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SCALA: A complete solution for multimodal analysis of single-cell Next 
Generation Sequencing data 
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A B S T R A C T   

Analysis and interpretation of high-throughput transcriptional and chromatin accessibility data at single-cell (sc) 
resolution are still open challenges in the biomedical field. The existence of countless bioinformatics tools, for the 
different analytical steps, increases the complexity of data interpretation and the difficulty to derive biological 
insights. In this article, we present SCALA, a bioinformatics tool for analysis and visualization of single-cell RNA 
sequencing (scRNA-seq) and Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) data
sets, enabling either independent or integrative analysis of the two modalities. SCALA combines standard types 
of analysis by integrating multiple software packages varying from quality control to the identification of distinct 
cell populations and cell states. Additional analysis options enable functional enrichment, cellular trajectory 
inference, ligand-receptor analysis, and regulatory network reconstruction. SCALA is fully parameterizable, 
presenting data in tabular format and producing publication-ready visualizations. The different available analysis 
modules can aid biomedical researchers in exploring, analyzing, and visualizing their data without any prior 
experience in coding. We demonstrate the functionality of SCALA through two use-cases related to TNF-driven 
arthritic mice, handling both scRNA-seq and scATAC-seq datasets. SCALA is developed in R, Shiny and JavaScript 
and is mainly available as a standalone version, while an online service of more limited capacity can be found at 
http://scala.pavlopouloslab.info or https://scala.fleming.gr.   

1. Introduction 

Single-cell RNA sequencing (scRNA-seq) and ATAC sequencing 
(scATAC-seq) are both Next Generation Sequencing (NGS) techniques 
that have enabled the study of the transcriptome and epigenome , 
respectively, at an unprecedented resolution [1–5]. Exploitation of these 
two modalities allows researchers to observe the heterogeneity of cell 
populations in more depth compared to established bulk 
RNA-sequencing techniques. 

Since the first scRNA-seq publication [6], advances in technology 
and equipment have led to an exponential increase in the number of cells 

(from hundreds to millions) that can be simultaneously sequenced in one 
run. Widely used technologies that have been introduced over the past 
ten years include Fluidigm C1 [7], Smart-seq2 [8], Drop-seq [9] and 10x 
Genomics [10], whereas new protocols such as the 10x multiome and 
spatial transcriptomics [11] have also emerged. Both scRNA-seq and 
scATAC-seq techniques have been used in various experimental settings 
such as the investigation of different tissues, developmental timepoints, 
disease states and organisms. ScRNA-seq for example, has played a 
crucial role in the comprehensive annotation of cell types in multiple 
organisms (e.g., Human Cell Atlas for Homo sapiens [12], Tabula Muris 
for Mus musculus [13]), as well as in the identification of novel cell 
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populations, sub-populations and disease states [14]. Similarly, 
scATAC-seq has contributed critically to determining cell types in even 
higher resolution, as well as the epigenetic landscape that drives cellular 
differentiation, by characterizing gene regulation and inferring Gene 
Regulatory Networks (GRNs) in several species and disease systems. 
Characteristic examples of scATAC-seq analysis milestones are the case 
of Drosophila melanogaster brain epigenetic profiling [15], as well as the 
characterization of the chromatin accessibility profiles of 30 tissue types 
in Human [16]. 

From data generation to analysis and interpretation, a thorough 
bioinformatics pipeline is essential. Typical steps of such analyses 
include: (i) Quality Control (QC), (ii) read mapping and counting, (iii) 
normalization, (iv) dimensionality reduction, (v) clustering, (vi) differ
ential expression/accessibility, (vii) peak calling, (viii) functional 
enrichment, (ix) data integration, (x) trajectory inference, (xi) genera
tion of GRNs and (xii) visualization of results at every step. To this end, 
several software applications and packages that implement the afore
mentioned tasks have been proposed [17]. Seurat [18], Scanpy [19], 
Monocle [20,21], Cicero [22], Signac [23], EpiScanpy [24], SCENIC 
[25], cisTopic [26] and ArchR [27] are widely used R and Python li
braries, whereas software applications which come with a graphical user 
interface (GUI), include Scope [28], CZ CELLxGENE [29] Azimuth [18], 
Cerebro [30], iCellR [31], PARTEK [32] and SeuratWizard [33]. 

Seurat and Scanpy have been primarily used for the analysis of 
scRNA-seq data, offering functionalities varying from QC to population 
identification and integration of multiple datasets, while Signac and 
EpiScanpy extend Seurat’s and Scanpy’s functionality to process 
scATAC-seq data. ArchR focuses on the analysis of single-cell chromatin 
accessibility data by offering standard analysis steps, as well as addi
tional powerful features like Positive Regulator identification, Tran
scription Factor (TF) footprinting and trajectory inference. Monocle is a 
scRNA-seq analysis package that offers a widely used pseudo-temporal 
cell ordering framework, while its extension, Cicero can be used for 
the analysis of scATAC-seq data. Regarding tools with a GUI, Scope of
fers various visualization options including a side-by-side comparative 
view at cluster and gene levels for datasets containing multiple samples, 
disease conditions, or timepoints. While this is practical for exploring 
clustering results, GRNs and expression patterns, the tool lacks further 
downstream data analysis. CZ CELLxGENE can be used for the explo
ration of single-cell datasets and gene expression visualization across 
tissues in a collection of published datasets. Although it offers some 
analysis options such as detection of marker genes, it doesn’t currently 
provide the option to perform more complex analytical tasks. Azimuth 
focuses on the basic scRNA-seq analysis steps but lacks customization 
options as it mainly specializes in the characterization of the identified 
populations by adopting a ’reference-based mapping’ approach. Seur
atWizard exploits the standard steps of the analysis, while Cerebro also 
builds upon the initial results, allowing the user to explore additional 
modes such as signature scoring, cell cycle phase analysis, and trajectory 
inference. Finally, iCellR covers both scRNA-seq and scATAC-seq basic 
analyses but lacks ligand-receptor and GRN reconstruction. 

