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Abstract

We consider conditions under which parametric estimates of the intensity of a

spatial-temporal point process are consistent. Although the actual point process being

estimated may not be Poisson, an estimate involving maximizing a function that corre-

sponds exactly to the log-likelihood if the process is Poisson is consistent under certain

simple conditions. A second estimate based on weighted least squares is also shown

to be consistent under quite similar assumptions. The conditions for consistency are

simple and easily verified, and examples are provided to illustrate the extent to which

consistent estimation may be achieved. An important special case is when the point

processes being estimated are in fact Poisson, though other important examples are

explored as well.

Key words: maximum likelihood estimation, weighted least squares estimation, consistency,

Poisson process, conditional intensity.

1 Introduction.

Maximum likelihood estimates (MLEs) have been extensively used in point process inference

for decades, at least partly because of their known asymptotic properties. The consistency

and asymptotic normality of the maximum likelihood estimate of the intensity of a stationary

point process on the line are elementary (see e.g. Cox and Lewis 1966), and for the parameters

governing the conditional intensity of an arbitrary stationary point process on the line, the

consistency, asymptotic normality and efficiency of the MLE were proven by Ogata (1978).

There have since been a host of similar proofs, generalizing the important results in
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Ogata (1978) to more general point processes under various conditions, of which we name a

few. The case of non-stationary Poisson processes on the line was investigated by Kutoyants

(1984) and more recently by Helmers and Zitikis (1999), and nice summaries of results for

general non-stationary point processes on the line were given by Karr (1986) and Andersen

et al. (1993). Regarding higher-dimensional point processes, conditions for the consistency

and asymptotic normality of the MLE were derived by Brillinger (1975) for stationary mul-

tivariate Poisson processes, by Rathbun and Cressie (1994) for the case of non-stationary

Poisson processes in Rd, by Krickeberg (1982) for such processes in locally compact Haus-

dorff spaces, by Nishayama (1995) for a class of sequential marked point processes, and by

Rathbun (1996a) for non-stationary spatial-temporal point processes. Jensen (1993) derived

the asymptotic normality of the MLE for spatial Gibbs point processes under conditions

similar to those in Rathbun (1996a), and Rathbun (1996b) established conditions for con-

sistent estimation in the case of a spatial modulated Poisson process with partially observed

covariates. Using simulations, Huang and Ogata (1999) assessed the relative efficiency of the

MLE, the maximum pseudo-likelihood estimator and an approximate maximum likelihood

estimator for spatial processes with strong interactions.

The results above are very important since point processes are commonly modeled via

their conditional intensities, with parameters estimated by maximum likelihood. However,

in some cases one may wish to estimate the unconditional intensity or mean measure, i.e.

the expected value of the conditional intensity, assuming it exists. (Hereafter we refer to the

unconditional intensity simply as the intensity). The present paper explores the problem of

parametric estimation of the intensity of an arbitrary simple spatial-temporal point process,
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keeping assumptions about the point process and its conditional intensity to a minimum.

Estimating point process intensities may be important in applications, for several rea-

sons. First, whereas the conditional intensity uniquely characterizes the finite-dimensional

distributions of any simple point process (see e.g. Daley and Vere-Jones, 1988), the intensity

uniquely determines the mean number of points such a process has in any measurable subset

of its domain. Hence accurate estimation of the intensity is critical in cases where the mean

behavior of a point process is of interest. Second, in many cases the parametric form of the

intensity may be more readily suggested than that of the conditional intensity. For example,

a functional form for the intensity may be inferred by examining nonparametric intensity

estimates, such as those produced by smoothing the point process using kernels, splines, or

wavelets (see e.g. Vere-Jones 1992, Brillinger 1998). Third, the assumptions required for the

proofs listed above of the consistency of the MLE for the conditional intensity of a point

process are unfortunately quite stringent, involving multiple restictions on the derivatives

of the conditional intensity. These conditions can be extremely difficult to verify in appli-

cations. For the simpler case of estimating the intensity some results are obtainable under

more general and much simpler assumptions which can readily be verified in applications.

