinFDEk), miss rate at 2 meters (MissRatek,2), off-road rate, and

off-yaw rate (the new metric as defined in this paper, measuring the amount of positive angular

difference of predicted trajectories from the nearest lane yaw, averaged over all agents. MinADEk,

MinFDEk, and MissRatek,2 are taken over the k most probable trajectories, for k = 1,5,and 10.

While k = 1 is generally helpful to evaluate precision of trajectory prediction, in cases when

the most probable trajectory is incorrect, the metric value for trajectories comprised of modes

which take the average of multiple paths (e.g. going straight when deciding between a left and a

right turn) will outperform an incorrect turn for k = 1. Thus, including higher k values evaluates

whether the model has developed diversity of modes. In all cases, optimal values minimize these

displacement errors.

6.5.5 Quantitative Results

We compare our extension of the MTP and MultiPath models to the various baselines

in Table 6.1. Our MTP model outperforms or matches the non-extended MTP model on 8 of

the 9 reported metrics, the exception being a .01 increase of Miss Rate at 2 m for k = 10. In

contrast, the MTP model with off-road loss outperforms the baseline on just 4 of the 9 reported

metrics. Our MultiPath model outperforms or matches the non-extended MultiPath model on

all 9 reported metrics. These improvements suggest that using YawLoss to extend the models
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Figure 6.5. Predicted trajectories using MultiPath with (left) and without (right) our auxiliary
YawLoss, illustrating the influence of intersection and off-map points on the calculation of the
Off-Yaw Metric. The trajectories in the left image have 31 more intersection points (which
contribute no penalty to the metric), so the left trajectories have a much lower off-yaw rate (0.26
difference) despite being less aligned to their lanes.

created trajectories which have points more closely aligned to the ground truth trajectories and

better maintain paths on drivable regions. Additionally, the predicted final location of the vehicle

is more close to the known destination.

Qualitative illustrations comparing the effects of Off-Road Loss and YawLoss on an MTP

base model are shown in Fig. 6.4. As the scenes demonstrate, while off-road loss is effective at

bringing trajectories closer to the drivable area, YawLoss is more effective at bringing trajectories

closer to the drivable area with the correct heading.

It is interesting to note that off-yaw rates are similar regardless of auxiliary loss, and

in fact sometimes slightly higher when using YawLoss. By Equation 6.8, a non-linearity is

introduced for points within an intersection or outside the map region, where the additive rate

term is dropped to 0 instantaneously. Thus, it is possible that trajectories at higher velocity (i.e.

more likely to leave the drivable region) and trajectories comprising intersection points, even if

further from the ground truth, may receive a lower off-yaw measure than an correct trajectory

which leaves the intersection or stays within the map. An illustration of this behavior is shown in
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Fig. 6.5, with a qualitative comparison of the complete dataset with and without intersection and

off-map points provided in Table 6.2. For this dataset, the off-yaw rate rises when using MTP

with YawLoss, while it expectedly decreases when we only consider samples that do not contain

this sudden non-linearity. Thus, as a comparative tool, YawLoss is most useful when comparing

samples with the same number of non-intersection, on-map points.

6.6 Concluding Remarks

In this paper we presented an auxiliary loss function which may be used to augment

the performance of existing models for vehicle trajectory prediction in urban environments.

This lane heading loss function leverages the expectation that vehicles follow the direction

ascribed to roadway lanes at all times, with exception for corrective maneuvers, lane changes,

and intersection crossings. This loss function applies to all predicted modes, since no mode

should predict driving opposite the lane direction. Experiments showed that extending the

benchmark MTP model with the lane heading auxiliary loss outperforms the model’s original

classification and regression losses.

A possible extension of this work would be the application of the lane heading auxiliary

loss to other existing deep learning models, in tandem with other auxiliary losses such as off-road

loss. Another possibility for future investigation is the tuning of the angular difference threshold

and weighting using agent dynamics and scene context. Finally, in our future work, we intend to

design a methodology for quantifying nearest lane heading within an intersection or outside of

the drivable area to reduce the effect of this non-linearity on training and metric reporting.

As stated by Daily et al. [184], “Self-driving and highly automated vehicles must navigate

smoothly and avoid obstacles, while accurately understanding the highly complex semantic

interpretation of scene and dynamic activities." While convolutional neural networks and other

data-driven approaches may be effective at repeating known patterns, there is a lost element of

explainability which is crucial towards public safety and adoption. By encoding familiar driving
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expectations through the introduced off-yaw rate metric and YawLoss, we initiate a step towards

autonomous vehicle computational models which can both learn and explain.
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Chapter 7

Perception Without Vision for Trajec-
tory Prediction: Ego Vehicle Dynamics as
Scene Representation for Efficient Active
Learning in Autonomous Driving

7.1 Introduction

The accurate prediction of the trajectories of agents in the observed environment is

paramount to the safe path planning of autonomous systems. Whether the agents are observed

from infrastructure, the ego vehicle, or some combination of modalities, forecasting where other

vehicles and pedestrians helps intelligent systems (human and machine alike) to make their own

control decisions.

Machine learning has provided a means for trajectory prediction of traffic agents using

rasterized bird’s-eye-view maps, contextual scene information, and social dynamics [63, 149].

Road infrastructure [64,185], agent occupancy [60], and navigation goals [171] largely determine

where and how a vehicle will move through the environment. However, collection and especially

annotation of data for such systems can be costly. Methods in trajectory prediction and planning

rely on the ability to perceive road infrastructure and agents; for example, in methods which use a

bird’s-eye-view map of the scene to predict a trajectory, the data must include accurate annotations

of the position of scene agents, lane markings, and intersections. While the trajectory itself
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Figure 7.1. In supervised learning for tasks such as trajectory prediction, data is collected
(yellow), annotated and added to a training pool (blue), and then a model is trained (purple).
When more data is collected than can be afforded by an annotation or computational budget,
intelligent sampling using active learning (white) may provide solutions which maintain model
performance at reduced data cost. We contribute algorithms for clustering of trajectory-states
and sampling strategies which are model-agnostic, providing a benefit of active learning based
only on the current training data and without requiring computation of uncertainty from the
partially-trained model.

can be quickly collected from onboard positioning sensors, the annotation of the surrounding

scene which informs the driving decision-making is a costly effort [32, 100]. In this research,

we consider the utility of trajectory data as the basis of acquisition functions for the purposes of

active, semi-, or self-supervised learning [37, 114, 186]; in other words, how might information

on a vehicle’s positioning help us to curate data for efficient machine learning using minimal

annotation budgets?

To help illustrate this idea, consider a situation where you are a passenger in a vehicle

driving with modern advanced driver assistance functionality, and perhaps you are tired and

decide to close your eyes. You may experience a variety of kinematic cues even without vision;

you may feel the car come to a stop, and after a few moments (or perhaps a bit longer), you
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feel the car turn to the left, then continue smoothly. Even though you have no vision of the

environment, there are many pieces of information which you can already gleam from these

dynamics alone. First, you came to a stop - this does not happen without a reason. Perhaps you

approached a stop sign, a red traffic light, or a person crossing the road. You then waited for a

bit (presumably, enough to come to a complete stop and wait until safe to proceed, or the light

turns green, or the person finishes crossing). Then, you made a left turn, meaning that you were

likely at some kind of intersection, and depending on your wait, possibly with other agents. In

any of the above cases, from the trajectory alone, you would be able to reasonably infer that

you are not cruising on the freeway - and with enough examples like this, you may be able to

recognize patterns in the dynamics which relate to the outside scene, all without observing the

outside scene!

In this way, we propose that trajectory information shares mutual information with the

visual observation of a scene, and that we can use this trajectory information in an unsupervised

manner to inform our data curation process for autonomous driving machine learning tasks,

to promote diversity in our data. Having data which covers the input space as thoroughly as

possible is critical to robust learning [187].

Towards the continued development of such techniques, this research presents methods of

curating and integrating further training data for such systems, such that systems can efficiently

learn new behavioral patterns and adapt to changes in the open set of real-world driving scenarios.

Our contributions are as follows:

1. Demonstration of the ability of trajectory and vehicle dynamic state information to be

clustered for the purposes of learning acquisition functions, and algorithms for such

acquisition in active and continual learning settings,

2. Presentation of sampling techniques related to (a) breadth and depth of data clusters and

(b) introduction of novelty,

3. Discussion of the relevant data features toward an example task of trajectory prediction,
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with relation to the cost of annotation and benefit to learning systems, and discussion of

extension to related tasks of object detection and path planning,

4. Empirical analysis of the learning phase transition with respect to novel data, and

5. Empirical analysis of the effectiveness of novelty-sensitive sampling in an active learning

experiment, illustrating the potential of the system to continually learn from intelligently-

selected new data.

7.2 Related Research

Machine learning relies on transforming data into separable representations, and to do

so effectively, requires training data which approximately covers the variance of data expected

to be encountered in deployment in the real-world. To this end, active learning is a method

by which data is incrementally annotated and added to a training pool for a machine learning

system, selected in a strategic manner for efficiency over an annotation budget. Broadly, these

methods are divided into uncertainty-driven methods, which take into account a model’s level of

confidence in its prediction of an unlabeled datum, and diversity-driven methods, which take

into account the relationship of a datum to all other data [188, 189]. Active learning has been

useful in supporting a variety of autonomous driving tasks such as vehicle detection, recognition,

and tracking [122–124].

Hacohen et al. define, derive, and empirically support the existence of an active learning

“phase transition" in model performance with respect to data typicality [31]. The term typicality

is used to describe points in a high-density region of the input space, analogous but opposite

to the meaning of diversity for such tasks, and without regard for model certainty. Hacohen et

al. show that on low budgets, sampling typical data is most beneficial, while on high budgets,

sampling least typical data is most beneficial. They evaluate their hypothesis on three image

classification tasks (CIFAR-10, CIFAR-100, and ImageNet-100). Important to this research,

they also remind readers that their work is especially relevant for applications which require
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“an expert tagger whose time is expensive", and autonomous driving certainly falls into this

category, where companies frequently outsource data annotation to teams of taggers [148], whose

expertise and attention directly influence safety outcomes of algorithms trained on this annotated

data [75, 190]. Their discussion of the importance is not just related to efficiency; when data is

within the “low budget" regime, general active learning methods fail to surpass random sampling!

This is referred to as the cold start problem [191], and may be a consequence of early models

being without the critical mass of data to form accurate measurements of its “uncertainty" of

unlabeled points.

This provides a few implications relevant for tasks in autonomous driving and, more

generally, robotics:

1. It is important to identify at what data volume this phase transition occurs. Without

awareness of the phase transition, because of the cold start problem, one cannot identify

whether to employ active learning, and even then which active learning method to employ.

2. Once the phase transition is identified, selecting the right learning strategy will depend on

defining a notion of “typicality" (or, in dual, “novelty") which is pertinent to the domain,

task, and data at hand.

In our experiments, we present evidence for this phase transition within data systems

for an example task of trajectory prediction, and provide a measurement of typicality useful for

clustering such data in the domain.

7.3 Novelty-Sensitive Active Learning Algorithm using
Trajectories and Dynamic States

Trajectory and dynamic information [192, 193] is particularly low-cost to collect and

annotate. Assuming a well-calibrated GPS and IMU system, the vehicle is localized and

trajectories can be reconstructed in a 2D overhead projection, along with state variables such as

velocity, accleration, and heading. This requires virtually no annotation, as opposed to 2D or
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3D objects in a scene, which require meticulous annotation. In the next sections, we describe

ways that the low-cost information can be leveraged to curate only particular, learning-efficient

scenes (which can then be expensively annotated) for an overall reduction in data budget while

maintaining performance.

7.3.1 Sampling Iteration Parameterization

We begin with an assumption that it is possible to identify novel data using unsupervised

techniques, which we detail in the following sections. We adopt a clustering approach, where

any data sufficiently distant from centers of clusters with members in the training pool are

considered novel. From this, we consider two parameters which define our sampling mechanism:

α , representing the proportion of novel data which should be sampled (where 1−α is the

proportion of training-pool-similar data to be sampled), and β , the proportion of each cluster

allowed to be sampled (in other words, how many instances of a novel concept can be added in a

sampling iteration). For a fixed annotation budget, α and β can be tuned to manage the breadth

of novel clusters sampled and the depth with which a novel cluster is sampled.

7.3.2 Acquisition Function using Trajectory and State Similarity
Clustering

For the purposes of prediction, one formulation of an autonomous driving trajectory

involves the combination of 2D ground plane world coordinates that the vehicle will occupy for

n seconds sampled at rate r, as well as any initial state variables s that describe the agent at the

beginning of the prediction period. In the case of nuScenes, for example, data is sampled at 2 Hz

for 6 seconds, and s is comprised of the vehicle velocity v, accleration a, and heading change

rate h.
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We define a measure of similarity between two vehicle trajectory-states Vi and Vj as

d(Vi,Vj) =
n=12

∑
n=1

√
(xi,n− x j,n)2 +(yi,n− y j,n)2

+ ka|ai−a j|+ kv|vi− v j|+ kh|hi−h j| (7.1)

We use k as a scaling parameter to weigh different aspects of the vehicle state in relation

to the position error. In our experiments, we use kh = 1 since heading change rates tend to range

from -0.5 to 0.5, kv = 1/40, with velocity ranging from 0 to 20, and ka = 1/20, with acceleration

ranging from -5 to 5. These values can be further changed to reflect the importance of different

parts of the trajectory-state for clustering applications to identify different types of trajectory

corner cases [194].

We apply the hierarchical clustering algorithm [79, 80], using the average distance of

all points in a cluster in re-assigning cluster distances when constructing the dendrogram (i.e.

unweighted pair group method with arithmetic mean). A threshold τ is applied to estimate the

flat clusters, such that the cophenetic distance between any pair within one of the flat clusters

is no greater than τ . We use τ = 10 in our experiments. Results of clustering are illustrated in

Figure 7.2, showing just 12 of the 3,267 clusters formed in application of this algorithm to our

experimental dataset, sampled at random. We also randomly sample a subset of 20 of the “novel"

trajectories (i.e. those which did not belong to a cluster), shown in Figure 7.3 and illustrating that

our trajectory-state distance measurement is effective in grouping like-trajectories and separating

unique trajectories.

7.3.3 Active Learning Algorithm

With the clusters available, it now becomes possible to use this unsupervised information

within an active learning algorithm to enhance the learner’s ability to intelligently acquire new

data for annotation. This method does not require any measure of uncertainty from the learning

model, but does require awareness of the currently-annotated training pool, as the membership of

106



Algorithm 5: Novelty-Sensitive Active Learning Round
Require :α , β , initial training pool Tl , unlabeled pool Tu, and data budget B

1 novel samples← /0 ;
2 familiar samples← /0 ;
3 Cluster(trajectorystates vi ∈ Tl ∪Tu) ;
4 while ∥novel samples∥< α×B do
5 Cn← ci∥∀vi ∈ ci,vi /∈ Tl;
6 Vn← vi∥∀ci,vi /∈ ci;
7 Sn← RandomSelect(si ∈Cn∪Vn) ;
8 if Sn ∈Cn then
9 for i = 1 to β ×∥Sn∥ do

10 novel samples += RandomSelect(vi ∈ Sn) ;

11 else
12 novel samples+= Sn ;

13 Annotate(novel samples);
14 Tl += novel samples;
15 while ∥familiar samples∥< (1−α)×B do
16 Ct ← ci∥∀vi ∈ ci,∃vi ∈ Tl;
17 for i = 1 to β ×∥Ct∥ do
18 familiar samples+= RandomSelect(si ∈Ct);

19 Annotate(familiar samples);
20 Tl+= familiar samples ;
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Figure 7.2. We randomly select 12 clusters, formed using our distance measurement over
trajectory-states (which include trajectory coordinates and vehicle dynamics). Comparing across
the selected clusters, clear patterns emerge even over the 2D coordinates alone (visualized),
showing the effectiveness of grouping like-trajectories.

Figure 7.3. Many trajectory-states remain unclustered due to sufficient distance from all nearest
trajectory-state clusters. We randomly sample just 20 of these unmatched trajectory-states,
visualizing the 2D path coordinates and illustrating the diversity of behaviors found to be unique
within the dataset.

annotated trajectories within a cluster may disqualify that cluster from being acquired as ‘novel’.

We present our algorithm in Algorithm 5. In summary, two parameters are used to define

the included breadth (amount of ‘novel’ samples added) and depth (how much of a cluster to be

added) of the acquisition and annotation of new samples to the training pool. Up to these limits,

clusters which are unrepresented in the training data, or singleton unclustered unique instances,

can be drawn and added to the training pool, until the data budget is filled. In the case that no

further sampling of the desired type is possible (e.g. there are no unvisited clusters or unique

samples remaining), samples are drawn at random from the entire unlabeled pool.
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7.4 Evaluation: Real-World Data and Experimental Design

7.4.1 Datasets

We perform our experiments on the nuScenes dataset, using a subset of the public “train"

training split for training and another for validation, and the public “train_val" subset for testing.

The nuScenes dataset contains 850 driving scenes for training and 150 for evaluation, divided

into instances with 2 seconds of past history to be used in predicting 6 seconds into the future.

Information on ego and surround vehicle state are available, as well as map structure (including

lanes and intersections).

7.4.2 Experimental Design

We sweep through α and β parameters in 20% increments, beginning at α = 0 (no novel

data) and β = .2 (maximum number of samples from a given cluster is 20% of the cluster size).

We repeat this sweep on 5 training volumes: 10% of the dataset through 50% of the dataset, in

10% increments. Results are illustrated in Figures 7.4 and 7.5 and summarized in Table 7.1.

We use the Prediction via Graph-based Policy (PGP) model [195] as the trajectory predic-

tion model for training in the active learning framework. PGP learns discrete policies, exploring

lane graph goals and waypoints with consideration for both lateral variability (lanekeeping,

turning) and longitudinal variability (acceleration). PGP is one of the top models in trajectory

prediction at the time of this writing, with top-3 performance on minimum average displacement

and miss rate metrics of the nuScenes leaderboard, but regardless, the methods described in this

paper are applicable to any machine learning system for trajectory prediction.

7.5 Analysis of Results

We present the results of our experiment in Table 7.1. This table presents performance

of the best-performing active learning strategy in comparison to a random baseline on two

common trajectory prediction metrics, the minimum average displacement error over the five
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Figure 7.4. These five graphs represent the minimum average displacement error metric (mADE5)
performance of various parameterizations of the active learning strategy over a random baseline,
considering the 5 most likely trajectory predictions from the model. Positive numbers indicate
improvement over random. From left to right, each graph has a different training pool size,
with the amount of data in the training pool increases from 10% to 50% of nuScenes (in 10%
increments). The y-axis represents improvement over random, while the x-axis represents the
allowable “depth" into a cluster that the algorithm samples. Each color line represents a different
proportion of unique (novel, diverse) data, versus resampling data which is similar (typical) to
data which already exists in the training pool. The point that we seek to highlight is the change
in position of the yellow line (all novel data) and the red line (all typical data). We see that as
the annotation budget or training pool size increases, these two trends effectively switch roles in
over- (or under-) performing relative to the random baseline. This pattern matches the findings of
Guy et al. in image classification tasks, providing evidence for the presence of the active learning
phase transition within the trajectory prediction task - and, within the bounds of the nuScenes
dataset size. Sampling typical data helps in overcoming a cold start, while novel data should be
sampled in higher proportion as the training pool grows.

Figure 7.5. These five graphs represent the minimum average displacement error metric
(mADE10) performance of various parameterizations of the active learning strategy over a
random baseline, considering the 10 most likely trajectory predictions from the model. Positive
numbers indicate improvement over random. From left to right, each graph has a different
training pool size, with the amount of data in the training pool increases from 10% to 50% of
nuScenes (in 10% increments). The y-axis represents improvement over random, while the
x-axis represents the allowable “depth" into a cluster that the algorithm samples. Each color line
represents a different proportion of unique (novel, diverse) data, versus resampling data which is
similar (typical) to data which already exists in the training pool. We observe the same pattern as
noted in the graphs of mADE5, in the transposition of performance of the strategy which samples
novel data and the strategy which samples typical data.
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Table 7.1. Performance of the best-performing active learning strategy in comparison to a
random baseline on two common trajectory prediction metrics, taken at five data pool sizes.

Labeled Pool mADE5 mADE10
% Random Active α,β Random Active α,β

10% 1.59 1.58 (−0.01) (0%, 20%) 1.18 1.17 (−0.01) (0%, 60%)
20% 1.44 1.42 (−0.02) (20%, 20%) 1.08 1.06 (−0.02) (20%, 20%)
30% 1.37 1.35 (−0.02) (80%, 20%) 1.04 1.01 (−0.03) (60%, 20%)
40% 1.35 1.30 (−0.05) (40%, 60%) 1.00 0.97 (−0.03) (100%, 40%)
50% 1.31 1.29 (−0.02) (100%, 40%) 0.97 0.96 (−0.01) (20%, 40%)

SoA 100% [195] 1.30 1.00

highest-probability trajectories (minADE5), and the same error over the ten highest-probability

trajectories (minADE10). We measure these values at five different data pool sizes, up to 50% of

the complete nuScenes training set. We also compare to the performance reported by [195] in the

original PGP paper. Our diversity-driven active learning methods show consistent performance

gains over random sampling, surpassing or equivalent at all data pool sizes, and even reaching

(or surpassing) performance on the full dataset at just a fraction of the training pool size.

These methods do rely on selection of α,β parameters; in our table, we have the

experimental luxury of providing the optimal values, but in practice, this would require some

assessment of whether a model for a particular task has passed the point of inflection for active

learning “phase"; that is, whether or not it is more beneficial to sample typical data or novel data.

