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Gonzàlez-Rosell, Anna
Evans, Joshua
et al.

Publication Date
2022-10-25

DOI
10.1021/acsnano.2c05390
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/65c042h0
https://escholarship.org/uc/item/65c042h0#author
https://escholarship.org
http://www.cdlib.org/


Chemistry-Informed Machine Learning
Enables Discovery of DNA-Stabilized Silver
Nanoclusters with Near-Infrared Fluorescence
Peter Mastracco, Anna Gonzal̀ez-Rosell, Joshua Evans, Petko Bogdanov, and Stacy M. Copp*

Cite This: ACS Nano 2022, 16, 16322−16331 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: DNA can stabilize silver nanoclusters (AgN-DNAs)
whose atomic sizes and diverse fluorescence colors are selected by
nucleobase sequence. These programmable nanoclusters hold
promise for sensing, bioimaging, and nanophononics. However,
DNA’s vast sequence space challenges the design and discovery of
AgN-DNAs with tailored properties. In particular, AgN-DNAs with
bright near-infrared luminescence above 800 nm remain rare,
placing limits on their applications for bioimaging in the tissue
transparency windows. Here, we present a design method for near-
infrared emissive AgN-DNAs. By combining high-throughput
experimentation and machine learning with fundamental informa-
tion from AgN-DNA crystal structures, we distill the salient DNA
sequence features that determine AgN-DNA color, for the entire known spectral range of these nanoclusters. A succinct set of
nucleobase staple features are predictive of AgN-DNA color. By representing DNA sequences in terms of these motifs, our
machine learning models increase the design success for near-infrared emissive AgN-DNAs by 12.3 times as compared to
training data, nearly doubling the number of known AgN-DNAs with bright near-infrared luminescence above 800 nm. These
results demonstrate how incorporating known structure−property relationships into machine learning models can enhance
materials study and design, even for sparse and imbalanced training data.
KEYWORDS: machine learning, metal nanoclusters, nanomaterials, high-throughput experiments, luminescence

INTRODUCTION
Metal nanoclusters represent the smallest of nanoparticles,
containing just a few to several hundred metal atoms.1

Nanoclusters can be synthesized to atomic precision and
possess intriguing photonic properties, such as discrete
molecular-like optical spectra and bright luminescence, and
these properties depend strongly on nanocluster composition
and structure.2 To gain control over nanocluster photonics, it
is necessary to develop synthetic strategies to control
nanocluster structures. A key step in this process is the
selection of molecular or atomic ligands, which protect the
nanocluster from degradation. Ligands are the architects of
metal nanoclusters, controlling the size, geometry, and
electronic structure of these atomically precise nanoparticles.3

Most frequently stabilized by small molecules like thiolates or
phosphines,4 noble-metal nanoclusters can also be stabilized by
complex macromolecular ligands.5 Among these, DNA is an
unusually programmable multidentate ligand for noble-metal
nanoclusters.6,7 Single-stranded DNA can stabilize silver
nanoclusters (AgN-DNAs) with diverse sequence-selected
sizes and visible to near-infrared (NIR) fluorescence colors,8

creating a palette of tunable fluorophores that are inherently
embedded in DNA. The nanocluster-templating DNA ligands
also enable higher-order organization of AgN-DNAs

9 and
control near-field nanocluster interactions.10,11 Sequence-
encoded AgN-DNAs present the possibility of achieving
atomically precise nanoclusters with programmable struc-
ture−property relationships and an inherent biological inter-
face, with potential applications in biosensing, imaging, and
integration into versatile DNA nanotechnologies.
Fluorescent AgN-DNAs are partially oxidized clusters of N =

10−30 silver atoms stabilized by 1−2 DNA oligomers.12,13

AgN-DNAs possess diverse visible to NIR fluorescence colors.
DNA ligands sculpt silver nanoclusters with rodlike shapes,12,14
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which is a degree of structural anisotropy that is unusual for
nanoclusters. This prolate geometry produces a strong
correlation of N to AgN-DNA color12 and signatures of
plasmon-like excitations,11,15 as computationally predicted for
nanocluster rods.16−18 A dimly emissive violet AgN-DNA with
a compact shape has also been reported, suggesting that DNA
can stabilize either compact or rodlike AgN.