In this article, we present SCALA, a holistic pipeline that integrates 
all the aforementioned procedures and enables biomedical researchers 
to get actively involved in the downstream analysis and exploration of 
both scRNA-seq and scATAC-seq datasets. SCALA is a fully interactive 
bioinformatics tool that offers access to all standard analysis modes, 
varying from QC and data normalization to the identification of distinct 
cell populations and cell states. Furthermore, SCALA supports additional 
analysis modes such as automatic cluster annotation, functional 
enrichment analysis, ligand-receptor analysis, trajectory inference, and 
reconstruction of GRNs. Interactive plots as well as publication-ready 
figures and data tables can be generated at every step of the analysis 
while any of the processed datasets can be exported to be further 
analyzed with external applications. We believe that SCALA can become 
a go-to tool for experimentalists who seek to analyze their scRNA-seq 
and scATAC-seq datasets and communicate biological findings with 

high resolution visualizations. 

2. Methods 

SCALA is mainly developed in R/Shiny and JavaScript. For the basic 
analysis of scRNA-seq data, the Seurat package is utilized, while ArchR is 
employed for the basic steps of scATAC-seq analysis. Furthermore, 
downstream applications including functional enrichment analysis, 
trajectory inference, GRNs reconstruction, and L-R analysis were made 
possible by the incorporation of the g:Profiler [34], Slingshot [35], 
SCENIC [25], decoupleR [36,37] and nichenetR [38] packages. The 
aforementioned modes of analysis are described in detail in the 
following paragraphs, accompanied by output screenshots of pbmc and 
bmmc datasets (provided in the online vignettes of Seurat and ArchR 
packages). In the online version, the supported dataset size is restricted 
to < 2 GB while no more than 2 CPU threads on the server are allocated 
per session, something that may result in slow execution. However, by 
downloading the standalone version of SCALA from GitHub, users can 
bypass both aforementioned restrictions (settings variables in server.R 
and ui.R files). Additionally, a docker image is available for download, 
enabling dataset inputs of up to 100 GB and selection of up to 100 CPU 
threads. 

2.1. Input data types 

SCALA is compatible with several input data types. For scRNA-seq, 
the primary data input consists of a unique molecular identifier (UMI) 
count matrix. The user can provide such a matrix by either uploading a 
gene (rows: features) by cell (columns: barcodes) tab-delimited data 
table (including row and column names) or by uploading the output of 
the cellranger pipeline from 10X (filtered_bc_matrix). In the latter case, 
the “cellranger count” output folder should contain: (i) a file named 
“barcodes.tsv.gz” containing only detected (filtered by cellranger count 
pipeline) cellular barcodes in gzip CSV format, (ii) a file named “fea
tures.tsv.gz” with features (genes) that correspond to row indices in gzip 
TSV format; the columns of the particular file should correspond to 
feature ID, feature name and feature type (Gene expression) respec
tively, (iii) a feature-barcode count matrix in gzip Market Exchange 
Format (MEX). Moreover, the user has a third option of uploading a pre- 
analyzed Seurat object in RDS (R saved object) format. In the case of 
scATAC-seq, SCALA is only compatible with arrow files in its current 
version. The particular file format stores all the associated data (i.e., 
metadata, accessible fragments, and data matrices) within a sample. 
Arrow files can be created by using the create_arrow_file.R helper script 
provided in SCALA’s GitHub repository or by using the ArchR package 
directly. It is worth noting that in both modalities, the analysis of only 
human and mouse datasets is currently supported. 

2.2. Functionality 

After the input files have been uploaded, SCALA’s main workflow 
(Fig. 1) can be utilized for both SC pipelines. The steps are: (i) QC, (ii) 
data normalization and scaling, (iii) variable features detection, (iv) 
Principal Component Analysis (PCA) dimensionality reduction, (v) 
Latent Semantic Indexing (LSI) dimensionality reduction, (vi) clus
tering, (vii) additional dimensionality reduction methods, (viii) feature 
inspection, (ix) markers’ identification, (x) cell cycle phase analysis, (xi) 
functional/motif enrichment analysis, (xii) clusters’ annotation, (xiii) 
trajectory analysis, (xiv) Ligand-Receptor (L-R) analysis, (xv) GRN 
analysis and (xvi) visualization of epigenome signal tracks. 

2.3. Quality control 

Identification and removal of “low quality” cells (empty, stressed, 
broken, or dead cells) and non-informative genes is essential for 
downstream analysis in SC datasets. SCALA allows the exploration of QC 
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plots and filters out cell barcodes through the application of user-defined 
parameter thresholds. Common scRNA-seq QC criteria include (i) per 
cell number of unique features detected, (ii) per cell detected UMIs, and 
(iii) per cell percentage of mitochondrial content. Cells that exhibit very 
low numbers of (i) and (ii) are typically excluded as low-quality, while 
those with very high numbers are considered as putative multiplets. 
Barcodes with a high percentage of mitochondrial UMIs should also be 
excluded as low-quality/dying cells (Fig. 2A). 

Similarly, typical scATAC-seq QC metrics include: (i) transcription 
start site (TSS) enrichment and (ii) the number of unique nuclear frag
ments (log10(nFrags)). TSS represents the chromatin accessibility signal- 
to-background ratio. Enrichment of ATAC-seq signal in TSS regions of 
expressed genes is typically high in most cell types and a classic criterion 
of the quality of the assay. The particular metric is calculated as the ratio 
between TSS enrichment relative to per-base pair 2 kb flanking regions 
enrichment. Furthermore, cells including too few nuclear fragments 
should be excluded in order to avoid the inclusion of non-interpretable 
data (Fig. 3A). 

