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Thousands of genetic variants have been found to increase disease risk based on genome-

wide association studies. Many of these variants are located outside of protein-coding regions, 

suggesting their regulatory effects on gene transcription. However, it is not fully understood the 

effects of non-coding genetic variation on transcriptional regulation. One way of interpreting 

these variants is to link with the specific DNA sequences recognized by transcription factors 
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(TFs), which are also called motifs. I developed MAGGIE, a bioinformatic approach to identify 

functional motifs that mediate TF binding and function. Unlike many other motif analysis tools, 

MAGGIE associates motif mutations caused by non-coding variants with the changes in TF 

binding or regulatory function to provide more direct insights into the regulatory effects of 

genetic variation. I showed the outstanding performance of MAGGIE in various applications, 

including its ability to distinguish the divergent functions of distinct NF-kB factors in pro-

inflammatory macrophages. As a detailed case study of the effects of non-coding variants, I 

applied MAGGIE to identify functional motifs for anti-inflammatory macrophages and 

discovered dominant TFs driving the anti-inflammatory response, which are also the frequent 

targets of genetic variation to influence such response. In combination with an integrative 

analysis of transcriptomic and epigenomic data, I revealed quantitative variations in motif 

affinity underlying the divergent anti-inflammatory responses observed in genetically different 

mouse strains. By leveraging deep learning approaches, I pinpointed functional variants altering 

functional motifs and provided strong evidence supporting the promise of using deep learning to 

identify functional variants. Finally, I went beyond motifs to systematically analyze the spacing 

between motifs and investigated its significance in the context of variant interpretation. I found 

most collaborative TFs do not require a constrained spacing but allow a relaxed range of spacing 

in between. Based on synthetic genetic variations from mutagenesis experiments and millions of 

naturally occurring variations, I showed that spacing alterations are generally tolerated by TF 

binding and regulatory function at TF binding sites. Collectively, these findings advance our 

understanding of how non-coding genetic variation influences gene transcription and phenotypic 

diversity. 

 



 1 

Chapter 1. Introduction 
 

DNA is the most basic material that makes every species and every person unique, but 

“basic” doesn’t mean “simple”. On the contrary, human DNA is a string of 3 billion base pairs 

made up of four different nucleotides – adenosine (A), cytosine (C), guanine (G), and thymine 

(T) – embedded with complex puzzles, so far, remaining to be fully solved. One of the successful 

examples is the codons within exons of genes that are used to encode proteins. A codon is 

composed of three nucleotides. Besides the start and stop codons that signal the initiation and the 

termination of transcription, respectively, each of the rest codons encodes a specific amino acid, 

which enables the direct prediction of amino acid sequence from DNA sequence and the 

potential interpretation of a gene’s function. However, protein-coding regions compose only 2% 

of the genome. They answer the question of “what is transcribed?”, but not “how much is 

transcribed?” or “when is a gene transcribed?”. The latter questions are largely related to the 

regulation of gene transcription involving the rest of the DNA, non-coding regions. Among non-

coding regions, regulatory elements including promoters and enhancers are defined as regions 

directly involved in transcriptional regulation, which leads to the large variety of gene expression 

in different cell types and cell states. Promoters are those at the transcription start sites of genes, 

while enhancers are further away, either at introns of genes or at intergenic. Studies found that 

these regulatory elements contain the majority of genetic variation associated with many 

common diseases (Farh et al., 2015; MacArthur et al., 2017), including cardiovascular diseases, 

neurodegenerative diseases, psychiatric diseases, etc. Therefore, it has long been one of the 

central problems in the genomic field how to decode DNA sequences of regulatory elements so 

that we can better understand those disease-associated variants. Apparently, the solution is not as 
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straightforward as three-nucleotide codons for protein-coding regions and remains to be fully 

understood.  

Thanks to the rapid development of sequencing technologies and assays in the past 

twenty years, it is now possible to study the relationship between non-coding sequences and 

transcriptional regulation from various aspects. RNA-seq (RNA sequencing) measures the 

number of transcripts, in other words, the outcomes of the transcriptional regulation. ChIP-seq 

(chromatin immunoprecipitation sequencing) is able to measure the genome-wide binding sites 

of DNA-binding proteins, including transcription factors (TFs), RNA polymerases, and specific 

histone modifications (Reuter et al., 2015). TFs recognize specific DNA sequences when binding 

to DNA and play an important role in activating regulatory function. RNA polymerases and 

histone modifications can link TF binding to the actual regulatory function. Commonly measured 

histone modifications include acetylation of histone H3 lysine 27 (H3K27ac) representing 

regulatory activity (Creyghton et al., 2010), di-methylation of histone H3 lysine 4 (H3K4me2) 

enriched at regulatory regions, and tri-methylation of histone H3 lysine 4 (H3K4me3) enriched at 

promoters (Koch et al., 2007). Unlike ChIP-seq which has specific target proteins and histone 

modifications, ATAC-seq (assay for transposase-accessible chromatin using sequencing) and 

DNase-seq (DNase I hypersensitive sites sequencing) both measure chromatin regions accessible 

for TF binding (Reuter et al., 2015). Going beyond linear sequences to 3D structures, techniques 

like Hi-C (chromosome conformation capture coupled with sequencing), ChIA-PET (chromatin 

interaction analysis by paired-end tag sequencing), and HiChIP can measure chromatin 

interactions and potentially pinpoint the target genes of regulatory elements (Mumbach et al., 

2016). An integrative analysis of these data measuring different aspects of transcriptional 

regulation are important to understand how non-coding sequences are related to regulatory 
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function. In Chapter 3, I integrate different types of sequencing data to study the anti-

inflammatory response of macrophages and dissect the rules for how non-coding genetic 

variation can affect such response.  

One of the key breakthroughs for decoding regulatory sequences is the study of DNA 

sequences recognized and bound by TFs, which are also called TF binding motifs or motifs for 

short. Even though motifs have a direct link to TF binding and show specificity for different TFs, 

the identification and interpretation of motifs are not easy. First, unlike codons, which have clear 

one-to-one relationships, one motif can be recognized by several different TFs and is usually not 

just a single sequence, but an aggregation of sequences allowing variation at some of the 

positions. Another complication is that motifs are important to be considered together with each 

other. Studies have shown intensive collaborations between TFs, each of which binds to their 

respective motifs within hundreds of bases (Lambert et al., 2018). Certain TFs are found specific 

to cell types and cell states and, in many cases, need to collaborate with each other to activate 

regulatory function (Spitz & Furlong, 2012).  