Under such conditions the consistency of the Poisson maximum likelihood estimate (PMLE),

defined as the MLE of the intensity if the process were Poisson, can be demonstrated. Only

a slight variant of these conditions is needed to establish the consistency of the weighted

least squares estimator (WLSE) as well. The simplicity of these assumptions may greatly

facilitate an analysis of when the PMLE and WLSE are consistent, and equally importantly,

when they are not. Note that in the case where the point process being estimated is Poisson,
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the intensity and conditional intensity are the same, as are the PMLE and MLE; hence for

this situation our results represent a proof of the consistency of the MLE under conditions

that are easily verifyable, without restrictions on the derivatives of the intensity function.

The structure of this paper is as follows. After formally introducing the PMLE in Section

2, Section 3 summarizes previous results on the MLE and then gives simpler conditions and

a simple proof of the consistency of the PMLE. Section 4 provides similar conditions for the

consistency of the WLSE. Several examples and counterexamples are given in Section 5 to

demonstrate the need for the conditions in the previous Sections and to clarify under what

conditions consistent estimation of the intensity is achievable, and Section 6 summarizes the

results as well as directions for future research.

2 Preliminaries

Following Brémaud (1981), we consider a spatial-temporal point process to be a measurable

mapping from a filtered probability space (Ω,Ft, P ) onto Φ, the collection of all boundedly

finite counting measures on the spatial-temporal domain S × [0,∞). The filtration Ft is

assumed to be increasing and right continuous, and the spatial domain S any measurable

space equipped with measure µS defined on the Borel subsets of S. Let B denote the Borel

subsets of space-time S× [0,∞). For any spatial-temporal subset B ∈ B the random variable

N(B) represents the number of points in B.

Suppose N has first moment measure M with M(B) := E[N(B)] < ∞ for any B ∈ B.

Then the F -compensator A of N may be defined as the unique F-predictable process such

that N −A is a local F -martingale. The existence and uniqueness of the compensator were
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shown by Jacod (1975). If A is deterministic (and hence equal to M), then N is a Poisson

process.

Let µR denote Lebesgue measure on the real (time-) line, and let µB denote the product

measure µS × µR on space-time. If there exists an integrable, non-negative, real-valued,

F -predictable process λ such that, with probability 1, for all B ∈ B,

∫
B

λ∗(s, t)dµB(s, t) = A(B),

then λ∗ is called an F -conditional intensity of N. Let the intensity λ(s, t) denote the ex-

pectation with respect to P of λ∗(s, t), provided it exists. Hence λ∗ is the Radon-Nikodym

derivative of the compensator A, and λ the derivative of the first moment measure M .

In what follows we consider sequences of point processes, {NT}, T = 1, 2, . . ., where only

the points of NT occurring from time 0 to time T , over all of S, may be observed. We assume

throughout that each process NT has a conditional intensity λ∗T whose expectation λT exists

and is known up to a fixed parameter vector θ, within a complete separable metric space Θ

of possibilities.

The (partial) log-likelihood function for NT is conventionally expressed in terms of the

conditional intensity λ∗T as:

∫
S

T∫
0

log λ∗T (s, t)dNT (s, t)−
∫
S

T∫
0

λ∗T (s, t)dµB(s, t).

When a functional form for λ∗T is known, the parameters governing λ∗T are typically estimated

using the MLE, i.e. the value of the parameters maximizing the log-likelihood function above.

If NT is a Poisson process, then λ∗T and λT are identical, so in this case the log-likelihood
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LT (θ) may be written

∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)−
∫
S

T∫
0

λT (s, t, θ)dµB(s, t). (1)

Hence the estimator θ̂ maximizing (1) may be called the Poisson maximum likelihood esti-

mator (PMLE) of θ. In the next section we examine the case where θ̂ is used to estimate θ

even though N may not be Poisson.