2.4. Data normalization and scaling 

scRNA matrices are normalized and scaled in order to eliminate cell- 
depth variability biases as well as to transform the data properly before 
variable feature detection and dimensionality reduction. Data normali
zation in SCALA is applied through a global-scaling normalization 
method [18], where the gene count of each barcode is normalized by the 
total barcode counts, multiplied by 10,000, and log-transformed. 
Normalized values are stored in a Seurat object, and normalized 

counts are further standardized to z-scores, with column-wise mean 
expression equal to 0 and variance equal to 1. To mitigate the effect of 
unwanted sources of variation, the user can optionally provide metadata 
variables. In such a case, they are individually regressed against each 
feature, while scaling and centering is then performed on the resulting 
residuals. 

2.5. Variable features detection 

Using the normalized RNA data matrix, genes that exhibit the highest 
column-wise variation are detected. Targeted analysis of the particular 
subset of features aids in the identification of the underlying biological 
patterns in single-cell datasets. The supported methods for the identifi
cation of most variable features (supp. Fig. 1A) include three methods. 
These are (i) Variance Stabilizing Transformation (VST), (ii) Mean- 
Variance Plot selection (MVP), and (iii) “Dispersion”. VST fits a line in 
the relationship of log-variance and log-mean using local polynomial 
regression. Consequently, standardization of feature values using the 
observed mean and expected variance is performed. Feature variance is 
finally calculated for standardized values, after clipping to a maximum. 
A fixed number (default = 2000) of variable features is returned. MVP 
uses a function to calculate average gene counts and gene dispersions. In 
this function, all genes are separated into 20 bins according to their 
average counts. Finally, dispersion z-scores are calculated for each gene 
group. For “Dispersion”, genes with the highest dispersion values are 
kept. For the last two methods, a variable number of features is returned. 

Fig. 1. General workflow of the SCALA pipeline. In this figure, the input files compatible with SCALA for scRNA-seq and scATAC-seq analysis are shown in the left 
panel. Additionally, the main functionalities and outputs, for each mode of analysis for RNA (blue box) and ATAC (red box) assays, are showcased in the right panel. 
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2.6. PCA dimensionality reduction 

PCA is performed on the scaled values of the most variable features 
to determine the “dimensionality” of the dataset. The most informative 
Principal Components (PCs) are identified and used in the next steps of 
cell clustering and cluster visualization. The number of PCs that exhibit 
the higher variation of the scRNA matrix can be determined either 
automatically by applying 10-fold Singular Value Decomposition (SVD) 
cross validation or manually by examining the ranking of the incre
mental variance of each PC (elbow plot). Additionally, loading scores for 
the top genes of a principal component can be plotted (Supp. Fig. 1B). 

2.7. LSI dimensionality reduction 

LSI is performed in scATAC-seq matrices, using genome-wide 500-bp 
tile counts [27]. Tile-counts are normalized to eliminate the cell depth 
bias using a constant of 10,000, followed by inverse document frequency 
normalization and log-transformation. During this process, the most 
variable features (tiles) are detected. The aforementioned process is run 
in an iterative manner where an LSI transformation is applied using the 
most accessible features (tiles). This procedure identifies lower 

resolution clusters that are not batch confounded. Consequently, 
average accessibility for each of these clusters is calculated across all 
features. Finally, the most variable features are identified across 
low-resolution clusters and are used as input for the next LSI iteration. 

2.8. Clustering 

Graph-based clustering is performed in scRNA-seq (Fig. 2B) and 
scATAC-seq (Fig. 3B) matrices, in order to define cell types and/or 
cellular states. Initially, cells are embedded in a Shared-Nearest Neighbor 
(SNN) graph structure based on Euclidean distances in the PCA/LSI 
space. Cells that exhibit similar gene expression/chromatin accessibility 
profiles are connected with edges. The newly formed graph is then 
partitioned into highly interconnected communities using the Louvain 
algorithm [39]. 

2.9. Additional dimensionality reduction methods 

To visualize cells, cell clusters, and cluster relationships in 2D and 3D 
space, additional dimensionality reduction techniques, are applied, like 
uniform manifold approximation and projection (UMAP) [40] (Fig. 3C), 

Fig. 2. Analysis of PBMC3k scRNA-seq dataset. (A) Violin plots depicting cell quality control measurements including the number of genes detected, the total number 
of reads, and the percentage of reads mapped to the mitochondrial genome. (B) Visualization of cells in UMAP space. Cells are colored according to cluster labels 
(clusters were identified with the Louvain algorithm). (C) Feature plot showcasing signature scores/per cell for the top marker genes of cluster 0. Color scale denotes 
the intensity of signature score. Red color indicates high intensity values, while grey indicates low intensity values. (D) UMAP projection showcasing the results of 
cell cycle phase analysis. Cells are colored according to the phase of the cell cycle they are predicted to belong to. (E) Heatmap depicting the top10 marker genes per 
cluster, ranked by Log2FC value. Genes are shown in y-axis and cells are shown in x-axis. Color scale denotes scaled expression values, with blue color indicating low 
expression and red indicating high expression. (F) Heatmap showing “bona fide” interactions between clusters 0 (ligand expressing cluster) and 2 (receptor 
expressing cluster). The intensity of the color represents the interaction potential score (high intensity is represented with red, while low is represented with grey). 
(G) Heatmap of scaled AUC scores for the top regulons per cluster. Color scale denotes z-scores of AUC values (high values represented with yellow color, while low 
values are represented with purple). 
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t-Distributed Stochastic Neighbor Embedding (tSNE) [41], diffusion 
maps [42] or Potential of Heat-diffusion for Affinity-based Trajectory 
Embedding (PHATE) [43]. Such visualizations uncover the underlying 
modularity of the datasets. Additionally, they can be utilized for feature 
inspection, exploration of cluster structures, and trajectory inference 
purposes (especially PHATE). 