13 AgN-DNAs hold
significant promise for biosensing,19 bioimaging,20,21 and
molecular logic.22 In particular, emerging NIR-emissive AgN-
DNAs23−26 are promising fluorophores for bioimaging in the
tissue transparency windows, where biological tissues and
fluids scatter, absorb, and emit far less light and suitable
fluorophores have been lacking.27

However, the science and applications of AgN-DNAs have
been hindered by the poor understanding of how DNA’s
immense sequence space correlates to the diversity of AgN-
DNA properties. Most researchers stabilize AgN-DNAs with
oligomers of L = 10−30 nucleobases, which have 4L possible
nucleic acid sequences. While Ag+ has a greater affinity for
cytosine (C) and guanine (G) than for adenine (A) and
thymine (T),28 all four nucleobases influence AgN-DNA
properties.29,30 Thus, it is crucial to determine how the
sequence encodes AgN properties and to harness this
information to design DNA template sequences for AgN-
DNAs and other DNA-based nanoclusters.7,31

DNA’s combinatorial nature makes machine learning (ML)
approaches32 well-suited for probing AgN-DNA “sequence−
structure−property” relationships. Because first-principles
models for AgN-DNAs are nascent,

33 experimental data are
necessary to enable ML.30,34−36 We previously developed high-
throughput chemical synthesis and optical characterization30 to
generate data libraries that connect DNA sequences to visible
and NIR fluorescence colors of AgN-DNAs.

24,35 Because AgN-
DNAs naturally fall into color classes based on magic number
properties,30 we employed supervised ML to determine how
sequence encodes AgN-DNA color class. (Supervised ML
involves the use of labeled data sets of inputs, e.g. DNA
sequence, and their corresponding outputs, e.g. AgN-DNA
color, to train ML algorithms to map inputs onto outputs.
Inputs are represented numerically in the form of feature

vectors (features are sometimes called descriptors). The
process of choosing which features to use is called feature
engineering and is a critical step in ML. Excellent reviews by
Ferguson and Domingos provide accessible introductions to
ML for readers.37,38) Our models were up to 3 times more
likely to select 10-base DNA strands for target AgN-DNA
colors in the visible spectrum as compared to random
selection,35 and the models remained predictive for DNA
strands of other lengths.39 However, we were previously
constrained to AgN-DNAs with fluorescence emission from
450 to 800 nm, limiting the model’s utility for NIR AgN-DNAs
in the tissue transparency windows. Also, because this work
preceded any reports of AgN-DNA crystal structures,14,40 our
models were largely agnostic to AgN-DNA structure−property
relationships and required naiv̈e data mining for feature
engineering, resulting in models with high dimensionality and
limited interpretability.35,39

Emerging AgN-DNA crystal structures provide critical
insights into how DNA oligomers stabilize AgN. Others have
reported the structures of a green-emissive nanocluster
stabilized by 6-base oligomers40 and of several NIR-emissive
Ag16-DNAs stabilized by variations of a 10-base
oligomer.14,41,42 We hypothesize that information from these
crystal structures can improve ML prediction of AgN-DNA
color and enable the discovery of NIR AgN-DNAs, even though
there are far fewer available training examples for NIR AgN-
DNAs24 as compared to visibly fluorescent AgN-DNAs.

35,39 To
test this hypothesis, we construct feature vectors enumerating
nucleobase “staple” features that capture aspects of DNA−
silver interactions in the crystal structures. We also
dramatically expand our training data’s spectral window by
including recently discovered NIR AgN-DNAs with peak
emission up to 1000 nm24 and construct an ML model that
is well-suited to limited and imbalanced training data. Our
chemically informed approach increases the likelihood of
obtaining target AgN-DNA colors by up to 10-fold.
Furthermore, feature analysis uncovers nucleobase staple
features that strongly discriminate between AgN-DNA color
classes, providing insights into how DNA oligomers coordinate
AgN. This work shows that incorporating known information

Figure 1. Workflow and training data for AgN-DNA color prediction. (a) Schematic of the workflow for ML-enabled AgN-DNA discovery
(PDB accession codes 6NIZ40 and 6JR414). (b) Histogram of training data values of AgN-DNA peak wavelength, λp. Colors indicate the
boundaries of Green (green), Red (red), Far Red (dark red), and NIR (blue) classes. Purple bars represent λp values of sequences omitted
from the training data, as the magic numbers of AgN-DNAs in this region are unknown. (c) Class sizes for the five AgN-DNA color classes.
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about structure−property relationships in the feature engineer-
ing process and addressing imbalanced training data through
data sampling can significantly improve ML model perform-
ance and interpretability and, in turn, improve design success,
even for sparse nanomaterials data sets and rare classes.

RESULTS AND DISCUSSION
The goals of this study are to determine the DNA sequence
attributes that select AgN-DNA fluorescence colors and to
experimentally validate the saliency of this chemical
information by designing DNA template sequences for specific
AgN-DNA colors. We also aim to significantly expand the
spectral window of AgN-DNA ML models to enable the
discovery of NIR-emissive AgN-DNAs. Figure 1a illustrates the
workflow of this study. First, we assemble a training data
library of UV-excited fluorescence emission spectra of AgN-
DNA products stabilized by 2661 10-base oligomers
(representing 0.25% of all possible 10-base sequences), from
past high-throughput experiments.24,35,39 These spectra have
been fitted to a sum of one to three Gaussians as a function of
energy to determine the AgN-DNA emission peak(s) associated
with each DNA sequence, and products are considered
“bright” if peak area is above a specific defined threshold, as
in past work24,35,39 (details in Sections 1.1 and 2.2 in the
Supporting Information). We solely use this data library
because the high-throughput experiments were performed with
consistent stoichiometry and robotic pipetting methods, and
the resulting AgN-DNA products were reported for all
sequences, unlike the majority of studies that do not report
DNA sequences that were not suitable templates for AgN-
DNAs.43 Moreover, Swasey et al. reported 162 10-base
oligomers with peak emission >750 nm, motivating the focus
on 10-base oligomers. (Our past study showed that ML
classifiers trained on 10-base oligomers were also predictive of
AgN-DNA color for other oligomer lengths,

