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ABSTRACT —Objective: The development of pharmaceutical agents relies heavily on optimizing their pharmacodynamics, pharmacokinetics,
and toxicological properties, collectively known as ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity). Accurate
assessment of these properties during the early stages of drug development is challenging due to resource-intensive experimental evaluation
and limited comprehensive data availability. To overcome these obstacles, there has been a growing reliance on computational and predictive
tools, leveraging recent advancements in machine learning and graph-based methodologies. This study presents an innovative approach that
harnesses the power of optimal transport (OT) theory to construct three graph kernels for predicting drug ADMET properties. This approach
involves the use of graph matching to create a similarity matrix, which is subsequently integrated into a predictive model. Results: Through
extensive evaluations on 19 distinct ADMET datasets, the potential of this methodology becomes evident. The OT-based graph kernels
exhibits exceptional performance, outperforming state-of-the-art graph deep learning models in 9 out of 19 datasets, even surpassing the
most impactful Graph Neural Network (GNN) that excels in 4 datasets. Furthermore, they are very competitive in 2 additional datasets.
Conclusion: Our proposed novel class of OT-based graph kernels not only demonstrates a high degree of effectiveness and competitiveness
but also, in contrast to graph neural networks, offers interpretability, adaptability and generalizability across multiple datasets.

INDEX TERMS Optimal tranpsort, ADMET properties, Wasserstein distance, Graph matching, Graph kernels.

IMPACT STATEMENT The proposed method advances drug discovery and development by employing a graph-based framework
rooted in optimal transport theory. This approach facilitates enhanced ADMET drug prooperty predictions, potentially revolutionizing
therapeutic advancements for targeted treatments and drug design precision.

I. INTRODUCTION

THE foundation of drug development is rooted in the
discovery and refinement of therapeutic agents possessing

a harmonious blend of pharmacodynamics, pharmacokinetics,
and toxicological properties. These properties collectively con-
stitute the critical realm of ADMET (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) properties [1]–[3]. They
wield a profound influence over the effectiveness and safety
of a drug, rendering the assessment of ADMET properties
integral to the drug development process. However, navigating
this terrain poses formidable challenges, particularly in the
early stages of drug development. The resource-intensive and
costly nature of experimental evaluations, coupled with limited
accessible data, underscores the imperative need for innovative
approaches and predictive models capable of streamlining drug
discovery, minimizing risks, and optimizing cost-effectiveness
[4], [5].

While millions of active compounds have been identified, the
rate of approved new drugs has not seen significant growth in
recent years. Beyond non-technical challenges, shortcomings
in efficacy and safety are primary factors contributing to this
stagnation, largely attributed to issues with ADMET prop-

erties. ADMET encompasses pharmacokinetic considerations,
determining the ability of a drug molecule to reach its target
protein within the body and its duration in the bloodstream.
Concurrent assessment of the efficacy and pharmacological
properties of drug candidates has become standardized, with
studies on ADMET processes routinely conducted in the early
stages of drug discovery to mitigate attrition rates.

In response to these challenges, computational and predictive
tools have emerged as indispensable assets, harnessing the
power of recent advances in machine learning and graph-
based methodologies [6]–[16]. These tools hold the potential
to illuminate the intricate landscape of ADMET properties,
enabling more informed decision-making and facilitating a
smoother transition from drug discovery to clinical realization
[6], [7].

Recent strides in machine learning have forged crucial links
between molecular characteristics and ADMET properties,
promising more efficient and accurate prediction [17], [18].
This pivotal connection has paved the way for in-depth ex-
plorations of distribution [19], [20], regulations involved in
drug metabolism [21], [22], excretion [23], and other factors
paramount to drug development.
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Furthermore, the spotlight in the pharmaceutical research

domain has turned towards Graph Machine Learning (GML).
This burgeoning field has garnered considerable attention due
to its remarkable capacity to model complex biomolecular
structures and incorporate multi-omic datasets effectively [24].
Graph neural networks, in particular, have made substantial
contributions to the prediction of ADMET properties for small-
molecule drugs [25]–[27]. However, they come with inherent
challenges such as interpretability, deployment complexity,
training speed, and the demand for substantial training data.

Optimal transport (OT), a mathematical framework, has
recently emerged as a promising and versatile tool in the
machine learning community [28]–[33]. Its geometric under-
standing of sample distributions and applications in various
fields, including biology [34]–[37], have opened up exciting
possibilities for innovative research.

Moreover, the concept of graph kernels [38] has demon-
strated remarkable effectiveness in handling the complexities
of graph data structures [39], [40]. In this study, we present a
novel approach for predicting drug ADMET properties.

