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ABSTRACT

Large areas in the tropics and at mid-latitudes experience pronounced seasonality and inter-annual variability in rainfall and
hence water availability. Despite the importance of these seasonally dry ecosystems (SDEs) for the global carbon cycling and in
providing ecosystem services, a unifying ecohydrological framework to interpret the effects of climatic variability on SDEs is
still lacking. A synthesis of existing data about plant functional adaptations in SDEs, covering some 400 species, shows that leaf
phenological variations, rather than physiological traits, provide the dominant control on plant-water-carbon interactions.
Motivated by this result, the combined implications of leaf phenology and climatic variability on plant water use strategies are
here explored with a minimalist model of the coupled soil water and plant carbon balances. The analyses are extended to five
locations with different hydroclimatic forcing, spanning seasonally dry tropical climates (without temperature seasonality) and
Mediterranean climates (exhibiting out of phase seasonal patterns of rainfall and temperature). The most beneficial leaf
phenology in terms of carbon uptake depends on the climatic regime: evergreen species are favoured by short dry seasons or
access to persistent water stores, whereas high inter-annual variability of rainy season duration favours the coexistence of
multiple drought-deciduous phenological strategies. We conclude that drought-deciduousness may provide a competitive
advantage in face of predicted declines in rainfall totals, while reduced seasonality and access to deep water stores may favour
evergreen species. This article has been contributed to by US Government employees and their work is in the public domain in
the USA.

KEYWORDS seasonally dry ecosystem; Mediterranean climate; savanna; tropical dry forest; water stress; rainfall variability; soil
moisture; carbon balance
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INTRODUCTION

Vast areas in the tropics and mid-latitudes experience
seasonally dry climates (Figure 1 top). These climates are
characterized by a marked seasonality in rainfall occur-
rence, with one or two wet seasons, during which most of
the annual precipitation occurs, followed by extended dry
orrespondence to: Giulia Vico, Department of Crop Production Ecology,
edish University of Agricultural Sciences, PO Box 7043, Uppsala,
-750 07, Sweden. E-mail: giulia.vico@slu.se

is article has been contributed to by US Government employees and thei
periods. Rainfall in these seasonally dry ecosystems (SDEs) is
typified by large inter-annual variation in precipitation timing
and amount (Rao et al., 1993; Joffre et al., 1999; Fatichi et al.,
2012; Feng et al., 2013), which is likely to be exacerbated by
climate change (Solomon et al., 2007; Garcia-Ruiz et al.,
2011; Dominguez et al., 2012). Despite these commonalities,
seasonally dry climates – including Mediterranean climates,
tropical monsoon climates, and tropical savannas with dry
summers or winters – have rarely been considered as a group.
This may be because the meteorological drivers of these
r work is in the public domain in the USA.
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Figure 1. Top: Global distribution of seasonally dry climates: Mediterranean ecosystems correspond to warm temperate climates with dry summer (Cs in
Köppen-Geiger classification; see Kottek et al., 2006); tropical seasonally dry ecosystems include Equatorial monsoon and Equatorial savannas with dry
summer or winter (Am, Aw, and As in the Köppen-Geiger classification). Bottom: seasonal patterns of median monthly rainfall (bars; whiskers indicate 25
and 75 percentiles) and mean monthly air temperature (lines) in the five selected sites (identified with symbols on the map; main features summarized in
Table I). Data sources: monthly rainfall data from Osservatorio Astronomico di Palermo Giuseppe S. Vaiana, Australian Government Bureau of

Meteorology, and SUDENE; monthly average temperature data after Legates and Willmott (1989).
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climates differ or because of differences in the timing of the
wet season – variable in tropical regions, but always occuring
during the winter in Mediterranean climates (Figure 1,
bottom). The implications of large swings between periods of
high water availability and extreme water deficit, however,
suggest that seasonally dry climates should be treated as a
group for ecohydrological studies.
In tropical SDEs, the natural vegetation ranges from

closed-canopy forests (e.g. caatinga, cerrado and chaco in
South and Central America, and bushland thickets in
Africa), to open forests (e.g. campo cerrado and campo
sujo in South America; forêt claire and miombo in Africa),
to savannas (e.g. campo limpo in South America; Menaut
et al. (1995); Sampaio (1995); Blasco et al. (2000); Lock
(2006)). Mediterranean vegetation is often characterized by
shrubland (e.g. maquis in Europe, chaparral and oak
savannas in California, matorral in Chile), while open
eucalyptus woodland is common in Australia (Cody and
Mooney, 1978). These varied ecosystem types support
crucial biodiversity hotspots (Miles et al., 2006;
Klausmeyer and Shaw, 2009) and help sustain local
populations by providing food, fibre, and other essential
ecosystem services. Nevertheless, the highly variable
rainfall in SDEs impacts the reliability of these services
(Ellis and Galvin, 1994; Maass et al., 2005). At the same
time, SDEs are subject to multiple anthropogenic threats,
including soil erosion, deforestation, and increased exploi-
tation of water resources for agricultural and urban use
(Miles et al., 2006; Underwood et al., 2009).
This article has been contributed to by US Government employees and their
Most SDEs experience periods of high water availability
during the wet season, eliciting bursts of ecosystem
productivity. The subsequent transition to a dry period of
unpredictable length, almost always coupled with high
temperatures and high vapour pressure deficits (VPD),
creates the potential for significant stress and physiological
damage to vegetation. These stresses include reduced
photosynthesis due to low leaf water potential, stomatal
closure, and metabolic limitations (Xu and Baldocchi, 2003;
Galmes et al., 2007; Vico and Porporato, 2008; Lawlor and
Tezara, 2009; Peguero-Pina et al., 2009); impairment of
water transport in xylem due to cavitation (e.g. Tyree and
Ewers, 1991); increased respiratory demand due to higher
tissue temperatures (Farquhar and Sharkey, 1982); increased
susceptibility to herbivores and diseases (McDowell et al.,
2011), and risk of tissue damage andmortality (Adams et al.,
2009; Allen et al., 2010).
The pronounced seasonal and inter-annual climatic

variation in SDEs has produced a bewildering diversity of
physiological and phenological strategies in vegetation to
cope with the dramatic changes in water availability (Murphy
and Lugo, 1986; Bowman and Prior, 2005; Lock, 2006;
Lehmann et al., 2009). Plants either try to (i) avoid these
stresses by limiting plant physiological activity during dry
periods (for example, drought-deciduous species shed their
leaves); or (ii) to endure droughts without experiencing stress
by developing physiological adaptations that maximize water
storage and photosynthetic activity, minimize water loss, and
maintain sufficient carbon (C) stores to allow plant survival
work is in the public domain in the USA. Ecohydrol. (2014)
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ECOHYDROLOGY OF SEASONALLY DRY ECOSYSTEMS
during the dry season (e.g. evergreen species; see Eamus and
Prior, 2001). Among drought-deciduous species, two strat-
egies determine the timing at which new leaves are grown
(leaf flushing). In ‘opportunistic species’, leaf flushing occurs
as water becomes available, while in ‘scheduled species’, leaf
flushing occurs in response to photoperiod or temperature.
Within each of these strategies, plant behaviour can be further
categorized as conservative or aggressive based on the time of
flushing with respect to rainfall. Conservative plants avoid
water stress by flushing leaves late in the wet season (or by
dropping them early), which may however result in lost
opportunities for C fixation and growth. By flushing leaves
before the wet season or after episodic rain events, aggressive
plantsmay keep leaves longer, but may risk undergoingwater
stress if drought follows the leaf flush. In comparison to
deciduous species, drought endurers such as evergreen
species may transpire for longer periods of time but must
rely onwater andC stored from thewet season; in some cases,
these supplies may be insufficient to sustain plant water use
and respiration over the dry season (Gartner et al., 1990).
Therefore, given the unpredictability of rainfall, each strategy
poses its own set of risks to plants (Hoffman and Walker,
1980; Machado et al., 1997; Jolly and Running, 2004; Singh
and Kushwaha, 2005a; Hasselquist et al., 2010; Valdez-
Hernandez et al., 2010;Markesteijn et al., 2011; Pringle et al.,
2011). The presence of inherent risks and ecophysiological
tradeoffs in each of these strategies makes the outcome of
species competition and selection difficult to predict. This
lack of clear advantages of one strategy over the others likely
favours coexistence and nuanced variations in the predom-
inant ecohydrological behaviour across climates.