The trend in our table, and in the associated figures, is still apparent: it is beneficial to sample

typicality at the beginning, to address the “cold-start problem", and as the data budget increases,

begin introducing more-and-more novelty. We see at the 20% budget, we accept 20% novelty

(one increment up from the initial 0%), and in the higher budget sizes of 30-50%, we begin

finding the higher novelty α values to be optimal, making the case for some form of “novelty

scheduling" to be integrated into learning systems as a means of active learning.

Qualitative results are depicted in Figures 7.6-7.9, with examples of model results from

the ten percent data pool, fifty percent random data pool, and fifty percent active learning

pool. Specific cases are discussed in the figure captions, and one pattern that emerges between

examples is the pace of the model’s learning of lane-conforming behavior and multimodality.

111



Figure 7.6. From left to right: map input, predicted trajectories, and ground truth. From top to
bottom, results from models trained on: 10% training data, 50% training data randomly selected,
and 50% training data selected using our active learning algorithm. The 10% data model shows
a large spread of possible trajectories, with little scene conformity. Though the scene conformity
improves at 50% data, with active learning, the trajectories adapt even better to the lane contours
of the scene.

Figure 7.7. As in the previous example, though the scene conformity improves at 50% data, with
active learning, the trajectories snap more closely to the lanes in the freeway, while maintaining
the multimodal options appropriate for the driver’s choice in the scene.
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Figure 7.8. At the roundabout, many trajectories proposed by the 10% training data model
are non-compliant, and while the 50% randomly-selected training data model shows a better
conformity to the two possible modes, the ‘right turn’ mode still has four very distinct (incorrect)
variants. At 50% active-learning-selected training data, these four variants collapse to one
(scene-appropriate) turn.

Figure 7.9. Though the vehicle continues straight in this example, a good trajectory prediction
model should maintain an awareness of the possibility of a left turn, as the future (in this case) is
truly unpredictable since the driver has agency to elect to take the turn. The 10% training data
model has no real understanding of the map, and only produces some kinematically-possible
modes which are inappropriate to the scene. The 50% randomly selected training data model
loses the mode for the left turn, while the active learning training method maintains both the
mode and strong lane adherence in all predictions.
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In the ten percent data volume, the model begins with a wide spread of modal coverage, but

rarely conforming to any of the scene input. Rather, the model very loosely approximates a

variety of kinematically-feasible spreads, regardless of map state. At fifty percent data randomly

selected, the model begins to converge toward lane configurations, but notably deviates from

the lane centerlines at a greater rate than the fifty percent data efficiently sampled using our

active learning algorithm. Further, as shown in Figure 7.9, the active learning approach seems to

show the same level of conformity even in its multi-trajectory predictions in the case of multiple

possible futures.

7.6 Concluding Remarks

In this research, we present a method by which information about a vehicle’s trajectory

and dynamic state, collectively referred to as a trajectory-state, can be clustered. We show the

utility of these clusters as the drivers of a selection criteria in an active learning framework.

However, this is not the only way to cluster such data, nor is this the only possible data which

can be used in the clustering process; future research can iterate on these methods to further

drive development of learning systems which select data at low cost to human annotators and

intelligently guide data curation at scale. While we provide a selection based on “novelty"

or “uniqueness" in this research, other measures, such as salience [53–55] or even language-

based queries [196], may also be highly informative to efficient and safe model learning [197].

Beyond learning itself, such novelty-mining is also important in selection of data for system

validation [198].

Further, in this set of experiments, we apply the trajectory-state-informed active learning

toward the task of trajectory prediction, but the utility should be further explored in additional

autonomous driving tasks [30]. We make an argument at the beginning of the paper that one

can infer much about the outside scene from the trajectory alone. While the outside scene is

subsequently annotated and used for the trajectory prediction task we annotate, it would be
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interesting to see how well the trajectory informs active learning for the other relevant task of

object detection, reinforcing the mutual information between the visual sensing of a scene and

an agent’s response trajectory to a scene (i.e. “perception without vision").

In closing, we repeat that the proposed clustering and active learning algorithms are

methods by which large-scale data systems can be more efficient without sacrificing performance

on safety-critical predictive tasks. Data-driven methods show significant promise towards robust

safety, but handling the long-tail nature of high-risk driving events requires intelligent approaches

to collecting, curating, and annotating this valuable data.
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Part IV

Safely Handling the Unexpected: Driver

Control Transitions
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For Level 3 autonomous driving, the driver may be called upon to take control of the

vehicle at any time. For a safe control transition, the outside scene as well as the driver’s

readiness must contribute factors to control decisions (alternation between autonomous and

manual modes) [3].

As presented in earlier chapters, recognizing novelty or hazards is an important part

of the “looking outside" piece of these systems. Even if not detected from on-board sensors,

this capability can still assist in safe control transitions; for example, detecting novelty from

infrastructure can provide a basis for a signal to be broadcast to a vehicle, alerting the driver that

there are upcoming conditions requiring a takeover.

Following this, the research presented in this chapter investigates methods by which the

system can maintain an awareness of the driver’s state, including their observable readiness

[28, 199] and estimated takeover time [2]. In the appendix, I also include discussion of hand

activity occupation [103] [28].

These projects, in leveraging complementary modes of observation, contain research

across areas of machine learning such as ensemble learning, cross-attention mechanisms and

shared data features between modalities, and temporal and spatial attention in video sequences.

Further, the demands of such systems to run in real-time and with minimum sensing hardware

require investigation of efficient neural architectures and ablative analysis of available information

streams. The implications of these systems extend beyond autonomous driving control transitions,

providing new opportunities in driver observation and control decisions related to fatigue or

substance-related impairment [200].
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Chapter 8

Take-over Time Prediction for Autonomous
Driving in the Real-World: Robust Mod-
els, Data Augmentation, and Evaluation

8.1 Introduction

Motivations for studying driver behavior in highly automated vehicles can be found

aplenty in human factors studies (e.g. [201], [202], [203], [204], [205], [206]). It is widely

regarded that as soon as the level of cognitive stimulation falls below a person’s own comfortable

“set point", the person will seek out alternate/additional sources of information, leading to

distraction (e.g. [207], [208], [209], [210]). This makes the intermediate levels of automation

(as per NHTSA [211] or SAE [212]) very dangerous, causing problems such as inattention,

trust, skill atrophy, complacency, etc. [213]. The authors in [213] postulate that rising levels of

automation will lead to declining levels of awareness. They also state that most problems are

expected to arise in systems that take the driver out of the loop, yet these are the very systems that

drivers want, because they free the driver to do something else of interest. Elsewhere, the authors

in [214] emphasize the irony of automation, whereby “the more advanced a control system

is, the more crucial may be the contribution of the human operator". They also acknowledge

that decades of research has shown that humans are not particularly good at tasks that require

vigilance and sustained attention over long periods of time [215].
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Figure 8.1. Role of take-over time (TOT) prediction: We propose a model for predicting
TOT during control transitions based on driver behavior. The proposed model can be used in
conjunction with time-to-collision estimation to determine whether to issue a take-over request
and transfer control to the human, or to deploy active safety measures for collision avoidance.
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All above points seem to suggest that a drop in attention is inherent in human behavior.

Thus, it is not a matter of if, but when the driver will resort to non-ideal behavior. This

makes the safe and smooth handling of control transitions, which entail the transfer of vehicle

controls from the autonomous agent to the human driver and vice versa, extremely important and

timely. Consider the scenario illustrated in Fig. 8.1, indicating the transition of control from an

autonomous agent to the human driver to be a function of the driver state. We propose that a

system that takes the state of the driver into account can decide between handing over control if

the driver is ready, versus coming to a safe and smooth halt if not. Driver state can also dictate

how and when a takeover alert must be supplied to ensure an uneventful transition of control.

In this paper, we focus on transitions from the autonomous agent to the human driver.

In particular, we consider scenarios where limits of the autonomous system are reached. For

example, an unforeseen on-road hazard may be detected that needs to be evaded. The conditions

for L3 autonomy may be coming to an end with the vehicle leaving a geofenced area, or a traffic

jam assist system encountering dissipation of the traffic jam. Such scenarios require timely

human intervention within a predictable time window. In describing such control transitions, we

make use of the take-over time (TOT) metric, defined as the interval of time between a take-over

request (TOR) being issued and the assuming of human control. The take-over request could be

an auditory/visual/tactile cue used to indicate to the driver that their intervention is immediately

needed. Due to the complexity of human attention, we define the assumption of control as the

completion of the following three behaviors:

1. Hands-on-wheel: hand(s) return to the vehicle’s steering control.

2. Foot-on-pedal: foot returns (from floorboard or hovering) to make contact with any

driving pedal.

3. Eyes-on-road: gaze is directed forward, toward the active driving scene.

We work with the assumption that these three cues occurring simultaneously are necessary to

consider the driver both attentive to the scene and in control of the vehicle. We do note that the
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three cues may not be sufficient to consider the driver attentive and in control. This would addi-

tionally depend on factors such as the driver’s situational awareness and the corrective/stabilizing

maneuver performed post TOR. We limit the scope of this work to predicting the time taken

for the above three cues, as a first step towards analysis of control transitions using real-world

autonomous driving data. Analysis of situational awareness and corrective maneuvers will be

addressed in future work.

As depicted in Fig. 8.1, the transition of control from an autonomous agent to the human

driver should be a function of both the surrounding scene and the state of the driver. The

surrounding scene can be concisely expressed using a metric such as time-to-collision (TTC),

whereas the state of the driver can be captured by the predicted TOT. Combined, this forms a

criterion for safe control transitions:

TOT + ε < T TC, (8.1)

where ε is a marginal allowance that represents the time it takes for the human driver to gain

situational awareness and perform a corrective maneuver. A system that takes the state of the

driver into account can decide between handing over control if the driver is ready, versus coming

to a safe and smooth halt if not. While there are many approaches to accurately estimate TTC,

TOT prediction (especially in the real world) remains relatively unexplored. In this paper, we

present a long short-term memory (LSTM) model for predicting TOT based on driver behavior

prior to the TOR. We train and evaluate our model using a real world dataset of control transitions

captured using a commercially available conditionally autonomous vehicle. This work is an

extension of our prior work [3], with three new contributions:

1. TOT prediction with limited real-world data: Capturing real-world takeover events in

autonomous vehicles is expensive and time-consuming. Thus generating a large enough

dataset for training machine learning models can be a challenge. To address this, we

propose a data-augmentation scheme to increase the number of training samples by an
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order of magnitude. Additionally we use transfer learning, and pre-train our TOT prediction

models to estimate the driver’s observable take-over readiness index (ORI) [199].

2. Multimodal TOT prediction: There is inherent uncertainty in predicting the future. The

driver could perform multiple plausible sequences of actions after the issued TOR. To

model this, we extend the model proposed in [3] to output a multimodal distribution over

TOT.

3. Extensive evaluation: We present a more extensive set of ablation experiments, partic-

ularly focused on the above two contributions. We also present additional qualitative

analysis of TOT estimates beyond [3].

8.2 Related Research

8.2.1 Vision based driver behavior analysis

A large body of literature has addressed driver behavior analysis using in-cabin vision

sensors. The most commonly addressed task is driver gaze estimation [216–227], since the

driver’s gaze closely relates to their attention to driving and non-driving tasks. Early works relied

on head pose estimation [216, 217, 219, 228] or a combination of head and eye features [218,

220–222, 229] for estimating the driver’s gaze. More recent work [223–227] uses convolutional

neural networks (CNNs) to directly map regions around the driver’s eyes to gaze zones. In this

work, we use the CNN model proposed by Vora et al. [224] driver gaze analysis.

Driver hand and foot activity has also been the subject of prior work, being useful cues

to gauge the driver’s motor readiness. Several approaches have been proposed for detection,

tracking and gesture analysis of the driver’s hands [230–237] using in vehicle cameras and depth

sensors. Recently proposed CNN models [238, 239] accurately localize the driver’s hands in

image co-ordinates and in 3-D respectively, and further classify hand-activity and held objects.

We build upon the model proposed by Yuen et al. [238] in this work, for driver hand analysis.

Relatively few works have addressed the driver’s foot activity [240–242]. However, we believe
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this is a significant cue for TOT estimation, especially since we estimate the foot-on-pedal

time after the TOR. We use the model proposed by Rangesh et al. [243] for driver foot activity

analysis.

There has also been significant research that builds upon cues from driver gaze, hand and

foot analysis for making higher level inferences such as driver activity recognition [33,244–250],

driver intent or behavior prediction [251–257] and driver distraction detection [258–263]. Of

particular interest is recent work [199], where the authors map driver gaze, hand and foot activity

to the driver’s observable take-over readiness index (ORI) obtained via subjective ratings assigned

by multiple human observers. We use ORI estimation as a transfer learning task for pre-training

our TOT prediction model.

8.2.2 Take-over time analysis in autonomous driving

Take-over time in partial and conditionally autonomous vehicles has been the subject

of several recent studies [264–274]. The primary focus of these studies has been to analyze

the effect of various human and environmental factors on take-over time and quality. The

independent variables analyzed for their effect on TOT are as follows:

TOT budget (or time to collision): This corresponds to the time window between the TOR and

the imminent collision or system boundary. Gold et al. [264] compare TOT and take-over quality

for two different TOT budgets of 5s and 7s. They report longer TOTs for the 7s budget but better

take-over quality. Mok et al. [265] report a similar finding while comparing TOT budgets of 2s,

5s, and 8s, with the 2s case corresponding to significantly worse take-over quality and collision

rates.

Traffic density: Radlmayr et al. [266] and Gold et al. [267] analyze the effect of traffic density

on TOT and take-over quality, with both studies reporting longer TOTs and worse take-over

quality in situations involving high traffic density.

Driver age: Korber et al. [268] and Clark and Feng [269] analyze the effect of driver age on
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TOT by comparing a group of young drivers with a group of old drivers. Korber et al. [268]

report similar TOTs, but different modus operandi – older drivers brake harder and more often

leading to higher TTC. Clark and Feng [269] report lower TOTs for the young group for a TOT

budget of 4.5s, and lower TOTs for the old group for a 7.5s TOT budget.

TOR modality: Petermeijer et al. [270] and Huang et al. [271] compare different modalities for

issuing the TOR. Auditory and tactile TORs are considered in [270] while auditory, tactile and

visual TORs and their combinations are considered in [271]. Both studies report the lowest TOTs

for multimodal TORs. Dogan et al. [272] analyze the effect of providing the driver anticipatory

information about the vehicle and traffic state prior to the TOR, but report similar TOTs with and

without the anticipatory information.

Non-driving-related tasks (NDRTs): Several prior works [266, 272–274] have consistently

reported worse take-over times or take-over quality when the driver is engaged in a NDRT prior

to the take-over, whether the NDRT places visual, cognitive or motor-control based demand on

the driver. In this paper, we thus primarily focus on the effect of driver behavior and NDRTs on

TOT. In particular, we map the observed NDRTs to feature descriptors of driver gaze, hand and

foot activity using vision based models for driver behavior analysis and predict TOT based on

these feature descriptors.

8.2.3 Take-over time prediction for autonomous driving

While the studies described in the previous section analyze take-over times under various

experimental conditions, closest to our work are recently proposed machine learning models

[275–280] that predict TOT prior to the control transition.

Braunagel et al. [275] and Du et al. [278] propose binary classifiers that output whether

or not the driver is ready to take-over. Gaze activity, NDRT label and a label for situation

complexity are used as input features in [275], while gaze activity, heart rate variability, galvanic

skin response, traffic density and TOT budget are used as inputs in [278]. Pakdamanian et

al. [280] propose a three class classifier over TOT intervals based on driver gaze activity, heart rate
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variability, galvanic skin response, NDRT label and vehicle signals. Lotz and Weissenberger [276]

compare various classifiers over 4 TOT intervals trained using features capturing driver’s head

orientation and gaze activity, along with TTC. Hwang et al. [279] propose a regression model

based on hidden Markov models that outputs TOT based on vehicle signals prior to the TOR.

Finally, Berghofer et al. [277] propose a regression model for TOT prediction based on driver

gaze activity and driver characteristics such as age, gender, sleepiness, attitude towards highly

automated driving and previous experiences with automated driving.

Our work differs from previously proposed TOT prediction models on two counts. First,

we use fine-grained descriptors of driver gaze, hand and foot activity obtained purely using

non-intrusive vision sensors as inputs to our TOT prediction model. Second, we train and

evaluate our models using a large real-world dataset of take-overs captured in a conditionally

autonomous vehicle. Prior work on TOT prediction has been limited to the simulator setting

[275, 276, 278–280]. Berghofer et al. [277] do use a real world dataset. However, they use a

’Wizard of Oz’ setting where a safety driver with access to vehicle controls plays the role of the

autonomous vehicle.

8.3 Datasets & Labels

8.3.1 Controlled Data Study (CDS)

To capture a diverse set of real-world take-overs, we conduct a large-scale study under

controlled conditions. More specifically, we enlist a representative population of 89 subjects to

drive a Tesla Model S testbed mounted with three driver-facing cameras that capture the gaze,

hand, and foot activity of the driver. In this controlled data study (CDS), we required each subject

to drive the testbed for approximately an hour in a pre-determined section of the roadway, under

controlled traffic conditions. During the drive, each test subject is asked to undertake a variety

of distracting secondary activities while the autopilot is engaged, following which an auditory

take-over request (TOR) is issued at random intervals. This initiates the control transition during
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which the driver is instructed to take control of the vehicle and resume the drive. Each such

transition corresponds to one take-over event, and our CDS produces 1,375 take-over events in

total.

8.3.2 Annotation

Automated video segmentation: Each driving session is first segmented into 30 second windows

surrounding known take-over events, consisting of 20 seconds prior to the take-over request

(TOR) and 10 seconds after the take-over event.

Event annotations: For each 30 second clip corresponding to a take-over event, we manually

annotate the three times after the take-over request corresponding to when the driver’s eyes are

on the road, hands are on the wheel, and foot is on the pedal. We also label the secondary activity

being performed by the driver during each take-over event, assigning one of 8 possible activity

labels: (1) No secondary activity, (2) talking to co-passenger, (3) eyes closed, (4) texting, (5)

phone call, (6) using infotainment unit, (7) counting change, (8) reading a book or magazine.

The take-over events are distributed between secondary activities as shown in Table 8.1.

Figure 8.2 shows the average times corresponding to eyes on road, hands on wheel and

foot on pedal for each of the 8 secondary activities. It also shows the overall take-over time,

which is the maximum of the three markers for each event. We note that texting, phone-calls,

counting change and reading correspond to longer average take-over times, as compared to

talking to the co-passenger or using the infotainment unit, which can be reasonably expected.

Counter to intuition, the ‘eyes closed behind the wheel’ activity has low take-over times. This is

mainly because the drivers are merely ‘acting’ to be asleep, since actual sleep could not have

been achieved given the duration and nature of each trial. We also note that the ‘hands on wheel’

event seems to take much longer on average, as compared to eyes on road or foot on pedal.

This reinforces the need for driver hand analysis, which is also a key predictor of the driver’s

observable readiness index (see next section). Finally, we note that for the more distracting

secondary activities (reading, texting, phone calls, counting change), even the foot on pedal times
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are longer compared to the other secondary activities, although the secondary activities do not

involve the driver’s feet. Thus, there seems to be a delay corresponding to the driver shifting

attention from secondary activity to the primary activity of driving.

8.3.3 Data Augmentation

Takeover time data is very limited and expensive to capture and label. This is illustrated

by the size of the CDS dataset (1,375 unique takeover events). This introduces challenges during

training neural networks for TOT prediction, as these models typically require tens of thousands

of training samples. Care must also be taken to avoid overfitting, as this is more prevalent in the

limited data regime. To address these issues, we propose a new data augmentation scheme to

increase the number of samples in the dataset by an order of magnitude.

Figure 8.3 illustrates our data augmentation scheme. We term each take-over event in the

CDS dataset a raw sample. Each raw sample has annotated timestamps corresponding to the

take-over request (ttor), as well as the time taken by the driver to get their eyes on the road (teyes),

hands on the wheel (thands) and foot on the pedals (t f oot) after the TOR as shown in Figure 8.3.

We wish to learn a model that maps a 2 second window of driver activity prior to the TOR to the

take-over times, {teyes, thands, t f oot}.

The raw samples alone are insufficient to train a machine learning model from scratch.

We thus mine augmented training samples from each takeover event as shown in Figure 8.3. An

augmented training sample is characterized by an augmented TOR at time to f f after the actual

ttor. We use a 2 second window of driver activity before the augmented TOR as the input to the

model while the corresponding takeover times are given by {teyes−to f f , thands−to f f , t f oot−to f f }.

If the driver’s hands, eyes, or foot are already in position at ttor + to f f , the corresponding takeover

time is set to 0.

An augmented training sample maps the driver’s state at an intermediate timestamp

during the takeover event, to their reaction times from that timestamp. While this doesn’t

correspond to an actual TOR, it still serves as useful data for training our TOT prediction model
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as we show in Section 8.5. Intuitively, the driver can be expected to be less and less distracted by

a non-driving activity as to f f is increased, leading to shorter takeover times. Thus the augmented

samples provide additional instances where the driver is increasingly prepared to takeover control

from the vehicle.

We capture data at a frame rate of 30 Hz. Thus, to f f can be varied from 0 to the maximum

of {teyes, thands, t f oot} using increments of 1/30 seconds to yield multiple augmented samples per

takeover event. The augmentation scheme is only applied to the training split. The validation

and test splits are left untouched for accurate evaluation.

Table 8.1. Control Transition Secondary Activity Frequency.