2.10. Markers’ identification 

Differential expression as well as differential accessibility analysis 
enable the identification of marker genes (Fig. 2E) and peaks (Fig. 3D) 
respectively and guide the cell-type and cell-state annotation/charac
terization of cell clusters. Differential analysis assists in the detection of 
key transcriptional and regulatory programs that drive pathogenicity 
and/or development. The analysis is performed in a cluster-specific 
manner, where each cluster’s cells are tested against all the other cells 
of the dataset. The available statistical tests for scRNA-seq are: (i) Wil
coxon rank sum test, (ii) likelihood-ratio test for single-cell feature 
expression [44], (iii) standard AUC classifier, (iv) Student’s t-test, (v) 
MAST [45] and (vi) DESeq2. Similarly, for scATAC-seq the tests are: (i) 
Wilcoxon rank sum test, (ii) Student’s t-test and (iii) binomial test. 

2.11. Feature inspection 

Feature expression and chromatin activity can be explored by cell 

scatter plots (Fig. 3E) in reduced space (e.g., UMAP, tSNE, etc.), or via 
violin plots, heatmaps and dotplots. In scRNA-seq datasets, gene signa
tures can also be calculated by utilizing the UCell package and visualized 
as described above (Fig. 2C). Moreover, QC metrics such as total number 
of reads per cell, genes detected per cell, etc. can be visualized via scatter 
plots and violin plots at a cluster level. 

2.12. Doublet detection 

Doublet detection in scRNA-seq datasets is performed utilizing the R 
package DoubletFinder [46]. More specifically, artificial doublets are 
initially simulated and incorporated into the original data. Then cells 
that have a high number of artificial neighbors, in the gene expression 
space, are considered as potential doublets and can be removed from 
downstream analysis. This methodology exhibits higher accuracy in 
detecting doublets originating from transcriptional distinct cell types. 
Regarding scATAC-seq datasets, a similar approach is followed in the 
ArchR package, facilitating the identification of potential doublets. After 
the calculation of doublet enrichment measurements, the user can 
remove doublets by selecting a value for the filterRatio parameter 
(higher values lead to more cells removed as potential doublets). 

2.13. Cell cycle phase analysis 

Calculation of cell cycle phase scores is based on S, G2/M and G1 

Fig. 3. Analysis of BMMCs scATAC-seq dataset. (A) Cell quality control plots depicting information about TSS enrichment and unique fragments measurements. (B) 
Bar plot showing the relative abundance of cells in each of the dataset’s clusters (clusters were identified with the Louvain algorithm). (C) Projection of cells in UMAP 
space. Cells are colored according to cluster identity. (D) Heatmap showing z-scores of peak accessibility for the top marker peaks per cluster. Clusters are shown in y- 
axis, while peaks are plotted in x-axis. (E) Feature plot showcasing gene activity scores (per cell) of CD14 as a UMAP overlay. Intensity of the color denotes imputed 
log2 normalized expression values. (F) Genome browser tracks showing local chromatin accessibility (y-axis left panel) of CD3D gene at cluster level (y-axis right 
panel). (G) Heatmap displaying motif deviations z-scores of positive regulators for all clusters. Regulators are shown in x-axis, while clusters are shown in y-axis. 
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canonical markers in the scRNA-seq count matrix. In cases where 
cluster-specific patterns of cell cycle biases are captured, the user has the 
option to use the “regress out” option (in the step of scaling) in order to 
mitigate the cell-cycle effect. The results of the analysis can be viewed 
either in a scatter plot format, where cells are projected in a reduced 
space (PCA, UMAP, tSNE, diffusion map, PHATE) and colored according 
to the predicted phase of the cell cycle (Fig. 2D) or as a bar plot sum
marizing the percentages of cells assigned to each cell cycle phase per 
cluster. 

2.14. Functional/Motif enrichment analysis 

Using the previously identified marker genes and peaks, functional 
enrichment analysis (e.g., for pathways and Gene Ontologies (GOs)) and 
motif enrichment analysis can be performed for each cluster. In detail, 
for scRNA-seq data, up/down regulated genes from the clusters identi
fied in previous steps are tested for enriched GO terms or KEGG path
ways, using the g:Profiler package [34]. The enriched terms can be 
visualized in a table format accompanied by information about statis
tical significance and gene overlap (between the input list and the term 
of interest). Additionally, a bubble plot summarizing the enriched terms 
per database used is also available (Supp. Fig. 1C). Regarding motif 
enrichment analysis, marker peaks identified in previous steps are tested 
for enrichment of binding sites of specific transcription factors (TFs). 
Finally, deeper functional enrichment analysis with more informative 
visualization is also offered by Flame [47] external application. This can 
be done per cluster (one gene list), or multiple gene lists (up to 10 
clusters) can be analyzed simultaneously with the help of interactive 
UpSet plots (Supp. Fig. 2A). 

2.15. Cluster annotation 

For automated cluster annotation, the CIPR package is utilized [48] 
as it contains reference datasets for human and mouse organisms, to 
assign cell-type identities. The end user can select a dataset to use as a 
reference and the type of analysis that will be employed to calculate the 
predictions, either by keeping all dataset genes or only the differentially 
expressed ones. Moreover, the user can also select the correlation metric 
(Pearson, Spearman) that will be used. Regarding the visualization op
tions, a table containing all predictions per cluster is returned, as well as 
a dot plot that summarizes the top-5 predictions per cluster (Supp. 
Fig. 1D). 