The aim of this study is to provide insight into the
relationship between rainfall regimes (including its inter-
annual variability) and the most effective plant strategies,
with a focus on perennial woody vegetation. We expect the
leaf phenology and the functional traits associated with
water availability to be the primary driver of plant adaptive
strategies in SDEs. While a complete understanding of the
species and strategy diversity of SDEs requires consider-
ation of evolutionary constraints, ecological dynamics,
disturbance, and succession regimes, here we focus on
annual net C gain as a proxy of plant fitness. On this basis, a
theoretical framework is proposed for analysis of the C and
water balances at the plant level to assess the benefits of
adaptation strategies in a variety of SDEs.

To provide realistic climatic scenarios for the theoretical
analyses, we selected long climatic time series from five
locations to represent the diversity of SDEs, in terms of both
climate and the most common plant strategy (Table I,
Figure 1). In Section on Precipitation Forcing, the rainfall
patterns and their variability in three of these locations are
analysed. Section on Vegetation Adaptation Strategies
reviews physiological and phenological traits of woody
vegetation in SDEs. The findings of this synthesis are used
This article has been contributed to by US Government employees and their work is in the public domain in the USA. Ecohydrol. (2014)
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to guide the parameterization of a minimalist water and C
economy model (Section on Modelling Framework). The
results of the analyses are discussed in Section on Quantitative
Assessment of Phenological Strategies with reference to
observations. Additional disturbances as drivers of phenolog-
ical strategy are briefly discussed in Sections on Non-
Ecohydrological Drivers of Leaf Phenology.
PRECIPITATION FORCING

Seasonally dry climates (Figure 1) share a strong seasonality
and a high degree of inter-annual variability in rainfall, even
though they are outcomes of very different physical drivers
of the global climate – for instance, the movement of the
inter-tropical convergence zone or the dynamics of the West
African, Asian-Australian, and North American monsoons.
To illustrate commonalities and differences across season-
ally dry climates, we analysed the rainfall regime of three
representative locations: Santa Terezinha (tropical dry
climate), Katherine (moist, tropical monsoon climate) and
Palermo (Mediterranean climate; Table I).
Figure 1 (bottom) illustrates the seasonality and inter-

annual variability in monthly rainfall and temperature, while
examples of intra-annual variability in rainfall are reported
in Figure 2A–C. Synoptic and planetary patterns modulate
rainfall variability across a wider range of temporal scales,
spanning from few months to decades. The scale-by-scale
contributions can be resolved through the use of signal
filtering techniques such as the continuous wavelet trans-
form. This spectral technique decomposes the total variabil-
ity of a signal (e.g. daily rainfall) in terms of both time and
characteristic scale of the fluctuations (Torrence and Compo,
1998; Molini et al., 2010). Figure 2D–F shows the average
wavelet spectra for the three locations, thus offering an
integrated picture of the time scales of rainfall variability.
The seasonal variation in rainfall (i.e. the annual cycle) is the
dominant peak in all three spectra and is therefore the most
important source of variation. The difference in the power of
the annual peaks across locations corresponds to the
difference in mean rainfall in the dry season and the wet
season and represents the strength of rainfall seasonality:
stronger in the tropical moist climate (Katherine; Figure 2D)
and weaker in the Mediterranean climate (Palermo; Fig-
ure 2F). Katherine and Santa Terezinha (Figure 2D and E)
also exhibit a smaller peak in spectral energy at sub-annual
time scales – the result of secondary, ‘minor’, wet and dry
seasons, which are common in tropical climates but become
less important away from the equator (Murphy and Lugo,
1986). Although none of these peaks are statistically
significant (see, e.g. Torrence and Compo, 1998 for details
on the significance test adopted here), lower magnitude peaks
in the power spectra are suggestive of a degree of coupling
with synoptic circulation and slowly oscillating climatic
patterns, such as El Niño-Southern Oscillation, the Indian
This article has been contributed to by US Government employees and their
Ocean Dipole, and the Pacific Decadal Oscillation (Kane,
1997; Mason and Goddard, 2001; Kayano and Andreoli,
2006; Rodrigues et al., 2011).
Wavelet analysis also allows the exploration of non-

stationarity by means of scale-time decomposition diagrams
(Figure 2G–I). In these plots, the spectral power (ranging
from low in green to high in dark red in Figure 2G–I)
measures how important the variability on a particular time
scale is (vertical axis), at a given moment in time (horizontal
axis). For example, the annual signal for the three sites is
easily identified as the dark horizontal band, with regions of
significant power contoured in white. At Katherine (Fig-
ure 2G), this signal is continuous in time, appearing with
similar intensity every year. At Santa Terezinha (Figure 2H),
this signal becomes intermittent: the very weak annual
signals correspond to major droughts and strong El Niño-
Southern Oscillation events. At Palermo, the annual power
decreases from the 1960s onward, as apparent from the
almost total absence of white contoured areas after 1960 in
Figure 2I): this pattern corresponds to a known drying trend
over the Mediterranean region (Knippertz et al., 2003;
Brunetti et al., 2004; Kostopoulou and Jones, 2005; Rodrigo
and Trigo, 2007; Alpert et al., 2008). Similar drying trends
have been noticed inWestern Africa, but not in other tropical
SDEs (Feng et al., 2013).
In summary, differences in rainfall patterns across

SDEs include the strength of the seasonality (with
strongest seasonality in the wet tropics); extent of inter-
annual variability in annual rainfall amounts (greatest in
the dry tropics); and differences in the degree of inter-
annual variability of the timing of the wet season
(greatest in the dry tropics). Despite these differences, all
the selected sites share a strong seasonality in rainfall
occurrence, with well-defined wet and dry seasons, and
often a high degree of inter-annual variability in rainfall
timing and amounts. These shared characteristics justify
their common identification as seasonally dry climates
for the purposes of ecohydrological analyses. In the
following, the effects of these rainfall regimes on plant
water availability and hence plant activity will be
characterized.
VEGETATION ADAPTATION STRATEGIES

This section reviews and synthetizes the range of phenolog-
ical strategies and physiological traits observed in a variety of
species and SDEs.
Leaf phenological strategies

Leaf habit varies significantly across woody species in SDEs.
Themechanisms that induce leafflushing or abscissionmay be
complex and the relative roles of endogenous and exogenous
work is in the public domain in the USA. Ecohydrol. (2014)



Figure 2. Multi-scale variability of rainfall at (A,D,G) Katherine (Northern Australia, moist tropical SDE), (B,E,H) Santa Terezinha (NE Brazil, dry
tropical SDE) and (C,F,I) Palermo (Southern Italy, Mediterranean SDE). In (A–C), examples of 3-year subsamples extracted from daily rainfall time
series. Panels (D–F) show the corresponding spectral densities averaged over the complete time series (dashed lines indicate the 95% significance level
for the average power when tested against a Monte Carlo simulated ‘red noise’ process (Fraedrich and Larnder, 1993; Torrence and Compo, 1998).
Panels (G–I) show the scale-time decomposition of rainfall variability via wavelet analysis applied to monthly data (colours indicate the total normalized
power, ranging from green for low power to dark red for high power; black and white dashed lines show the cone of influence for the wavelet total power –

i.e. the 95% confidence limits for the local spectrum – while white thin contours highlight regions of significant power).

ECOHYDROLOGY OF SEASONALLY DRY ECOSYSTEMS

This article has been contributed to by US Government employees and their work is in the public domain in the USA. Ecohydrol. (2014)
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G. VICO et al.
factors in driving leaf phenology in individual species are not
always well known (Borchert and Rivera, 2001; Brodribb
et al., 2002; Choat et al., 2006; Ishida et al., 2010).
Nevertheless, following the approach of Borchert (1994);
Eamus and Prior (2001); Singh and Kushwaha (2005a), and
Elliott et al. (2006), we distinguish three main leaf
phenological strategies (Table II): (i) opportunistic drought-
deciduous species (Section on Opportunistic Drought-
Deciduous Species); (ii) scheduled drought-deciduous species
(Section on Scheduled Drought-Deciduous Species); and (iii)
evergreen species (Section on Evergreen Species). It should be
noted, however, that not all species conform to this
classification.