In Chapter 2, I introduce a bioinformatic approach, MAGGIE (https://github.com/zeyang-

shen/maggie) to identify functional DNA sequence motifs that mediate TF binding and 

regulatory function. Instead of looking at the presence or absence of a motif like many other 

motif analysis tools, this method focuses on how genetic variation at motifs link with the changes 

in TF binding or regulatory function. As a result, this work builds a more direct connection 

between motif and its impact on regulatory function and provides more direct insights into the 

interpretation of non-coding variants. I demonstrate how MAGGIE outperforms existing motif 

analysis tools in identifying functional motifs and is applicable to some complex problems (e.g., 

the response of enhancers to stimulus). As part of Chapter 3, I applied MAGGIE to identify 

https://github.com/zeyang-shen/maggie
https://github.com/zeyang-shen/maggie


 
 

4 

functional motifs for the anti-inflammatory response of macrophages. It helps discover a TF 

called EGR2 in parallel with a recently published work (Daniel et al., 2020) as an important 

regulator for the anti-inflammatory response. MAGGIE also exclusively reveals the mechanisms 

of how motif affinity can determine not only the basal level of enhancer activity but also the fold 

change of enhancer activity in response to stimulus, providing an explanation for the divergent 

anti-inflammatory responses observed in genetically different mouse strains.  

If most motif analysis tools including MAGGIE still focus on individual motifs one at a 

time, the recent application of deep learning or deep neural networks in the genomic field has 

significantly changed the way people study non-coding sequences (Eraslan et al., 2019). Deep 

neural networks can consider a much larger range of sequences maintaining multiple motifs and 

their relative locations. After iterations of training, neural networks are able to learn patterns 

among a given set of sequences corresponding to certain function. One major part of Chapter 3 

describes the application of deep learning in dissecting enhancer sequences relevant to the anti-

inflammatory response of macrophages. I demonstrate the superior power of neural networks in 

predicting active enhancers based on DNA sequences. Using model interpretation techniques, I 

show that the important sequence patterns captured by neural networks match with the known 

functional motifs and, more importantly, highlight the vulnerable positions for high-impact 

genetic variation. Based on the strong enrichment of the variants associated with changes in 

regulatory function at these vulnerable positions, this work provides further evidence to support 

the potential of using deep learning to predict the impact of non-coding variants and, therefore, 

pinpoint functional variants. 

In Chapter 4, I put the focus on the spacing relationships between motifs with a special 

focus on the impacts of spacing alterations on TF binding and regulatory function. The impacts 
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of motif mutations have been widely studied in different scenarios for various TFs, while the 

impacts of spacing altercations are much less studied, especially not on a systematic level. Based 

on an analysis on dozens of TFs available from the ENCODE database (Davis et al., 2018), I 

summarize three major categories of spacing relationships between collaboratively binding TFs, 

among which the majority follows a “relaxed” spacing relationship, meaning that they frequently 

bind close to each other while allowing for variable spacing as well. Two case studies of TFs 

with relaxed spacing relationships, one for human endothelial cells and the other for mouse 

macrophages, provide back-to-back evidence supporting general tolerance of spacing alterations 

for TF binding and regulatory function. Mutagenesis experiments that test the effects of variable 

sizes of synthetic spacing alterations further show the robustness of such tolerance. 

Collectively, this work investigates the regulatory effects of genetic variation using 

different bioinformatic approaches, integrating various types of sequencing data, and analyzing 

DNA sequences from multiple aspects, including motif and spacing.  
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Chapter 2. Leveraging genetic variation to identify DNA sequence motifs 
mediating transcription factor binding and function 

 
2.1 Abstract 

Genetic variation in regulatory elements can alter transcription factor (TF) binding by 

mutating a TF binding motif, which in turn may affect the activity of the regulatory elements. 

However, it is unclear which motifs are prone to impact transcriptional regulation if mutated. 

Current motif analysis tools either prioritize TFs based on motif enrichment without linking to a 

function or are limited in their applications due to the assumption of linearity between motifs and 

their functional effects. We present MAGGIE (Motif Alteration Genome-wide to Globally 

Investigate Elements), a novel method for identifying motifs mediating TF binding and function. 

By leveraging measurements from diverse genotypes, MAGGIE uses a statistical approach to 

link mutations of a motif to changes of an epigenomic feature without assuming a linear 

relationship. We benchmark MAGGIE across various applications using both simulated and 

biological datasets and demonstrate its improvement in sensitivity and specificity compared with 

the state-of-the-art motif analysis approaches. We use MAGGIE to gain novel insights into the 

divergent functions of distinct NF-kB factors in pro-inflammatory macrophages, revealing the 

association of p65–p50 co-binding with transcriptional activation and the association of p50 

binding lacking p65 with transcriptional repression. The Python package for MAGGIE is freely 

available at https://github.com/zeyang-shen/maggie. The accession number for the NF-kB ChIP-

seq data generated for this study is Gene Expression Omnibus: GSE144070. 

 

2.2 Introduction 

Genome-wide association studies (GWASs) have identified thousands of genetic variants 

associated with an increase in disease risk (MacArthur et al., 2017). Many of these variants fall 

https://github.com/zeyang-shen/maggie
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within regulatory elements such as promoters and enhancers, implicating an effect on 

transcriptional regulation (Farh et al., 2015; Khurana et al., 2016). Transcription factors (TFs) 

play an essential role in mediating the activity of regulatory elements. Many TFs possess DNA-

binding domains that recognize specific DNA sequences, called TF binding motifs. Alterations 

of TF binding motifs have been established as an important mechanism for genetic variants to 

affect transcriptional regulation (Deplancke et al., 2016; Grossman et al., 2017; Heinz et al., 

2013). However, it is not always straightforward which TF binding motifs are prone to have an 

impact on transcriptional regulation if mutated. First of all, a genetic variant is able to alter 

multiple motifs. Binding motifs for hundreds of TFs are currently available in the public 

databases (Fornes et al., 2020; Kulakovskiy et al., 2018; Matys et al., 2006). Many motifs 

correspond to similar or overlapping DNA sequences, which can be altered by the same variant 

simultaneously. The second complication is due to the strong dependency of TF binding on 

conditions. Multiple TF binding motifs are usually packed at regulatory elements across 100–200 

base pairs (Lambert et al., 2018) but can become functional under different conditions depending 

on cell type, developmental time point, stimulus etc. (Spitz & Furlong, 2012) Knowing the 

function of motifs for a given condition can help prioritize TFs prone to be affected by genetic 

variation and ultimately have an impact on transcriptional regulation.  