39 and it is possible
that similar methods could be used to expand the ML model
presented here to AgN-DNA templates beyond 10-base
oligomers.)
The distribution of peak emission wavelengths, λp, for this

data set has multiple modes in the visible range (Figure 1b).
These modes arise from AgN-DNA structure−property
relationships, including the strong correlation of cluster size
to λp12 and the enhanced stabilities of AgN-DNAs with magic
numbers of neutral silver atoms, N0. These produce distinct
“magic color” classes of AgN-DNAs: green-emissive AgN-DNAs
containing N0 = 4 neutral silver atoms per cluster,30,44 red-
emissive AgN-DNAs containing N0 = 6, and NIR-emissive AgN-
DNAs containing N0 = 10−12.24,30 The step function at 750
nm (Figure 1b) is an artifact of sourcing data from two
instruments. A custom plate reader for NIR fluorescence
emission has a higher sensitivity45 than the commercial plate
reader used at lower wavelengths.30 Experiments performed
with the NIR plate reader also used a slightly increased AgNO3
concentration to enhance the chemical yield of larger, NIR
AgN-DNAs.

24 Because Swasey et al. reported AgN-DNA
wavelengths >750 nm with this method, the inclusion of
these NIR training data leads to the step function at 750 nm.
Apart from this difference, all training data were collected using
identical robotic synthesis methods and normalized to one
control AgN-DNA, allowing direct comparisons of fluorescence
brightness and λp among all samples35,39 (details in Methods).
Color Class Definitions. We employ supervised ML

classification to discriminate DNA sequences associated with

distinct AgN-DNA “color classes.” A classification approach is
motivated by AgN-DNA structure−property relationships, with
color classes defined based on known magic number sizes30 or
other apparent modes in the λp distribution.35,39 As described
below, DNA sequences are categorized by λp of the brightest
spectral peak: “Green” defined as λp < 580 nm, “Red” as 600
nm < λp < 660 nm, “Far Red” as 660 nm < λp < 800 nm, and
“NIR” as λp > 800 nm (Figure 1b). Sequences correlated with
no measured fluorescence are categorized as “Dark”. In our
past work, the wavelength cutoff between Green and Red was
chosen because these AgN-DNAs have distinct magic numbers
of N0 = 4 and N0 = 6, respectively.30 Sequences whose
brightest peak is 580 nm < λp < 600 nm are excluded from
training data because N0 is currently unknown in this range.
The cutoff between Red and Far Red was chosen based on the
shape of the λp distribution from 600 to 700 nm, which
suggests distinct types of nanocluster structures.35

With the expansion of the training data set up to λp = 1000
nm,24 it is necessary to define a NIR color class beyond Far
Red. AgN-DNAs with N0 = 6 are reported up to λp = 685 nm,
and N0 = 10−12 AgN-DNAs are reported with λp = 775−1000
nm.24,46 Because N0 values are unknown for λp = 685−775 nm,
it is not possible to define the cutoff between Far Red and NIR
with known structure−property information. Instead, we used
statistical methods to select this cutoff. First, we applied k-
means clustering to the set of all λp values. (k-means clustering
is a form of unsupervised ML that learns to group data points
into discrete “clusters” that contain data that are more similar
to one another than to data in other clusters.37) This method
yielded four distinct clusters with centroids at 547, 637, 687,
and 797 nm; midway points between cluster centroids are at
592, 662, and 742 nm (see Section 2.1 and Figure S1 in the
Supporting Information). This supports the existence of four
color classes, and the midway points between centroids align
well with the previously defined cutoffs for Green/Red and
Red/Far Red. Therefore, we retain the previous definitions of
“Green” as λp < 580 nm and “Red” as 600 nm < λp < 660 nm,
with peaks from 580 to 600 nm omitted from training data due
to a lack of information about the magic number N0 in that
regions.35 However, the step function artifact in Figure 1b is
likely to obscure the natural AgN-DNA color distribution for λp
> 750 nm. For this reason, we then tested Far Red/NIR cutoffs
from 720 to 800 nm, comparing 10-fold cross-validation
accuracies of support vector machines (SVMs) trained to
distinguish Far Red and NIR sequences, as described below.
The accuracy was highest for a cutoff of 800 nm (Figure S2).
Because cutoffs above 800 nm dramatically diminish the NIR
class and caused overfitting, we assign λp = 800 nm as the Far
Red/NIR cutoff.
To best determine how DNA sequence encodes AgN-DNA