Opportunistic drought-deciduous species. The leaf phenol-
ogy of opportunistic drought-deciduous species is mainly
driven by water availability. Leaf flush occurs following the
first significant rainfall event in the wet season, with events
of 20–30mm or relative volumetric soil water content
exceeding 0.13–0.18m3 water m�3 soil pore space typically
needed to induce flushing (Yoshifuji et al., 2011). Flushing
is generally synchronous among conspecific trees, although
spatial variability in rainfall, infiltration, and soil moisture
stores may lead to spatial variations in flushing dates (e.g.
Penuelas et al., 2004; Singh and Kushwaha, 2005b). Leaf
flush can also be triggered by environmental cues that
precede the wet season, such as decreased atmospheric water
demand in association with small rainfall events during the
dry season (Borchert, 1994; Williams et al., 1997).
Opportunistic flushing is typical in tropical species, but it
has also been observed in warm Mediterranean ecosystems,
where a second flush of leaf growth may be triggered by
autumn rainfall (Penuelas et al., 2004).
Among species that display opportunistic flushing, two

different patterns of leaf abscission occur. (i) Softwood
species tend to shed their leaves early in the dry season.
Leaf abscission begins shortly after the rains stop, in
response to the first signs of soil water shortage (Reich and
Borchert, 1984; Borchert, 1994; Machado et al., 1997;
Singh and Kushwaha, 2005a; Fallas-Cedeno et al., 2010;
Lima and Rodal, 2010). The plants enter a dormant state
but maintain a relatively high stem water potential
(Borchert and Rivera, 2001). (ii) Conversely, hardwood
species generally shed their leaves later in the dry season,
often 2–3months after the last rain event. Leaf abscission
in these trees appears to occur in response to declining leaf
or stem water potential. Irrigation or groundwater sources
may delay the onset or slow the rate of leaf abscission
(Myerscough and Murray, 1992; Valdez-Hernandez et al.,
2010). However, plants can lose leaves even when soil
moisture remains high, suggesting that the leaf drop may
also respond to increased VPD at the end of the wet season
(Reich and Borchert, 1984; Wright and Cornejo, 1990;
Myerscough and Murray, 1992; Williams et al., 1997).
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Brevi-deciduous and leaf-exchanging species can also be
considered opportunistic, because the timing of leaf
flushing seems to depend on local water availability. These
species tend to occupy wet niches, with year-round access
to rainfall-independent water stores. Leaf abscission occurs
early in the dry season, in response to lowered hydraulic
and photosynthetic efficiency and increased water stress in
older leaves and is often followed by an increase in stem
water potential, consistent with water uptake from deep soil
stores (Jackson et al., 1995). Although the exact timing
varies with local water availability, leaf flushing typically
occurs less than a month after abscission, so that brevi-
deciduous and leaf-exchanging species are to all effects
near-evergreen.

Scheduled drought-deciduous species. Scheduled drought-
deciduous species share similar leaf abscission cues with
opportunistic species, but their leaf flushing behaviour is
largely independent of rainfall or water status, as also
evidenced by lack of response to irrigation. Instead, these
species flush their leaves in response to predictable
environmental cues such as photoperiod, temperature,
insolation (Wright and Cornejo, 1990; Myerscough and
Murray, 1992) or the decrease in VPD associated with the
‘build up’ before the Northern Australian summer monsoon
(Duff et al., 1997; Do et al., 2005). Scheduled flushing occurs
in both tropical and Mediterranean climates (Penuelas et al.,
2002; Rivera et al., 2002). Ecosystems dominated by
scheduled flushing species exhibit a higher degree of
interspecific synchrony and a lower inter-annual variability
in flushing dates than those dominated by opportunistic
species.

Many scheduled species have access to additional, persistent
water stores (e.g. groundwater) or rely on the combination of
multiple flushing cues to reduce the risks associated with the
unpredictable timing of the wet season onset. For example, in
an Asian monsoon forest with deep soils, most large (and
presumably deep-rooted) trees exhibited photoperiod-driven
flushing (Elliott et al., 2006). Some Mediterranean species
schedule leaf flushing based on both winter rainfall totals
and spring temperature (Penuelas et al., 2004). Also, a
second, opportunistic flush following the onset of the rainy
season may occur – a strategy that may limit the negative
effects of herbivory (see Section on Non-Ecohydrological
Drivers of Leaf Phenology).

Evergreen species. Evergreen species shed and regrow their
leaves asynchronously throughout the year, so that no
substantial seasonality is apparent in their leaf area index
(LAI). Although evergreen species need to endure periods of
water shortage, the extent to which they display physiolog-
ical adaptations to minimize water loss is unclear (Borchert,
1994; Nepstad et al., 1994; Lima and Rodal, 2010;
Markesteijn et al., 2011), as discussed in the next section.
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Ecophysiological adaptations

The extent to which climatic variability impacts plant
transpiration and photosynthesis is mediated by plant
ecophysiological traits. A set of coordinated functional traits
(xylem and stomatal conductances and water potential
thresholds; photosynthetic capacity) and plant morphological
characteristics (root, sapwood, and LAI) control water
transport and transpiration (Tyree and Ewers, 1991; Manzoni
et al., 2013). In this section, on the basis of a synthesis of
published studies on ~400 species, we assess if these traits, and
therefore transpiration rate and its relation to soil moisture, co-
vary with the phenological strategies (see Figure 3 and the
Supplementary material for details).

Root systems. Laterally extensive and deep root systems
exploit soil water efficiently. Compared with drought-
deciduous species, evergreen species might require deeper
roots to sustain water uptake during the dry season (Sobrado,
1986; Canadell et al., 1996; Eamus and Prior, 2001). Indeed,
there are also some indications that rooting architecture
depends on leaf phenology: tap roots tend to be more
prevalent in evergreen species, whereas more distributed
rooting systems are typical of deciduous trees (Scholz et al.,
2008). However, rooting depth does not always follow leaf
phenology (Franco et al., 2005; Miranda et al., 2010) and
some evergreen species have been shown to utilize water
from shallower soils than deciduous species (Jackson et al.,
1999; Goldstein et al., 2008).

Plant hydraulic traits and regulation of transpiration. The
maximummeasured stomatal conductance, gs,max, is a proxy
of the transpiration rate per unit leaf area under favourable
VPD and water availability. Observed gs,max values tend to
be lower in evergreen species than in drought-deciduous
ones in both tropical and Mediterranean SDEs (Figure 3A).
The rate of transpiration in well-watered conditions follows
a similar pattern across leaf habits for a given VPD and LAI.
As soil moisture decreases, stomatal conductance and

hence transpiration per unit leaf area are reduced. The timing
of stomatal closure depends on the balance of water supply to
the leaves through the soil-plant system and water evapora-
tion from the leaves. As soil dries, the water supply decreases
because of reductions in both soil-root and plant xylem
conductances; therefore, stomata conductance needs to
decrease to avoid excessively negative leaf water potentials.
Two stomatal strategies bound the spectrum of observed
strategies: (i) an early stomatal closure during the dry period,
so that high leaf water potential values can be maintained and
the plant avoids water stress at the expense of lower C uptake;
and (ii) a late stomatal closure, which results in more negative
xylem and leaf water potentials that may lead to cavitation
and metabolic limitations to photosynthesis. Different
hydraulic traits correspond to these stomatal regulation
strategies (e.g. Manzoni et al., 2014).
r work is in the public domain in the USA. Ecohydrol. (2014)



Figure 3. Relationship between ecophysiological traits and leaf phenological strategy in woody species from SDEs: (A) maximum stomatal conductance
to water vapour (as measured at moderate vapour pressure deficits and moisture deficit); (B) light-saturated photosynthesis under well-watered
conditions; (C) ratio between maximum photosynthesis and stomatal conductance, a proxy of leaf-level water use efficiency; (D) specific leaf area; (E)
wood density; (F) sapwood-specific saturated hydraulic conductivity of the stem or branches; (G) water potential at 50% cavitation; and H) minimum leaf
water potential measured in dry conditions, for deciduous, brevi-deciduous and evergreen (‘Dec’, ‘Brev’, and ‘Ev’ for brevity), angiosperms (‘ang’), and
conifers (‘con’). Circles and bars indicate median values and first and third quartiles, respectively; the number of data points used is also reported for each
group; data relative to Mediterranean deciduous species include both winter and summer deciduous leaf habits; data have been collected from several