2.16. Multimodal integration analysis 

In this mode of analysis, the user can upload an already processed 
scRNA-seq dataset to perform integration analysis with the scATAC-seq 
dataset, which is currently loaded in SCALA. More specifically, gene 
activity scores from the ATAC assay and gene expression values from the 
RNA assay are combined in order to align cells between datasets. The 
output of integration analysis results in transferring labels from scRNA 
clusters to cells from the scATAC dataset. The newly obtained clustering 
identities of the cells can be adopted in other downstream steps such as 
detection of marker peaks, trajectory analysis, etc. 

2.17. Trajectory analysis 

Pseudotemporal ordering of single-cells facilitates the uncovering of 
underlying differentiation/developmental processes which lead cells to 
transitions between different cellular states. In SCALA, Slingshot [35] is 
employed, utilizing input clustering information and dimensionality 
reduction coordinates for all cells of a dataset, in order to construct a 
Minimal Spanning Tree (MST) at the cluster level. The nodes of the tree 
represent the clusters while the edges represent their in-between re
lationships. The user can select the dimensionality reduction method 
that will be used for the Slingshot execution (PCA, UMAP, tSNE, 

diffusion map, or PHATE), as well as the initial and final states, which 
define the direction of the identified trajectory. The MST is always 
drawn in a UMAP plot, while pseudotime values are calculated per 
lineage and can be visualized again in UMAP space as a separate scatter 
plot. 

2.18. Ligand - receptor analysis 

The prediction of ligand-receptor interactions is a crucial step for 
deciphering cell-to-cell communication in different tissues. Inspection of 
communication patterns between different cell types could aid in the 
detection of key interactions, driving gene expression alterations 
(downstream of signaling pathways) in healthy and disease contexts. 
SCALA incorporates the analysis framework of nichenetR [38]. More 
specifically, after clustering the user needs to select a pair of clusters that 
will be used to search for L-R interactions. As a first step, overexpressed 
genes are calculated in each cluster. Then the reported interactions are 
ranked, by considering a "prior interaction potential" score that is 
calculated in the initial steps, when the protein-protein interaction 
model is constructed. A heatmap visualization summarizes all the in
teractions that have been detected between the two clusters of interest 
(Fig. 2F). L-R interactions and their respective scores are available for 
download in a table format including the prior interaction potential 
score that signifies the strength of the predicted interaction. 

2.19. Gene regulatory network analysis 

In this step, by utilizing the SCENIC workflow [25], co-expression 
modules of TFs (Transcription Factors) and their target genes are 
detected based on co-expression analysis and TF motif analysis. Area 
Under the Curve (AUC) scores per cell are calculated and denote the 
activity of a regulon, defined as a group of genes containing a TF and its 
target genes. Finally, average AUC values and Regulon Specificity Score 
(RSS) scores, which showcase the activity and specificity of regulons, 
can help the user visualize active regulatory networks in heatmap 
format and examine whether cluster-specific regulons are present in the 
dataset (Fig. 2G). Due to limitations in run-time in R environments, 
SCALA offers instructions so that an end-user can externally run some 
parts of the analysis in Python and then import the result files again in 
SCALA for visualization. An alternative option for users who do not wish 
to follow SCENIC analysis is the inference of TF activity levels. To 
achieve that we followed the approach proposed by decoupleR [36], 
which utilizes a curated resource [37] of interactions between TFs and 
their target genes. Gene regulation analysis at chromatin level aims to 
identify cluster-specific TFs, whose expression exhibits a high correla
tion with chromatin accessibility changes at genomic sites, that include 
their DNA binding motifs (positive regulators) (Fig. 3G). 

2.20. Visualization of epigenome signal tracks 

Chromatin accessibility tracks can be used as an alternative to 
feature plots (which depict gene scores in reduced space). The user can 
select a gene and the number of bases upstream and downstream, 
defining a genomic interval of interest. The inspection of the plot 
(Fig. 3F) through a genome browser snapshot can reveal chromatin 
accessibility in the gene body or upstream/downstream gene regulatory 
elements (promoters, enhancers, silencers, etc.). 

3. Results 

3.1. Analysis of two datasets for synovial fibroblasts in arthritis mouse 
model 

To demonstrate SCALA’s functionality, we utilized two previously 
published datasets [49] (scRNA-seq and scATAC-seq), which were pro
duced to investigate the single-cell transcriptome and chromatin 

C. Tzaferis et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 21 (2023) 5382–5393

5388

dynamics of Synovial Fibroblasts transitioning from homeostasis to pa
thology in modeled TNF-driven arthritis. For this purpose, the human 
TNF (hTNFtg) transgene overexpressing mouse model Tg197 [50] was 
used and compared against healthy wild type (Wt) mice. As reported 
previously [49], for the generation of 10x Genomics scRNA-seq libraries 
(Single-cell 3’ v3 reagent kits), 6667 sorted non-hematopoietic stromal 
cells (Cd45-, Cd31-, Ter119-, Pdpn+) were isolated from whole ankle 
joint synovium. These libraries were sequenced at a depth of 400 million 
reads, using one lane of an Illumina NextSeq 500 machine. For the 
second dataset, scATAC-seq libraries were generated using a similar 
experimental set-up, according to 10x Genomics guidelines, profiling a 
total of 6679 single nuclei. In each experiment, cells were derived from 
three healthy mice tissues (WT, 4 weeks of age), and six diseased hTNFtg 
mice; three at an early disease stage (hTNFtg/4, 4 weeks of age) and 
three at an established pathological stage (hTNFtg/8, 8 weeks of age). As 
shown in previous publications [50,51], the Tg197 mouse model 
over-expresses human TNF (huTNF) transgene, leading to the develop
ment of an arthritic phenotype manifested by cartilage destruction and 
bone erosion, which ultimately results in loss of joint function. Here, 
SCALA was used to reanalyze 5903 synovial fibroblast (SFs) tran
scriptomes and 6046 epigenomes, originating from healthy mice (con
trol sample) and arthritic mice at 4 and 8 weeks of age (early and 
established disease state). 