color, we exclude from training data all sequences producing
multiple bright peaks in two or more color classes. These
sequences represent DNA strands that can adopt multiple
different conformations around AgN-DNAs of different
compositions and are likely to combine patterns associated
with multiple AgN-DNA colors. (Such “multi-colored”
sequences may be of relevance for AgN-DNAs used in color-
switching sensing schemes.19) This combination of nucleobase
patterns associated with multiple AgN-DNA colors may
complicate feature engineering and ML, which is why these
sequences are excluded from training. Sequences with
mediocre fluorescence brightness are also excluded (details
in Methods and Section 2.3 in the Supporting Information).
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With these definitions, we distill a training data set of 1443
sequences sorted into Green, Red, Far Red, NIR, and Dark
classes. Notably, class sizes are highly imbalanced for this data
set (Figure 1c), a factor that we address below.
ML Classifier Ensemble. We choose SVM classifiers for

this study. For n-dimensional samples from two classes, this
supervised ML method learns an (n − 1)-dimensional
hyperplane that separates the two classes. The class of an
unseen data point is predicted based on its location relative to
the fitted hyperplane.37 As before,34,35 here we found that
SVMs perform comparably to or better than similar and more
complex ML algorithms in discriminating AgN-DNA color
classes and have a lower computational training cost. For this
study, we choose SVMs with L1 regularization that naturally
performs feature selection.47

ML classifiers trained on imbalanced data sets will favor the
dominant class, severely limiting predictive power for the
minority class.48 Because nanomaterial data sets are often
naturally imbalanced, ML models for nanomaterial prediction
should rigorously address class imbalance.48 In this case, we
have nearly 10 times fewer NIR sequences than Far Red
sequences (Figure 1c), which significantly challenges the
discovery of NIR AgN-DNAs. For this reason, we construct an
ensemble ML classification approach that is effective for
imbalanced experimental data sets of limited size.49 Our model
consists of 100 individual “one-versus-one” (1v1) classifiers
trained to discriminate between possible pairs of Green, Red,
Far Red, NIR, and Dark classes (Figure 2) (1v1 classifiers
generally perform better than multiclass classifiers for small
data sets). For each pair of color classes, 10 distinct classifiers
are trained on data sets balanced by different random
subsamples of the larger class. The average consensus of
these 100 classifiers is then used to predict the color class of

unseen sequences, addressing class imbalance without
sacrificing sensitivity to data trends.
Feature Engineering. ML requires a choice of input data

representation, or “feature vectors”. Learning is most effective
when features capture properties of the trend one seeks to
learn.50 For many nanomaterial systems, this information is
unknown.32 Previously, we used naive data mining35 to
engineer ∼200-component feature vectors that indicated
occurrences of select color-correlated sequence motifs of up
to seven adjacent nucleobases. These feature vectors had
several drawbacks, including redundancy of many motifs. To
simultaneously improve ML efficacy and use the ML process to
advance the fundamental understanding of AgN-DNAs, here we
design feature vectors based on chemically motivated
observations. Consider the crystal structure of the rod-shaped
Ag16 stabilized by two copies of a 10-base oligomer (Figure
3a).14 In this Ag16-DNA, pairs of both adjacent and
nonadjacent nucleobases facilitate key nanocluster−DNA
interactions. For example, the Ag16 rod’s long sides are
protected solely by adjacent Cs and Gs (e.g. orange bracket,
Figure 3a), suggesting that CC, CG, GC, and/or GG are
important for protecting lower curvature faces of AgN. In
contrast, a pair of nonadjacent As at positions 2 and 6 of one
strand protect Ag16 ends (green bracket, Figure 3a), together
with the second strand’s C at position 1 and A at position 6.
The T at position 5 illustrates the importance of nucleobases
that promote DNA strand flexibility; this nucleobase is
unbound to the AgN but enables the DNA to bend around
the end of the AgN (pink bracket, Figure 3a). Based on this
structure, we hypothesize that feature vectors representing
both adjacent and nonadjacent nucleobase patterns are
important for the stabilization of AgN-DNAs.
We choose the simple representation X_mY to quantify the

prevalence of all pairs of nucleobases X and Y separated by m
arbitrary nucleobases, m = 0, 1, ..., 8. We refer to X_mY as
nucleobase “staple” features, representing two distinct
nucleobase ligands that coordinate the AgN at zero, one, or
two sites. The term “staple motif” is used to describe ligand−
metal units that are commonly found at the surface of
monolayer-protected nanoclusters, in which two or more
surface metal atoms are bridged by two ligands.51,52 In analogy,
certain pairs of nucleobases X_mY protect the AgN at two sites.
For example, C_0C represents the motif stabilizing the upper
left side of the Ag16, while A_3A represents the motif that
stabilizes cluster ends (Figure 3a). We test feature vectors
whose components count occurrences of all 144 possible X_mY
features in a sequence (note that we do not only cherry-pick
base patterns from the single-crystal structure in Figure 3a).
Because staple features are positionally independent, i.e.
encode no information about the position of X_mY in a
sequence (except for X_8Y, which represents 5′- and 3′-ends),
we also consider feature vectors of location-specific nucleobase
information by “one-hot encoding,” representing a 10-base
sequence as a length-40 vector (Figure S3).
Feature Analysis. To gain insights into how the DNA