Secondary Activity Number of samples Percent
No secondary activity 308 23.0%

Texting 262 19.6%
Infotainment unit 262 19.6%

Talking to passenger 182 13.6%
Reading book or magazine 100 7.5%

Counting coins 97 7.2%
Eyes closed/Looking at lap 85 6.4%

Phone call 42 3.1%

8.4 Models & Algorithms for Predicting Takeover Times

It is important to preserve both the diverse and sequential nature of all features related

to driver behavior while designing a holistic take-over time (TOT) prediction framework. High

level tasks such as TOT prediction are influenced by low level driver behaviors, both in the

short and medium to long term. Figure 8.4 provides an overview of our proposed approach for

estimating TOT. Our approach consists of two major components. The first component is a set

of convolutional neural networks (CNNs) for extracting frame-wise descriptors of driver gaze,

hand and foot activity from the raw camera feed. We describe these is greater detail in section

8.4.1. The second component is an LSTM model for estimating TOT based on a sequence of

frame-wise features over a pre-defined time window. We describe the different variants of our

128



Figure 8.2. Take-over time statistics from the CDS: We plot the mean values (with error bars)
of the different take-over related event timings for each secondary activity.

LSTM based models in section 8.4.2.

8.4.1 Frame-wise feature extraction

Gaze activity: We use the model proposed by Vora et al. [223] for driver gaze analysis. The

inputs to the model are frames from the face camera. We use a face detector [281] for localizing

the driver’s eyes. A cropped bounding box around the driver’s eyes is passed through a CNN,

which outputs the driver’s gaze zone. We consider 8 gaze zones: {forward, left mirror, lap,

speedometer, infotainment unit, rear-view mirror, right mirror, over the shoulder}. The CNN

outputs frame-wise probabilities for each gaze zone. We use this 8 dimensional vector to

represent driver’s gaze features.

Hand activity: We use the model proposed by Yuen and Trivedi [282] for driver hand analysis.

The model localizes the elbow and wrist joints of the driver using part affinity fields [283]. A

cropped bounding box around the driver’s wrist is passed through a CNN to output probabilities
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Figure 8.3. Illustration of TOT dataset augmentation scheme.
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Figure 8.4. Overview of the proposed approach: We extract frame-wise descriptors of driver
gaze, hand and foot activity. We propose an LSTM model for predicting TOT based on a
sequence of the extracted features over a 2 second window.

corresponding to 6 hand activities for each hand: {on lap, in air, hovering over steering wheel,

on steering wheel, on cupholder, interacting with infotainment unit}. We extend the model to

additionally output hand-held object probabilities. We consider 7 object categories: {no-object,

phone, tablet, food, beverage, book, other}. By running the models on images from a stereo

camera pair, we also obtain 3-d coordinates for the driver’s wrist locations and the steering wheel

using triangulation. We then calculate the distance of each hand (wrist) of the driver to the

steering wheel in 3-d. The hand activity probabilities, hand object probabilities and 3-d distance

to steering wheel together form the hand activity features for each frame.

Foot activity: We use the model proposed by Rangesh and Trivedi [243] for driver foot analysis.

Each frame from the foot camera feed is passed through a CNN to output probabilities over 5

foot activity classes: {away from pedal, on brake, on gas, hovering over brake, hovering over

gas}. These probabilities represent the foot activity features for each frame.
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8.4.2 LSTM models for take-over time prediction

Baseline LSTM: This is the simplest (baseline) version of all TOT models. The input features

are first transformed using a fully-connected (FC) layer of size 16 (plus non-linearity), which is

then fed to an LSTM with a hidden state of size 32 at each timestep. The LSTM layer receives

the transformed input features at each timestep and updates its internal representation known as

the hidden state. In all our experiments, we choose a 2 second window of features as input to

our models. After 2 seconds worth of inputs and updates, the hidden state of the LSTM after

the latest timestep is passed through an output transformation (FC layer plus non-linearity) to

predict the three times of interest.

We apply a simple L1 loss to train this network. Let oe, o f , and oh be the outputs

produced by the model. Assuming te, t f , and th are the target eyes on road time, foot on pedal

time, and hands on wheel time respectively, the total loss is:

L =
1
N

N

∑
i=1
|t i

e−oi
e|+

1
N

N

∑
i=1
|t i

f −oi
f |+

1
N

N

∑
i=1
|t i

h−oi
h|. (8.2)

The entire model is trained using an Adam optimizer with a learning rate of 0.001 for 10

epochs.

Independent LSTMs: Figure 8.5 shows the independent LSTM model architecture. This model

is the same as the baseline LSTM model, except for one major difference: each target output time

has its own independent LSTM. The reasoning behind this is to accommodate different hidden

state update rates for different driver behaviors, for example – eyes on road behavior is generally

faster (short term) than hands on wheel behavior (mid/long term). Having multiple independent

LSTMs allows each one to update at different rates, thereby capturing short/mid/long term

behaviours separately.

Although each branch has its own LSTM cell, the input and output transformations are

still shared between the three LSTMs as the feature inputs to the three branches are the same.
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Figure 8.5. Independent LSTMs model architecture.
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This tends to reduce overfitting based on our experiments.

We use the identical loss (eq. 8.2) and optimizer settings as the baseline LSTM for

training the independent LSTMs model.

LSTM with Multi-modal Outputs: This model is largely based on the baseline LSTM with

one addition: multi-modal outputs. Instead of just producing one output for each of the three

targets, we output K(= 3) outputs per target and their associated probabilities. We do this to

model the inherent multi-modality and subjectiveness of takeover times. For example, given

similar history of behavior, one driver may respond faster in taking control of the vehicle than

another. Producing multiple probable outputs (and their probabilities) could possibly address

this ambiguity and provide more usable information to any downstream controller.

Unlike the previous models, this model is trained using a minimum of K loss, where L1

losses are only applied to the output modes closest to the ground truth target. Additionally, the

output probabilities are refined using cross-entropy. Let oe(k), o f (k), oh(k) and q(k) denote the

kth set of outputs and corresponding probability produced by the model. Assuming te, t f , and th

are the target eyes on road time, foot on pedal time, and hands on wheel time respectively, the

total loss is:

L =
1
N

N

∑
i=1

min
k

(
|t i

e−oi
e(k)|+ |t i

f −oi
f (k)|+ |t i

h−oi
h(k)|

)
−λ

1
N

N

∑
i=1

K

∑
k=1

pi(k) log(qi(k)), (8.3)

where pi(k) is a one-hot categorical probability distribution given by the indicator function,

pi(k) = 1

(
argminl

(
|t i

e−oi
e(l)|+ |t i

f −oi
f (l)|+ |t i

h−oi
h(l)|

)
= k

)
, (8.4)

and λ is a coefficient used for relatively weighting the L1 and cross-entropy losses.
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Table 8.2. Estimation errors for different times of interest on the CDS validation set.

Model
type (s)

Overall
MAE (s)

Eyes on road
MAE (s)

Foot on pedal
MAE (s)

Hands on wheel
MAE (s)

Takeover time
MAE (s)

Constant prediction (Max over train set stats) 3.9271 2.4540 2.9880 6.3392 6.1969
LSTM1 0.5104 0.3353 0.5029 0.7126 0.8098

ID LSTMs2 0.5073 0.3266 0.4841 0.7113 0.7912
LSTM + MM3 0.5589 0.3582 0.5262 0.7921 0.8908

ID LSTMs + MM 0.5319 0.3415 0.5019 0.7524 0.8441
LSTM + MM (best of K) 0.3921 0.2393 0.4204 0.5167 0.6265

ID LSTMs + MM (best of K) 0.3911 0.2344 0.3875 0.5513 0.6586
1 baseline LSTM model 2 Independent LSTMs 3 Multi-modal outputs (with K = 3 modes)

As before, the entire model is trained using an Adam optimizer with a learning rate of

0.001 for 10 epochs. We use λ = 1 for simplicity.

Independent LSTMs with Multi-modal Outputs: The final proposed model uses a combination

of independent LSTMs and multi-modal outputs described before. One difference to the original

independent LSTMs model is that we now concatenate the hidden states of all three LSTMs and

transform them together to produce the target outputs. This is done because probabilities are

assigned to the joint of all three target times, and thus need to be operated on together.

We use the identical loss (equation 8.3) and optimizer settings as the LSTM with multi-

modal outputs for training the independent LSTMs with multi-modal outputs.

8.5 Experiments & Evaluation

Comparison of LSTM models for TOT prediction: First, we conduct an experiment to assess

the effects of different model architectures. All proposed models (from Section 8.4.2) were

trained on CDS train set with augmented data, and then evaluated on the validation set. We

use individual and overall mean absolute errors (MAEs) as metrics for comparison. Table 8.2

contains results from this experiment. In addition to the LSTM models, as a sanity check, we

include a simple baseline that always predicts a constant value for all take-over time markers,

corresponding to the maximum value for each marker from the train set.

From these results, we note that all LSTM models considerably outperform the constant
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Figure 8.6. Independent LSTMs with multi-modal outputs model architecture.
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Table 8.3. Estimation errors for different times of interest on the CDS validation set when trained
on a variety of datasets.

Training
dataset (s)

Overall
MAE (s)

Eyes on road
MAE (s)

Foot on pedal
MAE (s)

Hands on wheel
MAE (s)

Takeover time
MAE (s)

CDS (R)1 0.5799 0.3676 0.5435 0.8285 0.8576
CDS (A)2 0.5073 0.3266 0.4841 0.7113 0.7912

ORI3→ CDS (A) 0.5184 0.3246 0.5182 0.7054 0.7729
1 raw dataset 2 augmented dataset 3 ORI estimation dataset

value baseline showing that there is a learnable signal in the data and the usefulness of using a

machine learning model. We observe that the independent LSTMs model consistently outper-

forms other models. At first glance, the multi-modal models tend to perform worse than the

ones without multi-modal outputs. To further analyze the source of these errors, we provide the

best-of-K MAEs for these models in Table 8.2. The best-of-K MAEs simply mean that instead of

choosing the most probable set of predictions for error calculation, we use the set that produces

the least error i.e. assume perfect classification. The best-of-K numbers are vastly superior to the

ones without multi-modal outputs. This indicates that in most cases, at least one of K(= 3) sets

of predictions is highly accurate. However, accurate probability assignment for these K modes

(i.e. classification) remains error-prone. Nevertheless, we believe that having multiple probable

outputs instead of one less accurate one could be beneficial for downstream controllers.

Effect of data augmentation and transfer learning: Next, we conduct experiments to assess

the effects of our data augmentation and transfer learning schemes. To isolate these effects, we

use the same ID LSTMs model for all experiments. We compare the following training schemes:

• CDS (R): First, as a baseline, we train a model purely using the raw CDS data without

augmentation.

• CDS (A): Next, we train a model using the augmented training dataset using the augmen-

tation scheme described in section 8.3.3. The raw dataset contained 1,375 samples, which

we augment to 47,461 datapoints.
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Table 8.4. Estimation errors for different times of interest on the CDS validation set for a variety of feature combinations.

Features

Foot Gaze Hands Activities Hands Distances Held Objects
Overall

MAE (s)
Eyes on road

MAE (s)
Foot on pedal

MAE (s)
Hands on wheel

MAE (s)
Takeover time

MAE (s)
✓ 0.5735 0.3587 0.5018 0.8599 0.8856

✓ 0.5811 0.3332 0.5690 0.8411 0.8837
✓ 0.5560 0.3729 0.5384 0.7565 0.9012
✓ ✓ 0.5420 0.3783 0.5109 0.7369 0.8315
✓ ✓ 0.5217 0.3702 0.4973 0.7177 0.8621
✓ ✓ ✓ 0.5182 0.3747 0.4857 0.7141 0.7983

✓ ✓ ✓ 0.5202 0.3244 0.5220 0.7163 0.7920
✓ ✓ ✓ ✓ 0.5213 0.3299 0.5124 0.7215 0.7921

✓ ✓ ✓ ✓ 0.5384 0.3222 0.5059 0.7870 0.8475
✓ ✓ ✓ ✓ 0.5088 0.3277 0.5074 0.7144 0.7918
✓ ✓ ✓ ✓ ✓ 0.5073 0.3266 0.4841 0.7113 0.7912

• ORI→ CDS (A): Finally, we consider a model pre-trained to estimate the observable

take-over readiness index (ORI) proposed in [199]. The ground truth ORI values are

obtained via subjective ratings assigned by multiple human observers rating how ready a

driver is to take-over control from the vehicle based on the past two seconds of video feed

from the driver facing cameras. The ratings are normalized and averaged to account for

rater bias as described in [199].

Results from these experiments are presented in Table 8.3. As before, we use individual

and overall mean absolute errors (MAEs) as metrics for comparison.

From Table 8.3, we notice that training on the augmented dataset (as proposed in Sec-

tion 8.3.3) consistently and considerably improves performance as compared to the raw dataset.

We believe that doing so prevents overfitting, provides regularization, smooths the outputs of

model, and adds new training samples that would be cumbersome or impossible to capture.

Finally, we observe that training the model for observable readiness index (ORI) esti-

mation [199], followed by transfer learning on TOT prediction improves some metrics. This

highlights the commonality between the two tasks - features from learning one task can improve

performance in the other.

Effect of hand, gaze and foot activity features: Finally, we conduct an experiment to assess

the relative importance of different input features and their combinations. To isolate effects from

features, we train the same ID LSTMs model with different input feature combinations. We
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Table 8.5. Estimation errors for different models on the takeover time test set.

Model
type (s)

Overall
MAE (s)

Eyes on road
MAE (s)

Foot on pedal
MAE (s)

Hands on wheel
MAE (s)

Takeover time
MAE (s)

Constant prediction (Max over train set stats) 4.0835 2.6790 3.1540 6.4175 6.2073
LSTM1 0.5242 0.2365 0.5007 0.8710 0.9457

ID LSTMs2 0.5208 0.2497 0.4650 0.8055 0.9144
LSTM + MM3 0.5339 0.2635 0.5265 0.8117 0.9307

ID LSTMs + MM 0.5526 0.2665 0.5180 0.8734 0.9418
ID LSTMs (75%4) 0.5348 0.2557 0.5013 0.8474 0.9779
ID LSTMs (90%5) 0.5282 0.2514 0.4851 0.8482 0.9424

1 baseline LSTM model 2 Independent LSTMs 3 Multi-modal outputs (with K = 3 modes)
4 75% of the dataset used for training 5 90% of the dataset used for training

use individual and overall mean absolute errors (MAEs) as metrics for comparison. Table 8.4

contains results from this experiment.

We notice that hand features are the most important, followed by foot and gaze features

respectively. This might be because gaze dynamics are relatively predictable during takeovers as

the first thing drivers tend to do is look at the road to assess the situation, leading to less variance

in eyes-on-road behavior. Next, we notice that adding more informative hand feature like 3D

distances to the steering wheel and hand-object information improves the performance further.

Hand-objects in particular seem to vastly improve the performance in general. This makes sense

as hand-objects are the strongest cue related the secondary activities of drivers. Adding stereo

hand features improves the results, but not by much. Adding foot features also tends to reduce

the errors considerably, illustrating the importance of having a foot camera.

In conclusion, one could get close to peak performance by utilizing 3 cameras - 1 foot, 1

hand, and 1 face camera respectively. Hand features are most informative, followed by foot and

gaze features respectively.

Quantitative results on test set: In this section, we present quantitative error metrics on the

held out test set, separate from the validation set, for all proposed models in Table 8.5. As before,

we see that ID LSTMs is the best performing model. We also notice that hands-on-wheel MAEs

are usually the largest owing to large variance in hand behaviors, and large absolute values

associated with hands-on-wheel time.
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We also show results for ID LSTMs when trained on 75% and 90% of available training

data. This helps us gauge the expected improvement in performance as more training data is

added. Based on the numbers presented in Table 8.5, we can expect meager improvements as

more data is added. This indicates a case of diminishing returns.

8.6 Concluding Remarks

This paper presented one of the largest real-world studies on takeover time prediction and

control transitions in general. We introduced a dataset of take-over events captured via controlled

driving studies in a commercially available partially autonomous vehicle, with a large pool of

test subjects performing a variety of secondary activities prior to the control transition. We

proposed a machine learning model for take-over time prediction based on driver gaze, hand and

foot activity prior to the issue of take-over requests. We also proposed a data augmentation and

transfer learning scheme for best utilizing the limited number of take-over events in our dataset.

Our experiments show that our model can reliably predict takeover times for various secondary

activities being performed by the drivers. In particular, we showed the usefulness of analyzing

driver hand, foot and gaze activity prior to issuing the take-over request. We also showed the

utility of our transfer learning and data augmentation schemes for best utilizing limited training

data with control transitions. We believe that this study outlines the sensors, datasets, methods

and models that can benefit the intermediate stages of automation by accurately assessing driver

behavior, and predicting takeover times - both of which can be used to smoothly transfer control

between human and automation.
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Part V

Salience: Towards Safe Planning in

Complex Scenes
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Previous research in the field of visual attention and machine learning has considered

where human drivers may look when driving a vehicle, showing that this behavior can be

modeled [284], and that this so-called visual salience behavior can be used to estimate a driver’s

scene awareness [285] and predict driving maneuvers [253].

Presented in this area of my dissertation, I query objects for a related property which I

refer to as road object salience [54]; rather than considering an object salient by its tendency

to attract the visual attention of a human driver, I instead consider an object to be salient by its

importance for safety-critical decision-making by the ego agent. The nuance in this framing

is that even unnoticed objects to a human driver may be very impactful toward algorithmic

planning.

In the first chapter of this part, I explore whether this salience property can be learned

using image features, positional encodings, maneuver information, and scene properties [54],

motivated by the impact this property may have towards machine learning models that affect

driving decisions. To this point, in the following chapters, I show that awareness of salience can

be used to define metrics and loss functions which both enhance performance of object detectors

and also provide a more sensitive assessment of a model’s performance in consideration of

critical scene elements [286] [55].

Another reason to explore salience is the possibility that determining an object’s salience

toward control decisions will allow for more informed trajectory prediction and association

between scene elements in the interest of forming relationship graphs between agents and

infrastructure. Detecting objects in the scene surrounding an intelligent vehicle is well-known

as a primary task in vehicle perception. Benchmark datasets have tasked AI practitioners to

accurately detect every traffic sign and traffic light visible to a vehicle’s outside-facing camera,

while datasets such as the Waymo Open Dataset and NuScenes have provided further challenge

in locating objects not only within the camera frame (2D object detection), but placing them

within the real driving world (3D object detection). Though there are many research works which

compete for top performance on 2D object detection benchmarks, my research addresses the
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question, “to what end?". Detecting objects is crucial for autonomous safety, but simply detecting

the objects does not make the vehicle inherently safer. It is only when the detected object becomes

used as a feature towards downstream tasks, particularly in the category of planning, much

beyond obstacle avoidance. In relation to trajectory prediction, trajectory planning [287] is

the task of identifying driving waypoints toward a larger-scale driving target, as opposed to

observing and predicting the path that some external (and non-controllable) agent may be taking.

While a kinematically-informed model may have some ability to produce output for either task,

it is clear to any driver that some understanding of scene objects also plays a vital role in our

choice of driving path. Navigating safely through a scene with no regard for signage or traffic

lights, treating planning like some Frogger-like collision avoidance game, would satisfy current

canon metrics for “safety", namely staying on the drivable area and avoiding collisions with any

agents (vehicle and VRU). However, this disturbs our notions of trustworthiness, explainability,

and comfort of the AI planning system, and these principles are of high importance for users,

automakers, and regulators – necessary stakeholders in bringing autonomy to real roads. This is

the same challenge which burdens end-to-end driving systems, which are missing the degree of

human abstraction that makes their plans explicitly relatable to their human occupants; that is,

it is important for the vehicle not to behave only safely, but also in a way that it is expected to

behave. Salience bridges the gap between perception and planning; once an object is detected, its

salience (here defined as relevance or importance to decision-making) can be taken into account

in determining whether the object’s meaning should be factored into the vehicle’s plans. Further,

salience may act as a means of association. Beyond detecting objects such as vehicles, lanes,

and lights, it is important that a planner understands the relationships between these objects

(e.g. Car A occupies Lane 2, which is being dictated by Lights X and Y) [288]. If a model

emulating a human driver’s perception can identify a lane and light as salient to their vehicle, this

may be used to create this association, providing a graph representation which connects scene

components in a way that support decision processes.
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Chapter 9

On Salience-Sensitive Sign Classification
in Autonomous Vehicle Path Planning:
Experimental Explorations with a Novel
Dataset

9.1 Introduction

Autonomous vehicles need to share the road with multiple decision making agents, each

with their own goals and different directions of motion. Traffic signs play an important role in

regulating the motion of all agents on the road. They are easy to notice and provide safety critical

information in an intuitive and succinct manner to drivers and pedestrians. Traffic sign detection

and recognition has thus received significant attention in recent research on autonomous driving

and advanced driver assistance systems (ADAS). Several datasets have been released, with

bounding boxes ( [289] [290] [291] [292] [293] [294] [295] [296]), pixel level masks ( [292]),

as well as fine-grained category labels for traffic signs ( [289] [290] [291] [292] [295] [296]).

These in turn have allowed researchers to leverage modern CNN based detectors and classifiers

for traffic sign detection and recognition ( [297] [298] [299]).

While detection and recognition of traffic signs are important tasks, they aren’t sufficient

to inform an autonomous vehicle how to operate in a traffic scene. Crucially, an autonomous

vehicle needs the ability to determine whether a traffic sign is salient or applicable to its planned
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path. This is a challenging task due to several factors:

• Scene complexity: City streets are complex environments. Consider the montage shown

in Figure 9.1; in addition to being a visual maze on its own (between lane flows, non-

perpendicular intersections, and train tracks) the scene contains excessive sign information,

where the controller must know which signs are meant to inform its own lane and not

follow the signs intended for others.