published sources (see Supplementary Materials for details).
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Early stomatal closure, drought avoidance, and nearly
constant leaf water potential (i.e. an isohydric behaviour)
are associated to higher water transport efficiency (low
wood density, ρ, and high saturated xylem conductivity, ks;
Figure 3E and F). These hydraulic features allow a smaller
water potential gradient between the soil and the leaves for
a given stomatal conductance and thus a less negative leaf
water potential (Figure 3H), despite the fact that ks is often
negatively correlated with resistance to cavitation (water
potential at 50% loss of conductivity, ψ50; Figure 3G).
Early stomatal closure is often observed in tropical SDEs
(Meinzer et al., 1999; Bucci et al., 2004; Bucci et al., 2005;
Goldstein et al., 2008). In contrast, most Mediterranean
species have low hydraulic efficiency and maintain
relatively high stomatal conductance during the dry season,
providing higher potential CO2 uptake at the expense of
lowered leaf water potentials (i.e. anisohydric behaviour;
Figure 3G and H) (Sobrado, 1993b; Eamus and Prior,
2001; Franks et al., 2007; Miranda et al., 2010; Quero
et al., 2011). Under such conditions, substantial cavitation
and metabolic limitations to photosynthesis may occur (Xu
and Baldocchi, 2003; Galmes et al., 2007). Mediterranean
species may be forced to adopt this strategy (together with
strong drought resistance) because their growing season, as
defined by adequate temperature and solar radiation, often
coincides with the dry season.
As apparent in Figure 3, these patterns across climates

appear stronger than the pattern across leaf habits within a
single climatic zone. Drought-deciduous species in tropical
SDEs tend to maximize transport efficiency during the wet
season (avoiding cavitation by dropping their leaves),
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while evergreen species are more conservative in their
water use, with low conductance and high wood density
(Sobrado, 1993a; Eamus and Prior, 2001; Chen et al.,
2009; Miranda et al., 2010; Fu et al., 2012). However, leaf
phenological strategy does not map closely to hydraulic
traits; rather, water use strategies, xylem conductivities,
resistance to cavitation, and minimum leaf water potentials
overlap substantially across leaf habits (Figure 3F–H)
(Borchert, 1994; Brodribb et al., 2002; Bucci et al., 2004;
Santiago et al., 2004; Goldstein et al., 2008; Meinzer et al.,
2008; Ishida et al., 2010; Markesteijn et al., 2011). A
similar lack of consistent variation across phenological
strategies is apparent in Mediterranean climates.

Photosynthetic rate, water use efficiency, and specific leaf
area. Evergreen species are known to have lower
photosynthetic rates on a per leaf mass basis (Eamus and
Prichard, 1998; Eamus and Prior, 2001; Wright et al.,
2004; Franco et al., 2005). Contrasting with previous
reports (Eamus and Prior, 2001; Cianciaruso et al., 2013),
we found the same pattern both in Mediterranean and
tropical SDE also when expressing photosynthetic rates on
a leaf area basis (Figure 3B). Nevertheless, because of a
similar pattern in maximum stomatal conductance across
leaf habits, the intrinsic water use efficiency (Amax/gs,max)
depends only weakly on leaf phenology (Figure 3C).
Finally, the specific leaf area (leaf area per unit leaf dry

weight, SLA; Figure 3D) is generally higher in drought-
deciduous than evergreen species, in agreement with most
previous observations (Sobrado, 1986; Franco et al., 2005;
but see also Brodribb and Holbrook, 2005).
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MODELLING FRAMEWORK

The joint effects of physiological and phenological strategies
ultimately define transpiration and C gain, thus linking the
climatic variability to plant fitness and determining the
suitability of different strategies to a given climate. A
minimalist model describing the coupled soil water and plant
C balance is employed here to describe these linkages.
Climate and plant parameters are based on the previous
analysis of climatic regimes (Section on Precipitation
Forcing) and synthesis of ecophysiological traits (Section
on Vegetation Adaptation Strategies). Although this frame-
work undoubtedly simplifies both plant responses to
environmental conditions and soil and plant water dynamics,
it preserves the key interactions between climate, soils, and
vegetation while requiring few physically based parameters.
Our aim with this modelling analysis is to assess which
phenological strategies are most effective in a given climate.
Additional factors potentially influencing phenological
strategies, but not included in the model, are discussed in
Section on Non-Ecohydrological Drivers of Leaf Phenology.

Soil moisture balance

In the absence of parenchymatic storage, plant-available
water is mainly driven by the dynamics of soil water within
the rooting zone. Plant roots span both shallow soil layers
and deeper, more persistent water stores that may be
partially decoupled from seasonal variations in rainfall (e.g.
groundwater) and that could sustain plant activity in rainless
periods. At daily time scales, the total plant-available soil
water per unit ground area can thus be described by two
coupled mass balances, representing the temporal evolution
of the soil moisture s1(t) averaged over the top layer of depth
Zr,1, and the soil moisture s2(t) within an additional water
store of depth Zr,2 (as e.g. in Yu and D’Odorico, 2014):

nZr;1
ds1 tð Þ
dt

¼ R tð Þ � T1 s1; s2ð Þ � E s1ð Þ � L1 s1ð Þ

nZr;2
ds2 tð Þ
dt

¼ L1 s1ð Þ þ I tð Þ � T2 s1; s2ð Þ � L2 s2ð Þ

8>><
>>: (1)

Soil in both water stores is assumed to have porosity n.
Rainfall R(t) represents the main input to the system,
enhancing soil moisture in the top layer. Losses from the
shallow layer occur via plant water uptake, T1(s1, s2), soil
water evaporation, E(s1), and deep percolation, L1(s1). The
latter term represents the main input to the deep store,
possibly complemented by a rainfall-independent deep
recharge I(t). Losses from the deep water store occur
through plant water uptake T2(s1, s2) and deep percolation L2
(s2). In both layers, percolation is assumed to occur
instantaneously whenever the soil moisture of the corre-
sponding layer exceeds a threshold smax around the field
capacity (Milly, 2001; Porporato et al., 2004; Vico and
Porporato, 2010). Soil water evaporation is a piecewise
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linear function of s1(t), with maximum soil water evapora-
tion Emax when s1≥ sw, Emaxs1s�1

w otherwise. We note that
averaging soil moisture over a water store implicitly
accounts for the hydraulic redistribution within that soil
volume – a phenomenon observed in some SDE species
(Kurz-Besson et al., 2006; Scholz et al., 2008; Prieto et al.,
2010; Neumann and Cardon, 2012). However, hydraulic
redistribution between the two soil water stores is neglected.
Total plant water uptake from both stores is determined

by plant transpiration demand, a function of atmospheric
VPD, D, plant size (as described by LAI, LAI(t)), and
stomatal conductance to water vapour, gs(t),

Ttot ¼ gs tð ÞD tð ÞLAI tð Þ: (2)

To capture the separate effects of VPD and soil moisture,
stomatal conductance is described as gs(t) = gww(D)fs(splant),
where gww(D) is the stomatal conductance under well-
watered conditions and the function fs(splant) accounts for
the effect of ‘plant-sensed’ soil water in reducing the
effective stomatal conductance from its well-watered level, by
lumping plant hydraulic traits in a single ‘effective’ function
(see Buckley (2005) for a review of more mechanistic
approaches). The plant-sensed soil moisture splant is defined as
splant =max[s1, s2], assuming that leaf-level activity is driven by
the highest soil moisture between the two compartments. This
assumption is supported by the observation of high stomatal
conductance during the dry season in trees that have access to
deepwater stores (David et al., 2007;Miller et al., 2010) aswell
as by localized irrigation experiments (Green et al., 1997; Kang
et al., 2003; Guswa, 2012). The stomatal conductance under
well-watered conditions is assumed to depend on D as
gww(D) =gs,max(1�m lnD), with gs,max corresponding to a
reference stomatal conductance atD=1kPa (Oren et al., 1999),
here approximated by the maximum measured stomatal
conductance (Figure 3A). As a first approximation, the effect
of soil moisture can be summarized by considering that, for
given D, transpiration proceeds unhampered when the
available plant-sensed soilmoisture, splant, is above a threshold
s*, and is linearly reduced when water is in scarcer supply,

f s splant
� � ¼ splant

s�
splant < s�

1 splant≥s�

(
(3)

The threshold s* is the soil moisture availability correspond-
ing to incipient stomatal closure and captures the response of
stomatal conductance (and hence transpiration per unit leaf
area) to reduced soil water availability, thus lumping the
effect of changes in soil water content on leaf-level activity as
mediated by plant hydraulics. On the basis of the synthesis of
the physiological traits (Section on Plant Hydraulic Traits and
Regulation of Transpiration), a single function, fs(splant), and
threshold, s*, common to all functional types, is employed.
Assuming that the water stored in plant tissues is in

equilibrium (i.e. neglecting water stored in plant parenchyma),
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the water uptake from the soil, the flux through the stem, and
the plant level transpiration are all equal. Hence, the water
uptake demand set in Equation (2) must be met by total plant
water uptake from the two water stores, T1(s1, s2) and T2
(s1, s2). The twowater stores are assumed to contribute tomeet
plant water demand proportionally to their own soil water
content and the fraction of roots located in each one,

T1 s1; s2ð Þ ¼ Ttot
αs1

αs1 þ 1� αð Þs2
T2 s1; s2ð Þ ¼ Ttot s1; s2ð Þ � T1 s1; s2ð Þ;

(4)

where α is the fraction of total root biomass located in the top
compartment. It follows that, for set root distribution, the
plant depletes faster the compartment with higher water
availability. Should roots be completely located in the
shallower layer (i.e. α=1), plant transpiration would be
driven by the soil moisture on the top layer only (i.e.
splant = s1) and all the water uptake would occur from the top
layer (T1(s1, s2) =Ttot). Water uptake by nearby competing
vegetation (non-beneficial losses at the individual plant level)
are neglected: these additional losses would not significantly
alter the results as they would act in similar ways under all
climates.