A preliminary version of this work has been reported [41],
where we utilized optimal transport and developed a graph
kernel method based only on the Wasserstein distance. Here,
we build upon this previous work and incorporate Gromov-
Wasserstein and Fused Gromov-Wasserstein distances to con-
struct graph kernels used to guide machine learning models in
prediction tasks. By performing graph matching and generating
a similarity matrix, we utilize this kernel in a predictive
model. Our comprehensive evaluations on 19 ADMET datasets
demonstrate the promise of our models. Specifically, our OT-
based graph kernel outperforms state-of-the-art graph deep
learning models in 9 out of 19 datasets and performs competi-
tively in two others. These findings underscore the potential
of such methodologies to advance pharmaceutical research.
Our methodology based on Fused Gromov-Wasserstein shows
improvements on accuracy when compared with kernels based
on Wasserstein distance. This novel class of OT-based graph
kernels not only demonstrates a high degree of effectiveness but
also offers interpretability, in contrast to graph neural networks,
and generalizability across multiple datasets.

In this study, our research objectives are to enhance the
prediction of drug ADMET properties by developing and
evaluating novel methodologies based on optimal transport and
graph kernels. Specifically, our objectives are to:

1) Develop Advanced Graph Kernels: Build upon pre-
vious work by incorporating Gromov-Wasserstein and
Fused Gromov-Wasserstein distances to create new graph
kernels that improve the prediction of ADMET properties
[41].

2) Evaluate Model Performance: Assess the performance
of these OT-based graph kernels against state-of-the-art
graph deep learning models on 19 ADMET datasets,
focusing on accuracy and interpretability.

3) Compare and Analyze: Compare the effectiveness of
the new graph kernels with state-of-the-art methods, and
analyze the improvements in predictive accuracy and
generalizability, particularly highlighting advancements

in accuracy and interpretability [17], [25].
These objectives aim to address the challenges in drug

development by providing more effective and interpretable
predictive models for ADMET properties, ultimately advancing
pharmaceutical research.

II. RESULTS

We constructed the cost matrix, C, by calculating the Eu-
clidean distance between the features at the nodes of the
drug pairs. This cost matrix is employed in the optimization
problem to match the two distributions. Derived from the graph
W/GW/FGW distances, a similarity matrix denoted as can be
formulated to be utilized into a learning algorithm. We run
two tasks, classification and regression. For the classification
task, we utilized Support Vector Machine (SVM) and Kernel
Multi Layer Perception using the indefinite kernel matrix e−λM ,
which is an instance of a Laplacian kernel and seen as a noisy
observation of the true positive semidefinite kernel [43]. The
parameter λ can be chosen between 1 and 3. For the regression
task, we used Support Vector Regression (SVR) and different
architecture of Kernel Multi Layer Perception, and we utilized
the same kernel. We utilized a scaffold split to replicate this
distant influence. The data are partitioned into a 7:1:2 ratio
for the training, validation, and test sets, with the training and
validation sets being scaffold shuffled five times to generate
five independent runs. In binary classification tasks, we employ
AUROC (Area Under the Receiver Operating Characteristic)
when the data is balanced, and AUPRC (Area Under the
Precision-Recall Curve) when there are fewer positive instances
compared to negatives. For regression tasks, we utilize MAE
(Mean Absolute Error) and Spearman correlation, especially
in benchmarks where capturing the underlying trend is more
critical than the absolute error.

In the context of classification and regression using Kernel
Multi-Layer Perception (KMLP), the architecture comprises
two fully connected layers with 64 and 32 nodes, respectively.
A Rectified Linear Unit (ReLU) activation function is applied
between these layers, and the output layer size varies based
on the specific task, whether regression or classification. The
optimization of network parameters was performed using the
Adam optimizer [44] with a learning rate of 0.001. Both
networks underwent training for 200 epochs, each with a batch
size of 20.

The results are presented in Table I. Our proposed mod-
els, especially W- and FGW-based frameworks, demonstrate
significantly improved performance relative to current state-of-
the-art graph-based techniques and various deep learning mod-
els across 9 distinct datasets. Moreover, our methods ranked
among the top three methods in 11 out of 19 datasets. as shown
in Figure 1. Notably, the most impactful baseline method, the
GNN employing context prediction masking (CPred), performs
the best on three datasets. This substantiates the adaptability
and generalization capabilities of our proposed models, which
are highly significant attributes within the domain of drug
discovery. Several deep learning methods, including CNN and
MLP based on Morgan fingerprints, did not yield the best
results in any of the datasets, accentuating the robustness of our
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TABLE I: Average across five runs are reported. Arrows (↑,↓) indicate the direction of better performance. The best method is
in bold and the second best is underlined. The (-) symbol denotes that the method is computationally intensive and experienced
extended processing duration. Our results are showed in the last three columns utilized SVM and SVR as learning algorithms.