• Asymmetric importance of scene elements: While there is information available in every

pixel visible to a vehicle, autonomous or manually-driven, certain portions of a given scene

are more important in path planning. As a motivating example, being aware of a speed

limit sign directed at cross traffic certainly informs a driver of expected behavior of other

vehicles in the scene, but is less relevant to the driver’s plans than an imminent stop sign,

as illustrated in Figure 9.2.

• Extraneous traffic signs: In other cases, the sign which is easiest to detect may not

necessarily be instructive for the ego vehicle. Consider Figures 9.3 and 9.4, where the

closest sign on the right, while in a typically informative location, actually provides

information to a different lane than the ego vehicle, and following such instructions may

prove dangerous and unexpected to surrounding drivers.

• Non-local context cues: The context cues to determine whether a traffic sign applies to

the ego-vehicle can often be non-local to the traffic sign itself. These non-local cues could

ego-vehicle’s lane, its planned route, and in some cases (such as yield signs) even the

locations of surrounding agents.

This paper represents a first step towards traffic sign salience recognition. We define a

sign to be salient if the visible sign provides an instruction intended for the ego vehicle location

before the next decision point, independent of the actions of other agents and instructions

provided to other lanes. To facilitate further research on traffic sign salience recognition, we
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Figure 9.1. In this montage, a vehicle drives through a complex scene containing a heavy amount
of signs of varying salience to the intended path. There are signs in the field of view which
instruct the lanes to the left and right of the ego lane, as well as the cross-traffic at the intersection.
While informative about the possible paths of other agents, these signs do not provide direction
to the vehicle in proposing its own path through the intersection.

present the LAVA traffic sign dataset with traffic sign bounding boxes, fine-grained traffic sign

category labels, as well as binary labels indicating traffic sign salience. Additionally we provide

auxiliary meta-data for each scene including roadway type, and the next planned maneuver for

the ego-vehicle. Finally, we present analysis on traffic sign salience recognition using a CNN

based classifier that takes into account the appearance of traffic signs, their locations in a given

scene, the roadway type (e.g. highway, intersection, on-ramp, school-zone etc.), and the planned

route of the ego-vehicle.

147



Figure 9.2. In a model designed to detect and classify signs for safe autonomous driving, being
aware of the stop sign is much more important than the cross-traffic speed limit. A model should
be able to weigh missed detections accordingly, as made possible with the sign salience property.
By the proposed definition, the stop sign is salient while the speed limit sign is not.

Figure 9.3. In this scenario, two possible sign detections are made, but while the detection on the
right is easier, it provides no value to the ego vehicle in understanding allowable maneuvers in the
upcoming intersection. Detecting this sign is less critical, but existing traffic sign datasets do not
contain features with this information. Additionally, were the autonomous vehicle to mistakenly
associate this “Must Turn Right" sign as salient to its lane, it would make an illegal maneuver by
following its instruction. Only the white regulatory sign located across the intersection is salient.
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Figure 9.4. While most speed limit signs apply to all lanes in the direction of travel, this exit
speed limit applies only to the lane to the right of the ego vehicle. An autonomous vehicle
must have the ability to determine whether this sign is salient to its lane, and select its speed
accordingly. The detected signs in this scene are not salient.

9.2 Related Research

9.2.1 Sign Detection

The task of monocular sign detection is well-established and well-addressed in the

field, with prime evidence in the nearly-perfect precision-recall curves associated with the

German Traffic Sign Detection Benchmark public results [289]. Recent approaches of significant

performance across multiple datasets include:

• A cascaded R-CNN with multiscale attention [297], with data augmentation to balance

class prevalence of commonly-missed small signs. This method is designed to address

false detections due to illumination variation and bad weather.

• A sparse R-CNN with residual connections in the ResNest backbone and a self-attention

mechanism [298], designed to be robust to foggy, frosty, and snowy images.

In our work, we assume prior knowledge of the detected sign location, as would be given

using any of the above methods.
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Table 9.1. Comparison of traffic sign datasets. All datasets contain at least images, class labels,
and information about the image location and size of the bounding box for the region of interest,
in addition to any unique features listed. The LAVA dataset (bottom row) is notable for its
inclusion of 10 second video context, and importantly is the only dataset which contains a binary
label indicating sign salience.

Dataset Number of Images Country Features
German Traffic Sign Detection Benchmark [289] 50,000+ Germany

Mapillary [290] 100,000 World
LISA Traffic Sign Dataset [291] 7,855 USA occlusion, on-side-road
Tsinghua-Tencent 100K [292] 100,000 China pixel-level mask

CURE-TSD [293] 1.7M Belgium
LiU Traffic Signs Dataset [294] 3,488 Sweden occlusion

Chinese Traffic Sign Database [295] 6,164 China
Russian Traffic Sign Images Dataset [296] 104,358 Russia

LISA Amazon-MLSL Vehicle Attributes Dataset [75] 14,112 USA 10s video context, occlusion, salience

9.2.2 Sign Classification

While sign classification in itself is not necessary in our model of sign importance, the

problem has been addressed to high levels of accuracy in [299], the top performer on the German

Traffic Sign Recognition Benchmark, using a CNN with three spatial transformers. Our work

predicts sign salience using standard convolutional filter features extracted from the cropped

sign image, but ongoing SOA approaches to sign recognition can provide improved backbone

features to salience classification, since a sign’s appearance can certainly affect its relevance (e.g.

a stop sign detected while the ego vehicle is on a freeway is likely meant for off-freeway traffic

and is therefore irrelevant). Further, sign classification can be combined with sign salience for

downstream control, such that the control module can understand first which signs are important,

and second what expected behaviors those important signs are indicating.

9.2.3 Traffic Sign Datasets

The traffic sign datasets listed in Table 9.1 facilitate research in the above tasks of traffic

sign detection and classification. In this table, we highlight the relative size of these datasets,

as well as any unique annotated features beyond the traffic sign class and bounding box image

coordinates.
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9.2.4 Traffic Signs in Planning and Control

Most current consumer-market vehicles offer little path planning for traffic regulations

apart from maintaining lane, maintaining reasonable speed, and avoiding collision, hence advi-

sory restricting the use of these features to freeways-only. Autonomous vehicles are expected to

come with minimum safety guarantees, but the verification and explainability of such systems

is difficult to address with common end-to-end learning approaches. Integration of algorithms

which address traffic regulations can provide the deterministic and explainable action qualities

important to public acceptance and safety. As explained by Fulton et al. [300], “Autonomous

systems that rely on formally constrained RL for safety must correctly map from sensory inputs

into the state space in which safety specifications are stated. I.e., the system must correctly

couple visual inputs to symbolic states." A recent approach to address this explainability, Cultrera

et al. [301] use end-to-end visual attention model which allows identification of what parts of

the image the model has deemed most important. The specific importance of regulatory scene

understanding has proven useful in trajectory prediction by Greer et al. [64], using a weighted

lane-heading loss to ascribe importance to lane-following. Learned attention to the static scene

has been demonstrated effective by Messaoud et al. [302], showing that end-to-end approaches

to trajectory prediction which take in only agent motion are missing valuable information from

the regulations of the static scene.

As an example of a recent model which acknowledges the importance of sign-adherence

capabilities, [303] use an end-to-end learning approach to control using navigational commands,

but note a shortcoming: “Traffic rules such as traffic lights, and stop signs are ignored in the

dataset, therefore, our trained model will not be able to follow traffic lights or stop at stop signs."

Some regulations can be addressed by algorithms (rule-based or learned) which are tailored to

specific signs. Alves et al. [304] explore planning under traffic sign regulations by modelling

and implementing three Road Junction rules involving UK stop and give-way signs.

While this work is the first to ascribe and predict sign salience, Guo et al. [305] create a
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dataset and learning architecture to promote descriptive understanding of signs beyond common

detection and recognition. Their model is intended to output a semantic, verbal description which

connects the texts and symbols on a sign. In contrast, our method does not seek to understand

the semantic meaning of the sign, but rather whether the sign is important to the attention of

the vehicle. These features are clearly informative to one another, but while their output is

intended to influence navigational decisions, our output is better fit for loss-weighting schemes

in safety-critical detections and recognitions.

9.2.5 Road Object Salience

Identifying salient objects has been explored in connection with driver behavior analysis;

knowing where a driver is looking can be a predictor of scene salience, but alternatively, knowing

salient objects prior to observing gaze can inform an intelligent vehicle of possible gaps in the

driver’s attention. Dua et al. [306] create the DGAZE dataset to map driver gaze in scene images,

connecting gaze to driver focus and attention, topics extensively studied in connection to safe,

highly-automated driving in the recent survey by Kotseruba and Tsotsos [307]. Lateef et al. [308]

use a GAN to predict important objects in driving scenes, with data from existing driving datasets

labeled using a salience mechanism which weights object classes from the semantic segmentation

of the scene, building a Visual Attention Driving Database. Su et al. [309] show that salience is a

property which can transfer from non-driving-related tasks to driving tasks, learning attention

on CityScapes from standard salient object detection (SOD) datasets. Pal et al. [310] show that

combining static scene information with driver gaze information in their SAGE-Net can propose

important regions of attention.

Li et al. [311] define the task of risk object identification, under the hypothesis that

objects influencing drivers’ behavior are risky. Though their work is intended to cover a more

general scope of objects than traffic signs, signs that we determine to be salient do hold a similar

property; that is, were the sign not present, it is possible that the driver’s behavior would change.

However, there are cases where the sign is intended to create an awareness of surrounding scene
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elements, in which case the sign would still be salient by our definition, but not necessarily a risk

object. Zhang et al. [312] agree to the importance of salience analysis, stating “A vehicle driving

along the road is surrounded by many objects, but only a small subset of them influence the

driver’s decisions and actions. Learning to estimate the importance of each object on the driver’s

real-time decisionmaking may help better understand human driving behavior and lead to more

reliable autonomous driving systems." Their work builds this estimation using interaction graphs

which allow for the importance of scene elements to change depending on interactions observed

between other scene elements (without involvement of the ego-vehicle). Our work is completely

driver-centric; that is, we consider here signs which address the ego vehicle independent of the

actions of other scene agents.

9.3 LAVA Dataset for Salient-Sensitive Traffic Signs

The LISA Amazon-MLSL Vehicle Attributes (LAVA) Dataset [313] includes a collection

of traffic signs bounded and labeled in images taken from a front-facing camera, including 10

second video clips for full scene and trajectory context, accompanied by INS data. The data has

been collected from the greater San Diego area, curated in a manner which includes a diversity

of road types, traffic conditions, weather, and lighting. The traffic signs are categorized as stop,

yield, do not enter, wrong way, school zone, railroad, red and white regulatory, white regulatory,

construction and maintenance, warning, no turn, one way, no turn on red, do not pass, speed

limit, guide, service and recreation, and undefined. The frequency of the sign types are described

in Table 9.2. Signs are given a tag if electric (0.18%) or occluded (11.86%), and each sign is

assigned an is_salient property with respect to the position of the ego vehicle (66.42%). For

experimentation, we divide the 14,112 samples into 11,289 training instance, 1,411 validation

instances, and 1,412 test instances, ensuring no scene is divided between sets.
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Table 9.2. Sign type frequencies in the LAVA dataset. The data is non-uniformly distributed,
reflecting an approximate real-world distribution of signs within the region of collection.

Sign Type Frequency
Stop 725
Yield 72

Do Not Enter 134
Wrong Way 51
School Zone 172

Railroad 7
Red & White Regulatory 710

White Regulatory 3,048
Construction & Maintenance 773

Warning 2,364
No Turn 419

No Turn on Red 224
One Way 109

Do Not Pass 9
Speed Limit 563

Guide 249
Service & Recreation 2

Undefined 833
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9.3.1 Automatic Road Type Classification

Reducing video and image data to mid-level semantic drive information has been shown

to be important in understanding naturalistic drive data [314]. Similarly, we posit that information

such as road scene and drive maneuver may contain important contextual information related to

sign salience. Beyond traffic sign information explained above, we further classify each image

scenes found in the LAVA dataset into 12 possible classes: highway, city street, residential,

roundabout, intersection, construction zone, tunnel, freeway entrance, freeway exit, and unknown.

This classification is performed automatically as follows:

• Road Type by Global Coordinates: LAVA sensor data includes latitude and longitude

coordinates associated with each frame. Using Nominatim’s reverse geocoding [315],

we find the name and OpenStreetMap [OSM] ID of the current street. OSM provides

categories of motorway, primary, secondary, tertiary, trunk, residential, roundabout, and

pedestrian. We map primary, secondary, tertiary, and trunk to city street, motorway to

highway, residential to residential, roundabout to roundabout, and pedestrian to parking lot.

This excludes the classes of intersection, construction zone, tunnel, school zone, freeway

entrance, and freeway exit.

• Road Type by Object Detection: We use CenterNet [316] trained on NuScenes [148] for

detecting traffic signs, lights and traffic cones in the scene. If an image is detected to

contain two or more traffic cones, it is classified as construction zone. Similarly, if one

or more stop sign is detected, or three or more traffic lights are detected, the image is

classified as an intersection.

• Road Type by Class Change: Using a contextual 10 second clip, if the frame class begins

as highway and transitions to city street, the images of the clip are re-labeled as freeway

entrance. Similarly, in the reverse case, the images are re-labeled as freeway exit.

The frequency with which signs are found on a particular road type are summarized in
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Table 9.3. Road type frequencies per sign in the LAVA dataset.

Road Type Frequency
Highway 1,788

City Street 8,285
Residential 1,243
Roundabout 17
Intersection 972

Construction Zone 300
Freeway Entrance 228

Freeway Exit 207
Unknown 1,072

Table 9.4. Maneuver frequencies per sign in the LAVA dataset.

Maneuver Frequency
Forward 8,593

Stop 4,535
Turn Left After Stopping 18

Turn Right After Stopping 41
Turn Left 476

Turn Right 449

Table 9.3.

9.3.2 Maneuver Classification

For each frame in the LAVA dataset, we analyze the following 10 seconds of vehicle

speed and yaw data for rule-based classification of the intended driving maneuver as Forward,

Stop, Turn Left After Stopping, Turn Right After Stopping, Turn Left, and Turn Right. The

frequency of maneuvers are described in Table 9.4.
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9.4 Sign Salience Prediction

9.4.1 On-Right Classifier Baseline

While a random classifier would give an expected accuracy of 50%, we consider a

reasonable trivial classifier which is better-grounded in traffic sign priors. This classifier assigns

salience to signs which are located on or to the right of center, and non-salience to signs which

are located left of center. This is consistent with typical drive-on-the-right traffic flow in the US,

and should be adjusted for countries which drive on the left when comparing across datasets.

9.4.2 ResNet50 Model

We begin from the hypothesis that visual information can be used as a preliminary

indicator of sign salience. The convolutional model uses the ResNet50 [317] convolutional

architecture typically found in sign recognition. It takes a cropped sign region as input, and

outputs a binary label for salience. We use an Adam optimizer with an initial learning rate of

10−3 and a batch size of 64.

9.4.3 Road Type Augmentation

To improve performance beyond the ResNet50 model, we consider the effects of road

type on expected sign salience. Certain road types are less likely to see particular relevant

signs; for example, a stop sign is unlikely to appear on a freeway, and a 65 MPH speed limit is

unlikely to appear in a school zone. For this reason, if the features of such a sign are found in the

convolutional layers, it is likely that the detected sign belongs to a different road or lane than that

of the ego vehicle (perhaps past an off-ramp or overpass).

To test this hypothesis, we augment the model by appending a one-hot encoded vector

representing the perceived road type to the flattened convolutional output prior to the fully-

connected layer. We then add a ReLU activation, followed by another fully-connected layer,

another ReLU, and a final fully-connected layer before the softmax binary output activation.
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Until the last binary activation, we maintain 2,048 nodes at each fully-connected layer.

9.4.4 Image Coordinate Augmentation

Another feature which may improve model performance is the information contained

in the pixel size and location of the detected bounding box within the scene image. In general,

salient signs are found to the right of center and above the ego vehicle, as illustrated in Figure

9.5, and there is a relationship between the size of the sign and its location which can provide

information about the 3D depth of the sign. This depth information provides further context to

the model about where the sign may be located relative to the ego vehicle.

We augment the model by appending the top-left coordinate (x,y) of the bounding box

(normalized to the image width and height), the bounding box width w, and bounding box height

h to the flattened convolutional output prior to the fully-connected layer. Similar to the above

road type augmentation, we then add a ReLU activation, followed by another fully-connected

layer, another ReLU, and a final fully-connected layer before the softmax binary output activation.

Until the last binary activation, we maintain 2,048 nodes at each fully-connected layer.

We further note that there is a relationship between expected sign location and road type,

as illustrated by the heatmaps in Figure 9.6. This motivates experiments with a combined model,

in which both road type and image coordinate features augment the convolutional output before

the fully-connected layers.

9.4.5 Maneuver Augmentation

A vehicle’s intended motion contains information about which signs will be relevant.

For example, if a vehicle is planning a right turn, it will likely be in a right lane, and a sign

which reads “Right Lane Must Turn Right" would be salient. Models which generate control

for autonomous vehicles are of course unaware of the future trajectory, but it is reasonable that

such model uses a series of planned maneuvers to navigate toward its goal. Accordingly, though

the LAVA dataset does contain specific trajectory information, we use the coarse maneuver
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Figure 9.5. Heatmaps illustrating frequency with which a pixel is occupied by (a) a salient sign
or (b) a non-salient sign.
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Figure 9.6. Heatmaps illustrating frequency with which a pixel is occupied by a salient sign
(left) or non-salient sign (right) for city streets (a), construction zones (b), freeway entrances (c),
freeway exits (d), highways (e), intersections (f), residential (g), and unknown (h).
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Model Accuracy
On-Right Baseline 0.6650

ResNet50 0.7422
Maneuver Augmentation 0.7599
Road Type Augmentation 0.7153
Coordinate Augmentation 0.7231
Coordinate & Road Type 0.7188
Coordinate & Maneuver 0.7252

Coordinate & Road Type & Maneuver 0.7358
Table 9.5. Classification accuracy of the sign salience models.

classification instead, as this is a reasonable substitute for the vehicle’s intended path without

assuming a particular trajectory.

As in the previous augmentations, we integrate this classification into a one-hot encoded

vector, appended to the feature set just before the fully-connected layers. We perform experiments

in combining image, maneuver, road type, and image coordinate features, summarized in Table

9.5. Convolutional methods and augmentations outperform the trivial classifier, achieving

approximately 10% improvement. Image coordinates (which indicate the location and distance

of the sign relative to the ego vehicle position) do not appear to enhance beyond the ResNet50

baseline, though we expect that as the dataset grows, the performance of these models will

improve as more examples of possible sign positions are used in training. From results on this

dataset, augmentation with the vehicle’s maneuver information shows the strongest results in

determining sign salience.

9.5 Conclusion & Future Research

In this work, we presented

• an analytical dimension of sign salience to weigh importance of particular traffic signs in

path planning

• a traffic sign dataset which contains information on this property, with ability to infer road
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type and maneuver intent, and

• analysis of models for prediction of sign salience.

The property of sign salience is intended for use in downstream path planning, where it could

strategically penalize missed sign detections, sign classifications, and control decisions in

salience-aware models. Extensions of the work include the conversion of salience from a

binary to scalar property, and methods of determining scalar salience using subjective labelling

between drivers. Sign salience is of further importance to driver-assistance systems which seek

to understand human readiness and attention [318], and systems with augment a driver’s scene

awareness to the full surround [56]. The LAVA dataset continues to grow, with an expected

volume for future work which is four times the size available to this study.
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Chapter 10

Salient Sign Detection in Safe Autonomous
Driving: AI Which Reasons Over Full
Visual Context

10.1 Introduction

Detecting and recognizing traffic signs is an important module for an autonomous vehicle

to observe and interact with its surroundings in a safe manner. The Safety of the Intended

Functionality (SOTIF) process [319] examines highly automated systems for possible hazards

and triggering events for unintended behaviors; in this framework, failure to detect a sign crucial

to driving performance would be considered a triggering event, independent of the hazardous

events, based on system limitations. Accordingly, detection systems are continuously improved

to push the safe limits of their operation. Until recently, standard object detectors operated

by proposing regions of interest or considering a standard set of anchors or window centers

within an image, and classifying the contents of the found region. These approaches are typically

limited by the span of the convolutional filters which drive them; these filters operate on local

windows, or with a pre-determined span and spacing. While the reach of the convolutional filters

can be tuned to spread and cover the entire image, doing so creates massive computational costs

or creates gaps in coverage. As a solution, the popular transformer model has been proposed as a

means of reasoning over the entire image and bringing forward features relevant to the region of
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interest. To minimize computational costs, this approach has been further refined to include a

stage of learning (via a limited number of deformable attention heads) where an image should

be sampled to extract meaningful relational features to the region of interest. This approach is

known as the Deformable Detection Transformer, introduced in technical detail in the following

section.

While advances in detection may improve sign recall, we pose one more consideration

to be addressed in driving scenes: many signs simultaneously compete for the attention of a

human driver or autonomous driving system. While the ideal intelligent vehicle detection module

will have perfect precision and recall of all signs in the field of view, environmental noise and

underrepresented examples make it possible that detectors continue to make mistakes. However,

on the assumption that error is unavoidable, there are some errors preferred over others. For

example, it is less critical that a vehicle passing by a freeway exit sees the sign corresponding to

the speed limit of an off-freeway side street, or that a vehicle in the right lane preparing to make

a right-hand turn sees the lane guidance for the left lane to navigate the intersection. We ascribe

this quality of pertinence and attention-worthiness to the word salience, as introduced in [54].