3.2. Analysis using SCALA’s scRNA-seq pipeline 

For the scRNA-seq QC step, cells with < 500 features (genes) 
detected or having > 10% of their reads mapped to the mitochondrial 
genome, were excluded from further analysis. Consequently, down
stream analysis of scRNA-seq was performed as follows: Most highly 
variable feature detection was performed by applying the mean- 
variance-plot (MVP) method implemented by the Seurat package, 
leading to the identification of 1535 variable genes. Gene counts of each 
cell were divided by the total cell counts, multiplied by 10,000, and 
natural-log transformed. Scaling of the normalized expression values 
was performed on all genes by utilizing the option of “regressing out” the 
mitochondrial reads effect. 

The scaled gene-by-cell expression matrix of most variable genes was 
used as input to perform Principal Component Analysis (PCA). To 
identify the dimensionality of the dataset (most informative principal 
components in terms of cell heterogeneity), Singular Value Decompo
sition (SVD) k-fold cross-validation was performed using the dismo R 
library. This procedure determined the number of most informative 
principal components (25 PCs), which were used for the steps of cell 
clustering and non-linear dimensionality reduction analysis. Specif
ically, in order to identify distinct fibroblast subsets, graph-based clus
tering analysis was performed with Seurat’s Louvain algorithm, by 
setting the resolution parameter to 0.6. The 25 most informative PCs 
were also used for non-linear dimensionality reduction analysis (tSNE 
and UMAP), to visualize the newly formed cell clusters in 2D/3D space. 

SF clustering led to the formation of 10 SF clusters, with distinct 
transcriptional profiles, exhibiting homeostatic, inflammatory, and 
destructive characteristics in healthy and arthritic joints respectively. 
These characteristics were detected by performing marker gene identi
fication analysis for each identified SF cluster. More specifically, each 
cluster’s transcriptomes were compared against the rest of the cells’ 
transcriptomes, through the Wilcoxon rank sum test on the normalized 
expression values. Genes with average log Fold Change (logFC) > 0.25, a 
percentage of expression (gene detected in a cell) > 25%, and a p-value 
< 0.01 were retained. 

Consequently, up-regulated genes were used as an input to perform 
functional enrichment analysis. In particular, GO biological processes 
enrichment was conducted for each SF cluster, using g:Profiler. Exami
nation of similarities/differences between SF clusters at the level of 
markers and enriched terms led to the merging of two clusters, (0 and 9). 
The resulting nine clusters were designated as S1, S2a, S2b, S2c, S2d, S3, 

S4a, S4b and S5 (Fig. 4A). It should also be pointed out that the iden
tified clusters exhibit differences in their relative abundances in healthy 
and diseased states. More specifically, one group of them is shrinking, 
while another is expanding during disease (Fig. 4B). Thy1 + clusters 
(S1, S2a, S2b, S2c, S3, and S5) were further annotated as “sublining”. 
Interestingly, their transcriptional and functional characterization 
comprises features of tissue homeostasis preservation, except S5 which 
shows an immuno-regulatory role under healthy conditions. Enriched 
GO terms for these populations include BMP, WNT, TGFbeta, and SMAD 
signaling pathways, as well as response to TNF and IFN-beta/gamma. 
Top markers for these clusters contain Smoc2, Thbs1, Vwa, Rgma, 
Dkk2, Sfrp1, Ecrg4, Osr1, Nr2f2, Klf5, Clu, Id1, Meox1, Pi16, Sema3c, 
Efemp1, Ccl7, Il6, and Notch3. Similarly, the Prg4High S4a cluster was 
annotated as “lining” and was linked with functions that define an 
inflammatory-destructive profile for the particular SF subpopulation. 
The lining phenotype is described by markers like Tspan15, Hbegf, Htra4, 
and Clic5. Regarding the enriched biological processes we detected 
terms such as inflammatory response and class I antigen presentation. 
Finally, clusters S2d and S4b showed a mixed expression profile of Prg4 
and Thy1 (Prg4 + Thy1 +) and thus were annotated as “intermediate” 
subpopulations. Marker genes such as Fbln7, Thbs4, Cthrc1, Lrrc15, 
Dkk3, Mki67, Pdgfa, Birc5, Aqp1, Acta2, Cxcl5, which were found upre
gulated mainly in the intermediate and lining compartments, are either 
previously reported as players of fibroblast pathogenicity or linked to 
potential pathogenic roles. Corresponding terms like regulation of im
mune, redox response, fibroblast proliferation, cell division, and 
apoptosis were found enriched in S2d and S4b. Conclusively, this group 
of clusters showcases a pro-inflammatory and proliferating character 
(Fig. 4C, Supp. Table 3). 

Next, cell cycle phase analysis was performed, assigning each cell to 
S, G1, or G2/M phase. Interestingly, one of the three SF populations 
exhibiting pathogenic characteristics (S4b), showed the highest per
centage of cells located in G2/M phase (Supp. Fig. 2C). This finding was 
also supported by cycling markers (extracted from the literature), that 
were specifically expressed in the S4b cluster. The mixed expression 
signature of Prg4 and Thy1 (Prg4 + Thy1 +), which characterize this 
“intermediate” group of cells, is thus a strong marker of disease state that 
is observed mainly in hTNFtg conditions. 

Cellular trajectories were calculated for the pooled dataset using as 
an input to the slingshot algorithm the first 25 most informative PCs. In 
order to determine the clusters used as an input for the initial and final 
state of the trajectory, current literature [52,53] was taken into 
consideration as well as the results of external software applications 
such as scVelo [54] and CellRank [55]. The produced minimum span
ning tree highlighted the existence of a pathogenic branch composed of 
clusters S2a, S2d, S4b, and S4a, indicating S4a as the final state and S1, 
S2b, S3, and S5 as potential starting points (Fig. 4D). 