Numerous motif analysis tools have been published in the past decade to prioritize 

important TFs for experimental validation (Boeva, 2016; Jayaram et al., 2016). One major 

category of tools identifies enriched motifs that appear more frequently at given regions of 

interest than random genomic regions (Heinz et al., 2010; Machanick & Bailey, 2011; Siebert & 

Söding, 2016). Due to the development of high-throughput sequencing assays, these approaches 

can now be applied to various types of epigenomic features, such as chromatin accessibility 
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measured by the assay for transposase-accessible chromatin using sequencing (ATAC-seq) or 

DNase I hypersensitive sites sequencing (DNase-seq), and TF binding and histone modification 

measured by chromatin immunoprecipitation sequencing (ChIP-seq) etc. (Reuter et al., 2015). 

However, this category of methods does not connect motif enrichment to a function, so the 

identified motifs may not have any functional impact on the epigenomic feature of interest.  

Another category of motif analysis tools prioritize TFs by leveraging measurements and 

genetic variation of multiple human individuals or animal strains. Many of these methods depend 

on an assumption of linearity between the motif and the signal of epigenomic features (Fonseca 

et al., 2019; Grubert et al., 2015; Link, Romanoski, et al., 2018; Mcvicker et al., 2013). This 

assumption worked for TF binding but likely does not hold for many other epigenomic features 

like histone modification or stimulus response of regulatory elements, which result from the 

interactions between multiple TFs and may not possess a simple linear relationship with TF 

binding motifs.  

Here, we developed a novel approach, MAGGIE (Motif Alteration Genome-wide to 

Globally Investigate Elements), to identify DNA motifs mediating TF binding and function. 

Considering the increasing amount of genotype and epigenomic data for different individuals and 

animal strains, we are able to identify genomic regions associated with a biased epigenomic 

feature of interest between different genotypes, labeling them as positive or negative for 

sequences with or without the feature, respectively (Fig. 2.1A). We propose to associate these 

biased regions with changes of TF binding motifs caused by genetic variation to gain insights 

into the functions of motifs. Unlike conventional motif enrichment methods, MAGGIE is 

independent of the background frequency of motifs and gains power in capturing the functional 

impacts of motifs by leveraging motif mutations at the same regions between individuals or 
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strains. MAGGIE differs from other methods that associate motif mutations with epigenomic 

features by eliminating the assumption of linearity between motifs and testing features. The 

design of this framework is flexible in accommodating any type of epigenomic feature, including 

but not limited to the ones to be discussed in this article, such as TF binding, open chromatin, 

histone modification and stimulus response of regulatory elements.  

We evaluated the performance of MAGGIE in both simulated datasets and biological 

datasets and compared our results to HOMER (Heinz et al., 2010), MMARGE (Link, 

Romanoski, et al., 2018) and TBA (Fonseca et al., 2019), which are representative for the 

existing motif analysis tools. The results demonstrated the superior sensitivity and specificity of 

MAGGIE for detecting the effects of motif mutations in all of the experiments. By applying 

MAGGIE to the regulatory elements of macrophages in response to proinflammatory stimulus, 

we captured divergent functions of distinct NF-kB (nuclear factor-kappa B) factors despite the 

similarity of their motifs. These results were further validated by the NF-kB binding sites 

measured by ChIP-seq experiments, showing the promise of MAGGIE in identifying highly 

specific motifs and discovering novel functions of TFs. 
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Figure 2.1: Overview of MAGGIE. (A) Schematic depicting how the epigenomic features of regulatory elements 
are related to the inputs of MAGGIE. Positive sequences are defined to be associated with epigenomic feature(s) of 
interest, such as TF binding, open chromatin, histone modification etc. Each positive sequence has a negative 
counterpart, which has a loss of the chosen epigenomic feature(s) due to mutations on TF binding motifs. (B) 
Flowchart of MAGGIE. Positive and negative sequences are used to compute motif scores as an estimated 
likelihood of being bound by certain TF. A representative motif score is obtained for each sequence by taking the 
maximum, displayed by different shapes (ellipse, diamond and triangle) for different TFs. High motif scores are 
shown as solid shapes and low scores as dashed shapes. Next, differences of representative motif scores are 
computed for every TF by subtracting scores of negative from positive sequences. Finally, the score differences for 
each TF are aggregated, and the median value is tested by Wilcoxon signed-rank test to evaluate whether there is a 
bias in the changing direction from positive to negative sequences. The examples demonstrate a significant bias of 
increase (ellipse) or decrease (diamond) or an insignificant bias (triangle), which implicates the inhibitive, 
contributing, or irrelevant role of TF, respectively. (C) Correlation between motif score differences of SPI1 motif 
and log2-fold changes of PU.1 binding activity between BALB and C57 mice. Each dot represents one of the 1641 
PU.1 binding sites that have SPI1 motif mutations between the two strains. 

 

2.3 Materials and methods 

2.3.1 Overview of MAGGIE 

The overall framework of MAGGIE is illustrated in Fig. 2.1B. MAGGIE takes pairs of 

sequences as inputs. Positive sequences are identified to be associated with an epigenomic 

feature of interest, while negative sequences are from different alleles or the same regions of a 
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different genome where the epigenomic feature is not found. Depending on the genetic 

difference of genomes, every pair of input sequences can have a variable number of genetic 

variants like single-nucleotide polymorphisms (SNPs) and short insertions and deletions.  