3 Asymptotic Properties of the PMLE

As mentioned in the introduction, several authors have proven the consistency and asymp-

totic normality of the MLE for the parameter vector governing the conditional intensity

of a point process. These proofs typically proceed in standard fashion by writing a Tay-

lor expansion of dLT (θ)/dθj, where LT (θ) is the log-likelihood function (1), yielding the

approximation

∂LT (θ̂)/∂θj ≈ ∂LT (θ∗)/∂θj +
K∑

k=1

(θ∗k − θ̂k)I
jk
T (θ∗),

where θj is the jth coordinate of θ, θ∗ is the true parameter vector being estimated, and

Ijk
T (θ) = ∂2LT (θ)/∂θj∂θk is the jk element of the Fisher information matrix. The asymptotic

results then follow by observing that ∂LT (θ∗)/∂θj are local square integrable martingales

and invoking the martingale central limit theorem. (For details see e.g. Theorems VI.1.1

and VI.1.2 of Andersen et al., 1993.) Conditions are required, however, to ensure that the

remainder terms in the Taylor approximation are negligeable and that the assumptions for

the martingale central limit theorem are met. For instance, consider the following conditions
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of Rathbun (1996a), for a sequence {NT} of spatial-temporal point process with λT and λ∗T

as defined in Section 2, and where the functional form of λ∗T is known up to a fixed parameter

θ ∈ Θ:

(A1) Θ is a compact subset of RK .

(A2) λ∗T (u; θ) is continuous as a function of θ, non-negative almost surely almost every-

where in S, for all θ ∈ Θ.

(A3) For each T = 1, 2, . . ., the compensator satisfies

AT (S × [0, T ]; θ) :=
∫
S

T∫
0

λ∗T (s, t; θ)dµB(s, t) <∞

with probability one.

(A4) λ∗T has derivatives ∂λ∗T (s, t; θ)/∂θi and ∂2λ∗T (s, t; θ)/∂θi∂θj that are continuous func-

tions of θ for all θ ∈ Θ, for all i, j = 1, . . . , K, and almost all s ∈ S and t ∈ [0, T ].

(A5) For all i, j = 1, . . . , K,

sup
θ∈Θ

sup
t∈[0,T ]

E[
∫
S

(∂2λ∗T (s, t; θ)/∂θi∂θj)
2

λ∗T (s, t; θ)
dµS(s)] <∞,

and

sup
θ∈Θ

sup
t∈[0,T ]

E[
∫
S

(∂λ∗T (s, t; θ)/∂θi ∂λ
∗
T (s, t; θ)/∂θj)

2

(λ∗T (s, t; θ))3 dµS(s)] <∞.

(A6) For all i, j = 1, . . . , K,

1

T

∫
S

T∫
0

∂λ∗T (s, t; θ)/∂θi ∂λ
∗
T (s, t; θ)/∂θj

λ∗T (s, t; θ)
dµB(s, t)

p→
T→∞

σij(θ)

uniformly in θ, and the matrix Σ(θ) whose (i, j) element is σij(θ) is positive definite and

deterministic.
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(A7) For all i, j = 1, . . . , K, and all c > 0,

sup
θ,θ′∈Θ

 1

T

∫
S

T∫
0

∣∣∣∣∣∂λ∗T (s, t; θ)

∂θi

∂λ∗T (s, t; θ)

∂θj

− ∂λ∗T (s, t; θ′)

∂θi

∂λ∗T (s, t; θ′)

∂θj

∣∣∣∣∣ dµB(s, t);
√
T |θ′ − θ| ≤ c


converges in probability to 0 as T →∞, uniformly in θ.

Theorem 3.1. Under conditions (A1-A7), the MLE is consistent and asymptotically

normal.

Theorem 3.1 was proven by Rathbun (1996a), using a result of Sweeting (1980). An-

dersen et al. (1993) consider conditions slightly stronger than those of Rathbun (1996a),

including conditions on the third partial derivatives of the conditional intensity. However,

even Rathbun’s conditions (A1-A7) can be difficult to check in applications, as noted on

page 62 of Rathbun (1996a).

The proofs of Rathbun (1996a) and Andersen et al. (1993) for the consistency and asymp-

totic normality of the MLE for the parameters governing λ∗ extend readily to the use of the

PMLE as an estimate of the parameters governing λ. However, for this simpler case of

estimating the intensity λ, fewer conditions are needed and much simpler machinery is re-

quired. Below we present assumptions for the consistency of the PMLE which we believe

are considerably simpler and easier to verify than (A1-A7).