We define the term as follows, with clarification on edge cases further described in Methods

section:

Salience: A sign is salient if it has the potential to directly influence the next immediate

decision to be made by the ego vehicle if no other vehicles were present on the road. Additionally,

for signs directing traffic by lane, only signs pertaining to the lane the ego vehicle is in can be

classified as salient. In the case of multiple sequential intersections or highway exits visible in

the same frame, only signs pertaining to the next immediate intersection or exit could be labeled

as salient.

Recent research in sign salience has shown that factors such as sign location, sign appear-

ance, road type, and planned vehicle maneuver can be used to classify signs by salience [54].

Here, we propose a benefit of sign data with salience annotations: salience-aware training meth-

ods can be used to improve training of sign detection systems. We make three contributions: (1)
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creation of the large, salience-annotated LAVA Salient Signs Dataset, (2) definition of Salience-

Sensitive Focal Loss, and (3) experimental evaluation of the impact of Salience-Sensitive Focal

Loss while training detection transformer models.

10.2 Related Research

Traffic Sign Detection and Classification Models Traffic sign detection has been well

addressed by the field such that near perfect sign detection can be achieved on public sign datasets

like the German Traffic Sign Detection Benchmark [320] and similar benchmarks. Detecting

traffic signs requires cameras monitoring traffic scenes, which allow us to extract frames from

videos and build traffic sign annotation datasets. Trivedi et al. [321] proposed that the best way

to capture this traffic surveillance is through a multicamera surveillance approach known as

distributed interactive video arrays (DIVA). DIVA helps address issues single view cameras have

like handling occlusion and having many overlapping views to obtain 3D information. Such a

multicamera system can facilitate easier traffic sign detection by addressing the issues mentioned.

Some examples of high performance of traffic sign detection on public traffic sign datasets

include: Using a separate traffic sign detector model and then a sign recognition model [322].

The traffic sign detection model learns the color of the sign and then the shape, and the sign

recognition model works best with an ensemble of CNNs. A fully convolutional network to guide

traffic sign proposals and then a CNN for sign classification [323]. The FCN learns the rough

regions of where the traffic signs are present and the CNN identifies the traffic signs and removes

false positives with non-max suppression. A Pyramid Transformer that uses atrous convolutions

and a RCNN as a backbone [324]. This approach improves the network’s ability to detect traffic

signs of various sizes. Using transfer learning with state-of-the-art object detection models on

the German Traffic Sign Detection Benchmark dataset [325]. Faster R-CNN Inception Resnet

V2 achieves the best mean average precision while R-FCN Resnet 101 has the best tradeoff

between accuracy and execution time.
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Transformers have begun to outperform other deep learning techniques like CNNs since

they can reason over full image context, or learn where to look to extract more features from

an image. The detection transformer DETR [326] is a transformer that allows to learn such

global image context and achieves state-of-the-art performance on the COCO object detection

dataset. DETR is an end-to-end object detection module that treats object detection as a direct set

prediction problem and removes the need for any hand-designed components used by other object

detection models. A main weakness of DETR is that it has low performance on detecting small

objects. Deformable DETR [327] builds on DETR, reducing the computational complexities

and also improving performance on detecting small objects. Deformable DETR uses a different

attention module that focuses on a subset of sampling points to perform object detection. This

method shows theoretical promise in situations where novel, unusual, or newly emergent signs

may appear [328], as the signs can be detected not only on the contents of a box which anchors

and tries to recognize the sign’s face pattern, but also through inferring on learned generic,

face-independent contextual features from training. In this work, we apply this state-of-the-art

object detection module to the application of traffic sign detection. In addition, we show that we

can steer Deformable DETR to improve performance on salient signs via a novel loss function.

10.3 Traffic Sign Datasets

There are various traffic sign datasets that allow for researchers to develop traffic sign

detection and classifications dataset. A comparison of the size and features of many traffic

sign datasets can be seen in [54]. For this paper, we extend the LISA Amazon-MLSL Vehicle

Attributes Dataset (LAVA) [75] to create the LAVA Salient Signs (LAVA SS) Dataset, the only

dataset which includes the salience property we are interested in utilizing. The datasets and their

important properties are listed in the table below:
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Table 10.1. Comparison of Traffic Sign Datasets. The LAVA Salient Signs (LAVA SS) Dataset
is used for our research and is the only dataset in this table to include the salience property for
traffic signs.

Dataset Number of Images Important Features
LISA Traffic Sign Dataset [291] 7,855 occlusion, on-side road

LISA Amazon-MLSL Vehicle Attributes Dataset [75] 14,112 10s video context, occlusion, salience
LAVA Salient Signs Dataset 31,191 10s video context, occlusion, validated salience

10.4 Traffic Object Salience Research

Learning to focus on salient vehicle objects and construct vehicle visual attention mecha-

nisms has been studied by various researchers, with many using different definitions of what

it means to be a “salient” traffic object. We categorize two main types of object saliency from

related research: instructive and attentive salience. Attentive salience relates to what objects and

directions drivers tend to look at even if these objects may not be what a driver should look at. For

this definition of salience, it is often important to monitor the driver’s eye gaze to estimate where

they are looking at. Tawari and Trivedi [329] use driver pose dynamic information to determine

the likelihood of a driver gaze zone. This approach tracks facial landmarks like eye corners, nose

tip, and nose corners to determine head pose and use the pose to predict the gaze estimation. They

found using head pose dynamic features over time increased performance versus using static

features like current head pose angles. Robust attentive salience systems must be invariant to

different subjects, scales, and perspectives. Vora et al. [223] address this gaze generalization issue

using a convolutional neural network to predict driver gaze direction. To improve generalization,

they collected a large naturalistic dataset that used ten different subjects and was tested on three

unseen subjects. Dua et al. [306] create the first large-scale driver gaze mapping dataset DGAZE,

allowing to study attentive salience and where drivers tend to look at for different road and traffic

conditions. This dataset contains data from a lab setting of road and driver camera views. Pal et

al. [310] learn attentive salience by developing a model named SAGE-Net that uses attention

mechanisms to learn how to predict an autonomous vehicle’s focus of attention. SAGE-NET

uses driver gaze and other important properties like the distance to objects and ego vehicle speed
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to determine object saliency. Tawari et al. [284] represent gaze behavior for a sequence of image

frames by constructing a saliency map using a fully convolutional RNN. The saliency map uses

three kinds of pixels: salient (positive) pixels, non-salient (negative) pixels, and neutral pixels.

Other than gaze estimation, other important factors like predicting driver maneuvers and braking

intent are important to understand attentive salience. Ohn-Bar et al. [330] use a multi-camera

head pose estimation model to predict overtaking and braking intent and maneuvers. This system

emphasizes real-time performance, which is critical for any attentive salience model in order to

timely observe the driver state and react if they are distracted.

In contrast to attentive salience, instructive salience aims to emphasize important objects

which an ego vehicle should observe and respond to; these objects should influence the car’s

future decisions. Our work focuses on instructive saliency and highlights what traffic signs the

car needs to be aware of to safely operate. Instructive salience models are often more costly since

labeling important objects requires understanding how various road objects and signs influence

a driver’s decisions and vehicle navigation, so a cognitively-demanding and maneuver-aware

manual process is required to annotate such data. To overcome these challenges, Bertasius et

al. [331] use an unsupervised learning approach to learn how to detect important objects in

first-person images without any instructive salience labels, skipping the costly manual annotation

process. The unsupervised network uses a segmentation network to propose possible important

objects, and this output is fed into a recognition agent which uses these proposals and other

spatial features to predict the important objects. Greer et al. [54] utilize a supervised learning

process to classify salient road signs, which can be applied for efficient dataset annotation in

future road sign data collection after initial training. Lateef et al. [308] use a conditional GAN

to predict what a driver should be looking at in a traffic scene, which parallels this instructive

salience definition. For constructing ground truths, they use semantic labels (annotations of traffic

objects in images) from various autonomous driving datasets and use various saliency detection

algorithms that select which object annotations are the most important. Zhang et al. [312] use

interaction graphs to perform object importance estimation in driver scenes. The interaction
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graph updates features of each object node through interactions with graph convolutions. This

task learns to model instructive saliency, as Zhang et al. note that their object importance

definition relates to how objects can help with the driver’s real-time decision making and improve

safe autonomous driving systems.

10.5 Methods

Data Collection The LISA Amazon-MLSL Vehicle Attributes (LAVA) dataset contains

labeled bounding boxes of traffic signs taken from a front-facing camera of a vehicle. This

dataset was collected from the greater San Diego Area and contains a variety of road types,

lighting, road types, and traffic conditions. The traffic signs are categorized as stop, yield, do not

enter, wrong way, school zone, railroad, red and white regulatory, white regulatory, construction

and maintenance, warning, no turn, one way, no turn on red, do not pass, speed limit, guide,

service and recreation, and undefined. Along with the traffic sign categorization, we carefully

labeled the sign salience property for all the sign annotations. A sign salience validation process

was also performed in which the salience property for a sign annotation was checked again

for consistency with the above definition of salience; the resulting dataset is referred to as the

LAVA Salient Signs (LAVA SS) Dataset. This data collection process ensured that the salience

property was properly labeled and the curated dataset had accurate ground truths. In the process

of annotation, the provided definition of salience was used as a standard for annotation, with

select frequent ambiguous cases handled according to the additional criteria below: Guides

(signs which indicate the street name, often green) at intersections and freeways were labeled

as salient, as long as such signs were the closest such guide in the scene. That is, in the case of

multiple sequential intersections, only the guides of the nearest intersection to the car would be

labeled as salient. Salient guides should be visible to the vehicle and indicate a possible street

the car could turn onto or an exit the car could take. We note that guides tend to have the highest

annotator ambiguity, as the class “guide” contains instances of street-level guides as well as

169



freeway-level guides, which may be interpreted differently by different annotators. Likewise,

parking guides are a highly missed ground-truth annotation. For this reason, certain applications

may benefit from computing precision disregarding guides and parking signs, especially since

such signs are less safety critical. Instructions pertaining to HOV or Carpool Lanes are marked

as salient when the vehicle is moving in the direction of traffic, regardless of lane. Such a sign

may indicate a lane available to the intelligent vehicle for optimized traffic flow, or a lane which

the vehicle is required to leave if requirements are not met. A “No Parking” sign is salient only

if the ego vehicle is in a lane which has immediate access to the restricted parking location (e.g.

far right lane). An example of this rule is shown in Figure 1. While most signs which are facing

backwards are marked as non-salient (since they provide instruction to an oncoming lane), in

some cases, a yellow reflective warning sign is placed on the back of the sign. In these cases,

we mark this as a salient warning sign if the sign is adjacent to the ego vehicle’s lane. The

vehicle should be aware of such signs to avoid collision with the sign or median. This rule is

exemplified in Figure 2. Signs which indicate a fine for littering or carpool violations are regarded

as non-salient, since an intelligent vehicle should not be littering under any circumstance, nor

motivated by the cost of breaking a traffic ordinance.

Figure 1. Because this No Parking sign is located in the lane closest to the ego vehicle,

it is considered salient. Were the ego vehicle in the left lane of a two lane road, this would be

annotated as non-salient.

Figure 2. This sign is facing away from the ego vehicle, but because the reflector is

placed to warn the vehicle of its presence, it is annotated as salient.

Example sign annotations from the LAVA Salient Signs dataset are shown in Figure

3. The LAVA Salient Signs dataset contains 31,992 sign annotations with 20,377 annotations

being salient and 11,615 annotations being non-salient. The sign type frequencies for the LAVA

Salient Signs Dataset are defined in Figure 4. Because the data was collected and annotated

using a selection method which promotes maximal coverage of driving area (including diversity

of driving environment, conditions, and road types), the non-uniform distribution of signs may
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reflects the real-world distribution of salient and non-salient signs as well as the real-world

distribution of sign categories during naturalistic driving.

Figure 3. Example Sign Annotations from the LAVA Salient Signs Dataset. A green

bounding box indicates a salient sign and a red bounding box indicates a non-salient sign. As

shown in the figure, the salient annotations often mean that the sign relates to the current lane or

intersection the driver is in and provides meaningful information that affects the driver’s future

actions. On the other hand, the non-salient signs are often in a different lane, intersection, or

face the wrong way, so these signs don’t offer any important information. A vehicle’s intended

maneuver is important in classifying sign salience, so temporal dynamics should be considered

when annotating and utilizing salience data, as explained in [54].

Figure 4: Sign Type Frequencies in the LAVA Salient Signs Dataset. The blue columns

are for salient signs and the orange for non-salient signs. The White Regulatory, Construction &

Maintenance, and Warning Signs were the most common sign types. This distribution of signs

may be dependent on location, as all of our data was collected in the greater San Diego area.

10.6 Sign Detection with Deformable DETR

We use Deformable DETR, introduced in the Related Works section, to detect signs in

the images. This detection method forms our performance baseline, described by Figures 2 and

3. We split the LAVA Salient Signs Dataset into 25,591 training instances, 3,200 validation

instances, and 3,201 test instances. The model is trained for 15 epochs, retaining the model which

reports the strongest precision (with a “hit” at 0.5 intersection-over-union, and 100 maximum

detections per image). We use a ResNet50 backbone [317], 300 attention heads, a learning rate

of 0.0002, a batch size of 2, and employ gradient clipping and learning rate decay.
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10.7 Prioritizing Salient Signs with Salient-Sensitive Loss

The bounding box regression module of each Deformable DETR detection head is a

3-layer feed-forward neural network. Each detection head also has one linear projection for

classification of the estimated bounding box into categories of foreground (object) or background

(no object). This classification is trained using a sigmoid focal loss [332], an extension of

standard categorical cross-entropy which down-weights easy examples to focus training on hard

negatives. The equation for focal loss is

FL(p+ t) =−FL(1− p+ t) log(pt), (10.1)

where FL is a hyperparameter to balance the focal loss among other loss functions, is a

focusing parameter to control the influence of hard negatives, and pt is the predicted probability

associated with the ground truth class.

As explained in the introduction, the goal of our detection model is to prioritize successful

detection on signs which are salient, ideally placing any model error on non-salient signs. To

achieve this, we weigh the focal loss heavily for salient signs according to the function

FL(d, pt) =−FLwSS(d)(1− pt)log(pt) (10.2)

where wss(d) = ss if the ground truth sign nearest detection d is salient, and wss(d) = 1

otherwise. In our case, we use a hyperparameter ss = 4. We name the function FL(d, pt)

salience-sensitive focal loss.

10.8 Results

The performance of the Deformable DETR model on the LAVA Salient Signs Dataset

with and without salience-sensitive focal loss is provided in Figures 5-7. These figures display

interpolations between precision-recall pairs generated with a detection thresholding of 0 to 1 in
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increments of 0.1 (with an early stop at thresholds where no positive detections are made). We

note that thresholds should be tuned for precision and recall according to intended application; a

representative descriptor of performance is given by the precision-recall curves. Results suggest

that not only does training with salience-sensitive focal loss distribute error to non-salient signs

instead of salient signs, but that the method actually improves overall performance of the model

under otherwise equal training.

Figure 5. Deformable DETR shows uniformly better performance in recalling salient

signs when using Salience-Sensitive Focal Loss. Additionally, as a general measure of per-

formance, the area under the precision-recall curve is greater when using Salience-Sensitive

Loss.

Figure 6. Deformable DETR additionally shows better performance in recalling all signs

(both salient and non-salient) when using Salience-Sensitive Focal Loss. A possible reason for

this improvement is that signs which are salient tend to be localized to particular image regions

which amass both sign types, whereas some locations of non-salient signs would very rarely

have a salient sign appear. This may help guide the transformer as it learns which regions of the

image to attend.

Figure 7. How well does the Salience-Sensitive Loss bring out performance on salient

signs? In this graph, we show the difference in performance between salient sign recall and

all sign recall (in other words, how much better is the model at recalling salient signs than the

aggregate collection of signs). Deformable DETR does generally perform better on salient signs

than all signs together, but with exception as precision increases (in fact, negative at its greatest

precision). On the other hand, Deformable DETR with salience-sensitive focal loss maintains

improved performance on salient signs, and at greater margin than the baseline model.
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10.9 Concluding Remarks

Detection transformers make use of full-image context in a selective manner, and this

property makes them an excellent candidate for tasks which often require human drivers to make

evaluations over which portion of their visual field to attend to. We illustrated the performance of

the recent (and computationally tractable) Deformable DETR model on sign detection for a large

dataset even under limited computational budget, providing a baseline for model performance on

the dataset. Preliminary results are provided under reduced training time to illustrate the potential

of detection-transformer-based methods and to provide a clear demonstration of the impact of

modified loss functions on model performance compared to a baseline. Under elongated training

regimens and increased dataset sizes, sign detection modules would reasonably be expected to

perform to the standards of comparable benchmark models and datasets as described in related

research.

We expand this analysis, noting that road objects carry an implicit importance and

relevance to the ego vehicle. By including this property, salience, in the training regimen, we

show that the sign detector can be further improved, both in general performance and especially

in recall of signs which are most important to the safe operation of the autonomous vehicle.

Gains in sign detection performance afforded via modification of the training loss function,

especially in recalling salient signs, are directly related to the safety of the vehicle in navigating

a scene and responding appropriately and safely to surrounding agents.
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Chapter 11

Robust Traffic Light Detection Using
Salience-Sensitive Loss: Computational
Framework and Evaluations

11.1 Introduction

11.1.1 Overview

Accurate detection and recognition of traffic lights is vital for an autonomous vehicle to

observe and interact with its surroundings in a safe manner, communicating information relevant

to predicting an agent’s trajectory [171] [63] [64] [130] or enabling ADAS features [89]. In

general, standard object detectors for traffic lights, signs, or pedestrians operated by proposing

regions of interest, which involves considering a standard set of anchors or window centers within

an image, and classifying the contents of the found region [333] [334]. However, approaches

involving regions of interest are generally limited by the computational costs and gaps in coverage

that come with creating convolutional filters that cover an entire image. As an alternative, the

transformer model has been proposed to cover an entire image and select only features that

are relevant to the region of interest. Transformers allow for more parallelization than older

approaches and thus, reduce training times. To minimize the problem of computational costs

that the regions of interest approach has, the transformer approach has been further refined to

include a stage of learning (via a limited number of deformable attention heads) where an image
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should be sampled to extract meaningful relational features to the region of interest. As defined

in [55], this approach is known as the Deformable Detection Transformer, described in technical

detail in the following section.

While this transformer-based approach may improve traffic-light detection, consider a

driving scene with numerous traffic lights that are simultaneously presented to an autonomous

driving system, containing some lights that are relevant to the vehicle and some of that are not.

Ideally, a detector will be able to precisely recall the statuses of all traffic lights in an image and

make complex driving-related decisions accordingly. However, factors such as environmental

noise and underrepresented driving situations may lead to errors in detectors, but some errors

may be preferred over others. For instance, it is less critical that a vehicle making a right turn

while in the right lane sees the status of the traffic light corresponding to the left lane, or that a

vehicle continuing straight along an intersection sees the status of a traffic light perpendicular

to the car’s current trajectory. We ascribe this quality of pertinence and attention-worthiness to

the word salience, as introduced in the context of traffic signs in [54], adopting an equivalent

definition in the following section. We illustrate the use of our salience-sensitive computational

framework in Figure 1.

11.1.2 Salience

As defined in [54], a traffic light is salient if it directly influences the next immediate

decision to be made by the ego vehicle if no other vehicles were present on the road. For instance,

consider if a car were to be driving straight through an intersection. We would classify the

vehicle-facing straight traffic light as salient, as its status will influence whether the vehicle will

stop or proceed. However, we would not classify the protected traffic lights for left and right

turns as salient, as the status of these lights is irrelevant to the vehicle’s decision. In general, after

taking into account factors such as the ego vehicle’s current lane and next vehicle maneuver, we

would selectively classify traffic lights as salient. Similar to the definition in [54] involving traffic

signs, in the case of multiple sequential intersections or traffic lights that are present in the same
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Figure 11.1. The general computational framework for leveraging object salience in deep
learning tasks. First, data is collected and annotated per task specifications. The data is provided
an additional annotation, salience, which can be provided by either an expert annotator or
computer model. The salience property is utilized during the training process, leading to a robust
recall of salient objects during deployment inference.

frame of data, only the traffic lights that are relevant to the vehicle’s immediate next action would

be important to detect, and thus, would be classified as salient. For example, if the ego-vehicle is

in a left-turn lane, then we would classify the traffic light signaling the left-turn as salient, while

the non left-turn traffic lights in the same intersection would be considered non-salient. Figure

11.2 shows qualititative examples of salient and non-salient traffic light annotations from our

collected dataset.

We propose that salience-aware training methods can be used to improve the training

of traffic light detection systems. We make two contributions: (1) creation of the first salience-

annotated LAVA Salient Lights Dataset, and (2) using the concept of Salience-Sensitive Focus

Loss defined in [55], evaluation of the impact of Salience-Sensitive Focal Loss while training

detection transformer models.
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Figure 11.2. Annotated examples of the salience property for selected traffic light scenarios. A
red box indicates a non-salient example while a green box indicates a salient example. Since
the traffic light in the top image is in a different intersection than the driver, the light is not
considered to be salient. In the middle image, the traffic light is in the same intersection of the
driver and indicates the direction the driver is going in so it is considered to be salient. Finally,
the bottom image is not salient since the driver is not in a left turn lane and thus the left turn
traffic light is not relevant to the driver.
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11.2 Related Research

11.2.1 Traffic Light Detection and Classification Models

There are various issues and challenges related to traffic light detection.