We next sought to study ligand-receptor interactions between the 
sublining and intermediate compartments with lining. By employing the 
nichnetR package and focusing on ligands/receptors with a percentage 
of expression > 10% in the clusters of interest, we identified shared and 
specific interactions. More particularly, we detected 157 and 152 in
teractions between sublining-lining and intermediate-lining respec
tively. In more detail, 126 of those interactions were shared, however, 
26 were specific to intermediate-lining and 31 to sublining-lining. 
Interestingly, in the interactions of sublining and lining, we noticed 
pairs of ligands and receptors participating in Wnt and BMP signaling. In 
contrast, in the intermediate-lining interactions, we have detected pairs 
related to MMP13, IL-11, and RSPO2 signaling (Supp. Fig. 2D, Supp. 
Table 4). 

As a last step in the scRNA-seq analysis pipeline, GRN analysis was 
performed to detect regulons that exhibit preferential activation pat
terns at the cluster level. That resulted in the identification of 133 reg
ulons in total. Interestingly, distinct activation patterns were observable 
in the different clusters, and hierarchical clustering of the top-80 reg
ulons revealed two groups, the first containing only sublining clusters 
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and the second containing intermediate and lining (Fig. 4E). 

3.3. Analysis using SCALA’s scATAC-seq pipeline 

Regarding the scATAC-seq data, QC was initially performed, and 
cells with Transcription Start Site (TSS) enrichment score < 4 and count- 
depth < 1000 unique nuclear fragments were removed from down
stream analysis. Next, LSI was employed using a resolution of 0.6, a total 
of 30 dimensions, 4 iterations, and otherwise default settings. Addi
tionally, UMAP projection was produced for the visualization of cells in 
2D space. Gene activity scores were computed as the summed local 
accessibility of promoter-associated count-tiles in the proximity of each 
gene, adopting a distance-weighted accessibility model. In detail, count- 
tiles in the range of 100,000 bp of a gene promoter were aggregated 
using the following distance weight formula: e(− |distance

5000 |) + e− 1. An extra 
normalization step was applied (multiplication by 1

gene size, scaled linearly 
from 1 to 5), in order to account for gene length biases. As a following 
step, the above-weighted sum was multiplied by the aggregated Tn5 
insertions in each tile. Gene scores were then scaled to 10,000 counts 
and log2-transformed. To improve the visualization of gene activity 
scores, a smoothing procedure was applied using the MAGIC algorithm 
[56]. 

Similar to the RNA analysis, clustering was performed with the use of 

the Louvain algorithm with a resolution of 0.6. This procedure led to the 
identification of 8 clusters (Fig. 5A). 

Afterwards, integration between the ATAC dataset and the previ
ously analyzed RNA dataset was performed. Our goal was to achieve 
“label transferring” between the annotated RNA clusters and the new 
groups that emerged after the ATAC clustering analysis. The integration 
process enabled the labeling of scATAC-seq cells according to the 9 SF 
subpopulations occurring in RNA analysis (Fig. 5A) (differences in the 
software versions of Seurat and ArchR employed in SCALA, compared to 
the ones used in the publication containing the initial analysis of the 
dataset didn’t let us reproduce our UMAP visualization in the exact same 
manner). 

Following integration analysis, semi-supervised trajectory inference 
with ArchR (Fig. 5B), confirmed the existence of a pathogenic branch, 
consisting of S2a, S2d, S4b, and S4a clusters, in accordance with scRNA 
findings. 

By utilizing the gene activity scores (calculated as described above), 
the Wilcoxon test was employed (Fig. 5C) in order to detect top marker 
features per cluster (|Log2FC= ≥ 0.58 and FDR ≤ 0.05 cut-offs were 
applied). Consequently, a robust merged peak set was identified across 
SF clusters, using MACS2 [57] by generating two pseudo-bulk replicates. 
Iterative overlap peak merging [58] was applied at the level of the 
pseudo-bulk replicates and across SF subpopulations, forming a single 
merged peak set of 158,713 regions with a fixed length of 500 bps. 

Fig. 4. Use case - hTNFtg scRNA-seq data analysis. (A) Graph based clustering of SFs identified 9 distinct clusters. Cells are visualized in UMAP space and are colored 
by cluster assignment. (B) The barplot depicts relative abundances of clusters in healthy (Wt) and disease (hTNFtg) states. The highlighted areas pinpoint the clusters 
that are expanded in arthritic state. (C) Feature plots showing the different gene expression patterns between the clusters of sublining (top row), intermediate (middle 
row), and lining (bottom row) categories. Cells are projected in the 2D UMAP space and colored by normalized gene expression. (D) One of the possible lineages 
(proposed by trajectory analysis) is showcased in UMAP overlay. Cells belonging to the lineage are colored according to their pseudo-time values, while cells that are 
not part of this lineage are colored in light gray. (E) Heatmap depicting regulon activity of top-80 regulons (z-scores of AUC values) at the cluster level. Hierarchical 
clustering of fibroblast subsets (using active regulons) identified two major groups (group1: sublining clusters, group2: intermediate and lining clusters). 
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Subsequently, differential accessibility analysis between cells was per
formed to identify cluster-specific marker peaks (|Log2FC= ≥ 0.58 and 
FDR ≤ 0.1 cut-offs were applied) (Fig. 5D). Consequently, marker peaks 
were utilized to perform motif enrichment analysis, using the CIS-BP 
database (|Log2FC= ≥ 0.58 and FDR ≤ 0.05 cut-offs were applied) 
(Fig. 5E). The three previous modes of analysis pinpointed the existence 
of distinct patterns of gene activity and peak/motif accessibility along 
clusters. Furthermore, hierarchical clustering on z-scores strengthened 
the categorization of clusters into three main groups namely sublining, 
intermediate, and lining. 