Let θ∗ denote the true value of the parameter vector being estimated, and let θ̂T denote

the PMLE of θ∗. Given any value of θ∗, we assume that there exists a function φ(t) and

subsets ΘT ⊆ Θ such that:

(B1) P (θ̂T /∈ ΘT ) →
T→∞

0.

(B2) ΘT contains θ∗ and admits a finite partition of compact subsets Θ1
T , ...,Θ

J
T such that
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λT (s, t; θ) is continuous as a function of θ within each subset Θj
T .

(B3) For all θ in ΘT , V

[∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)

]
= o (φ(T )2).

(B4) Given any neighborhood U of θ∗, there exists γ1 > 0 so that for all sufficiently large

T , there is a subset of S × [0, T ] of µB-measure at least γ1φ(T ) on which λT (s, t; θ∗) and

| log λT (s, t; θ∗)− log λT (s, t; θ)| are uniformly bounded away from zero, for θ ∈ ΘT \ U .

Assumptions (B1) and (B2) control the regularity of Θ. We note in passing that for the

case where the parameter space Θ contains only countably many elements, the continuity

requirement (B2) is not required for Theorem 3.2 below. Assumption (B3) controls the

variance of the process N . Assumption (B4) ensures that any neighborhood U of θ∗ provides

sufficient restriction on λT (s, t; θ). It is demonstrated in Section 5 why these assumptions

are needed to establish the consistency of the PMLE.

Theorem 3.2. Under assumptions B1-B4, the PMLE θ̂ is consistent.

Proof.

Consider the value θ∗ fixed. We seek to show that ∀ε > 0, for any neighborhood U of θ∗,

for all sufficiently large T ,

P
(
θ̂T /∈ U

)
< ε. (2)

Fix ε > 0 and U . We first show that there exists δ > 0 such that for sufficiently large T ,

ELT (θ∗)/φ(T )− sup
θ∈ΘT \U

ELT (θ)/φ(T ) ≥ δ, (3)

where now LT (θ) is defined by (1).

Observe that

ELT (θ∗) − sup
θ∈ΘT \U

ELT (θ)
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= E
∫
S

T∫
0

log λT (s, t; θ∗)dNT (s, t)−
∫
S

T∫
0

λT (s, t; θ∗)dµS(s)dt

− sup
θ∈ΘT \U

E
∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)−
∫
S

T∫
0

λT (s, t; θ)dµS(s)dt


=

∫
S

T∫
0

log λT (s, t; θ∗)λT (s, t; θ∗)dµS(s)dt−
∫
S

T∫
0

λT (s, t; θ∗)dµS(s)dt

− sup
θ∈ΘT \U


∫
S

T∫
0

log λT (s, t; θ)λT (s, t; θ∗)dµS(s)dt−
∫
S

T∫
0

λT (s, t; θ)dµS(s)dt


= inf

θ∈ΘT \U


∫
S

T∫
0

λT (s, t; θ∗)

[
log λT (s, t; θ∗)− logλT (s, t; θ)− 1 +

λT (s, t; θ)

λT (s, t; θ∗)

]
dµS(s)dt


= inf

θ∈ΘT \U


∫
S

T∫
0

λT (s, t; θ∗) [exp(ψ(s, t, θ))− ψ(s, t, θ)− 1] dµS(s)dt

 ,
where ψ(s, t, θ) = log λT (s, t; θ)− log λT (s, t; θ∗).

Assumption (B4) ensures that there exists some positive constants γ1, γ2, γ3 such that for

sufficiently large T , for all t in a subset of [0, T ] with measure at least γ1φ(T ), λT (s, t; θ∗) > γ2

and |ψ(s, t, θ)| > γ3. Let γ4 = min{exp(γ3)− γ3 − 1, exp(γ3 + γ3 − 1}. Recalling that γ3 > 0

and that the inequality exp(x) ≥ x + 1 has equality iff. x = 0, (see e.g. Abramowitz 1964),

it follows that γ4 > 0.