1. Illumination: Images containing traffic lights may contain different illumination due to

various environmental factors [335]. Traffic lights also have variability in their own

lighting, as sometimes the traffic lights themselves may be off or in different cases (green,

yellow, red).

2. In driving scenarios such as intersections, traffic lights may appear in a variety of orienta-

tions, requiring a robust model that can recognize a traffic light in all different positions.

To specifically address illumination problems for traffic light detection, Shi et al. [336] proposed

a model that is robust to different illumination conditions. The first step of the model uses

an adaptive background suppression algorithm to highlight detected traffic lights, and the

second step, the recognition module, verifies each candidate regions and classifies the traffic

lights. Instead of using hand-designed features or algorithms, deep learning approaches with an

abundance of data will allow a model like A CNN do learn filters and features that help identify

traffic lights. Behrendt et al. [337] use a YOLO architecture with the classification network

removed to perform traffic light detection. They emphasize that this network is optimized for

automated driving, as the network is efficient enough to make real-time predictions. Image

segmentation can be also be used to detect the locations of traffic lights. Weber et al. [338] devise

the network DeepTLR, a single deep CNN that outputs a probability map that represents a traffic

light being present in a certain region. With this region-wise classification, a regression module

is used to predict a set of bounding boxes for detected traffic lights. Ennahhal et a. [339] evaluate

traffic light detection performance on various state-of-the-art object detection models. They find

that Faster R-CNN gives the best mean average precision for this task.
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Table 11.1. Information on two traffic light datasets which are annotated with the salience
feature. The LAVA Salient Lights is the first to include traffic lights from the United States.

Dataset Num. Of Images Country Important Features
DriveU Traffic Light Dataset (DLTD) 232,039 Germany color, directionality, num. of lamps, orientation, occlusion, “relevance"

LAVA Salient Lights Dataset 30,566 United States color, directionality, occlusion, “salience"

11.2.2 Traffic Light Datasets

Traffic light datasets are invaluable in the realm of autonomous vehicles for building

robust traffic light detection and classification systems. There are various traffic light datasets,

many of which define various features and categories for traffic lights. The typical categories

these labels touch on are: on/off, color, or go/warning/stop. Examples of such public datasets are

the Bosch Small Traffic Light Database [337] and the VIVA challenge dataset [340]. While these

datasets have been historically useful for the purposes of traffic light detection and classification,

for the purpose of this paper, we want to consider datasets that incorporate the added annotation

category of "salience".

Using this filter, we identified the DriveU Traffic Light Dataset (DLTD) [341]. This

dataset includes 232,039 annotations from 11 different cities in Germany, with each annotation

having tags to describe: color, directionality, number of lamps, orientation, occlusion level, and

any other visual abnormality. In addition to these tags, the DLTD dataset also includes a special

feature property tag they name "relevance", which they define to correspond to traffic lights

that transport the information relevant to the planned route of the vehicle. This definition for

“relevance" is equivalent to our definition for “salience". Our proposed dataset, the LAVA Salient

Lights Dataset, shares this same key attribute of relevance/salience, and for the first time applies

salience to US traffic lights.

11.2.3 Traffic Object Salience Research

The idea of saliency with regard to vehicle objects and visual attention mechanisms has

been studied by many researchers. However, the definition of what constitutes a "salient" traffic
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object is not universally agreed upon. From the literature, we have identified two main categories

of object saliency: attentive salience and instructive salience. Attentive salience corresponds

to objects or regions drivers tend to look at, despite whether or not they are important to the

driver’s trajectory and/or decision-making. For attentive salience, a common approach is to

monitor the driver’s gaze and estimate what objects or regions they are looking at [330]. Tawari

and Trivedi [217] take such an approach, where driver pose dynamic information was used to

estimate a driver gaze zone. This system detects and tracks points of interest on the face such as

eye corners, nose tips, and nose corners to estimate the head pose and thus predict the driver’s

gaze. They found that this approach increased performance over using static features such as

head pose angles. For an attentive salience system to be robust, it must be invariant to different

scales, perspectives, and subjects. To reach this gaze generalization, Vora et al. [223] utilize

a convolutional neural network trained on ten different subjects to estimate the gaze direction.

Also instrumental to the development of attentive salience, Dua et al. [306] construct the first

large-scale driver gaze mapping dataset, DGAZE, which allows for further analysis of driver

gaze in different road and traffic conditions. The SAGE-Net model developed by Pal et al. [310]

learns attentive salience using attention mechanisms to predict an autonomous vehicle’s focus of

attention. This model utilizes driver gaze alongside other important metrics such as the distance

to objects and the ego-vehicle’s speed to evaluate object saliency. Tawari et al. [284], on the other

hand, represent driver gaze behavior for a sequence of frames by building a saliency map via a

fully convolutional RNN. This map uses three pixel classes: salient pixels, non-salient pixels,

and neutral pixels. Attentive salience is also important for predicting driver maneuvers and

braking intent. Ohn-Bar et al. [330] utilize a head pose prediction model to predict overtaking

and braking intent. The system they outline has a strong emphasis on real-time performance,

which is extremely important for attentive salience models.

Instructive salience, on the other hand, aims to prioritize traffic objects that are critical

to the ego-vehicle’s future trajectory. This version of salience emphasizes objects/regions that

a driver should be observing in order to maneuver the vehicle properly, and is the version of
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salience that our work focuses on in regards to traffic lights. Instructive salience models are

typically more costly than attentive models due to the manual labeling of important objects with

respect to the ego-vehicle. This type of labeling is more cognitively demanding as the annotator

must take into consideration both the ego-vehicles current position and future trajectory. To avoid

this manual step, Bertasius et al. [331] utilize an unsupervised learning approach for detecting

important objects without any saliency labels. This unsupervised model uses a segmentation

network that proposes possible important objects, which are then fed to a recognition agent that

incorporates spatial features to predict the important objects. Instead, using a supervised learning

process, Greer et al. [54] classify the saliency of road signs, which can be utilized for efficient

dataset annotation. This led to the LAVA Salient Signs Dataset [55], a dataset of 31,191 labeled

traffic signs with a validated salience property. Lateef et al. [308] utilize a conditional GAN that

predicts the important things a driver should be looking at within a traffic scene, matching the

definition we use for instructive salience. For this model, they incorporate semantic labels from

existing datasets and use saliency detection algorithms to predict which traffic objects are most

important. Zhang et al. [312] also create a model for instructive saliency using interaction graphs

that estimate object importance in driving scenes. They note that their object important definition

corresponds to the objects that help with the driver’s real-time decision-making, falling in line

with our definition for instructive salience.

11.3 Methods

11.3.1 Data Collection

The LISA Amazon-MLSL Vehicle Attributes (LAVA) dataset contains labeled bounding

boxes of traffic lights taken from a front-facing camera of a vehicle. This dataset was collected

from the greater San Diego Area and contains a variety of road types, lighting, and traffic

conditions. The traffic lights can be categorized with a status of on, off, or undefined, with a

color of red, yellow, green, or undefined (traffic light is not on), true/false attributes for whether
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the light is directional or not, and with an occlusion level of non-occluded, partial, or major.

Additionally, we added an additional light salience property for all traffic light annotations that

were performed as either true or false. Due to the potentially ambiguous nature of saliency

with regard to any given traffic snapshot, this additional property brings added difficulty with

respect to accurate data annotation. As there is some level of subjectivity to a definition for

saliency which takes into account a driver’s attention or perceived relevance of road objects, it

is important that any provided definition is appropriately constrained and that annotations are

validated across raters to ensure consistency. A light salience validation process was performed

where the boolean salience property for each annotation was double-checked for consistency

with our definition of salience. This data collection and validation procedure ensured that we

had properly labeled every traffic light as salient or non-salient depending on the traffic scene

in the image. The resulting dataset after salience validation is known as the LAVA Salient

Lights Dataset. In the process of annotation, the aforementioned definition of salience was used

as a standard for annotation, with select frequent ambiguous cases handled according. to the

additional criteria below:

• In the case of a frame where the lane the ego-vehicle is in is indeterminate, both traffic

lights pertaining to straight and left turns were labeled salient.

• In the case of the ego-vehicle approaching an intersection in the left-most forward-bound

lane with an approaching left turn lane opening, both traffic lights pertaining to straight

and left turns were labeled salient until it is clear which direction the ego-vehicle will go

in.

We collected 30,566 traffic light annotations, with 9,051 salient annotations and 21,515 non-

salient annotations. Figure 3 shows the frequency of each light type in the LAVA Salient Lights

Dataset.
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Figure 11.3. Chart of Light Type Frequencies in the LAVA Salient Lights Dataset. The orange
rows represent salient lights and the blue row are for non-salient lights. The undefined non-salient
light is the most common light type in the dataset, demonstrating just how many non-salient
examples that are present in driving scenarios.
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11.3.2 Light Detection with Deformable DETR

To perform Traffic Light Detection, we use the end-to-end transformer object detection

model Deformable DETR [342]. For the Deformable DETR hyperparameters, we use a ResNet-

50 backbone, 300 attention heads, 50 epochs, a learning rate of 0.0002, and a batch size of 2 due

to GPU constraints. We also employ gradient clipping and learning rate decay. We define two

approaches to perform the Traffic Light Detection:

1. A standard Deformable DETR model trained for traffic light detection

2. Deformable DETR model trained with a custom salient-light loss function.

We compare the two approaches to see if annotating salient traffic lights and focusing performance

on such light types increases our detection precision and recall.

11.3.3 Salient-Sensitive Loss for Traffic Lights

The Deformable DETR involves two steps: bounding box regression via a 3 layer Feed-

Forward-Network and bounding box binary classification. For this last step, bounding boxes

are classified into either two categories: object or foreground. The classification step is trained

through a focal loss equation which emphasizes performance on difficult examples. The focal

loss equation is:

FL(pt) =−αFL(1− pt)
γ log(pt) (11.1)

This focal loss equation adds a (1− pt)
γ factor to the standard cross-entropy loss function, where

pt represents the probability of a ground truth glass. The γ parameter is a focusing parameter

which if increased puts more emphasis on more difficult and misclassified examples. α is a

hyperparameter is used to balance emphasis on focal loss. We borrow from this focal loss

function and customize it such that our loss function emphasizes performance on salient traffic
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lights. The salient-loss function is defined below:

FL(pt) =−αFLωSL(1− pt)
γ log(pt) (11.2)

The equation is similar to focal loss equation except for the addition of ωSL. If the nearest ground

truth light detection is salient, we set ωSL > 1 such that the loss function is now stricter and

requires greater performance on salient lights. We found that the best value for ωSL on salient

examples was 4. Otherwise if the nearest ground truth detection is non-salient, ωSL = 1 and

essentially regular focal loss. In considering system limitations, while in general this loss does

not combat the learning of the generic focal less, but rather enhances its effects for important

objects. However, one relevant consideration is the care placed in defining what is “important".

Using this salient-sensitive loss function over the traditional focal loss function can open risks if

the saliency property within the dataset is inaccurately or inconsistently annotated, hence why it

is important to validate salience annotations as previously mentioned.

11.4 Experimental Evaluation

We evaluate the Deformable DETR Traffic Light Detection Models trained on the LAVA

Salient Lights Dataset with and without salient loss. We divided the data at random, with 80% in

training, 10% in validation, and 10% in test sets. We trained each model for 50 epochs.

With each detection made by the model, there is a simultaneous confidence score output.

We threshold our detections by this confidence score, sweeping across values from 0 to 1 in

increments of 0.1. Once we have collected these model predictions, we use IOU with a constant

threshold and the ground-truth light detections to calculate the number of correct predictions.

Using these sweeping confidence thresholds for detections and using IOU to find the correct

predictions, we can generate a precision-recall graph. These charts are shown in Figures 11.4 to

11.6.

How well do these models recall traffic lights under this training regimen? Deformable
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Figure 11.4. Recall of Salient Traffic Lights versus Precision on All Traffic Lights. The model
trained with salience-sensitive loss (in blue) outperforms the model trained without, reaching
consistently higher values of recall for similar values of precision.

DETR appears to be effective at learning to detect traffic lights as a base model, and Figure 11.4

shows that for salient lights, the salience-sensitive loss increases the performance at all points on

the precision-recall curve, even giving a stronger concavity indicating sustained recall even under

tighter precision thresholds. Similarly, Figure 11.5 also shows a clear separation and concavity

for the model trained with salience-sensitive loss.

Does salience-sensitive loss succeed in prioritizing performance on salient lights versus

lights which may be less important to the ego vehicle? Figure 11.6 shows that at high confidence

values, the salience-sensitive loss creates a fairly strong difference in performance on salient

lights versus all lights in the scene. This means that as the model becomes more scrutinous with

an increased confidence threshold, the salient lights remain well-detected compared to the total

collection of lights. Qualitative results illustrating model performance are provided in Figure

11.7.

11.5 Concluding Remarks

In autonomous vehicle planning, it is not always the nearest or largest objects which

provide the most critical information. Training object detectors with salience-aware methods
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Figure 11.5. Recall of All Traffic Lights versus Precision on All Traffic Lights. The model
trained with salience-sensitive loss (in blue) outperforms the model trained without, reaching
consistently higher values of recall for similar values of precision.

Figure 11.6. The difference in recall on salient lights versus all lights, plotted against precision
on all traffic lights. This graph is meant to address the question Does salience-sensitive loss
successfully prioritize salient traffic lights? Any time the graph is positive, the model is giving
stronger recall of salient lights than overall recall. We see that this occurs naturally (red) without
salience-sensitive loss, but by adding salience-sensitive loss (blue), higher confidence thresholds
lead to recall difference of greater than 5%.
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Figure 11.7. Qualitative results of training without salience-sensitive loss (left) and with salience-
sensitive loss (right). In each example, a red border is given to signs which are “missed" by
the detector. In these examples, the missed sign is salient and critical to the car’s decisions.
These signs are sometimes further or smaller than other signs in the scene, making salience an
important part of the training process since the “easiest" signs may not be the most important to
the vehicle’s planning.
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are critical for ensuring that objects critical to the driver’s decisions are emphasized in detection

models. Using a transformer like Deformable DETR is a natural choice for this problem since

transformers learn what portions of an image it should pay attention to. We have shown the

effectiveness of salience-sensitive loss in guiding Deformable DETR toward more accurate

object detection for a US traffic lights dataset. To further improve the model performance, we

aim to annotate more traffic light examples to expand the LAVA Salient Signs dataset. Further

research directions into salience annotation and salience-sensitive classification may continue to

improve scene understanding, continuing towards an overall goal of robustly safe autonomous

navigation through intersections.
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Chapter 12

Concluding Remarks

In this dissertation, I have presented a selection of ideas which center on the ways

that autonomous systems should observe, react, and learn from uncertainty in the driving

environment. Because this driving environment is semi-structured but paradoxically dynamic

and ever-changing due to the impulses of human agents, it is important that systems are highly

adaptable to new or ambiguous information. In my dissertation, I framed such capabilities around

the ability of systems to recognize novelty in their observational data. Among the representations

of novelty presented in this dissertation, language-based embeddings of visual data was shown

to be semantically rich, allowing for unsupervised formation of clusters which contain unique

weather conditions, road infrastructure, dynamic objects, vulnerable road users, and even sensor

failures, allowing for a variety of applications in autonomous driving system safety and learning.

The importance of novelty and the ability of language to capture salient information may be

best exemplified by a 2024 feature rollout in Tesla’s full-self-driving mode, in which FSD

disengagements trigger the interface to ask the human occupant to describe their observations

of what happened around the time the system disengaged1. I am happy to say that my research

shared in Chapter 3 can make these same assessments automatically, without human intervention.

On a practical note, the research presented in this dissertation has applications across the

popularized SAE autonomy levels. For example, handling human control takeovers safely is

a necessary function of Level 3 driving, where the human may be expected to assume control

1https://teslamotorsclub.com/tmc/threads/fsd-audio-disengagement-notes.299566/
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when alerted. Object detection and recognition algorithms presented throughout this dissertation

have a place in ADAS systems which sit in earlier classification levels. And, towards robust

autonomy in the levels beyond, I presented active learning frameworks which can help systems

to overcome the human annotation bottleneck which prohibits complete use of colossal volumes

of high-dimensional data in safe autonomous driving tasks. These same methods of data curation

also have a place in system validation; in the same way that a chain is only as strong as its

weakest link, observing system performance (whether perception, prediction, or planning) on

“challenge" cases is one way we can measure our progress through the long-tail. In this direction,

an immediate appropriate application is the audit of the large datasets used to train detection

systems for improved balancing of object classes. As an example, in one of the largest public

autonomous driving datasets, only 0.2% of pedestrian instances are observed using wheelchairs,

which is the only mobility aid even classified, an important task emphasized in recent years

through the research of the CVPR workshop on Accessibility, Vision, and Autonomy [343]. This

is especially important because large data systems with severe data imbalance leave those under

(or un) represented the most vulnerable to risk from mistakes in perception.

Further, tasks in understanding the driving environment should extend beyond detection-

as-perception. Certain objects are more important to driving decisions for the ego-actor than

others, an idea that I formulate in the concept of salience, and certainly with room for continued

research into how salience should be represented, assigned, and used. Besides answering where

attention “should" be placed, we may also want to understand where attention “is" placed by

human drivers, perhaps helpful in guiding autonomy, and also helpful in noting where human

drivers may err in their situational awareness. Further, salience may act as a bridge which

connects scene objects (for example, understanding which scene objects are salient to Agent A

and which are salient to Agent B may help to form logical groupings for planning and decision-

making). As human drivers, we are aware of the relationship between various elements in the

observed scene, and our autonomous systems must be able to do the same in a generalizable way.

Our driving environment is semi-structured; like any governing system, we have sets of
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rules and expectations, but only the ones based in physics are guaranteed to be followed. As some

examples, we may perceive and organize lane markings, but these marking impose no physical

requirements for drivers to conform. Likewise, a sign that says “No Right On Red" does not

impede hurried drivers from continuing their route, as illustrated in Figure 12.1. How do we plan

and make decisions under this pervasive ambiguity between what a scene tells us and what agents

do? Or, times when the scene presents us with conflicting instructions, as in Figure 12.2? These

plans are highly context-dependent, and the safest, most “understandable" decision may vary

situation-to-situation. We cannot have frameworks which learn purely from perception of agent

actions, nor purely from the scene; some form of reasoning and evaluation beyond perception

and obstacle-avoiding control is required for safe, smooth, and human-relatable driving.

Perhaps part of the solution will lie in continued use of language embeddings for both

scene understanding and planning, allowing for explainable decisions under such modal ambigu-

ity as illustrated in Figures 12.1 and 12.2. When the computer is faced with conflicting modes

of information (e.g. modules for sign and light detection understand the red light to prohibit

motion, while the behaviors of surrounding vehicles indicate otherwise), modal confusion may

occur. Similarly, modal confusion may occur in situations where a construction worker may be

waving vehicles to drive through an ambiguously marked area, as in Figure 12.3, or at times

when police officers may direct traffic at a broken light. Language may offer a common repre-

sentation between modes, such that control decisions can both made and explained for purposes

of validation and possible correction by human agents, whether on-the-fly or in offline learning.

Understanding how to make the control transitions between human driving and autonomy

was a focus of this dissertation. In future research, understanding when to make transitions

between modes of control will rely on similar principles of recognition of novelty (or sensing,

perception, or planning failure), and choosing an appropriate mode of information and modeling

to create a safe response. The formulation by [194] of corner cases as a coming-together of

multiple modes of ambiguity seems a fitting framework for explainable and safe driving, where

an intelligent vehicle may need to synthesize information from driver attention, outside agent
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Figure 12.1. What should the autonomous agent do when it detects and understands a sign that
says “No Turn On Red", perceives the red light, yet observes vehicles turning? How does this
interpretation change when in a construction zone, behind an emergency vehicle, or responding
to direction of a traffic-regulating police officer? What scene information would help the machine
to make a safe and explainable decision?

Figure 12.2. What should the driver do on their approach when faced with the installed STOP
sign at right, but also a green turn arrow from the traffic light? How do humans assess and make
decisions in such scenes, and can this reasoning be replicated in machine intelligence?
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Figure 12.3. How can a machine compromise between the ambiguity of the presented obstacles
and openings, presented signs, and gestures of scene agents? Knowing where to prioritize
attention (in other words, ranking salience of instructive road objects) will be important for
effective and safe autonomous driving.

gestures, scene infrastructure, surround agent interactions, and more; any case, even a frequently-

visited street, can become a corner case when new modes of important and novel information are

introduced to the scene.

My concluding remarks would not be complete without mention of my appreciation for

the ways that human biology and cognition may be echoed in machine intelligence. I began my

graduate studies with a fascination over the relationship between our visual system, learning,

and convolutional neural networks2, and through my research, I’ve become equally taken by

the idea of human latent representations, our imaginations, and the process that connects what

we see and think to our expressed verbalization. There are many different ways to represent

information, each with their own benefits and losses, and humans have learned, planned, and

made decisions from a multitude of representations which are now available in digital form for

machine intelligence. While I would not make the claim that acting or thinking like a human is

what defines intelligence, I would certainly consider systems which do act and think like humans

2Though now, especially after seeing the capabilities of the vision Transformer, realizing that the real fascination
was more generally with the idea of digital images as representations of the world, and associated learning from
visual information
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Figure 12.4. How can the vehicle make a decision when presented with conflicting information,
such as the one-way street infrastructure, but with surrounding cars flowing in opposite direction,
or signs directed the vehicle to enter the oncoming traffic lane? The above scene was encountered
by a Waymo vehicle in Los Angeles in early 2024, when a protest caused part of a street to be
closed without notice, and the below scene was encountered by the LISA-T testbed in La Jolla in
early 2024.
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to be intelligent and capable of complex tasks, and I do think the human cognitive lens may be

a fruitful and explainable angle for continued exploration of autonomous systems in the open

world.
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Appendix A

Ensemble Learning for Fusion of Multi-
view Vision with Occlusion and Missing
Information: Framework and Evaluations
with Real-World Data and Applications in
Driver Hand Activity Recognition

A.1 Introduction

Manual (hand-related) activity is a significant source of crash risk while driving; driver

distraction contributes to around 65% of safety-critical events (crashes and near crashes) [344],

and more than 3,000 deaths in 2022 [345].