sequence encodes the AgN-DNA color, we use feature analysis,
whereby features are selected or ranked by their impacts on
ML model performance.53 Because ML classifiers are more
accurate when features encode information that is relevant to
the trend the classifier is tasked to learn, variations in a model’s
accuracy for different choices of features can be used to discern
which features are most important for classification. We first
compare 10-fold cross-validation accuracies of the model in

Figure 2. ML classifier ensemble architecture. Schematic of the ML
classifier ensemble model used to discriminate DNA sequences in
Dark, Green, Red, Far Red, and NIR classes. The ensemble
consists of 10 sets of 10 SVMs, with each set corresponding to a
pair of color classes. Each SVM is trained on a different random
balanced subset of the training data for the given pair of color
classes. For an input sequence, the consensus of all trained SVMs
is used to determine the most likely color class.
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Figure 2 trained using three different feature vectors: (1) only
nucleobase staple features, (2) only one-hot encoding features,
and (3) the combination of both features. One-hot encoding
represents the exact positions of each nucleobase within the
strand (example in Figure S3), while nucleobase staple features
represent the relative positions of pairs of nucleobases
(example in Figure 3a). The model’s accuracies for only one-
hot encoding (Figure S5) are lower than for only nucleobase
staple features (Figure 3b), especially for pairwise SVMs that
included the NIR class (all scores shown in Figures S5−S7).
Thus, this result supports the hypothesis that the relative
positions of nucleobases with respect to one another are more
important than exact nucleobase locations in a strand for
determining if and how a 10-base strand stabilizes AgN.

Because feature vectors combining staple features and one-hot
encoding (Figure S7) do not increase accuracies compared to
staple features alone, we use the lower-dimensional nucleobase
staple features only for the studies below.
We next investigate how staple features select AgN-DNA

color, using feature selection to score features based on their
importance for random forest classifier accuracy relative to
randomly generated “shadow features,” or meaningless inputs
(details in Methods). (Random forest is an ensemble learning
method consisting of many distinct decision trees, where the
collective predictions of the decision trees are used to
determine the model’s output.) This approach has provided
insights into nanomaterial synthesis conditions54 and methane
uptake by metal−organic frameworks.53 For each pair of color

Figure 3. (a) Staple nucleobase motifs, illustrated for a crystal structure of an Ag16-DNA reported by Cerretani et al. (PDB accession code:
6JR4),14 composed of two 10-base DNA oligomers (red and blue), 16 silver atoms with occupancy 1 (gray), and 2 silver atoms with low
occupancy 0.31−0.36 (green). Brackets illustrate nucleobase staple features that capture critical aspects of DNA−silver interactions involved
in AgN-DNA stabilization, including adjacent Cs that stabilize the long sides of the Ag16 (yellow), nonadjacent As that cap ends of the Ag16
(green), and nonadjacent T and G that appears important for promoting DNA flexibility as the strand curves around the end of the Ag16
(pink). (b) Average 10-fold cross-validation scores for each 1v1 classifier SVM ensemble trained using feature vectors of nucleobase staple
features.

Figure 4. Color-correlated staple features. Net importance scores (NIS) of the top 15 ranked staple features. Each colored bar corresponds to
a distinct color class: Dark (black), Green (green), Red (red), Far Red (dark red), and NIR (blue).
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classes, at most 16 of the 144 staple features scored higher than
the most important shadow feature: i.e., sufficiently higher than
random. The union of all staple features that scored higher
than random for the 10 color class pairs is a set of 23 staple
features. To verify that these are predictive of AgN-DNA color,
we trained 1v1 SVMs using feature vectors of the top n staple
features ranked by importance score. For all color class pairs,
SVM accuracies plateau for feature vectors of only “important”
staple features (Figure S9), supporting the particular relevance
of these 23 motifs for AgN-DNA color selection.
The feature selection method we implement assigns scores

in the context of 1v1 classifiers. To determine a staple feature’s
importance for a single color class, we define a net importance
score (NIS) that combines all four importance scores for a
specific motif and a specific color class (defined in Note 1 in
the Supporting Information). NIS > 0 represents an overall
positive correlation between a motif and a color class, and NIS
< 0 represents an overall negative correlation. Figure 4 displays
NIS for the 15 staple features with the highest values of |NIS|
(all scores in Figure S10). These motifs heavily feature C and
G, agreeing with past findings that sufficient C and G content
is needed to stabilize fluorescent AgN-DNAs.