Carbon economy

When assessing the long-term C economy of evergreen and
deciduous leaf habit, several factors should be considered:
(i) the higher photosynthetic rate in deciduous species
leaves is counterbalanced by their shorter lifespan (Wright
et al., 2004; Mediavilla et al., 2008; van Ommen Kloeke
et al., 2012); (ii) the leaf construction costs are lower in
deciduous species due to their larger SLA; (iii) leaf
respiration during the dry, unfavourable season negatively
affects only the evergreen species; and (iv) although
rooting morphology appears to only partially map onto leaf
habit (see Section on Root Systems), root-associated costs
are generally assumed higher for the evergreen species
because they need to maintain leaf hydration throughout
the year (Givnish, 2002). Here, we consider factors i–iii
based on leaf habit-specific data from Figure 3 and other
sources, whereas root allocation and depth are varied
independently of leaf habit.
To proceed quantitatively, a minimalist C balance is

employed, representing the annual C gain per unit ground
area, G, with input from C fixation via photosynthesis,
Ggross, and losses occurring via maintenance respiration, Rm,
and leaf construction costs, c:

G ¼ Ggross � Rm � c

¼ ∫
year

ηAA tð ÞLAI tð Þdt � ∫
year

rLAI tð Þdt � f flushf C
LAImax

SLA
:

(5)
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In (5), A(t) and r are the leaf-level photosynthetic and
maintenance respiration rates, expressed on a per unit leaf
area basis, LAI(t) is the LAI (which changes in time between
0 and LAImax, see Section on Representation of Phenological
Strategies), ηA accounts for the carbon use efficiency and the
reduced light availability early in the morning and late in the
day, fflush is the frequency of leaf flushing (i.e. the number of
flushing occurring over the year), fC is the fraction of C per
unit leaf mass, and SLA is the specific leaf area. Using a
linearized photosynthesis model and neglecting the CO2

compensation point, the leaf-level photosynthetic rate can be
estimated as (Hari et al., 1986; Manzoni et al., 2011)

A tð Þ ¼ k Tð Þcags tð Þ
gs tð Þ þ ak Tð Þ ; (6)

where ca is the atmospheric CO2 concentration, gs(t) is the
stomatal conductance to water vapour, a= 1.6 is the ratio
between the diffusivities of water vapour and CO2 in air, k(T)
is a macroscopic kinetic constant, accounting for the
metabolic capacity and how it is affected by temperature T
and light availability. Neglecting light limitations, it can be
shown that k(T)≅Vcmax(T)[rCca+Kc(T) (1 + oaKo(T)

� 1)]� 1,
where Vcmax is the maximum carboxylation rate, rC is the
long-term average ratio between stomatal and atmospheric
CO2 concentrations, Kc and Ko are the Michaelis–Menten
constants for CO2 fixation and oxygen inhibition, and oa is the
oxygen concentration in the air. Employing the temperature
dependences of Bernacchi et al. (2001), k(T) increases
linearly with temperature in the temperature range typical of
the considered sites and can be modelled as k(T)≅ k25
(0.03T+0.25), where k25 is the macroscopic kinetic constant
at 25 °C – the only kinetic parameter to be estimated. When
stomatal conductance is high, assimilation rate is not limited
byCO2 availability andA≅ kca, so that k25 can be estimated as
k25 ¼ Amaxc�1

a (implicitly assuming that the assimilation rates
where collect at about 25 °C and ambient ca). The obtained
photosynthetic rate is further reduced to account for daily
changes in light availability. In contrast, the decline in
photosynthetic efficiency with leaf age is neglected, poten-
tially overestimating total C fixation, particularly in evergreen
species.
The C loss terms in Equation (5) are estimated as

follows. Maintenance respiration rate per unit leaf area is
assumed to be equal to a fraction fresp of the maximum C
assimilation rate, Amax, i.e. r= frespAmax (Givnish, 2002),
thus resulting in a higher respiration rate per unit leaf area
in deciduous species. Leaf construction costs per leaf mass
are independent of leaf habit (Eamus and Prichard, 1998),
but construction cost per unit ground area vary with leaf
phenology. Evergreen species have lower SLA than
deciduous species (Figure 3D), resulting in higher
construction costs for a given LAImax. However, evergreen
leaves may have lifespans extending beyond 12months, so
work is in the public domain in the USA. Ecohydrol. (2014)
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that the frequency of leaf flushing, fflush, is lower than in
drought-deciduous species. Potential additional costs
stemming from water shortage (e.g. xylem refilling after
cavitation; osmolyte production to maintain leaf turgor) are
neglected.

Model parameterization

Plant functional type impacts water and C balances
primarily through two mechanisms: (i) ecophysiological
traits that regulate water losses and C uptake at the leaf
level and (ii) changes in LAI that affect the timing and rates
of transpiration and C exchanges at the whole plant level.
Here, the representation of these mechanisms in the model
and the necessary climatic data are discussed.

Representation of phenological strategies. Phenological
variations are coupled to the soil water and plant C
balances framework by allowing changes in time of the
LAI. We treat evergreen species as having a constant LAI,
equal to a preset LAImax, regardless of water availability.
Conversely, the time variation of LAI for drought-
deciduous species is idealized as a step increase from zero
to LAImax at leaf flushing, whereas leaf abscission is
assumed to occur more gradually, with a rate depending on
soil water availability. The dates of leaf flushing are
determined differently for tropical and Mediterranean
SDEs, while leaf abscission is modelled in the same way
in both ecosystems and for both opportunistic and
scheduled species, as detailed next and summarized in
Table II. Treating leaf flushing as an instantaneous process
may overestimate transpiration for species that complete
leaf extension gradually (e.g. Reich, 1995; Lima and
Rodal, 2010) but is an effective way to capture the main
patterns in water use across SDEs.

Leaf flushing: For tropical opportunistic species, the leaf
flush date is assumed to be a function of the plant-sensed
soil moisture, splant (as defined in Section on Soil Moisture
Balance). Flushing is triggered by soil water availability
crossing the threshold, sflush (sensu Yoshifuji et al. (2011)).
Two soil water availability thresholds triggering leaf
flushing are considered (Table II). The more conservative
species flush their leaves when the soil is wet enough to
allow full stomatal opening, i.e. sflush = s*. Aggressive
species flush their leaves as soon as the soil water
availability exceeds a lower threshold, sflush = 1.2sw, where
sw is the soil moisture at the wilting point and sw< sflush< s*.

For tropical scheduled species, leaf flush is idealized as
occurring on a set date – as if plants responded to
photoperiod only (Table II). Conservative scheduled
species flush their leaves after the ‘normal’ beginning of
the wet season. Aggressive scheduled species flush their
leaves before the beginning of the wet season. Three leaf
flushing dates are explored, ‘early’, ‘normal’, and ‘late’,
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referring to species flushing their leaves respectively
20 days before, at, and 20 days after the ‘normal’ beginning
of the wet season. The ‘normal’ beginning of the wet
season is defined as the average date on which the 20th
percentile of annual total rainfall is reached; hydrologic
year is treated as starting at the end of the driest month. We
allowed for leaf flush in scheduled species to be deferred in
abnormally dry years until the soil water content reaches at
least sw but did not consider multiple leaf flushes in a single
growing season (e.g. in response to damage inflicted by a
delayed wet season onto previously flushed leaves).
In Mediterranean SDEs, spring/summer growing species

exploit soil water accumulated during the wet winter and have
scheduled leaf flushing in the early spring driven by
photoperiod or temperature cues. Here, we focus on
photoperiod-driven species and consider different dates for
leaf flushing with respect to the spring equinox, thus covering
a wide range of dates (from 40 days before the equinox to
20 days after that), following the observations of Penuelas
et al. (2002) for North-Eastern Spain. Non-woody opportu-
nistic species growing in the wet fall/winter are not included.