Furthermore, given recent consumer adoption of early-stage autonomy in vehicles, driver

hand activity has been shown to lead to various incidents even in these semi-autonomous vehicles.

Drivers in vehicles supported by partial autonomy show high propensity to engage in distracting

activities when supported by automation [346] and show increased likelihood of crashes or

near-crashes when engaged in distracting activity [344]. Moreover, it is important to consider the

manner of transitions when the driver must take manual control of semi-autonomous vehicles,

as drivers demonstrate a slowness or inability to handle these control transitions safely when

occupied with non driving-related tasks, often involving the hands [347] [3].

Accordingly, analysis of hand position and hand activity occupation is a useful component
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to understanding a driver’s readiness to take control of a vehicle. Visual sensing through cameras

provides a passive means of observing the hands, but its effectiveness varies depending on the

camera location.

In this paper, we present a multi-camera sensing framework and machine learning

solution, which we apply to the problem of robust driver state monitoring for autonomous driving

safety. Our real-world, constrained application represents just one use case for this framework,

as it can readily be extended to an ensemble of N domain-agnostic data sources and models for

similar tasks; accordingly, we provide both a domain-specific and a generalized formulation of

the sensing framework and learning problem in the following sections.

Consider an intelligent vehicle which classifies a driver’s hand activity for a downstream

safety application. By constraints imposed by vehicle manufacturing, we may have multiple

cameras (in our case, four) which observe the driver from varying angles: head-on from the steer-

ing wheel, diagonally from the rearview mirror, diagonally from the dashboard, and peripherally

from the central console. It is readily apparent that, depending on the driver’s current position,

there are instances where:

1. Only one of the four cameras has any view of the driver’s hands, or

2. Multiple cameras have a view of the driver’s hands.

An ideal intelligent system would recognize which of the cases is present, and in the

former, choose to use the visible information to make an estimate, and in the latter, form an

estimate made with the joint information of the multiple views which may be helpfully redundant

(both cameras observing the fingers grasping the wheel, from multiple directions) or supplemental

(one camera observes the fingers clasped to the wheel rim, the other observes the wrist resting

on the wheel center) to the task at hand. This redundancy is closely related to the concept

of homogeneity in [4]. Because this redundant or supplemental information can be present or

absent between instances, we refer to this particular “missing data" phenomenon as irregular

redundancy. Conceptually, this is similar to situations where data streams which operate under
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Figure A.1. Multi-view images (clockwise) - rearview, dashboard center, steering view, and
dashboard driver, which explain how hands can be missing in certain frames, causing an irregular
redundancy.
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noisy conditions or at different sample rates are provided as input to a model which must provide

output despite lost frames due to sampling rate or corruption.

More generally, we may describe this as a problem of sensor fusion, by which we must

handle data to best leverage the accompanying noise, variance, and redundancy between samples

to create an optimal estimate. In this theme, here we pose our framework as a system in which

we have multiple data sources of the same event, and our goal is to learn an optimal model which

accurately estimates a property of the event. Here, we are left with a few choices:

1. A model learned from one of these sources may tend to provide the best estimate, and we

use only this source for future inference.

2. Models learned independently from each of these sources can each provide an indepen-

dent estimate, and we can interpret their respective estimates to reach a group-informed

consensus estimate.

3. A single model can be learned simultaneously between the sources, exploiting moments of

redundancy and uncertainty in the data sources, such that the model provides an estimate

with intelligence in selecting relevant features from data sources at any given instance

dependent on the state of the other sources.

This question, described as the multimodal reasoning problem [4], is thoroughly inves-

tigated in the work of Seeland and Mäder [348], as will be discussed on the following section.

Their analysis on multi-view classification utilizes datasets with complete data; here we seek

to extend their work by answering a further question critical to real-world, real-time tasks: can

models and learning paradigms generalize to cases of multiple data sources when significant

data is missing?

This problem of missing, corrupted, or asynchronized multi-modal data is found in

many domains, ranging from biomedical imaging modalities like photoacoustic and computed

tomography and optical microscopy [349] to autonomous systems dealing with temporally-
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calibrated LiDAR, vision, and radar [350] and identification of crop disease from satellite

imagery with significantly different capture frequencies or resolutions [351].

In our analysis, we examine “best-of-N" performance from collections of N independent

models, as well as schemes which negotiate between the logits of N independent models, and a

model which learns between hidden features derived from the N data sources jointly, known as

late fusion. We adopt the term “ensemble" to refer to the N models respectively learned from the

N data sources, which may be combined to generate a prediction. Critically, under our condition

of irregular redundancy, the number of views available varies between instances, thus requiring

the introduction of our method for multi-view ensemble learning with missing data. Further,

because there are multiple simultaneous tasks involved in driver monitoring, we examine the

task relevance of each modality [4] in our analysis.

To summarize our contributions, we (1) perform comparative analysis between single-

view, ensemble voting-based, and late-fusion learning on data from four real-world, continuous-

estimation safety tasks, using sensors operating with irregular redundancy, (2) provide a general-

ized formulation of the real-world, real-time multi-modal problem such that our methods can

be applied to similar tasks in both autonomous driving and other domains, and (3) evaluate the

performance of these models with respect to human-centric safety systems by examining task

performance on human drivers outside of the training datasets.

A.2 Related Research

A.2.1 Sensor Fusion

Sensor fusion describes integration of data from multiple sensor sources, like LiDAR or

cameras, towards a task. In the intelligent vehicles domain, research in methods of combination

of output from multiple sensors to improve tasks in prediction and estimation is well-established.

Chen et al. designed a Multi-Vew 3D Network (MV3D) that fuses LiDAR point cloud and RGB

image data to perform 3D Object Detection in autonomous driving scnearios [356]. Their deep
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Table A.1. Multiview Fusion Methods. Homogeneity (from [4]) refers to the extent that the
abstract information presented in one view is equivalent to the information presented in another,
toward the intended task(s). High homogeneity is highly redundant, while medium homogeneity
refers to cases where some combinations of views may have the same information, but this
information may be exluded from other views. Low homogeneity refers to situations where
information between views is primarily supplemental. Our presented method is notable in having
only medium homogeniety in support of its task, and frequent appearance of incomplete sets.

Method Modalities Tasks Homogeneity Incompleteness
Various Fusions [348] 2-5 RGB 1 High None

Late Fusion [352] 4 IR + 1 RGB 1 High None
Temporal Score Fusion [353] 3 RGB 1 High None

Late Fusion [354] 5 RGB 1 Medium None
Slice Fusion [355] Depth Slices 1 Low None

Ours 4 IR 4 Medium Frequent

fusion of camera and LiDAR data uses FractalNet, a CNN architecture that is an alternative to

other state-of-the-art CNNs like ResNet [357]. Similarly, Liang et al. fuse LiDAR and image

feature maps into using a continuous convolution fusion layer [358]. This fusion process creates

a birds-eye-view (BEV) feature map that is fed into a 3D Object Detection Model. Pointpainting

is another prominent example of a fusion process of LiDAR and image data [359]. Pointpainting

takes image data and performs semantic segmentation to compactly summarize the features of

the image. To fuse the LiDAR and image data, the LiDAR data is projected onto the semantic

segmentation output. In all these methods, the sensors are LiDARs and cameras. There is a

different class of work which aims to do sensor fusion using the same modality or sensor type, but

with data collected from different sensors or sensor views, like [360], which combines LiDAR

point clouds from the birds-eye-view and perspective view to learn fused features. In our work,

we learn image features fused from different camera views. The features can be combined at

different stages in the network giving rise to different ensembles, as explained in the next section.

A.2.2 Ensemble Learning

In addition to fusion of output from N sensors to reduce uncertainty of the observed

information, we also explore ways that the models learned from the input of these N sensors can
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share information during the learning process, such that the collective ensemble is optimized to

the task.

We present here the Sagi and Rokach’s survey definition of Ensemble Learning:

“Ensemble learning is an umbrella term for methods that combine multiple
inducers to make a decision,...The main premise of ensemble learning is that
by combining multiple models, the errors of a single inducer will likely be
compensated by other inducers, and as a result, the overall prediction performance
of the ensemble would be better than that of a single inducer." [361]

It is worth noting that there are a variety of methods for generating such ensembles [361].

For example, the high-level learning system may:

1. Vary the training data provided to the inducers [362] [363] [364] [365],

2. Vary the model architecture between inducers [366] [367] [368],

3. Vary the learning methodology [369] or hyper-parameters [370] between inducers, or

4. Vary some combination of the above between inducers.

In this research, we freeze the model architecture, learning methodology, and hyper-

parameters; we vary only the training data provided to the inducers. However, in this case, the

training data is not sampled or refactored from some shared pool; instead, each ensemble member

has access to its own set of training data. These training data are not independent, though; the

training data is unified as a collection per instance, where each member of the collection is a

different representation of the same base observation (e.g. different cameras taking simultaneous

photos of the same object).

From the ensemble of inducers, inductions can be combined and learned-from in a variety

of ways:

Bayesian model averaging and combination

Bayesian Model Averaging (BMA) allows formation of predictions with many candi-

date models without losing information like an all-or-none technique. Using Bayesian model
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averaging, the probability of a prediction y given training data D can be defined as:

p(y|D) =
K

∑
k=1

p( fk|D)p(y| fk,D) (A.1)

where fk is the prediction of the kth model. The posterior probabilities p( fk|D) can be treated

as weights wk for each of the separate models since ∑
K
k=1 p( fk|D) = 1. Previously researched

applications using these methods include weather forecasting [371], flood insurance rate maps

[372], risk assessment in debris flow [373], and crop management [374].

As mentioned by Monteith et al., Bayesian Model Averaging can be more thought of

as a model selection algorithm, as ultimately the importance of each model is determined

by the posterior probability weight [375]. To develop an approach that is more inherent in

ensemble learning, there are various strategies that can be used for model combination rather

than model averaging. Bayesian model combination has found success in reinforcement learning

by combining multiple expert models [376], speech recognition [377], and other tasks (notably

functioning on non-probabilistic models and combinations of models observing different datasets

[378]).

Voting, Weighted Majority Algorithm

In ensemble learning, it is crucial to learn the value of each individual model by assigning

different weights to these models in order to increase performance. In this algorithm, weighted

votes are collected from each model of the ensemble. Then, a class prediction is made based

on which prediction has the highest vote. All models which made incorrect predictions will be

discounted by a factor β where 0 < β < 1 [379]. Weighted majority algorithms have been used

to combine model predictions to identify power quality disturbances for a hydrogen energy-based

microgrid [380], calendar scheduling [381], profitability and pricing [382], and other applications.

The weighted majority algorithm is used to combine the predictions from the expert models and

see how effective each expert model is.

207



In addition to single-view results, we compare performance in our hand classification

task under naive voting, Bayesian model combination, and weighted majority voting.

A.2.3 Machine Learning from Multiple Cameras

Seeland and Mäder thoroughly investigate image classification performance gains af-

forded by network fusion at different process levels (early, late, and score-based) when using

multiple views of an object [348]. They apply their methodology to datasets comprising cars

(shot from 5 views), plants (shot from 2 views), and ants (shot from 3 views). They find that

late fusion provides the strongest performance gain for the car and plant datasets, and that an

early fusion (slightly misnamed in this case, as it occurs at the final convolution) leads to a very

marginal gain compared to late fusion on the ant dataset. In general, the authors results support

late fusion as the dominant methodology, with early fusion often leading to worse performance

compared to baseline. In their research, each data instance is referred to as a “collection" (i.e.

collection of N images). Critically, each collection analyzed is complete; that is, no view is

missing from any given collection. This is where our problem framework and approach differs;

as illustrated in Figure A.2, we consider situations in which collections may be incomplete, and

seek to learn correct labels despite missing data.

The late fusion approach for visual patterns has found success in multiple application

domains, as presented in Table A.1, and even in other domains such as cross-modal information

retrieval [383] [384] [385] [386].

A.2.4 Driver Hand Activity Classification

Shortcomings of Non-Camera Methods

At the time of writing, most commercial in-vehicle systems which monitor the driver’s

hands use pressure and torque sensors embedded in the steering wheel to detect the presence of a

driver’s hands. However, this method of sensing leaves multiple safety vulnerabilities:

1. Especially in the case of non-capacitative sensing, these sensors can be spoofed by placing
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Figure A.2. While traditional learning problems (a) may seek to learn a model (gray) which
makes a prediction (blue) from input (yellow), in the multi-modal setting (b), we seek to learn a
model which makes a prediction from multiple inputs. However, in the case where a sensor fails,
becomes occluded, or operates at a different rate, the input set goes from complete to incomplete.
In this research, we explore techniques for dealing with such incomplete sets (c), important for
systems which are relied upon for always-online output prediction.
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weighted objects on the wheel, leading to recent fatal accidents.

2. When effective for determining if the hands are on or off the wheel, these sensors still

cannot distinguish between different hand activities taking place off of the wheel, and

recognizing these activities is critical for estimating important metrics like driver readiness

and take-over time. Hand locations and held objects imply hand activities, crucial to

inferring a driver’s state, and this information is lost when reduced to hands-on-wheel and

hands-off-wheel.

Camera Methods

Camera-based methods of driver hand analysis allow for observation of the hands without

steering wheel engagement. Past systems for classification of driver activity and identification

of driver distraction use traditional machine learning approaches; for instance, Ohn-Bar et al.

demonstrated systems that utilize both static and dynamic hand activity cues in order to classify

activity in one of three regions [387] and extracts various hand cues in ROI and fuses them

using an SVM classifier [244]. Borgi et al. use infrared steering wheel images to detect hands

using a histogram-based algorithm [388]. More recent works expand on the aforementioned

classifiers and utilize deep learning in order to identify and classify driver distraction in a more

robust manner. Eraqi et al., among others, have developed systems that operate in real time to

identify driver distraction in a CNN-based localization method [389]. Shahverdy et al. also use a

CNN-based system in order to differentiate between driving styles (normal, aggressive, etc.) in

order to alert the driver accordingly [390]. Building on this, Weyers et al. demonstrate a system

for driver activity recognition based on analysis of key body points of the driver and a recurrent

neural network [391], and Yang et al. further demonstrate a spatial and temporal-stream based

CNN to classify a driver’s activity and the object/device causing driver distraction [392]. A

comprehensive survey outlining the current driver behavior analysis using in-vehicle cameras

was done by Wang et al [393].
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Recent pose detection models provide another helpful tool in understanding the hands of

the driver. As defined by Dang et al., 2D pose detection involves detecting important human body

parts from images or videos [394]. Chen et al. describes that there are three ways to define human

poses: skeleton-based models, contour-based models, and 3D-based volume models [395]. Our

research uses a skeleton based-model, which describes the human body by identifying locations

of joints of the body through 2D-coordinates. A deep learning approach to pose detection through

a skeleton based-model is to first detect the human location through object detection models

like Faster-RCNN and then perform pose estimation on a cropped version of the human. Some

successful approaches to pose detection include HRNet, which is successful for pose detection

problems since it maintains high-resolution representations of the input image throughout a

deep convolutional neural network [396]. Toshev and Szegedy perform this pose estimation by

implementing the model DeepPose, which refines initial joint predictions via a Deep Neural

Network regressor using higher resolution sub images [397]. Yang et al. design a Pyramid

Residual Model for pose estimation which learns convolutional filters on various scales from

input features [398].

Though consumer and commercial vehicles have begun integrating inside-facing cameras

for a variety of tasks, such as attention monitoring and distraction alerts, these methods are

not without their own challenges. A single camera may be well-suited to a particular task, but

different situations may call for different camera placements. While one view may be ideal for a

particular task within design constraints, this view may sacrifice a complete view of a different

driver aspect and may not offer redundancies if a camera is obstructed or blocked. For example,

an ideal hand view (taken from above the driver) would not be suitable for assessing a driver’s

eyegaze, but a camera that can see the driver’s eyes may also have at least a partial view of the

driver’s hands.
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Safety and Advanced Driver Assistance Systems

Recent works in safety and advanced driver assistance systems utilize deep learning

techniques in order to perform driver analysis. In particular, deep learning allows researchers

to extract driver state information and determine if they are distracted through analyzing driver

characteristics such as eye-gaze, hand activity, or posture [393]. Estimating driver readiness

is another vital aspect to safe partial autonomy, and a key component to understanding driver

readiness is hand activity, as a distracted driver often has their hands off the wheel or on other

devices like a phone. Illustrated in Figure A.4, Rangesh et al. [3] and Deo & Trivedi [199]

show that driver hand activity is the most important component of models for prediction of

driver readiness and takeover time, two metrics critical to safe control transitions in autonomous

vehicles [28] [27]. Such driver-monitoring models take hand activity classes and held-object

classes as input, among other components, as illustrated in Figure A.3. These classes can be

inferred from models such as HandyNet [239] and Part Affinity Fields [238], using individual

frames of a single camera view as input. Critically, this view is taken to be above the driver,

centered in the cabin and directed towards the lap– a typically unobstructed view of the hands.

Application of multi-view and multi-modal learning to safe, intelligent vehicles ( [399],

[217]) brings two benefits: increased flexibility in field-of-view for individual component

cameras, and increased accuracy in classification for observable activity. Both benefits arise from

the ability of the system to reason between views, allowing occluded or otherwise compromised

images from one view to be substantiated by images from additional views in cooperation.

A.3 Methods

The general hand activity inference stage is organized in four steps: multi-view capture,

pose extraction, hand cropping, and CNN-based classification.
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Figure A.3. As illustrated in [2], analyzing logits of hand activity and location classes play a
useful role in predicting a driver’s readiness to take control of a vehicle.

A.3.1 Pre-processing Steps

Feature Extraction: Pose and Hands

The inference stage is illustrated in Figure A.5. Following data capture, we extract

the pose of the driver in each frame, where “pose” is a collection of 2D keypoint coordinates

associated with the driver’s body, such as the wrists, elbows, shoulders, eyes, etc. This problem

is broken into two steps: first, we must detect the driver in the frame, then detect the driver’s

pose. Each step requires its own neural network; for driver detection, we first use the Faster-

RCNN [400] model with Feature Pyramid Networks [401], using a ResNet-50 backbone [402] to

detect the driver. We note that this network will output any humans detected in the frame, so we

apply a post processing step (based on the camera view) to only include detections corresponding

to the driver’s seat. For joint detection, we employ the HRNet [403], a robust top-down pose

detection model,which predicts 2D coordinates of various points of the body such as the wrists,

elbows, shoulders, eyes, etc. The results of driver and keypoint detection are illustrated in Figure

A.7.
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Figure A.4. In an ablative study, Rangesh et al. [3] show that various individual features and
combinations of features associated with the hands, including hand region (HR), distance to
wheel (DW), and held object (HO) are most informative to models for predicting cues associated
with vehicle takeovers from automated to manual control. In the case of control transitions, these
fractional-second gains are critical for a driver’s reflexes to safety alerts.

Figure A.5. The image preprocessing pipeline prior to learning involves four steps, carried out
individually from each camera stream. First, the image is captured, then, the driver is detected
and their pose extracted, allowing for crops around the hands to be generated. In this example,
because the left hand is not visible to the particular camera, the method of single imputation is
used to replace the frame with a frame of zeros. We note that because the method uses only the
image of the hands towards its learning, it is possible to anonymize the driver by blurring the
face, as we have done in the above example, for the cropped frames that serve as model input.
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Figure A.6. Classification pipeline. Following image capture, we perform image processing to
detect the driver using Faster-RCNN with Feature Pyramid Networks (FPN) with a ResNet-50
backbone, extract the driver pose using HR-Net, and crop the hands 100px from center of wrist
joints. In the Inference stage, we utilize CNNs for classification, beginning from a pre-trained
ResNet fine-tuned on our dataset. For the single view model, we make direct inference, and for
the multi-view models, we pass the logits to ensemble algorithms, or pass the CNN-output feature
maps to a neural network for late fusion. In our experiments, we use Bayesian Combination
and Weighted Majority Averaging as the Ensemble Learning algorithms, and Late Fusion via
fully-connected neural network laters.
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Figure A.7. Prior to classifying driver hand activity, the system must detect the driver. We use
Faster-RCNN to generate the bounding box shown in green. Following driver detection, we
apply HRNet to identify the 2D pose skeleton, shown as keypoints and connecting lines on the
driver’s body.
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Hyperparameter Selection: Hand Crop Dimensions

We crop images around each of the hands, centered at the wrist and extending 100 pixels

in each direction. The width of the crop is a hyperparameter which can be changed to add or

reduce spatial context. Only these hand crops are fed into the activity classification pipelines.

A.3.2 Single-View Models

The cropped images from a particular camera are classified by two convolutional neural

networks trained on images of that view. One network outputs probabilities that the hands are

holding one of three objects: Phone, Beverage, Tablet; or holding nothing. The second network

(identical in architecture to the first, except for number of classes) predicts the probability that

the hand is in one of five hand location classes: Steering Wheel, Lap, Air, Radio, or Cupholder.