The basic assumption for MAGGIE is that the allele specificity of an epigenomic feature 

is derived from the genetic variation between positive and negative sequences that mutate TF 

binding motifs. This assumption is supported by the findings that motif mutations due to local 

genetic variation is the major explanation for the gain or loss of TF binding sites (Link, Duttke, 

et al., 2018; Roadmap Epigenomics Consortium et al., 2015). Considering the importance of TFs 

for other epigenomic features like promoter and enhancer function (Reiter et al., 2017; Spitz & 

Furlong, 2012), we hypothesized that our framework could help identify motifs mediating both 

TF binding and other epigenomic features affected by TF binding.  

The computation of MAGGIE is centered on the motif score based on position weight 

matrix (PWM), which is the widely used metric to approximate the likelihoods of being bound 

by certain TF (Stormo, 2000). Given pairs of positive and negative sequences associated with a 

chosen allele-specific epigenomic feature, MAGGIE computes motif scores for hundreds of TFs 

whose PWMs are currently available in the JASPAR database (Fornes et al., 2020). For each TF, 

a representative motif score is calculated for every sequence by taking the maximal score across 

the sequence. MAGGIE then computes differences of representative motif scores by subtracting 

scores of negative from positive sequences to obtain the changes of binding likelihood. Score 

differences should have a bias toward positive values (i.e., higher motif scores in positive 

sequences) if the corresponding TF is contributing to the chosen epigenomic feature. On the 

contrary, if the TF is potentially inhibitive for the chosen feature, the aggregated differences will 

tend to have negative values (i.e., lower motif scores in positive sequences). Irrelevant TFs will 
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have their motifs randomly mutated by genetic variation, so the score differences should be 

overall balanced around zero. A non-parametric Wilcoxon signed-rank two-sided test is used to 

statistically test the significance of the association between motif mutations and the chosen 

epigenomic feature by asking whether the median of all the non-zero motif score differences is 

close to zero. A signed P-value combining the sign of median score difference with the P-value 

from statistical tests implicates the function of TF to be either contributing (positive) or 

inhibitive (negative) if called significant. 

2.3.2 Computation of motif score and motif score 

Motif score is a reliable metric to measure the likelihood of TF binding and can well 

reflect the binding activity of the corresponding TF (Boeva, 2016; Ji et al., 2018). A PWM stores 

the log likelihoods for the four possible nucleotides (A, C, G and T) to be bound by a TF at each 

position (Stormo, 2000): 

𝑀𝑀𝑘𝑘,𝑛𝑛 = log2(
𝑃𝑃𝑘𝑘,𝑛𝑛

𝑏𝑏𝑛𝑛
) 

where 𝑃𝑃𝑘𝑘,𝑛𝑛 is the probability of seeing nucleotide n at the kth position of the motif, and 𝑏𝑏𝑛𝑛 is the 

background probability for different nucleotides. Given a DNA sequence, we can compute motif 

scores for any TF by adding up the log likelihoods of seeing certain nucleotides at every 

position: 

𝑆𝑆𝑖𝑖 = � 𝑀𝑀𝑘𝑘,𝑛𝑛𝑖𝑖+𝑘𝑘

𝐿𝐿−1

𝑘𝑘=0
= � log2(

𝑃𝑃𝑘𝑘,𝑛𝑛𝑖𝑖+𝑘𝑘
𝑏𝑏𝑛𝑛𝑖𝑖+𝑘𝑘

)
𝐿𝐿−1

𝑘𝑘=0
 

where 𝑆𝑆𝑖𝑖 is the motif score for a segment of the given sequence from position i to position i+L-1, 

supposing L is the length of the motif and i starts at 1, and 𝑛𝑛𝑖𝑖+𝑘𝑘 is the nucleotide at position i+k. 

For a sequence longer than the motif (i.e., the biggest possible i > L), instead of dealing with a 
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list of motif scores, we obtain the maximal motif score to represent the binding likelihood of the 

entire sequence: 

𝑆𝑆𝑅𝑅 = max {𝑆𝑆𝑖𝑖 𝑖𝑖 = 1,2, … } = � log2(
𝑃𝑃𝑘𝑘,𝑛𝑛𝑟𝑟+𝑘𝑘
𝑏𝑏𝑛𝑛𝑟𝑟+𝑘𝑘

)
𝐿𝐿−1

𝑘𝑘=0
 

where r is the starting position of the maximal motif score. Every sequence pair will yield two 

representative motif scores whose starting positions are notated by 𝑟𝑟𝑃𝑃 and 𝑟𝑟𝑁𝑁 for positive and 

negative sequence, respectively: 

𝑆𝑆𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 = � log2(
𝑃𝑃𝑘𝑘,𝑛𝑛𝑟𝑟𝑃𝑃+𝑘𝑘

𝑃𝑃𝑃𝑃𝑃𝑃

𝑏𝑏𝑛𝑛𝑟𝑟𝑃𝑃+𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃

)
𝐿𝐿−1

𝑘𝑘=0
 

𝑆𝑆𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 = � log2(

𝑃𝑃𝑘𝑘,𝑛𝑛𝑟𝑟𝑁𝑁+𝑘𝑘
𝑁𝑁𝑁𝑁𝑁𝑁

𝑏𝑏𝑛𝑛𝑟𝑟𝑁𝑁+𝑘𝑘
𝑁𝑁𝑁𝑁𝑁𝑁

)
𝐿𝐿−1

𝑘𝑘=0
 

Then, the log-fold change of binding likelihood within the sequence pair can be 

computed by subtracting the representative motif score of the negative sequence from that of the 

positive sequence: 

𝑆𝑆𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑆𝑆𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 = � log2�

𝑃𝑃𝑘𝑘,𝑛𝑛𝑟𝑟𝑃𝑃+𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃

𝑏𝑏𝑛𝑛𝑟𝑟𝑃𝑃+𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃

�
𝐿𝐿−1

𝑘𝑘=0
−� log2(

𝑃𝑃𝑘𝑘,𝑛𝑛𝑟𝑟𝑁𝑁+𝑘𝑘
𝑁𝑁𝑁𝑁𝑁𝑁

𝑏𝑏𝑛𝑛𝑟𝑟𝑁𝑁+𝑘𝑘
𝑁𝑁𝑁𝑁𝑁𝑁

)
𝐿𝐿−1

𝑘𝑘=0
 

If we set the background probability as the same for the four types of nucleotides (i.e., 