8 As we found
before,35 consecutive G′s are the single strongest determinant
of larger, longer wavelength AgN. G_0G strongly favors Far Red
and NIR and disfavors Dark, Green, and Red. G_0C and C_0G
are less selective for high wavelength AgN-DNAs, favoring Red
and disfavoring Dark and Green. Figure 4 also illustrates the
collective importance of multiple staple features in selecting
AgN-DNA color. For example, C_0C only selects against Dark,
with NIS > 0 for all fluorescent color classes. While Far Red is
most strongly correlated with C_0C, other staple features are
needed to determine the exact AgN-DNA atomic size/
structure. Figure S11 compares the relative abundance of all
144 staple features in the five color classes, showing a rich and
complex dependence on many of the staple features. The
complexity of AgN-DNA sequence−structure−property rela-
tionships points to the utility of ML models for AgN-DNA
design. ML models better capture collective effects of multiple
staple features on AgN-DNA stabilization than a small set of
empirical rules. Future crystallographic studies of AgN-DNAs
may shed further light on the roles of the motifs in Figure 4.
AgN-DNA Ligand Sequence Design. To experimentally

validate the saliency of staple features for determining AgN-
DNA color, we use the ML model to design the sequences of
10-base DNA ligands for stabilizing Green, Far Red, and NIR

AgN-DNAs. These classes were chosen for testing because their
design is likely to be the most challenging. This greater
challenge is expected because (i) Green and NIR are the least
abundant color classes in the training data and (ii) class
imbalance is greatest between Far Red and NIR (Figure 1c).
Our SVM-based model’s low computational cost allows us to
rapidly train the model and then predict AgN-DNA color for all
410 10-base DNA sequences. The model was trained using all
available training data (i.e., no data reserved for cross-
validation) in 7.8 s on an AMD Ryzen 9 5950X 3.4 GHz
Core-Processor, followed by assigning average SVM scores to
all 410 sequences in 12 min. (This is a significant increase in
speed as compared to our prior models, for which it was
infeasible to assign predictions for all 410 10-base DNA
sequences.34,35,39) For each target color class, sequences are
scored by the minimum average probability of falling into the
target class for the four relevant color class pairs. For example,
a sequence’s likelihood of being Green is assigned as the
minimum average Green probability from the SVMs for Green
vs Dark, Green vs Red, Green vs Far Red, and Green vs NIR
(average probability computed from the 10 SVMs associated
with each pair of color classes). This scoring preferentially
ranks sequences by likelihoods of not falling into any undesired
class. The top 124 sequences for each target color are then
experimentally tested by methods identical to training data
collection (see Methods and Section 1 in the Supporting
Information).
In all three design cases, the target color experiences the

greatest relative change of fractional size as compared to
training data (Figure 5). This model increases the fraction of
Green sequences by a factor of 4 as compared to the training
data and significantly outperforms our past model’s relatively
low selectivity for Green AgN-DNAs by 5.9 times. This result is
particularly notable given the previously identified challenge of
distinguishing Green from Dark.35 We also find that 11 of the
Green-designed strands produced NIR AgN-DNAs, including
the longest-wavelength AgN-DNA reported to date, with λp =
1041 nm. Five of these 11 Green-designed strands produce
both NIR products and products with emission ≤ 583 nm.
Further studies may illuminate whether Green AgN-DNA
template sequences share features of NIR AgN-DNA template
sequences.
Far Red design produces the greatest fraction of sequences

in the target color class, with 60% experimentally determined
to be Far Red (Figure S13). The relative increase in Far Red

Figure 5. Relative change of each class size for (a) Green-designed sequences, (b) Far-Red-designed sequences, and (c) NIR-designed
sequences. In each case, ML-aided sequence selection results in the greatest relative increase in the target color class (asterisks) as compared
to all other classes. Far-Red-designed sequences (b) result in no Dark sequences, and the high selectivity against NIR sequences for Far-Red-
designed sequences is notable because the class imbalance is greatest between Far Red and NIR classes (Figure 1c).
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sequences is less than for Green (Figure 5a,b), which is
expected because Far Red is the largest class in our training
data (Figure 1c). Notably, Far Red design is also highly
selective against several other color classes. No designed Far
Red sequences are Dark, and only five are NIR, despite the
greatest class imbalance between Far Red and NIR.
Selectivity for NIR is especially high. While NIR sequences

represent only 2% of the initial training data (55 of 2661
sequences), their prevalence increases to 27% by ML-guided
design (Figure 5c), for a total of 34 NIR AgN-DNAs discovered
among the NIR-designed sequences. Combined with the 16
NIR AgN-DNAs identified among Green- and Far-Red-
designed sequences (color distributions in Figure S14), our
findings nearly double the number of known AgN-DNAs with
λp > 800 nm,24,29 expanding the number of these fluorophores
by 90%. This significant expansion of AgN-DNAs in the tissue
transparency windows provides additional candidates for NIR
fluorophores for bioimaging. It is particularly important to
have a sufficient number of AgN-DNA species with NIR
spectral properties in order to develop these emitters into NIR
biolabels, as their additional important properties, including
chemical and photostability, can vary by AgN-DNA species and
are also not well-studied. Development of NIR AgN-DNA
biolabels for fluorescence imaging is ongoing and is outside the
scope of this work. Our results also experimentally support the
relevance of the identified staple features for selecting AgN-
DNA color, as well as the effectiveness of statistical sampling
and classifier ensembles for limited data sets with rare classes.
The ML model presented here may also be adapted to predict
other properties of nucleic acid based nanoclusters, such as
sensitivity to analytes19 or catalytic behavior, as was recently
reported for AgN-DNAs.