Gene regulatory analysis was conducted in the ATAC assay as well. 
More specifically peak to gene linkages were detected using correlation 
analysis between enhancer peak accessibility and integrated gene 
expression. Moreover, TF motif accessibility was correlated with inte
grated TF gene expression in a cell-by-cell manner, reporting TFs with 
Pearson R2 ≥ 0.5 and p-adjusted value ≤ 0.05, identifying 41 “positive 
regulators” (Fig. 5F). 

In conclusion, analysis of RNA and ATAC data of SFs in healthy and 
hTNFtg mice at single-cell resolution led to the identification of 9 sub- 
populations with distinct functions. Inspection of marker genes 
enriched functional terms, marker peaks, enriched motifs, and regula
tory networks from both analyses supported the categorization of the 
identified clusters in 3 broad groups, namely sublining, intermediate, 

and lining. In the sublining group, clusters showcase gene expression 
and accessibility patterns related to homeostatic properties, while 
clusters belonging to intermediate and lining groups differ in many as
pects from the previously described category, and exhibit properties 
related to proliferation, inflammation, and destruction of the joint. With 
the current use case, the complementarity of the two assays was show
cased. To this end, results from the ATAC analysis were utilized in order 
to corroborate findings from the RNA such as cluster-specific TFs, 
marker genes, and trajectories. It is worth mentioning that the analysis 
of the use case datasets was able to reproduce the original findings of the 
publication and at the same time offered some alternative options for 
some steps of the analysis, such as functional enrichment analysis or 
GRNs, during these steps different tools were employed in SCALA. 
Finally, some concepts regarding comparisons between the three 
different conditions or sub-clustering of the lining population of SFs 
were dropped in favor of simplicity. 

4. Discussion 

SCALA is a comprehensive bioinformatics pipeline offered both as a 
web-server (limited capacity edition) and a stand-alone application. It 
performs end-to-end sc analysis, by using the current best practices of 
the field. It currently enables the analysis of scRNA-seq and scATAC-seq 

Fig. 5. Use case - hTNFtg scATAC-seq data analysis. (A) Integration between scRNA-seq and scATAC-seq datasets. Cluster labels from RNA analysis are transferred to 
ATAC. Cells are projected in UMAP space and colored according to clustering (left) or transferred labels (right). (B) Semi-supervised trajectory analysis in the ATAC 
dataset recapitulates the outcome of the respective analysis in RNA data. S2b was used as an initial state and S4a as a final state. (C) z-scores of gene activity values 
for the top-10 marker features of each cluster (after integration) are displayed in a heatmap.(D) Heatmap displaying z-scores for the accessibility of top-10 marker 
peaks for each cluster (after integration). (E) Motif enrichment analysis in marker peaks of each cluster. Enriched motifs of each cluster are displayed in a heatmap. 
Color scale denotes the significance of enrichment. (F) Gene regulation analysis identifies positive regulators for each cluster. Top regulators are displayed in a 
heatmap. Color scale depicts motif deviations z-scores. In panels (C-F) marker genes/peaks, enriched motifs and positive regulators are shown in x-axis, while clusters 
(after integration) are shown in y-axis. 
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datasets (which comprise the vast majority of the available sc data in the 
literature), facilitating both independent and integrative analysis of the 
two modalities. SCALA was employed to characterize transcriptomics 
and epigenetic profiles of mouse SFs in healthy and arthritic states. The 
different modes of analysis stratified, revealed fibroblast populations 
with distinct patterns of expression, functional characteristics, and 
regulatory networks. For comparison, we report a catalog of similar 
tools (e.g., pagoda2, SingleCAnalyzer [59], Bingle-seq [60], iCellR [31], 
cerebro [30], Is-CellR[61], SeuratWizard [33], ICARUS [62], SC1[63], 
alona [64], WASP [65], CHIPSTER [66], Asc-Seurat [67], GenePattern 
[68], PIVOT [69] and we highlight their pros and cons along with their 
complementarity to SCALA (Supplementary Table 1). To this end, it is 
worth mentioning that to our knowledge, only icellR [31] offers scATAC 
seq analysis whereas only six applications are available as web server 
applications. In addition, SCALA is among the few tools that offer L-R 
and GRN analysis modes. Furthermore, improvements in the user 
interface, such as a comparison mode enabling side-to-side visualization 
of dimensionality reduction plots or feature expression plots, when more 
than one condition is present are to be expected in the near future, 
alongside a mode for scRNA-seq dataset integration based on RPCA. 
Readers who are interested in execution times and RAM consumption for 
different sizes of input datasets are prompted to visit Supp. Table 2, in 
which a benchmarking with 8 single cell datasets is performed. As 
indicated in the table, users are suggested to prefer the desktop version 
of SCALA for larger datasets (> 50,000 cells), as some of the steps cannot 
be completed in the online version. 

5. Conclusions 

SCALA offers a complete bioinformatics pipeline for handling scRNA 
and scATAC datasets, accompanied by a user friendly interface, which 
makes it accessible to a broad audience of biomedical community. Using 
state-of-the-art analysis modules and visualization, SCALA aids re
searchers to decipher complex biological mechanisms in an easy and 
convenient way. It accepts both raw and pre-processed datasets, thus 
giving the users the flexibility to perform their analysis from-scratch, or 
to visualize and reanalyze already processed data. Conclusively, we 
expect that due to its simplicity and its pipeline integration, SCALA will 
become a reference application for biomedical scientists who wish to 
analyze and explore their data in an interactive way. 
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