0.25), the difference of representative motif score turns out to be the log-fold change of the 

binding likelihood between positive and negative sequences: 

𝑆𝑆𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑆𝑆𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 = � log2�

𝑃𝑃𝑘𝑘,𝑛𝑛𝑟𝑟𝑃𝑃+𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃𝑘𝑘,𝑛𝑛𝑟𝑟𝑁𝑁+𝑘𝑘
𝑁𝑁𝑁𝑁𝑁𝑁

�
𝐿𝐿−1

𝑘𝑘=0
= log2�

∏ 𝑃𝑃𝑘𝑘,𝑛𝑛𝑟𝑟𝑃𝑃+𝑘𝑘
𝑃𝑃𝑃𝑃𝑃𝑃

𝐿𝐿−1
𝑘𝑘=0

∏ 𝑃𝑃𝑘𝑘,𝑛𝑛𝑟𝑟𝑁𝑁+𝑘𝑘
𝑁𝑁𝑁𝑁𝑁𝑁

𝐿𝐿−1
𝑘𝑘=0

� 

Here, we compute the motif score difference based on the maximal score of each 

sequence, which may or may not at the same location (𝑟𝑟𝑃𝑃 not necessarily equal to 𝑟𝑟𝑁𝑁). This 
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strategy is able to compensate for the effects from nearby variants and the interactions between 

multiple motifs. Any representative motif score less than zero is replaced by zero before 

computing a score difference in order to reduce impacts from poorly matched motifs. Motif score 

difference has been used as an indicator of the change in TF binding (Martin et al., 2019; 

Spivakov et al., 2012). For example, by comparing PU.1 binding in macrophages of C57BL/6J 

(C57) and BALB/cJ (BALB) mice (Link, Duttke, et al., 2018), we observed a strong positive 

correlation between the score difference of SPI1 motif and the change in PU.1 (encoded by SPI1) 

binding quantified by ChIP-seq reads (Fig. 2.1C). This relationship is independent of the actual 

motif score (Supplementary Fig. 2.1). We saw a diminished correlation using non-uniform 

background probabilities (Supplementary Fig. 2.2) or restricting motifs at the same locations 

(𝑟𝑟𝑃𝑃 = 𝑟𝑟𝑁𝑁) instead of their respective best matches (Supplementary Fig. 2.3). These intrinsic 

characteristics of motif score difference support the hypotheses that (i) motif score difference can 

indicate change in binding of the corresponding TF, and (ii) aggregated motif score differences 

can reflect whether the presence of specific epigenomic feature is associated with the gain or loss 

of TF binding. 

2.3.3 Applications and data preparation 

2.3.3.1 Simulated data 

To characterize the performance of MAGGIE and systematically compare with other 

methods, we conducted simulated experiments. Positive sequences were generated by first 

randomly selecting A, C, G or T to form sequences of 200-base pair (bp). Then we created TF 

binding motifs by sampling nucleotides based on their probabilities derived from PWMs and 

inserted these motifs at non-overlapping random positions. To obtain counterpart negative 



 
 

15 

sequences, SNPs were simulated inside hypothetic ‘contributing’ motifs by changing the existing 

nucleotides. 

During the generation of simulated data, we inserted ‘irrelevant’ motifs, which 

experienced either no mutation or random mutation, to evaluate the specificity of MAGGIE. The 

sensitivity of MAGGIE was tested by changing the number of simulated sequences (i.e., sample 

size) or the fraction of sequences having motif mutations [i.e., signal-to-noise ratio (SNR)]. 

2.3.3.2 TF binding sites 

We tested MAGGIE to identify TF binding motifs for corresponding TF binding. Allele-

specific binding sites of 12 TFs were obtained from two cell types, GM12878 and HeLa-S3 (Shi 

et al., 2016). We extracted 100-bp sequences around the SNPs associated with allele-specific 

binding sites and labeled the sequences with the binding alleles as positive sequences and those 

with the non-binding alleles as negative. 

MAGGIE was then used to identify collaborative TFs. We downloaded the ChIP-seq data 

of PU.1 and C/EBPb for C57 and BALB mice from the Gene Expression Omnibus (GEO) 

database with accession number GSE109965 (Link, Duttke, et al., 2018), and the ChIP-seq data 

of ATF3 for the same mouse strains with the accession number GSE46494 (Fonseca et al., 

2019). The data for C57 were mapped to the mm10 genome using Bowtie2 v2.3.5.1 (Langmead 

& Salzberg, 2012), whereas the data for BALB were first mapped to the BALB genome and then 

shifted to the mm10 genome using the MMARGE v1.0 ‘shift’ function (Link, Romanoski, et al., 

2018). The reproducible TF binding sites were identified by using HOMER v4.9.1 to call 

unfiltered 200-bp peaks (Heinz et al., 2010) and running IDR v2.0.3 on replicates with the 

default parameters (Li et al., 2011). The TF binding sites found only in one of the strains were 

defined to be strain-specific, yielding 13,099 PU.1, 8,127 C/EBPb and 13,347 ATF3 strain-
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specific binding sites between BALB and C57. The sequences of strain-specific binding sites 

were extracted from both strains using the MMARGE v1.0 ‘extract_sequences’ function (Link, 

Romanoski, et al., 2018). Sequences associated with TF binding are labeled as positive 

regardless of which strain they are originated from, and their counterpart sequences from the 

other strain are labeled as negative. 