Leaf abscission: Regarding leaf abscission, only softwood
species are considered in both tropical and Mediterranean
SDEs. In these species, leaf abscission is initiated when
available soil water declines below an abscission threshold,
for simplicity set at the wilting point sw. In agreement with
observations (e.g. Valdez-Hernandez et al., 2010) and
earlier models (Arora and Boer, 2005), leaf abscission rate
is assumed to accelerate as soil moisture drops below sw,
and to be interrupted when rainfall brings soil moisture
back to values above sw (although the previously lost
leaves are not restored), i.e.

dLAI tð Þ
dt

¼ 0 splant > sw

�LAI tð Þβabsc sw � splant tð Þ
� �

splant≤sw

(
;

(7)

where the higher the constant βabsc, the faster the decline.
Describing leaf abscission in hardwood species would

require describing the temporal evolution of their stem
water storage, which lies beyond the scope of this work.
Qualitatively, for a given leaf flushing strategy and water
availability, hardwood species will have longer leaf
lifespans than softwood ones.

Rooting systems and deep water storage. To elucidate the
effects of rooting depth and rainfall-independent ground-
water recharge on the optimal leaf strategy, both shallow
rooting systems (α = 1, splant = s1), and plants with access to
deep water stores (α< 1, splant =max[s1, s2]) are explored.
In the latter case, the effect of groundwater recharge is also
considered (I = 0 vs I> 0). In each scenario, the rooting
depths and distribution (Zr,1, Zr,2, and α) are maintained
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constant across plant functional types and sites. We assume
that the dry seasons are long enough for water availability
in the active rooting zone at beginning of the hydrologic
year to be independent of the rainfall occurrence and plant
activity during the previous year, so that subsequent years
may be considered as independent.

Ecophysiological parameters. Plant water use strategy
impacts primarily the maximum stomatal conductance, gs,max,
and maximum assimilation rate, Amax, and, to a lesser extent,
specific leaf area, SLA (Figure 3). In themodel, these parameters
are set equal to the median of the observed values (circles in
Figure 3; for evergreen species, only angiosperms are
considered). Conversely, the soil moisture threshold for
incipient stomatal closure, s*, is assumed to be invariant with
functional type, because of the weak dependence of hydraulic
traits on phenological strategy. Moreover, to facilitate the
comparison among different climates, the analyses are
conducted assuming a ‘prototype’ species, i.e. keeping the
peak LAI (LAImax), and the abscission rate coefficient (βabsc)
constant across functional types and climates.

Climatic forcing. The model is forced with historical
rainfall data from the five case study sites (Figure 1;
Table I). Because data on air humidity and temperature
were not available for all locations, the seasonal evolution
of VPD is idealized as a sinusoidal curve, with D(t)
reaching its minimum, Dwet, during the wettest month, and
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data collected in Figure 3 (for the evergre
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its maximum, Ddry, 6months later; the daily temperature
was reconstructed by fitting a sinusoidal function to the
monthly average temperatures (Figure 1). While using long-
term average temperatures does not account for the inter-
annual variability, it does incorporate the negative effects of
winter conditions on the C assimilation of Mediterranean
evergreens.
QUANTITATIVE ASSESSMENT OF PHENOLOGICAL
STRATEGIES

For each site and phenological strategy, the model provides
the temporal evolution of soil moisture, stomatal conduc-
tance, and LAI. It is then possible to determine the flushing
date and leaf duration, total seasonal transpiration and C
gain, and how they vary from year to year in different
climates and for different plant functional types. As such,
the model results allow quantifying the effects of the intra-
annual and inter-annual variability in rainfall patterns
apparent in Figure 2. The following sections present such
results for the five study sites and compare them with
observations available in the literature.

Temporal evolution of soil moisture, transpiration, and leaf
area index

Figure 4 shows an example of the modelled temporal
evolution of LAI, water uptake and available soil water, for
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deep-rooted opportunistic and evergreen species for a
specific year in Santa Terezinha (Northeastern Brazil).
Total soil water content (Figure 4 bottom) is driven by the
occurrence of rainfall as well as by losses through
transpiration, which in turn are impacted by water
availability (Figure 4 top). Moreover, in drought-deciduous
species (Figure 4 left), LAI is controlled by the water
availability, which drives flushing and shedding dynamics
(Figure 4A, red line). Thanks to the permanence of leaves,
evergreen species are able to exploit water input regardless
of its timing, although isolated events (such as the one
occurring at the beginning of the hydrologic year in this
example) cannot sustain long periods of high transpiration.
This continuous uptake of water by evergreen species
reduces peak transpiration rates with respect to drought-
deciduous species. At the same time, transpiration rates
under well-watered conditions are lower in evergreens, a
consequence of their lower gs,max (Figure 3A). When
combined, these mechanisms result in less abrupt changes
in soil moisture in both compartments in the presence of
evergreen species, while soil moisture tends to be
accumulated before leaf flushing and then depleted faster
in the presence of drought-deciduous species (compare
Figure 4C with D).

Rainfall and water use patterns affect the recharge of and
contribution from the two water stores. Regardless of
vegetation type, deep store recharge occurs only as a
consequence of rainfall events that are able to increase soil
moisture in the top compartment above field capacity.
Hence, with drought-deciduous species, deep store re-
charge occurs mostly at the beginning of the wet season
and after leaf abscission, when the absence of leaves
reduces transpiration. Furthermore, the water-richest com-
partment is exploited first, thus resulting in a faster
depletion of its water content until the two moisture levels
become similar. The water depletion is always fastest in the
top layer, where most roots are located (in the example of
Figure 4, α = 0.7).

Figure 4 also shows the corresponding temporal evolution
of LAI (red solid lines). The modelled LAI qualitatively
matches observations in drought-deciduous species, with a
sharp increase in leaf area following significant rainfall and a
more gradual decline in LAI at the onset of the dry
season (e.g. Valdez-Hernandez et al., 2010). This decline
is slow at moisture level just below the threshold sw,
accounting for the plant ability to withstand brief periods
of water stress, whereas the decline is faster for intermediate
LAIs and soil moisture. If a rainfall event increases soil
moisture above sw (e.g. the 1 March event in Figure 4), leaf
abscission is temporarily halted, until soil water availability
declines again (Equation (7)). Because it is assumed that
previously lost leaves are not replaced, the transpiration and
photosynthetic rates per unit ground area are reduced
accordingly, regardless of any later rainfall occurrence.
This article has been contributed to by US Government employees and thei
Timing of leaf flushing and leaf duration in
drought-deciduous species

The potential growing season for evergreen species spans
the entire year. Conversely, the growing season of drought-
deciduous species is limited to the time in which leaves are
present – the result of the combined effects of rainfall
amount and timing, leaf phenological strategy, and
ecophysiological traits. Here, we define the leaf duration
and C fixation season for drought-deciduous species as the
time between leaf flushing and leaf abscission (Table II).
Because leaf abscission is a gradual process (Equation (7)),
here we define abscission date as the day in which LAI is
reduced to LAImax/4: although LAI may then remain at
such level for a prolonged period if rainfall occurs, the
water and C fluxes generated by such reduced LAI
contribute little to the annual totals.
The high rainfall inter-annual variability in SDEs causes

broad and often bimodal distributions of flushing and
abscission dates, as illustrated in Figure 5A and B for Santa
Terezinha. In scheduled species, the distribution of
abscission dates is bimodal (Figure 5A). Flushing before
or at the average onset of the main wet season results in
extremely short growing periods when the onset of the wet
season is delayed. Conversely, the same strategy is
beneficial in those years when the wet season begins on its
average date, permitting plant activity over a longer period.
In opportunistic species, the flushing dates also vary from
year to year (dot-dashed lines in Figure 5B), resulting in a
unimodal distribution around the typical onset of the wet
season (6 February in Santa Terezinha). Abscission dates
exhibit a bimodal distribution similar to scheduled species,
with a small peak immediately following the average
beginning and a larger one following the end of the wet
season. The former peak pertains to years in which the wet
season is not consistently wet, causing early leaf loss. The
patterns in Figure 5 are similar to those observed in other
SDEs (Yoshifuji et al., 2011).
Leaf duration is also highly variable from year to year,