Hence, for sufficiently large T , ELT (θ∗)− sup
θ∈ΘT \U

ELT (θ) ≥ γ1γ2γ4φ(T ), which establishes

(3) for δ = γ1γ2γ4.

With ΘT defined as in assumption (B1) and Θ1
T , ...,Θ

J
T as in assumption (B2), fix m

elements θ1 ∈ Θ1
T , ..., θ

J ∈ ΘJ
T . By assumption (B3), for each such value θj,

V

[
LT (θj)

φ(T )

]
= V

 1

φ(T )

∫
S

T∫
0

log λT (s, t; θj)dNT

→ 0.

Hence, for each θj, since each of the following terms obviously has mean zero and has variance
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converging to zero,

LT (θj)− ELT (θj)

φ(T )

p→
T→∞

0 (4)

by Chebyshev’s inequality.

Since by assumption (B2) the function λT (s, t; θ) is continuous with respect to θ on Θj
T ,

so is the function

LT (θ)− ELT (θ)

φ(T )
=

∫
S

T∫
0

log λT (s, t; θ)dNT −
∫
S

T∫
0

log λT (s, t; θ)λT (s, t; θ∗)dµS(s)dt

φ(T )
.

Thus the compactness of Θj
T implies that [LT (θ) − ELT (θ)]/φ(T )

p→
T→∞

0 uniformly on Θj
T .

Since ΘT =
J
∪

j=1
Θj

T , [LT (θ)− ELT (θ)]/φ(T )
p→

T→∞
0 uniformly on all of ΘT .

Hence there is a δ > 0 such that for sufficiently large T ,

P

(
sup
θ∈ΘT

[LT (θ)− ELT (θ)]/φ(T ) ≥ δ/2

)
< ε/3 (5)

and

P (θ̂ /∈ ΘT ) < ε/3. (6)

Let θ̌T denote a (possibly non-unique) value of θ maximizing LT (θ) among θ̌T ∈ ΘT \ U ,

i.e. LT (θ̌T ) ≥ LT (θ),∀θ ∈ ΘT \ U . Putting together (3), (5), and (6) yields, for sufficiently

large T ,

P
(
θ̂T /∈ U

)
≤ P

(
θ̂T /∈ ΘT

)
+ P

(
LT (θ̌T ) ≥ LT (θ∗)

)
≤ P

(
θ̂T /∈ ΘT

)
+ P

(
LT (θ̌T )− ELT (θ̌T ) ≥ δφ(T )/2

)
+P

(
ELT (θ̌T )− ELT (θ∗) > −δφ(T )

)
+ P (ELT (θ∗)− LT (θ∗) ≥ δφ(T )/2)

< ε/3 + ε/3 + 0 + ε/3,
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establishing (2).

Assumptions (B1-B4) are by no means minimal, but they are quite straightforward to

verify, in contrast to the conditions in previous results regarding maximum likelihood esti-

mation. In particular, no conditions on the derivatives of λ are required. In addition, the

replacement of assumption (A1) by (B1) is quite simple and scarcely affects the proof, yet

this feature of Theorem 3.2 may be quite attractive since typically in appications the domain

for each estimated parameter is, a priori, the whole real line R or in some cases the half-line

R+, rather than some compact subset thereof. The assumption (A1) of compactness of the

parameter space is nevertheless commonly assumed in the results of previous authors on the

asymptotic properties of the MLE for point processes. Note that while this assumption is

stated explicitly by Ogata (1978) and by Rathbun and Cressie (1994), in other works (e.g.

Rathbun 1996a) this condition is not explicitly listed in the assumptions but instead appears

in the statement of the theorem or in the definition of consistency.

Remark 3.3. Note that assumption (B4) is quite a bit stronger than what is minimally

necessary for Theorem 3.2. (B4) is only used in the proof of relation (2) and hence may be

discarded for processes where this inequality can be proven directly.