2.3.3.3 Chromatin quantitative trait loci 

We applied MAGGIE to discover motifs mediating chromatin accessibility and histone 

modification. DNaseI sensitivity quantitative trait loci (dsQTLs) were downloaded from the 

GEO database with accession number GSE31388 (Degner et al., 2012). Histone QTLs (hQTLs) 

were acquired for three types of histone modifications (Grubert et al., 2015), local acetylation of 

histone H3 lysine 27 (H3K27ac), monomethylation of histone H3 lysine 4 (H3K4me1) and tri-

methylation of histone H3 lysine 4 (H3K4me3). All QTLs were originally analyzed for 

lymphoblastoid cell lines (LCLs). We obtained more stringent hQTLs based on a P-value < 1e-6 

and a distance from the associated peak <1000 bp. QTLs were further separated based on 

HOMER annotations into promoter, intronic and distal subsets to investigate functional motifs of 

different genomic regions. Distal QTLs are those within intergenic regions and >2000 bp from 

the nearest transcription start sites. Similar to the pre-processing for the allele-specific binding 

sites, we extracted 100-bp sequences centering around the variants and labeled the alleles 

associated with a higher trait level as positive and the other alleles as negative. 

2.3.3.4 Stimulus responses of regulatory elements 

The application of MAGGIE was further extended to the stimulus response of regulatory 

elements. We downloaded ATAC-seq and H3K27ac ChIP-seq data from macrophages at both 

basal state and pro-inflammatory state induced by 1-h treatment of the TLR4-specific ligand 
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Kdo2 lipid A (KLA) from four diverse strains of mice (Link, Duttke, et al., 2018): C57BL/6J 

(C57), NOD/ShiLtJ (NOD), PWK/PhJ (PWK) and SPRET/EiJ (SPRET). Similar to the 

preprocessing of ChIP-seq data for TFs, the raw reads were mapped and shifted to the mm10 

genome. Based on ATAC-seq data, we obtained 200-bp reproducible open chromatin and filtered 

for intergenic and intronic regions to obtain potential enhancers. Open chromatin regions of the 

two conditions from the same strain were merged and extended from 200 to 1000 bp to quantify 

their activity by the count of H3K27ac ChIP-seq reads. We filtered for active regulatory 

elements (>16 reads in at least one condition; Supplementary Fig. 2.6) and computed the change 

of activity from basal to KLA-treated condition by the fold change of reads. Regions showing a 

higher or lower level of H3K27ac >2.5-fold after KLA treatment were labeled as ‘activated’ or 

‘repressed’, respectively (Fig. 2.4A), and those with <40% change were labeled as ‘neutral’. 

Based on pairwise comparisons across the four mouse strains, regulatory elements labeled as 

‘activated’ or ‘repressed’ only in one of the compared strains were called strain-specific and 

were pooled for analysis. 

2.3.4 Comparative methods 

We compared the performance of MAGGIE against several existing methods in 

identifying functional TF binding motifs. The most obvious competitors are those that also 

leverage measurements from diverse genotypes, including a recently developed method called 

MMARGE (Link, Romanoski, et al., 2018), which fits a linear mixed model between the motif 

score and the signal of epigenomic features (e.g., TF binding activity). Unlike other approaches 

based on linear assumptions, MMARGE additionally corrects for individual variance while 

leveraging genetic variation between individuals. MMARGE v1.0 was downloaded from 

https://github.com/vlink/marge. Since the existing linear methods do not directly work with 

https://github.com/vlink/marge
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binary-labeled datasets (e.g., simulated data, QTLs), we implemented a replacement model that 

fit motif scores against binary labels in the simulated experiments using statsmodels package 

(Seabold & Perktold, 2010). 

Another big category of motif analysis tools is based on motif enrichment algorithms, 

such as HOMER (Heinz et al., 2010), MEME Suite (Machanick & Bailey, 2011), BaMM 

(Siebert & Söding, 2016), etc. We performed comparisons between enriched and functional 

motifs identified by MAGGIE. We expect any one of those methods to be representative for the 

others, so we picked HOMER in our experiments, which was downloaded from 

http://homer.ucsd.edu/homer/data/software/homer.v4.9.1.zip. Besides using HOMER to find 

enriched motifs, we extended its application to calculate differential enrichment between positive 

and negative sequences and evaluated the performance of enrichment algorithms in detecting 

motif mutations. 

We also adapted a machine learning-based approach, TBA, to detect motif mutations 

between positive and negative sequences (Fonseca et al., 2019). We trained a logistic regression 

model with representative motif scores, from which P-values were generated from the 

likelihood-ratio test to represent the importance of each motif in classifying binary labels. The 

model training modules were downloaded from https://github.com/jenhantao/tba. All of the 

comparative methods above were run with the default parameters. Since none of these methods 

output signed P-values as MAGGIE does, we reported only P-values from MAGGIE in any 

comparative studies. 

2.3.5 Validation experiment 

Bone marrow was isolated from C57 mice and differentiated for 7 days using media 

containing M-CSF to generate bone marrow-derived macrophages (BMDMs) as described 

http://homer.ucsd.edu/homer/data/software/homer.v4.9.1.zip
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previously (Link, Duttke, et al., 2018). BMDMs were maintained at basal conditions or treated 

with KLA for 1 h. For p65 (Santa Cruz, sc-372X) and p50 (Abcam, ab32360) ChIP-seq 

experiments, 8 million untreated or KLA-treated BMDMs per assay were double-crosslinked 

using disuccinimidyl glutarate and formaldehyde (FA). ChIP-seq was performed using 2 lg of 

antibody as described previously (Heinz et al., 2018). ChIP DNA was prepared for sequencing 

using the NEBNext Ultra II DNA library prep kit (NEB, E7645) and sequencing was performed 

on the HiSeq4000 (75 bp SR, Illumina). The binding sites of p65 and p50 were identified using 

HOMER ‘findPeaks -size 200’ (Heinz et al., 2010) and then merged to obtain co-binding sites 

and p65- or p50-only binding sites. The binding activity of p65 and p50 was quantified by the 

count of ChIP-seq reads. The raw and processed data have been deposited to the NCBI GEO 

under the accession number GSE144070. 

 

2.4 Results 

2.4.1 MAGGIE shows superior specificity and sensitivity on simulated datasets 

Table 2.1: Top motifs output from different motif analysis tools evaluated on the simulated datasets. Log10 P-
values are shown in parentheses. (*) indicates motifs that passed FDR < 0.05 after the Benjamini–Hochberg 
controlling procedure. As the true positive, SPI1 motif is highlighted in bold. 