The classes Radio and Cupholder are reserved for the right hand only. For single-view model

evaluation, the network infers the hands to be classified according to the class of maximal

probability.

In cases where there is no image available, the model is provided an image of proper

dimension containing only the value 0. This is a variation of the method referred to as single-

imputation [349], in which a single value is used to replace any instances of missing data. The

intention behind this decision is that the network will learn a prior over the training data in

situations when the view is occluded; that is, each time a blank image is presented, it infers

that the sample should be classified in one of the typically occluded positions, with probability

representative of the distribution of the training data.

A.3.3 Naive Voting

In the naive voting scheme, all four single-view models make a prediction using their

respective image from a given collection, noting that up to N− 1 images may be blank. The
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prediction made by the network is taken to be

y = argmax
i
(

N

∑
j=1

1
N

pi j), (A.2)

where M is the number of classes, N the number of models, and pi j the probability of the ith

class from the jth model. This method gives each model equal vote.

A.3.4 Weighted Majority Voting

Using Weighted Majority Voting, we seek to combine the decisions of the 4 models

weighted by a discount factor di. This discount factor is based on the number of mistakes mi

made by the model during validation:

di = 1− mi
N
∑

i=1
mi

(A.3)

Then, each collection prediction is made using

y = argmax
i
(

N

∑
i=1

di pi). (A.4)

A.3.5 Bayesian Model Combination

Using Bayesian Model Combination, we combine the decisions of the 4 models weighted

by a factor representing the likelihood of the particular model given the observed data, Pi ∼

p( fi|D). In cases where the hands are not detected in a certain view i, then we consider model fi

to have low likelihood; therefore, we set Pi to zero in such situations. If n models have Pi as zero,

then the Pi of remaining models is distributed uniformly as

Pi =
1

N−n
(A.5)
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where N is total number of views.

y = argmax
i
(

N

∑
i=1

Pi pi) (A.6)

A.3.6 Multi-view Late Fusion

For the late fusion scheme, we use a neural network architecture composed of four

parallel sets of convolutional layers (ResNet-50 backbones), which act on each of the four image

views. Following the convolutional layers, each parallel track is fed to its own fully-connected

layer of 512 nodes (followed by a ReLU activation). These layers are joined together by a

fully-connected layer with 2048 nodes (followed by a softmax activation); this is the point of

fusion, where the features extracted from the four views are combined and the relationships

between the multiple views are learned.

We call this late fusion as it is done at the penultimate layer, late in the pipeline. This was

done to make sure the fusion could leverage high level features present deeper in the pipeline.

We use two fused models as before; one which outputs probabilities that the hand is holding one

of the 3 objects and another which outputs the location of the hand. The maximal probability

class is chosen as the classification output.

A.4 Experimental Evaluation

A.4.1 Comparison of Single-View and Ensemble Techniques

Using four cameras, we collect a dataset of 19 subjects engaged in various hand place-

ments and object-related activities.

Altogether, we collect approximately 81,000 frames corresponding to hand zone activity,

and 128,000 frames corresponding to held object activity. We divide these into training, val-

idation, and test sets using approximately 80%, 10%, and 10% of the data respectively (with

marginal differences to account for dropped frames). The distribution of the data between views

219



Figure A.8. Distribution of collected samples for locations (Left and Right hand) and held
objects (Left and Right hand) from 4 views Dashboard Driver (DD), Dashboard Center (DC),
Steering Wheel (SW) and Rear View (RV)

is shown in Figure A.8. We note that the challenges of selecting camera views for this task are

readily apparent in the proportions of the data; one camera view (rearview) has significantly

less frames where the pose is reliably estimated, while the steering wheel view has many. How-

ever, the availability of frames does not necessarily correspond to the ability of that view to be

informative to the task at hand nor generalizability to other tasks in the autonomous driving

domain.

Using this data, we trained the above-described neural networks for hand location and

held object classification into the defined zones (3 location zones for the left hand, 5 location

zones for the right hand, and 4 held objects [including null] for each hand).
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Table A.2. Classification accuracies (averaged across all classes) of baseline single-camera views.
The rows represent, for each task, the performance of the best-performing and worst-performing
of the N camera view models, as well as the average performance across views.

Method LH Location RH Location LH Held Object RH Held Object
Worst-of-N 0.442 0.212 0.322 0.289

Average-of-N 0.593 0.458 0.513 0.581
Best-of-N 0.952 0.785 0.952 0.836

Single-View Models

We evaluate the four single view models on images from the test set, including blank

images when no image is available. From this, we compute an average model accuracy by taking

the average of each per-class accuracy for each of the four tasks (left hand location, right hand

location, left hand held object, right hand held object). For each task, we report the performance

of the best-performing model, the worst-performing model, and the average across the four

models. This highlights foremost the importance of camera view selection for this particular task,

but also provides a point of comparison to see how the ensemble learning and fusion methods

may enhance the overall performance of the models to their task. Results are provided in Table

A.2.

Ensemble Methods: Naive Voting, Weighted Majority Voting, Bayesian Model
Combination, and Multi-View Late Fusion

We evaluate the four methods described in the Methods section, as well as an additional

method which employs both Weighted Majority Voting and Bayesian Model Combination

simultaneously. We evaluate the performance of these models on two different sets: first, only on

collections which have all N images available, and second, on collections with any number of

images (1 to N) available. Results are provided in Tables A.4 and A.5.

Importantly, only a very small fraction (less than 3%) of each of our task test set collec-

tions are complete, as shown in Table A.3. In fact, some task classes are never simultaneously
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Table A.3. Test set size for different tasks, and percentage of test set collections which are
complete.

Task Test Set Size % Complete
LH Location 9,193 2.43%
RH Location 9,205 1.67%

LH Held Object 15,486 2.59%
RH Held Object 14,624 2.22%

Table A.4. Classification accuracies (averaged across all classes) of different ensemble methods
on four hand classification tasks, evaluated only when all N views are available. In this “complete-
view-only" test set, 2 classes from left hand location, 4 from right hand location, and 1 each
from left and right hand held object are completely unrepresented. Performance on the held
object tasks may be poor due to the uncertainty in less-informative views bringing down the
overall confidence of the system towards the correct class (or artificially raising confidence in
the incorrect class). Naive voting may outperform weighted majority voting when challenging
examples found in the validation set may be unrepresented in this test set, thereby discounting
models which would otherwise be “correct". This table also serves to illustrate how often frames
are missing in these tasks, demonstrating the importance of a method which is robust to missing
data.

Method LH Location RH Location LH Object RH Object
Naive Voting 1.000 0.981 0.509 0.426

Weighted Majority Voting 0.991 0.987 0.403 0.410
Late Fusion 1.000 1.000 0.978 0.995

observed from all views, so results in Table A.4 indicate performance on a limited number

of classes from the actual task at hand, and at that, only for complete collections! While the

models may be great at making inference when they have a clear view of the object of interest,

this suggests a significant performance gap for a safety system expected to make continuous

inference across all classes, not just inference when data is complete. By contrast, Table A.5

represents performance across every sample of the test set. We include both tables to illustrate

the point that while the voting-based methods begin to fail, the late fusion method performs just

as well even when data is missing from a collection.
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Table A.5. Classification accuracies (averaged across all classes) of different ensemble methods
on four hand classification tasks, with 1 to N views available in each collection.

Method LH Location RH Location LH Object RH Object
Naive Voting 0.470 0.205 0.277 0.334

Weighted Majority Voting 0.443 0.201 0.269 0.316
Bayesian Model Combination 0.397 0.338 0.366 0.360

WMV+BMC 0.398 0.338 0.358 0.363
Late Fusion 0.991 0.988 0.978 0.986

Our original question was: can these methods overcome situations where data is missing

from a collection? Table A.5 provides our answer. When data is missing, the voting-based

methods struggle significantly due to the falsely-placed confidence given to the model output.

The largest challenge with these approaches is recognizing which view is dominantly correct in

a particular situation and leveraging that view appropriately; otherwise, too much weight may

be given to a model which has false confidence, and a model’s vote may be a reflection of the

intrinsic difficulty of that particular view. Able to better leverage information between views,

the best performance comes from the multi-view late fusion approach. The late fusion model

both (1) maintains near-perfect performance on the four tasks, even when 1 to N−1 frames are

missing from the collection, and (2) exceeds performance of all single-view cameras for each

task. These two results suggest that a late-fusion model is successfully learning complementary

information that is unavailable in a single-view; that is, the model is effective in combining

different sources of information to make a better-informed prediction on the task. Additionally, it

is able to do so despite missing data, suggesting that the model has learned to leverage remaining

sources of information when frames are dropped.

In prior work, Greer et al. [404] show that multi-view late fusion models give superior

results over single-view models because the network can learn from more perspectives. Late

fusion is particularly effective as all the camera views have high-level richer features deeper in

the pipeline. The multi-view late fusion model was successful in classifying zones and objects

223



when the training and test subjects were same. But in real-world scenarios, models need to

generalize to unseen subjects. We elaborate on our approach for evaluating performance on

cross-subject classifications in the next section, and provide recommendations for such systems

in the following discussion.

A.4.2 Multiple Subject Validation: Generalizing to Unseen Drivers

In the first set of experiments, we show that multi-view late fusion models give superior

results over single-view models because the network can learn from more perspectives. Late

fusion is particularly effective as all the camera views have high-level richer features deeper in

the pipeline. The multi-view late fusion model was successful in classifying zones and objects

when the training and test subjects were same. But in real-world scenarios, models need to

generalize to unseen subjects. Here, we evaluate performance on cross-subject classifications,

and provide recommendations for such systems in the following discussion.

Greer et al. [404] evaluate the late-fusion model performance on a substantial set of test

data derived from the same capture system and subjects as the training and validation data, but in

intelligent vehicle applications, it may be impractical to collect training data on each individual

driver. An ideal model would generalize to all drivers that may use the vehicle.

A typical risk in end-to-end learning on overparameterized systems involving human

subjects is that such a deep neural network is not typically “explainable" [405] [383]. When

the model learns from humans, it can overfit to particular features associated with an individual

subject, rather than learning actual patterns of interest (e.g. the model becomes really good at

learning how to recognize Subject A’s hand holding Subject A’s cell phone, rather than a more

general prototype of any hand holding any cell phone).

Machine learning models are commonly evaluated using k-fold cross validation, but

this evaluation has shortcomings when data from the same subjects are contained in both train

and validation sets, since (as described above) the model can overfit to the subject’s unique

signature instead of the latent activity. Accordingly, techniques of subject cross validation are
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preferred [406]. In typical k-fold cross validation, data is divided into k sets, and each of these k

sets have a turn being left out of the training process (used only for evaluation). The summary

statistics to describe the goodness of the model is then the average model performance on the k

validation sets.

In our case, we utilize a dataset of 19 subjects. Here, we discuss evaluation choices made

on splitting the data. We first constrain evaluation such that any subject being used in validation

is unseen during training. We note that early stopping is controlled by a subset of the training

data to prevent significant overfitting; while it may be beneficial to let yet another unseen subject

(or subjects) determine the training stop-point, this introduces the bias of model performance

to that particular driver (or drivers), which will not necessarily translate to performance on the

unseen evaluation driver.

We use varying values of k on each task to handle computational constraints, rotating

a left-out subject from each of the k model trainings for each task. For each model, we take

the average accuracy among all of the classification categories (the so-called macro-averaged

precision), and then average this value among the k models. We evaluate using k = 8 for the left

and right hand location tasks, k = 17 for the left hand held object task, and k = 13 for the right

hand held object task.

We report this averaged performance for each of the four single camera views as well as

the late-fusion multiview model, in Table A.2.

We first note that, with the exception of the rearview-mounted camera on two left hand

tasks, single-view models do not seem to generalize well across subjects; classification on the

unseen subject tends to collapse to a few classes, likely due to overfit to a nearest-neighbor

image in the training data. Practically speaking, this would suggest that models for driver state

estimation which rely on a single camera would indeed benefit from fine-tuning on data from the

driver of interest; we know that the model can train to near-perfect accuracy on data it has seen,

it’s the generalizability that causes the issue.

Now, to our primary question: can late-fusion multiview models overcome the general-
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izability challenge? Our results suggest that the late-fusion multiview model does outperform

the best of the single-view models for unseen drivers on right-hand related tasks, though the

rearview-mirror placed camera is excellent at left-hand related tasks. The late-fusion multiview

model exceeds the average between the four single cameras on every task.

• For the left hand location task, the late-fusion multiview model is 9.6% less accurate

than the best-performing rearview model, but 33% more accurate than the average across

camera views.

• For the right hand location task, the late-fusion multiview model is 10.8% more accurate

than the best-performing rearview model, and 45% more accurate than the average across

camera views.

• For the left hand held object task, the late-fusion multiview model is 6% less accurate

than the best-performing rearview model, but 30% more accurate than the average across

camera views.

• For the right hand held object task, the late-fusion multiview model is 4.3% more accurate

than the best-performing dashboard-center-view model, and 15% more accurate than the

average across camera views.

A.5 Discussion and Concluding Remarks

System designers often have interest in selecting optimal number (and placement) of

sensors for a given task, and in this research, we explored methods of leveraging the irregular

redundancy of multiple sensors observing the same scene. While one camera placed expertly

may be sufficient at a single task (say, observing the hands), there are many other tasks relevant

to safe driving, such as estimating eyegaze, passenger seating occupation and positioning, and

distraction identification.
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Table A.6. Classification accuracies (averaged across all classes) of single-camera and late-
fusion multiview models on four hand activity tasks. Evaluations are averaged over 19 models in
which the evaluated subject is unseen during training, with mean and variance provided. View 1
is taken from the dashboard center, view 2 from the dashboard facing the driver, view 3 from the
steering wheel, and view 4 from the rearview mirror. LFM refers to Late Fusion Multiview.

View LH Location RH Location LH Object RH Object Average
1 0.333, 0.001 0.229, 0.007 0.320, 0.004 0.442, 0.006 0.331
2 0.217, 0.023 0.090, 0.008 0.276, 0.001 0.292, 0.004 0.219
3 0.317, 0.017 0.296, 0.027 0.259, 0.006 0.253, 0.08 0.281
4 0.861, 0.024 0.664, 0.059 0.729, 0.019 0.350, 0.014 0.651

LFM 0.765, 0.031 0.772, 0.015 0.699, 0.023 0.485, 0.049 0.680

What this framework contributes is a method of making stronger inference when in-

formation is missing from one source, and the system can recognize and leverage the fact the

information is missing to then make better use of information in other sources. In fact, missing

information often informs the other models; if a hand is not visible to one camera, then it is more

likely to be within the view of another. Further considerations for enhanced accuracy include

exploring weighting schemes for weighted majority voting, hyperparameter sweeps for crop

sizes and model architecture, and model likelihood estimation for Bayesian model averaging.

Late-fusion approaches which use our method of replacement of missing data with a

zero-placeholder may effectively learn a prior distribution given a missed reading from a sensor

or camera. This is particularly relevant in cases where multiple perspectives are necessary for

complete observation, or when multimodal systems are used which sample at different rates. We

see plenty of examples of this in existing technology; many phones and laptop computers use

both RGB and IR cameras for securely identifying the user, and thermal cameras are often used

as an additional modality for medical applications, but cameras operating on different spectra (or

media) typically operate at different rates.

No camera perfectly captures an event, but by using ensemble learning and fusion, safety

systems (where every inch of accuracy counts) may exploit the benefits in redundancy and
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completeness of multi-view or multi-modal observations.

A.5.1 Efficient systems of multiple models

In this research, we evaluate performance of four models related to the driver’s hands:

two for held object (one for each hand), and two for hand location (one for each hand). While

each model may function independently, cascading the models gives a better idea of a driver’s

current activity. For example, an image of the hand does not necessarily need to pass through

both a held-object and hand-location model. In applications, the models can be cascaded such

that first a held object can be determined, and if it is the case that no object is held, the image is

passed forward to the location classification module. In fact, some applications may successfully

“short-circuit" for efficiency depending on their use; a left-hand holding a cell phone may be

sufficient to send an advisory without necessary inference on its location nor the right hand’s

activity.

Of further note, the system bottleneck most strongly occurs at the level of 2D pose

estimation. To review, the model first detects the driver, then estimates the driver’s pose, and

from this pose classifies smaller regions pertaining to the hands (or, for other applications,

eyes and other keypoints of interest). Fortunately, a system will only need to pass through

this bottleneck once per inference time, since the remaining downstream models all utilize the

same predicted pose information (and are much less computationally expensive). Because this

system is modular, continued research from the computer vision community on efficient 2D

pose estimation will translate directly and smoothly to performance gains in such human driver

analysis systems.

Further research may benefit from an analysis of the Vision Transformer architecture for

this problem, since the Transformer is particularly adept at selecting which features should be

attended to. However, the Transformer is notably computationally expensive, so any performance

gains must be balanced with increased inference delays to meet application requirements. The

application of attention maps for (near) human-explainable reasoning from multimodal streams
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is considered an open challenge within multimodal learning [4], and these sample tasks and

irregularly redundant data sources may be a strong candidate for future experiments.

A.5.2 Onboard vs. Cloud Processing

There is strong interest in moving compute from onboard processing toward cloud-based

computing of driver monitoring data1, but of key concern for consumer support and adoption

of such data schemes is the preservation of driver privacy. To this end, we highlight that our

presented framework allows for extraction of particular features (rather than complete images),

which then allows for the anonymization via blurring or pixel value adjustment of the driver’s

face or similar privacy-sensitive content before sharing toward network computers, since these

components are unused in model training and inference.

A.5.3 System design recommendations from experimental results

Our results lead us to the following system design recommendations for applications

involving camera-based driver state estimation:

• When possible, collect data and finetune models using the driver of interest. Generalizabil-

ity is a difficult task since the real-world may violate the i.i.d. assumptions that allow for

excellent performance from neural networks. Unseen data may not come from the same

distribution as prior training; the simpler case is to fit the model to data that most closely

matches the expect distribution (i.e. images of the intended driver).

• If design constraints allow, opt for multiple cameras observing the driver to leverage

complementary information between views, alternative views of occluded zones, and

redundant information to provide improved accuracy and generalizability.

• If restricted to a single camera view, an overhead view from a camera placed near the

rearview mirror may be optimal. If unavailable, a view facing the driver from behind the

1https://2023.ieee-iv.org/automotive-game-day
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steering wheel may provide the best performance on estimating whether the driver’s hands

are on the wheel or elsewhere. However, this view is less well-suited to infer what the

driver is doing with their hands if off-wheel; for this, a camera view facing the cabin from

the rearview area or dashboard is better suited. The selected view should be informed by

the intended application use case.

• While outside the scope of this research, we encourage applications implementing this

framework to explore different hyperparameter values for crop size around the hands (or

other features of interest). Differences in camera distance affect how much of the hand

(and surrounding context) is visible within a particular crop size, and it may be worthwhile

to vary these sizes for specific use cases depending on objects and locations of interest.

A.5.4 Post-processing considerations for downstream applications

Systems that seek to reliably estimate the state of the driver’s hands (or similar driver

attributes) will have to apply robust thresholds and denoising techniques to distinguish between

genuine distractions and momentary lapses in attention.

Filtering

We suggest low-pass filtering to reduce the effects of noisy patterns from inference (that is,

small “blips” between classes for fractions of a second). This allows for a more steady prediction

result by averaging over moving windows of time, where the window size is a hyperparameter

that can be tuned based on observation of the duration of a typical inference mistake made by

the network.

Thresholding

We also suggest a thresholding step to distinguish between monetary lapses of attention

(such as a driver quickly reaching for an object), versus an elongated period of distraction, which

warrants an alert. The permissible interval of sustained distraction is another hyperparameter

that should be tuned according to the goals of the automaker or driver policy.
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Alerting

If it is decided that the driver may be distracted, the system can then issue a stan-

dard request for driver attentiveness, or employ other downstream safety mechanisms. It is

recommended that the alert system employs a method of alerting aligned to the standards of

human-machine interface research; these techniques are outside the scope of this research, but

we emphasize that this is a modular endpiece, and the presented framework can be applied for

any downstream alerting mechanism.

A.5.5 Additional applications

The hand activity framework requires multi-view capture, driver detection and pose

estimation in its upstream steps. These tasks can be used towards several additional safety

critical scenarios. As the driver detection step detects all individuals in the car, it can be used to

estimate seat occupancy or passenger positioning. The cameras also capture driver gaze which

can provide another signal towards driver attentiveness. The pose estimation module can provide

data for studying safe airbag deployment in crashes. We believe demonstrating the effectiveness

of multi-camera hand distraction can lead to further research in these applications to create

holistic, robust, end-to-end systems for driver safety.

There are many further layers of analysis to problems of irregular redundancy; in this

research, we move beyond complete sets to emphasize approaches which are applicable toward

incomplete sets. Future work should incorporate temporal dynamics into this analysis, towards

making systems which show even stronger generality to new subjects. However, this temporal

dependency differs from that described in [4], where the goal is “to accumulate multimodal

information across time so that long-range cross-modal interactions can be captured through

storage and retrieval from memory" – rather, we seek to retain short-range information from

the collective representation, such that iterative predictions are consistent with prior predicted
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states. There is further promise in the ability of ensemble techniques to generalize to an entirely

different (and relevant) class of what is “unseen": in addition to generalizing to new subjects,

domain-adaptive ensemble methods have also been shown to be effective learners to entirely new

views [407], making them highly appropriate towards driver monitoring domain tasks, where the

same views may not be guaranteed between vehicle designs.

We conclude that the late fusion technique is a strong baseline toward problems where

multiple data streams, possibly under noise and dropped instances, are sampled simultaneously

for continuous task inference.
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