4 Weighted Least Squares Estimates

The parameters θ∗ governing the intensity of a spatial-temporal point process can alterna-

tively be estimated by weighted least squares (WLS). Here the estimator θ̃T is chosen to
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minimize the quadratic variation:

QT (θ) =
IT∑
i=1

wT
i

[
NT (BT

i )− E{NT (BT
i ); θ}

]2
, (7)

where for given T , the sets {BT
1 , . . . , B

T
IT
} form a partition of the product space S × [0, T ],

and the weights wT
i are non-negative constants. Here E{NT (BT

i ); θ} =
∫

BT
i

λ(s, t; θ)dµS(s)dt;

with this notation, ENT (BT
i ) = E{NT (BT

i ); θ∗}. For simplicity, assume that for each T , the

number of bins IT in the partition is finite.

We consider the following replacements for assumptions (B3-B4):

(C3) For all θ in ΘT , max
i
V

 ∫
BT

i

dNT

 = o (φ(T )2).

(C4) Given any neighborhood U of θ∗, there exist constants ν1, ν2, ν3 > 0 so that for

sufficiently large T , a fraction of at least ν1φ(T ) of the bins BT
i have product measure µB(BT

i )

at least ν2/
√
wT

i and the property that either λT (s, t; θ) − λT (s, t; θ∗) > ν3 or λT (s, t; θ) −

λT (s, t; θ∗) < −ν3 for all s, t ∈ BT
i and all θ ∈ ΘT \ U .

Assumption (C3) guarantees that the processN is not too volatile. Like (B4), assumption

(C4) ensures that outside neighborhoods U of θ∗, λT is uniformly bounded away from its

value at θ∗ within a sufficient fraction of adequately-sized (and adequately-weighted) bins.

As with assumptions (B3-B4), these assumptions are relatively easy to verify.

Theorem 4.1.

Under assumptions (B1-B2) and (C3-C4), the WLSE θ̃T is consistent.

Proof.
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QT (θ) =
∑

i

wT
i

[
NT (BT

i )− E{NT (BT
i ); θ}

]2
=

∑
i

wT
i

[
NT (BT

i )2 − 2NT (BT
i )E{NT (BT

i ); θ}+ (E{NT (BT
i ); θ})2

]
.

Taking expectations yields

EQT (θ) =
∑

i

wT
i

[
ENT (BT

i )2 − 2ENT (BT
i )E{NT (BT

i ); θ}+ (E{NT (BT
i ); θ})2

]
. (8)

Fix θ∗ and a neighborhood U around it. Letting δ = ν1ν
2
2ν

2
3 > 0, from (8) and (C4) one

obtains, for sufficiently large T ,

inf
θ∈ΘT \U

1

ITφ(T )
[EQT (θ)− EQT (θ∗)]

= inf
θ∈ΘT \U

1

ITφ(T )

∑
iT

wT
i

[
(E{NT (BT

i ); θ})2 − 2ENT (BT
i )E{NT (BT

i ); θ}+ (ENT (BT
i ))2

]
= inf

θ∈ΘT \U

1

ITφ(T )

∑
iT

wT
i

[
E{NT (BT

i ); θ} − ENT (BT
i )
]2

= inf
θ∈ΘT \U

1

ITφ(T )

∑
iT

wT
i

 ∫
t∈BiT

(λT (s, t; θ)− λT (s, t; θ∗)) dµS(s)dt


2

≥ 1

ITφ(T )
ν1φ(T )IT [ν2ν3]

2

= δ. (9)

Note that assumption (C3) implies that V [QT (θ)] = o (I2
Tφ(T )2) by the Cauchy-Schwarz

inequality. Thus [QT (θ) − EQT (θ)]/ITφ(T )
p→

T→∞
0 for all θ in ΘT , and assumption (B2)

ensures that this convergence is uniform over all θ in ΘT , just as in Theorem 3.2.

Hence if θ̀T denotes the WLSE of θ among θ̀T ∈ ΘT \ U , then for sufficiently large T ,

P
(
θ̃T /∈ U

)
≤ P

(
θ̃T /∈ ΘT

)
+ P

(
QT (θ̀T ) ≥ QT (θ∗)

)
≤ P

(
θ̃T /∈ ΘT

)
+ P

(
QT (θ̀T )− EQT (θ̀T ) ≤ −δTφ(T )/2

)
15



+P
(
EQT (θ̀T )− EQT (θ∗) < δTφ(T )

)
+ P (EQT (θ∗)−QT (θ∗) ≤ δTφ(T )/2)

< ε/3 + ε/3 + 0 + ε/3,

which completes the proof.