Rank MAGGIE Linear model Logistic 
regression (TBA) 

HOMER— 
pos versus bg 

HOMER— 
neg versus bg 

1 SPI1* (13) SPI1* (8.6) SPI1 (1.0) CEBPG* (198) CEBPG* (195) 

2 SPIB* (10) SPIB* (6.5) ZSCAN10 (0.8) CEBPD* (194) CEBPB* (183) 

3 SPIC* (4.7) ETV6 (3.6) EWSR1-FLI1(0.8) CEBPB* (192) CEBPD* (181) 

4 ETV6* (4.5) SPIC (3.6) STAT5A (0.6) CEBPE* (191) CEBPE* (178) 

5 ELF1* (4.2) EHF (3.2) SIX6 (0.4) SPI1* (177) SPI1* (127) 

 

To evaluate the performance of MAGGIE, we stochastically simulated one thousand 

DNA sequences of 200 bp embedded with an arbitrary pair of motifs, SPI1 and CEBPB, labeled 

as positive sequences. Negative sequences were then derived from this set by switching single 
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nucleotides of the SPI1 motif for half of the positive sequences. Table 1.1 shows the top motifs 

output from MAGGIE and three comparative approaches: linear model, logistic regression 

adapted from TBA and HOMER. Both MAGGIE and linear model identified SPI1 and its similar 

motifs as the most significant hits. Logistic regression that was trained to classify positive and 

negative sequences lacked the sensitivity to detect SPI1 motif. On the contrary, HOMER 

identified both SPI1 and CEBPB as significantly enriched over the default random backgrounds 

for both positive (‘pos versus bg’ column) and negative sequences (‘neg versus bg’ column). As 

expected, enriched motifs failed to distinguish the mutated motif from the unmutated motif, 

which was only captured by methods that leveraged motif mutations resulted from synthetic 

genetic variation. 

 

Figure 2.2: Comparison of sensitivity between MAGGIE and other approaches on simulated datasets. Each 
boxplot aggregates the significance values from 10 simulations. Boundary lines show the median and quartiles of 
each distribution. Every simulation generated a thousand sequences inserted with a pair of motifs, which serve as the 
positive set. 10–80% of these sequences had a single nucleotide changed within the SPI1 motif for SPI1-CEBPB 
pair, or the POU5F1::SOX2 motif for POU5F1::SOX2-KLF4 pair or the ZNF410 motif for ZNF410-IRF1 pair, 
whereas the rest were kept untouched, resulting in the negative set. The dashed lines indicate the significance 
threshold after multiple testing correction. 

To assess the sensitivity of MAGGIE, we tested its performance when different fractions 

of sequences experienced motif mutations (i.e., SNR). For every SNR ranging from 10% to 80%, 

we repeated simulation of sequences 10 times and aggregated P-values for embedded motifs 

from the comparative methods. Here, we also assessed the performance of the motif enrichment 

algorithm implemented by HOMER in detecting motif mutations by setting positive sequences as 

inputs and negative sequences as backgrounds. We evaluated the comparative methods on three 
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arbitrary pairs of motifs: SPI1-CEBPB, POU5F1::SOX2-KLF4 and ZNF410-IRF1. For each 

experiment, one motif pair was inserted into sequences, but only the first motif (SPI1, 

POU5F1::SOX2 and ZNF410) was mutated by synthetic genetic variation. MAGGIE 

consistently outperforms the other methods in identifying the mutated motif (Fig. 2.2) and not 

the unmutated motif (Supplementary Fig. 2.4). Even though the other methods could potentially 

pass the significance threshold with a higher SNR or an increasing sample size (Supplementary 

Fig. 2.5), MAGGIE showed superior sensitivity when motifs are mutated in <50% of the finite 

samples. 
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2.4.2 MAGGIE identifies known mediators for TF binding sites and QTLs 

 

Figure 2.3: Functional motifs identified by MAGGIE for various epigenomic features using biological 
datasets. (A) Signed P-values for allele-specific TF binding sites. In total, 13 datasets were analyzed covering 12 
different TFs from two cell types: GM12878 and HeLa-S3 (HeLa). Datasets are arranged vertically with their 
sample sizes displayed in brackets, and motifs are shown horizontally on top by their gene names. (B) Comparative 
results for strain-specific TF binding sites. P-values from different motif analysis methods are shown for the 
corresponding motifs of the three LDTFs (PU.1, C/EBPb and ATF3). (C) Significant motifs identified for chromatin 
QTLs of LCLs. Signed P-values from MAGGIE are shown for the entire sets as well as the subsets based on the 
locations of QTLs. The number of QTLs in each set is shown in brackets. Motifs shown here were tested significant 
for at least one type of the QTLs. All the results in this figure have been averaged for similar motifs and are 
displayed by their family names (e.g., ETS, AP-1). 

After observing the superior performance of MAGGIE on simulated data, we tested our 

method with several biological datasets. First, we analyzed the allele-specific TF binding sites 

associated with SNPs (Shi et al., 2016). Among the 13 experiments tested, MAGGIE identified 
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the corresponding motifs of the bound TFs for all of them (Fig. 2.3A). Even though P-values 

vary due to the quality and the sample size of each dataset, the corresponding motifs were 

recognized as the most significant even for TFs with as few as 37 allele-specific binding sites 

like USF1. 

Next, we evaluated whether MAGGIE is able to recover the collaborative binding 

between TFs. Regulatory elements are usually bound by multiple TFs together, which form a 

complex with other co-activators to regulate functions (Reiter et al., 2017). For example, lineage-

determining TFs (LDTFs) of macrophages such as PU.1, C/EBP, and AP-1 factors were 

frequently found to co-bind at macrophage-specific enhancers (Glass & Natoli, 2016; Heinz et 

al., 2015). Previous studies showed that the binding of specific LDTFs was not only dependent 

on each factor’s own motif, but also on nearby motifs recognized by collaborative factors (Heinz 

et al., 2013; Link, Duttke, et al., 2018). To verify this conclusion with MAGGIE, we downloaded 