55,56

CONCLUSIONS
We have presented a ML model that combines limited
experimental data with recent crystallographic insights to
capture the sequence−structure−property relationships of
AgN-DNAs. This model employs significantly lower dimen-
sional features than previous ML models for AgN-DNAs and
accounts for training data imbalance through statistical
sampling and classifier consensus. We also use the model to
provide insights into how DNA strands select AgN-DNA sizes
and colors. Certain nucleobase staple features play significant
roles in determining AgN-DNA fluorescence color, and these
motifs may inform an understanding of the DNA−silver
interaction in AgN-DNAs. Furthermore, the model’s predictive
power is experimentally verified, increasing the prevalence of
target AgN-DNA color classes by up to 12.3 times. Our findings
provide a design tool for DNA template sequences for AgN-
DNAs, with special utility for the discovery of NIR AgN-DNAs
with fluorescence in the tissue transparency windows for
applications in bioimaging. The ML methods developed here
have broad applicability for sequence-encoded biomolecules,
where experimental training data may be limited and
challenging to obtain.

METHODS
Training Data Curation. Training data were sourced from our

past high-throughput experiments. These experiments used identical
synthesis procedures and the same fluorescence excitation light
source. Data are freely available in open-access Supporting
Information of past publications and compiled in Supporting Data
Files in the Supporting Information, according to best practices for

ML in chemical sciences.57 All 2661 DNA sequences were correlated
to their associated AgN-DNA emission spectra collected in the visible
spectral region and up to 800 nm.24,35,39 NIR fluorescence emission
information was compiled from AgN-DNAs discovered by Swasey et
al.,24 using a custom well plate reader with a 675−1325 nm spectral
range.45 This data set is available as Supporting Data 1 in the
Supporting Information and includes fit values for all peaks, including
those above and below the defined brightness threshold. Finally,
sequences were sorted into the color classes defined in the main text,
and this distilled data set of 1443 sequences was used to train ML
classifiers.
Machine Learning Classifier Ensemble. Support vector

machines (SVMs) were implemented using the Python scikit-learn
package.58 The linearSVC module with L1 regularization was used
due to the limited size of the training data set, and a regularization
parameter of c = 0.1 was chosen (Figure S4). For each 1v1 classifier,
the more abundant color class was randomly subsampled to balance
class size. Classifier performance was assessed by 10-fold cross-
validation, which splits training data into 10 folds, using 9 folds for
training and 1 fold to assess classifier accuracy, and averages the
accuracy from these 10 trained classifiers. For each 1v1 classifier, we
performed this process 100 times, averaging over 100 different
random choices of the 10 folds, to capture the natural variability that
occurs due to subsampling for class balancing. Details are provided in
Section 2.6 in the Supporting Information.
Feature Analysis with BorutaShap. To quantify the relative

importance of each feature for determining color class, we
implemented BorutaShap, a wrapper for random forest (RF) ML
algorithms, using Python.59 This package combines feature selection
using the Boruta algorithm59 with Shapley additive explanations
(SHAP).60 BorutaShap assigns each feature a maximum importance
score compared to shadow attributes (MISA). Because BorutaShap is
compatible with decision tree-based models, including RF, rather than
SVM classifiers, we first verified that 1v1 RF classifiers perform well
for AgN-DNA color class discrimination. Figure S8 shows that 10-fold
cross-validation scores for an ensemble of RF classifiers are
comparable to the scores for the SVM-based model (Figure 3b).
Out-of-bag errors for the RFs were found to be minimized using 100
decision trees in each RF, with default settings for all other
parameters. To score features by importance for each 1v1 color
class pair, regardless of class imbalance for that pair, we performed
BorutaShap 10 times, with 10 distinct subsamples on each 1v1
classifier. The average MISA for each 1v1 classifier was computed, and
any feature with a higher average MISA than the highest scoring
shadow feature was selected as an important feature. An exception
was made for any 1v1 pair containing NIR. With far fewer NIR
sequences, subsampling to balance class size results in significant
standard deviations of average MISA. Thus, for the NIR classifiers,
features within one standard deviation of average MISA of the
maximum shadow feature were selected as important. MISA scores
are provided in Supporting Data 3.
The net importance score (NIS) is defined in Supporting Note 1.