5 Examples and Counterexamples

Some examples may help to clarify when the conditions for consistent estimation are satisfied.

Our first two examples consider the Poisson case, where λ = λ∗ and the PMLE and MLE

are equivalent.

Example 5.1. SupposeNT is a sequence of spatial-temporal versions of the cyclic Poisson

process, studied for example by Helmers and Zitikis (1999) and Helmers et al. (2003). That

is, suppose NT is Poisson with separable intensity function

λT (s, t; θ) = f(s; θ)g(t; θ), (10)

where f, g > 0, θ ∈ RK for some positive integer K, and g is any integrable cyclic function

with (possibly unknown) period τ , i.e. g(t; θ) = g(t+ jτ ; θ), for all t and any integer j. Let f

and g be continuous in θ with | log fg| bounded for each θ by some constant Bθ, and suppose

α :=
∫
S
f(s; θ∗)dµS(s) < ∞ and β :=

τ∫
0
g(t)dt < ∞. Finally, suppose that condition (B4)

holds with φ(T ) = T ; note for example that one only needs f(s; θ∗) > c1 > 0 for t in some

non-null subset of [0, τ), and g(t; θ∗) > c2 > 0 for s in some non-null subset of S, in order to

ensure that λT (s, t; θ∗) is uniformly bounded away from zero on a subset of µB-measure at

least γ1T .
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Assumptions (B1) and (B2) are satisfied with ΘT = [−T, T ]K , and since NT is Poisson,

VT (θ) := V ar

∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)

 (11)

= E

∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)

2

−

E ∫
S

T∫
0

log λT (s, t; θ)dNT (s, t)

2

=
∫
S

T∫
0

[log λT (s, t; θ)]2λT (s, t; θ∗)dµS(s)dt+

∫
S

T∫
0

log λT (s, t; θ)λT (s, t; θ∗)dµS(s)dt

2

−

∫
S

T∫
0

log λT (s, t; θ)λT (s, t; θ∗)dµS(s)dt

2

=
∫
S

T∫
0

[log λT (s, t; θ)]2λT (s, t; θ∗)dµS(s)dt

≤ B2
θαβ(1 + T/τ)

= o(T 2),

so condition (B3) is satisfied with φ(T ) = T .

Example 5.2. Let NT be a sequence of spatial-temporal Poisson processes, but not

necessarily cyclical or separable. Suppose log λT (s, t; θ) is continuous in θ ∈ RK and bounded

in absolute value by some constant Bθ <∞, and that the space S has finite, positive measure

µS(S). Finally, suppose that λT is parameterized such that for θ outside any neighborhood

U of θ∗, | log λT (s, t; θ∗)− log λT (s, t; θ)| is uniformly bounded away from zero.

Then

VT (θ) ≤ B2
θV

∫
S

T∫
0

dNT (s, t)


= B2

θENT (S × [0, T ])

≤ B2
θ exp(Bθ)TµS(S),
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so requirement (B3) is fulfilled with φ(T ) = T . (B1) and (B2) are similarly satisfied by

ΘT = [−T, T ]K as in example 5.1, and assumption (B4) is satisfied since λT (s, t; θ∗) >

exp(−B∗
θ ) > 0 on S × [0, T ] which has measure TµS(S).

Example 5.3. Suppose NT are spatial-temporal versions of the Isham and Westcott

(1979) self-correcting point process, as described by Rathbun (1996a). Such processes have

conditional intensity

λ∗T (s, t; θ) = exp [θ1 + θ2 (t− θ3NT {b(s, r)× [0, t)})] ,

where b(s, r) is a ball of radius r around location s, and θ2 and θ3 are positive. Such pro-

cesses are called self-correcting since the further θ3NT {b(s, r)× [0, t)} happens to deviate

from t, the more the conditional intensity λ∗T adjusts until θ3NT {b(s, r)× [0, t)} comes back

to t. Hence the variance of NT {b(s, r)× [0, t)} is actually smaller than that of the Poisson

process with equivalent intensity, and (B3) and (B4) are easily satisfied with φ(T ) = T as in

the previous example, provided 0 < µS(S) <∞.