Raw Feature Type Expert-Curated SMILES Molecular Graph-Based Proposed

Dataset Metric Morgan RDKit2D CNN GCN AttFP AttrM CPred W GW FGW
Absorption

caco2 ↓ MAE 0.908 0.393 0.446 0.599 0.401 0.546 0.502 0.390 0.521 0.368
HIA ↑ AUROC 0.807 0.972 0.869 0.936 0.974 0.978 0.975 0.928 0.911 0.945
Pgp ↑ AUROC 0.880 0.918 0.908 0.895 0.892 0.929 0.923 0.882 0.830 0.886
Bioav ↑ AUROC 0.581 0.672 0.613 0.566 0.632 0.577 0.671 0.748 0.646 0.767
Lipo ↓ MAE 0.701 0.574 0.743 0.541 0.572 0.547 0.535 0.809 - -
AqSol ↓ MAE 1.203 0.827 1.023 0.907 0.776 1.026 1.040 0.992 - -

Distribution

PPBR ↓ MAE 12.848 9.994 11.106 10.194 9.373 10.075 9.445 8.556 8.733 8.584
BBB ↑ AUROC 0.823 0.889 0.781 0.842 0.855 0.892 0.897 0.857 - -
VD ↑ Spearman 0.493 0.561 0.226 0.457 0.241 0.559 0.485 0.722 0.412 0.729

Metabolism

cyp2d6_s ↑ AUPRC 0.671 0.677 0.485 0.617 0.574 0.704 0.736 0.784 0.575 0.814
cyp3d4_s ↑ AUROC 0.633 0.639 0.662 0.590 0.576 0.582 0.609 0.641 0.639 0.651
cyp2c9_s ↑ AUPRC 0.380 0.360 0.367 0.344 0.375 0.381 0.392 0.448 0.385 0.476

Excretion

Half_Life ↑ Spearman 0.329 0.184 0.038 0.239 0.085 0.151 0.129 0.372 0.269 0.414
CL-Micro ↑ Spearman 0.492 0.586 0.252 0.532 0.365 0.585 0.578 0.512 0.533 0.552
CL-Hepa ↑ Spearman 0.272 0.382 0.235 0.366 0.289 0.413 0.439 0.341 0.314 0.324

Toxicity

hERG ↑ AUROC 0.736 0.841 0.754 0.738 0.825 0.778 0.756 0.779 0.762 0.853
AMES ↑ AUROC 0.794 0.823 0.776 0.818 0.814 0.842 0.837 0.789 - -
DILI ↑ AUROC 0.832 0.875 0.792 0.859 0.886 0.919 0.861 0.887 0.862 0.904
LD50 ↓ MAE 0.649 0.678 0.675 0.649 0.678 0.685 0.669 0.648 - -

Top-Ranked Method 0/19 2/19 1/19 0/19 1/19 4/19 3/19 2/19 0/19 7/19

proposed approach. The performance of our proposed method
was particularly noticeable in predicting properties related to
metabolism, distribution, and toxicity.

The three methods based on OT kernels exhibited diverse
performance, with the GW method unexpectedly demonstrating
the lowest performance among the three methods. Conversely,
the model based on FGW outperformed the other two, and the
Wasserstein-based model was generally somewhere in between.
These findings underscore the significance of integrating both
atomic-level features and the topological features of molecules,
along with information on how atoms are connected, when
constructing a graph-based learning model.

In our experiments, we applied the Wasserstein distance-
based kernel to all 19 datasets. However, we noted that for the
GW and FGW-based kernels, obtaining distances was compu-
tationally prohibitive and infeasible for large datasets, namely:
Lipo, AqSol, BBB, AMES, and LD50. As a result, we omitted
these computations as shown blank (“-”) in Table I. The
variability in the performance of our methods across datasets is

expected. In the TDC study [42], the authors observed that “the
[machine learning state-of-the-art] models do not consistently
perform well” across the ADMET Benchmark Group. They
highlighted the contrasting approaches of GNN models, which
focus on local substructures of molecular graphs, and descrip-
tors, which consider global biochemical features. Furthermore,
they suggested that integrating these diverse signals could lead
to improved model performance in the future. Our experiments
provide validation for this recommendation.