NIS is computed by either adding an importance score if the staple
feature occurs more frequently in the specific color class than its 1v1
pair or subtracting the score if the motif occurs less frequently in the
color class.
Sequence Design. DNA template sequences for Green, Far Red,

and NIR color classes were selected using the SVM ensemble
architecture trained on the full data library (without reserving data for
cross-validation) to screen all possible 410 10-base DNA sequences.
We use all 144 staple features because SVMs regularized using the L1
norm naturally perform feature selection. For each 1v1 pair of color
classes, the prediction probabilities of the 10 SVMs for that color class
pair were averaged (capturing variation due to the distinct random
training data subsamples). Then the minimum average prediction
probability among the 1v1 classifiers for the target color class was
assigned as a score for that sequence (i.e., to establish the Green score
we compare average scores for Dark vs Green, Green vs Red, Green vs
Far Red, and Green vs NIR). Sequences were ranked by score, and
the top 124 sequences for each target color class were selected (this
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number enables the experiment to be carried out on one 384-well
plate with 10 control DNA sequences for normalization to past
training data).
High-Throughput Synthesis and Characterization of AgN-

DNAs. AgN-DNA synthesis was performed by robotic liquid handling
on 384-well clear-bottom microplates. DNA was ordered with
standard desalting in a 384-well plate from Integrated DNA
Technologies, presuspended in DNase-free water at 40 μM. Ten
wells contained a control oligomer known to produce bright AgN-
DNA products at 540 and 636 nm,61 which were used to normalize
brightness to past experiments. DNA was mixed via pipetting with an
aqueous solution of AgNO3 and NH4AcO (Sigma-Aldrich), pH 7, in
the 384-well clear-bottom microplate. After 18 min, silver−DNA
solutions were reduced by a freshly prepared solution of NaBH4 in
H2O. Finally, the microplate was centrifuged at low speed for < 60 s
to remove any small bubbles in microplate wells. Final stoichiometries
were selected to match conditions used for training data collection
(20 μM DNA, 100 μM AgNO3, and 50 μM NaBH4 for measurements
in the visible spectrum35 and 20 μM DNA, 140 μM AgNO3, and 70
μM NaBH4 for NIR measurements,

24 with 10 mM NH4OAc in both
cases). The well plate was stored in the dark at 4 °C and measured 7
days after synthesis.
Fluorescence emission spectra from 400 to 850 nm were collected

using a Tecan Spark instrument. A Tecan Infinite 200 Pro instrument
equipped with a custom InGaAs femtowatt PIN photodetector
(Newport) was used to measure fluorescence emission in the 675−
1325 nm range, using 50 nm bandpass filters (Edmund Optics).
Fluorescence measurements were corrected for detector spectral
responsivity.45 On both plate readers, 260 nm light was used to
universally excite all AgN-DNAs, allowing rapid screening of all
fluorescent products with a single excitation wavelength.62

High-Throughput Spectral Analysis. To extract peak wave-
length, λp, and fluorescence brightness, in the 400−850 nm range,
each fluorescence spectrum collected on the Tecan Spark instrument
was fitted to a sum of one to three Gaussians as a function of energy.
Fluorescence brightnesses of spectra were normalized using a control
AgN-DNA to enable direct comparison of brightness and λp among all
samples (details in past works35,39 and the Supporting Information).
Fluorescence measurements acquired on the custom NIR plate reader
were characterized using a custom script to identify NIR peaks and
calculate peak brightness and λp, as described in Supporting Note 2 in
the Supporting Information.
DNA sequence design is considered successful if the designed DNA

strand produces a bright AgN-DNA product of the correct color class.
Because no direct comparison of fluorescence intensity among Green,
Red, and Far Red brightness and NIR brightness was available for the
training data library used here, and because our training data assigned
DNA sequences to the NIR class if a NIR peak was reported by
Swasey et al.,24 regardless of other detected peaks, we separately
considered occurrences of NIR peaks to most fairly compare designed
sequences to the training data set. Specifically, for Green, Red, and
Far Red peaks, a sequence’s color class was assigned by the brightest
fluorescent peak that was above the defined “brightness threshold”
(details in the Supporting Information). Experimentally tested
sequences that produced a bright NIR product were classified as
NIR regardless of other bright color peaks present. If a sequence
yielded both a NIR peak and additional bright Green, Red, and/or Far
Red products, the sequence was classified as both NIR and as the
brightest associated Green, Red, or Far Red fluorescent color. By this
method, Green and Far Red sequence design was successful if the
brightest product corresponded to the target color class, and NIR
sequence design was successful if any bright NIR peak was measured
(while not omitting information about peaks formed in other color
classes). Full details are provided in Supporting Note 2 in the
Supporting Information.
Fractional class composition of each color class for training data

and designed sequences is given in Figure S13. Distributions of λp for
DNA templates designed for Green, Far Red, and NIR color classes
are given in Figure S14, and experimentally measured λp and

fluorescence brightness are provided for all sequences in Supporting
Data 2.
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