Example 5.4. For point processes with rapidly increasing intensities, assumption (B4)

will typically not be satisfied, but in such cases one may appeal to Remark 2.3. For example,

if λT increases exponentially, i.e. if λT is separable with g(t) ∝ exp(θKt), then (B3) and (2)

are satisfied with φ(T ) = exp(θ∗Kt).

The next two examples illustrate limitations on the possibilities for consistent estimation

of the intensity.

Example 5.5. Suppose NT are observations on S × [0, T ] of a finite point process,
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N , i.e. a process that, with positive probability, may contain only finitely many points on

S × [0,∞). In this case consistent estimation of θ is unachievable, as is well known (see for

instance Example 6.3 of Rathbun and Cressie 1994). An example is when N is a spatial-

temporal Poisson process with separable intensity as in (10), with g(t; θ) ∝ exp(θit), where

θi < 0. One may inquire which of the conditions (B1-B4) are not met in this case. Since the

integral lim
T→∞

∫
S

T∫
0
λT (s, t; θ∗) <∞, the set on which λT is uniformly bounded away from zero

must have finite product measure; hence φ(T ) = O(1) in condition (B4). However, since

N is a Poisson process VT (θ) is non-decreasing as a function of T , so assumption (B3) is

violated: VT (θ)/φ(T )2 6→ 0 as T →∞.

Example 5.6. If λT has a change-point governed by a parameter in θ, then in general

consistent estimation of θ is unachievable. For a simple example let NT be Poisson with

λT (s, t; θ) = θ11{t≤θ2} + θ31{t≤θ2},

and where 0 < µS(S) < ∞. Assumption (B4) is violated, since for any neighborhood

U = (θ∗1 − ε1, θ
∗
1 + ε1) × (θ∗2 − ε2, θ

∗
2 + ε2) × (θ∗3 − ε3, θ

∗
3 + ε3) of θ∗, λT (s, t; (θ∗1, θ

∗
2, θ

∗
3)) =

λT (s, t; (θ∗1, θ
∗
2 − ε2, θ

∗
3)) for t > θ∗2. Thus the set of (s, t) on which | log λT (s, t; θ∗)−log λT (s, t; θ)|

are uniformly bounded away from zero for θ ∈ ΘT \ U has µB-measure less than θ∗2µS(S) =

O(1), which violates (B4) since VT (θ) = O(T ). In general if λT is governed by a parameter

θi that does not affect λT (s, t; θ) on a set of (s, t) with infinite measure, then consistent esti-

mation of θi is unachievable, so assumption (B4) is needed to ensure such cases are excluded.
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6 Discussion

Although maximum likelihood estimation for point processes is very common, examples of

applications where the assumptions necessary to establish the consistency of the MLE are

verified are rather elusive. The general impression among applied researchers appears to

be that asymptotic properties of the MLE such as consistency and asymptotic normality

apply quite generally, and that verification of these properties for particular point process

models is difficult and unnecessary. The aim of the current paper is to provide conditions

for consistent estimation of point process intensities that may readily be verified in practice.

These results are stated for the estimation of the intensity using the PMLE and NLSE; a

special case includes estimation of Poisson intensities by MLE.

Our results involve conditions on the rate of increase of the variance of the point process.

Since variances are rather easy to check and are easily interpretable, it is possible that these

conditions may be checked in applications without explicit assumption of a parametric form

for the conditional intensity of the point process, but rather by examining the variance

directly, or by appealing to subject matter information or knowledge of the mechanism

driving the point process. By contrast, it is difficult to see how the applied researcher

could justify assumptions involving the second (and higher-order) partial derivatives of the

conditional intensity of the point process without specifying the conditional intensity in

detail.

Although our assumptions may be easily verifiable, they are by no means minimal, nor

are our results optimally strong. In particular, only consistent estimation is investigated

here. Similar conditions under which estimates may be shown to be asymptotically normal
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and/or efficient are important subjects for further research.
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