III. DISCUSSION

We attribute the performance of our method to the inherent
strength of optimal transport theory, which offers a robust
framework for capturing chemical and structural similarities
between small molecule drugs. The optimal transport outputs
a robust kernel that effectively discriminates between instances.
Moreover, our results indicate that considering atomic-level
features significantly enhances the predictive model’s discrim-
inatory capacity. This enhancement becomes evident when
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Fig. 1: This figure depicts the method ranks across 19 datasets, with the top-performing methods positioned on the left (ranked
one) and the lower-performing ones gradually appearing towards the right (ranked ten).

comparing our method’s outcomes with graph-level feature-
based models such as MLP + Morgan features or MLP +
RDKit2D. A notable limitation of the FGW-based model is
its computational intensity, rendering it impractical for some
large datasets. This constraint is evident in Table I, where
entries for datasets requiring the solution of the quadratic
optimization problem tens of thousands of times remain blank.
In contrast, the Wasserstein-based model exhibited a more
reasonable runtime and successfully processed all datasets,
consistently delivering very competitive results. The GW and
FGW distances are generally more computationally intensive
than the Wasserstein distance due to its additional complexity
in comparing and aligning not just the probability distribu-
tions, but also the underlying metric structures or graphs
associated with these distributions. Finding the Wasserstein
distance involves solving a linear programming problem, and
it is computationally demanding but feasible. Whereas, finding
GW and FGW introduce additional complexity, as it requires
comparing the geometry or structure of the spaces, not just
their mass distributions.

IV. CONCLUSIONS
Our innovative approach, harnessing optimal transport (OT)

theory to formulate a graph kernel for predicting drug AD-
MET properties, demonstrates substantial potential and overall
competitiveness compared to existing state-of-the-art method-
ologies. Notably, the model showcases remarkable adaptabil-
ity and generalization capabilities, suggesting its capacity to
significantly enhance pharmaceutical development. This study
marks a significant advancement in the integration of machine
learning and graph-based methodologies for the early assess-
ment of drug properties, offering insights that pave the way for
more efficient and cost-effective drug development processes.
Future endeavors will focus on further developing OT-based
methods to address intricate challenges in drug discovery, en-
compassing aspects such as protein-protein interactions, drug-
drug interactions, and drug-target interactions.

V. MATERIALS AND METHODS
Graphs are an effective representation of small molecules,

in which atoms are depicted as nodes, and the chemical bonds
between them are represented as edges. This graph-based
depiction adeptly encapsulates both the structural and chemical
insights of these molecules, enabling the application of diverse
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graph algorithms and machine learning methodologies to fore-
cast their properties, interactions, and conduct within biological
systems. Our approach unfolds across successive stages: (1)
transformation of each drug molecule into an assembly of node
embeddings based on the atomic properties of the compound,
(2) quantifying the Wasserstein distance between all graph
pairs, and (3) creation of a similarity matrix that to be utilized
within the learning algorithm.

Now, let us delve into the formalization of the attributed
graph matching problem. In a more rigorous representation,
we deal with undirected labeled graphs, which can be denoted
as tuples in the following structure: G(V,E , l f , ls). Here, (V,E)
constitutes the set of vertices and edges within the graph.
Function l f serves as a labeling mechanism, assigning each
vertex vi ∈ V a feature ai = l f (vi) within a specific feature
metric space. Similarly, ls maps a vertex vi from the graph to
its structure representation si = ls(vi) in some structure space
specific to each graph. In our particular application, this feature
vector encapsulates atomic properties in a chemical compound.

Our proposal involves enhancing the aforementioned graph
by introducing a histogram. This histogram is designed to
convey the relative significance of vertices within the graph.
To implement this, assuming the graph consists of N vertices,
we assign individual weights hi to each of these vertices.
Consequently, our graph adopts the format G(V,E , l f , ls,hG),
where hG operates as a function that links a weight to each
vertex, such that hi = hG(vi). This definition allows us to
portray the graph as a probability measure characterized by
comprehensive support across the feature space. In cases where
all weights are equal, denoted as hi =

1
N , every vertex assumes

an equivalent degree of relative importance.
Our goal is to establish a matching distance metric between

two graphs, denoted as G1 and G2, with N and K vertices,
respectively. Each of these graphs is uniquely characterized
by its respective probability measure, hG1 and hG2 . Our next
step then involves evaluating the pairwise distance between
the molecules. This process initiates with the computation of
ground distances for each pair of nodes.

The mathematical formulation of the proposed methods is
discussed in the supplementary material.
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