with a bimodal distribution for all phenological strategies
(Figure 5C and D). On average, scheduled normal flushing
allows longer leaf durations than scheduled early and
opportunistic flushing. In fact, in dry climates such as Santa
Terezinha, aggressive strategies (‘early’ scheduled flushing
or opportunistic flushing in response to small increases in
soil water availability) are counterproductive, because water
stress early in the wet season is likely. More conservative
strategies, such as ‘normal’ scheduled species or opportu-
nistic species with higher soil water thresholds, lead to the
greatest leaf durations. With these strategies, the risk of
damage if the wet season is delayed is reduced.
The impacts of the phenological strategies on leaf

duration depend on climate and rooting depth. Examples
of leaf duration distributions for scheduled species with
different root depths are presented in Figure 6 for the cases of
r work is in the public domain in the USA. Ecohydrol. (2014)
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Santa Terezinha, Darwin, and Palermo. In wetter climates
like in Darwin, the risk of water shortage early in the wet
season is reduced and leaf durations are correspondingly
longer (compare Figure 6B with A and C). In tropical SDEs,
the effect of rainfall amounts is compounded with inter-
annual variability: the extreme variability in the rainfall
amount and wet season timing at Santa Terezinha leads to a
greater variability in leaf durations than in the Australian
sites, characterized by higher rainfalls and smaller inter-
annual variability (Figure 6A andB). Inter-annual variability
in rainfall timing and amount is less relevant in spring
This article has been contributed to by US Government employees and their
flushing Mediterranean species. In Palermo, leaf abscission
occurs early after the end of the wet season, resulting in a
unimodal distribution of durations with low average (Fig-
ure 6C), while in Perth leaves may be sustained for longer
periods in thewettest years, thus giving rise to a slightly bimodal
distribution of leaf durations (not shown). Hardwood species
(not considered here) may sustain leaves longer, potentially
throughout the dry season, thus becoming winter-deciduous.
Rooting depth further alters the distribution of leaf

abscission dates and durations. In general, the risk of water
limitation immediately after leaf flushing is partially
work is in the public domain in the USA. Ecohydrol. (2014)
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mitigated by access to deep water stores (Borchert and
Rivera, 2001; Lima and Rodal, 2010), so that leaf durations
become longer and more unimodally distributed (compare
red with black lines in Figure 6A and B). Similarly, in
Mediterranean climates, deep water stores allow larger
water accumulation during the winter, yielding longer and
slightly more variable leaf durations (Figure 6C).
Effect of leaf strategy on water and carbon economies

While useful when considering the timing of water use, leaf
durations per se do not allow assessment of the best
adapted phenological strategy for a given climate.
Conversely, net annual C gain provides a metric by which
all the phenological strategies, including evergreen habit,
can be compared within a common framework.

Figure 7 summarizes net C gain achieved by each leaf
phenological strategy in all case studies, for shallow-rooted
plants (top), deep-rooted plants without rainfall-independent
groundwater input (center; I(t) = 0), and deep-rooted plants
with groundwater input (bottom; I(t)> 0). As expected,
higher average rainfall input (from black to light grey
symbols) enhances C gains for all phenological strategies
and rooting depths. In tropical climates, the combined
effects of lack of deep water stores and longer and more
intense dry seasons, favour deciduous species. Indeed,
drought-deciduousness is more common under climates
Figure 7. Median (symbols) and 25–75 percentiles (whiskers) of carbon gain
(left) three contrasting tropical climates and (right) two Mediterranean climate
refer to deep-rooted plants accessing the deep water store without (I= 0;
flushing is triggered at sflush = 1.2sw and s*. Scheduled flushing is defined w
equinox in Mediterranean climates (VE, 40 days earlier; E, 20 day earlier;
parameters are as in Figure 4. Additionally, for the carbon balance, fresp = 0.07, fC
species, ηA = 0.65, ca = 380μmolmol�1, a= 1.6, and Amax, gs,max, and SLA a

This article has been contributed to by US Government employees and thei
with strong seasonality or with low rainfall during the dry
season and is less related to total annual rainfall (Givnish,
2002; Bowman and Prior, 2005).As a result, in dryer climates,
such as Santa Terezinha, drought-deciduousness is always
beneficial, while in wetter climates (e.g. Darwin), a deeper
rooting system is sufficient to make evergreen species
competitive. Conversely, in Mediterranean ecosystems,
evergreen habit confers a competitive advantage, thanks to
the ability to exploit winter rainfall throughout the seasons, as
opposed to just the accumulated water. Consistent with the
results of the model, the highly variable South American
caatinga (Sampaio, 1995) is dominated by drought-deciduous
species (Machado et al., 1997; Lima and Rodal, 2010; Cabral
et al., 2013), while the less climatically variable Australian
tropics are predominantly evergreen (Hutley et al., 2001;
Bowman and Prior, 2005; Lehmann et al., 2009). Finally,
evergreen woody species are dominant in Mediterranean
ecosystems (Cody and Mooney, 1978), despite the out-of-
phase patterns in temperature, light, and water availability.
Among tropical drought-deciduous species, median C

gain suggests that the most beneficial strategy is scheduled
normal flushing in drier sites and where roots are shallow
(strategy N in Figure 7 left), while in wetter locations C
gain is maximized by opportunistic and early scheduled
flushing (strategies s* and E in Figure 7 left). Indeed
experimental observations in the Darwin area showed that
80% of the dominant species flushed leaves during the dry
G as a function of phenological strategy and access to deep water stores, for
s (Table I, Figure 1). A and B refer to plants with shallow roots (α= 1). C–F
C,D), or with groundwater recharge (I= 0.5mmd�1; E,F). Opportunistic
ith respect to typical onset of wet season in tropical regions or the spring
N, at the onset of wet season/equinox; L, 20 days after). All the other
= 0.45, fflush = 1 y

�1 for drought-deciduous species and 0.67y�1 for evergreen
re the median of the data in Figure 4 (only angiosperms are considered).
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season, i.e. ‘early’ (Williams et al., 1997). Indian SDEs,
which are affected by the Indian Ocean Monsoon like
Northern Australian SDEs, also exhibit early scheduled
flushing (1–2months before the beginning of the wet
season; Kushwaha and Singh, 2005) or opportunistic
flushing triggered by pre-monsoonal rainfall events despite
low soil water contents (Prasad and Hedge, 1986). The
model results also show that shifting from opportunistic to
normal and late scheduled strategies in Santa Terezinha
increases the median leaf duration and C gain. The opposite
trend holds in Darwin and Katherine, in particular in the
presence of deep roots. These findings are consistent with
the general phenological pattern suggested by Rivera et al.
(2002), with photoperiod-driven leaf flushing often occur-
ring where annual precipitation is above 800mm (and the
dry season lasts 4–6months) but rarely in the presence of
lower annual rainfall (such as in Northeastern Brazil) or
shorter dry seasons. In contrast to tropical ecosystems, in
Mediterranean SDEs early or very early scheduled flushing
(strategy VE and E in Figure 7 right) increases leaf duration
and C gain by allowing the exploitation of late winter and
early spring rainfall.
Within this general framework, the variability of the

climatic forcing may cause marked inter-annual variability
in C gains (whiskers in Figure 7 represent the 25th and
75th percentiles). The more consistent seasonality in
Mediterranean compared with tropical climates (Figure 2) is
mirrored by the lower variability in leaf durations and, as a
consequence, in C gain. Conversely, in tropical SDEs, the
inter-annual variability in C gain within a phenological
strategy is comparable with the differences among phenolog-
ical strategies. It follows that the ‘optimal’ leaf strategy
changes from year to year, explaining the coexistence of the
different phenologies in many SDEs. For example, the
caatinga (the most common ecosystem in the Santa Terezinha
region) comprises species that flush their leaves before the
beginning of the wet season, apparently in response to isolated
rainfall events (Machado et al., 1997), and scheduled flushers
with higher stem water storage (Lima and Rodal, 2010).
Moreover, in Northern Australia, a generally evergreen
overstory coexists with a drought-deciduous understory
(Hutley et al., 2001).
The model results further suggest that access to deeper

water stores allows a higher total transpiration and enhance
net C gain, by reducing water lost to deep percolation, and
by buffering rainfall intermittency. The buffering effect of
deep soils is particularly relevant in Mediterranean
drought-deciduous scheduled species, for which a deeper
storage allows a better exploitation of winter precipitation,
as long as such storage is replenished during the wet season
(Viola et al., 2008). While these results are consistent with
observations (Schenk and Jackson, 2002) and model
predictions (Guswa, 2008; Feng et al., 2012) in both
tropical and Mediterranean ecosystems, net C gain across
This article has been contributed to by US Government employees and their
rooting depths should not be compared here, as root
construction and maintenance costs have not been included.
In general, while deep roots may provide a C benefit if the
wet season is characterized by deep but intermittent rainfall
events, or for Mediterranean species utilizing stored winter
rainfall, their cost may not be balanced by enhanced C
uptake in wet climates or when rainfall intermittency in the
wet season is low (Guswa, 2008)
Finally, groundwater input to the deeper water store is in

most cases beneficial, with the notable exception of
opportunistic species (Figure 7 bottom). In fact, the dry
season recharge of the deep water store may cause those
species to flush their leaves well before the wet season
begins, but the little available water is often unable to
support plant activity for long periods. The other effect of
rainfall-independent groundwater input is buffering against
rainfall intermittency, thus generally limiting the inter-
annual variability in net C gains.
NON-ECOHYDROLOGICAL DRIVERS OF LEAF
PHENOLOGY

The framework discussed here makes it possible to capture the
effects of rainfall occurrence on water availability and C
dynamics. Nevertheless, there are other ecological and
evolutionary factors that may influence the phenological
strategies observed in SDEs, such as herbivore-leaf interac-
tions, fire frequency, nutrient availability, and evolutionary
legacies.
In many locations, insect herbivory plays a role in

defining the most beneficial leaf phenology (van Schaik
et al., 1993; Reich, 1995; Eamus and Prior, 2001;Wilf et al.,
2001), with implications for many processes that shape and
maintain SDE structure (Coley and Barone, 1996). Plants
can invest C in chemical and physical defences, reducing
palatability, at the expense of photosynthetic capacity, and
hence C gain and growth rate (Herms and Mattson, 1992;
Pringle et al., 2011). This strategy tends to be associated
with evergreen species. Conversely, drought-deciduous
species maintain high growth rates (which may require high
nitrogen content and lead to palatable, tender leaves;
Agrawal and Fishbein, 2006) and optimize leaf flushing
time to limit leaf predation of young, more palatable leaves.
Depending on resource availability, three leaf flushing
strategies can be applied. One option is to flush the leaves
during the dry season when insects are less prevalent (Aide,
1988; Aide, 1992; Murali and Sukumar, 1993; Sloan et al.,
2007); insect damage during the subsequent wet season then
occurs on old leaves with decreased photosynthetic capacity.
This strategy is feasible only when dry season water storage
levels sustain transpiration prior to the wet season. The
second strategy is community synchronization of leaf
flushing during the wet season, leading to herbivore satiation
(Lieberman and Lieberman, 1984; van Schaik et al., 1993).
work is in the public domain in the USA. Ecohydrol. (2014)
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A third option is delayed leaf greening, so that leaves
become nutritionally appealing only after toughening
(Kursar and Coley, 1992).

Fire disturbance may further alter SDE C balance. Fire is
a natural event in many Australian, African and Californian
SDEs, while it is mainly linked to human presence in South
America and in other Mediterranean-type ecosystems
(Murphy and Lugo, 1986; Bowman and Prior, 2005), thus
resulting in fewer fire-adapted species in the latter SDEs
(Lock, 2006). Because fires occur mostly during the dry
season, they mainly damage the evergreen species, altering
the active leaf lifespan and reducing the benefits of
evergreen leaf habit. The frequency of fires may be
reduced by the activity of large grazers, which reduce fuel
loads (typical of African SDEs).

Nutrient availability may be an additional factor in
determining dominant leaf habit. For example, low-fertility
Australian soils may favour evergreens (Bowman and
Prior, 2005), because their longer lifespan and lower
nutrient concentrations enhance nutrient retention in the
ecosystem (Aerts, 1995).

Finally, the physiological mechanisms that generate
plant responses to phenological cues appear to be highly
heritable (Vitasse et al., 2009; Alberto et al., 2011), raising
the prospect that observed phenological strategies may not
always represent an adaptation to local conditions so much
as a legacy of historical climate and species assemblages.
For example, although evergreen habit appears to be
favourable in Mediterranean climates (Figure 7), evergreen
and winter-deciduous species coexist in Mediterranean
climates in Europe, the Middle East, and the USA (Blumler,
1991). The origin of this coexistence is hypothesized to lie in
Pleistocene climates when cold winters would have
eliminated sclerophyllous species and favoured winter-
deciduous trees (Wright, 1962; van Zeist, 1967).
SYNTHESIS AND CONCLUSIONS

Despite differences in temperature regimes, tropical
seasonally dry and Mediterranean climates share similar-
ities in their rainfall patterns, in terms of both seasonality
and inter-annual variability. Thus, a common framework is
appropriate to investigate the ecohydrology of SDEs. To
cope with the fluctuations in water availability, plants in
SDEs have developed a wide array of adaptation strategies.
A synthesis of field observations revealed that leaf
phenological strategies, rather than plant ecophysiological
traits, provided the greatest source of variation in plant
level ecohydrology under a given climate. Leaf phenology
therefore plays a crucial role in determining C and water
fluxes in SDEs, as quantitatively explored here by a
minimalist ecohydrological model applied to five case
studies with contrasting rainfall regimes. Our results
suggest that longer and more intense dry seasons favour
This article has been contributed to by US Government employees and thei
deciduous plants, while the evergreen leaf habit is
beneficial in wetter tropical climates, particularly in the
presence of deeper water stores, as well as in Mediterra-
nean ecosystems. Among drought-deciduous species, the
inter-annual variability in rainfall is likely to support the
coexistence of multiple leaf flushing strategies. Neverthe-
less, more aggressive strategies (early scheduled flushing
or flushing in response to small rainfall events) are
generally beneficial when the wet season is consistent
and in Mediterranean climates where early spring flushing
allows the exploitation of the last part of the wet season and
winter water stores. These modelling results are supported
by phenological observations across SDEs.
Ongoing and predicted changes in global climate are

anticipated to alter seasonal rainfall patterns and thus the
functioning of SDEs (Feng et al., 2013). Climatic changes
are likely to increase dry season duration and decrease soil
moisture in tropical SDEs (Hulme and Viner, 1998;
Wetherald and Manabe, 2002; Jung et al., 2010). Changes
in the Mediterranean Basin include decreases in mean
precipitation and increased variability during the dry season
(e.g. Giorgi, 2006; Goubanova and Li, 2007; Alpert et al.,
2008; Arnone et al., 2013). If these changes continue, they
will stretch the adaptive limits of plants and prompt possible
shifts in ecosystem composition and geographical range. On
the one hand, decreasing rainfall may shift leaf phenology
from evergreen to drought-deciduous species, as rainfall
may become insufficient to replenish soil water reserves
regularly (Borchert, 1998; Enquist and Enquist, 2011). On
the other hand, a less marked seasonality may shift species
composition toward a higher fraction of evergreens
(Givnish, 2002). Superimposed on these patterns, the
projected increases in ambient CO2 concentration may
reduce transpiration rates and slow the depletion of soil
moisture, further favouring longer leaf lifespans (Reich,
1995) and increasing the total C gain in deciduous species.
However, these beneficial effects of CO2 enrichment might
be offset by faster soil water depletion and reduced leaf
lifespan caused by the expected increases in temperature and
VPD. Shifts in species composition may have significant
implications for the long-term water balance of SDEs, with
higher abundance of drought-deciduous species resulting in
larger fluctuations of soil moisture and an increase in deep
percolation and hence groundwater recharge. Also, water
availability impacts biogeochemical cycles, so that an
increased variability in wet season timing may have
deleterious effects on the coordination of nutrient mineral-
ization supply and demand by vegetation (Lodge et al.,
1994; Augustine and McNaughton, 2004), and changes in
rainfall regimes will likely alter soil C storage (Rohr et al.,
2013).
Given the global distribution of SDEs, their ecological

complexity and relevance for human activities, and the still
limited understanding of ecological fluxes and functioning,
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there is a clear need for additional research, made urgent by
the rapid and potentially severe climate change projected
for these ecosystems.
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