ChIP-seq data for PU.1 (encoded by SPI1), C/EBPb (encoded by CEBPB) and ATF3, which 

binds to AP-1 motif, from two genetically diverse strains of mice, C57 and BALB (Fonseca et 

al., 2019; Link, Duttke, et al., 2018). Strain-specific TF binding sites were identified for each 

factor and analyzed with MAGGIE. As comparison, we used MMARGE to find motifs 

correlated with TF binding activity quantified by ChIP-seq read counts and used HOMER to find 

enriched motifs among positive sequences in comparison to random backgrounds. The outputs 

from the three approaches for the relevant motifs are summarized in Fig. 2.3B. MAGGIE 

recognized PU.1 binding to be mostly dependent on its own motif instead of any other motif, 

while C/EBPb binding was highly dependent on CEBPB motif but also significantly dependent 

on SPI1 motif. The results were consistent with the pioneer role of PU.1 in opening chromatin 

and guiding the binding of other TFs (Barozzi et al., 2014). On the contrary, the comparative 
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methods failed to distinguish the different functions between the bound TF and its collaborative 

factors. HOMER assigned strong significance to all the motifs because it was designed to 

identify enriched motifs without considering functions. MMARGE showed a lack of power in 

detecting collaborative factors using the data of two mouse strains as it requires more data or 

larger genetic difference to confidently identify a correlation between motif and TF binding.  

The general framework of MAGGIE can also be applied to QTL datasets for epigenomic 

features that are influenced by TF binding. We downloaded QTLs of several epigenomic features 

for LCLs, including dsQTLs for chromatin accessibility (Degner et al., 2012) and hQTLs for 

three types of histone modifications, H3K27ac, H3K4me1 and H3K4me3 (Grubert et al., 2015). 

MAGGIE identified motifs with different specificity for the testing features (Fig. 2.3C). CTCF 

was output at top for dsQTLs but was insignificant for each type of hQTLs, supporting the major 

role of CTCF in maintaining chromatin structures instead of inducing active chromatin states 

(Arzate-Mejía et al., 2018). PU.1 together with other ETS factors were significant for both 

chromatin accessibility and histone modifications, indicating a pioneer role in opening chromatin 

as well as an important role in activating regulatory elements in LCLs (Scott et al., 1994). 

MAGGIE also identified many other motifs important for histone modifications, which have 

been found to maintain the cell identity and function of LCLs from previous studies, such as 

PAX5 (Glimcher & Singh, 1999), RUNX (Mevel et al., 2019) and NF-kB (Nagel et al., 2014). It 

is intriguing that several motifs showed up with potentially inhibitive functions, although these 

will need to be confirmed in later studies. 
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2.4.3 MAGGIE captures divergent functions of NF-kB factors for the stimulus responses of 

regulatory elements 

 

Figure 2.4: Divergent functions of NF-kB factors in pro-inflammatory macrophages captured by MAGGIE 
and validated by experiments. (A) Sketch of KLA-activated and KLA-repressed regulatory elements defined 
by >2.5-fold changes of H3K27ac from basal to KLA-treated conditions. (B) Significant functional motifs identified 
by MAGGIE for activated and repressed regulatory elements. Similar motifs are separated by ‘|’ and shown with 
their average results. Protein names of RELA and NFKB1 are shown in the brackets, corresponding to p65 and p50, 
respectively. (C) Binding activities of NF-kB factors associated with RELA or NFKB1 motifs. Motifs were searched 
within the 200-bp binding sites of p65 and p50 at the KLA-treated condition measured by ChIP-seq experiments. 
ChIP-seq reads for both p65 and p50 were counted to quantify binding activities. Regions with at least 32 reads of 
either factor were used to compute the log2 ratio of reads between p65 and p50. The distributions of log ratios are 
displayed in orange for sites having RELA motif (10,549 sites) and in blue for sites having NFKB1 motif (2,144 
sites). The logos of motif PWMs are demonstrated. (D) Co-existence of NF-kB binding and the KLA responses of 
regulatory elements. NF-kB binding sites were separated into sites bound by p65 alone (p65-only), p50 alone (p50-
only) or both (Co-bind). Among the regulatory elements that overlap with NF-kB binding sites, the bar plots 
summarized the fractions of elements bound by different NF-kB factors for activated, neutral, and repressed 
elements. (E) Change of H3K27ac at NF-kB binding sites after KLA treatment. H3K27ac ChIP-seq reads were 
counted within +/-1500 bp around the three categories of NF-kB binding sites using a bin size of 25 bp and were 
averaged to show the overall change of H3K27ac profiles. 
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Next, we tested MAGGIE with a more complex epigenomic feature: stimulus responses 

of regulatory elements. ATAC-seq and H3K27ac ChIP-seq data from four genetically diverse 

strains of mice were downloaded for macrophages at basal conditions and at proinflammatory 

conditions induced by 1-h treatment of KLA (Link, Duttke, et al., 2018). We used ATAC-seq 

data to locate open chromatin regions accessible for TF binding and H3K27ac ChIP-seq data to 

quantify the activity of these regions and identify active regulatory elements (Supplementary Fig. 

2.6). By filtering for 2.5-fold change of activity from basal to KLA-treated conditions, we 

identified KLA-activated and KLA-repressed regulatory elements for each mouse strain (Fig. 

2.4A). Among those, about 12,000 activated elements and 18,000 repressed elements were 

specific to one of the strains based on pairwise comparisons. Strain-specific activated and 

repressed regulatory elements were separately tested by MAGGIE to identify their mediators. 

Interestingly, besides SPI1, CEBP and AP-1 (e.g., FOS::JUN) motifs that were known to be 

important for the KLA responses of macrophages (Glass & Natoli, 2016), MAGGIE assigned 

divergent functions for NF-kB factors (Fig. 2.4B). RELA corresponding to p65 subunit was 

output as functional for the activation response, while NFKB1 corresponding to p50 subunit was 

found significant for the repressed elements. On the contrary, due to the similarity of these 

motifs (Supplementary Fig. 2.7), HOMER found both motifs enriched in the activated elements 

compared with random backgrounds and neither enriched in the repressed elements 

(Supplementary Fig. 2.8). Previous studies have shown that p65 frequently forms heterodimers 

with p50 to act as a transcriptional activator, while p50 homodimers result in transcriptional 

repression (Brignall et al., 2019; Cheng et al., 2011; Natoli et al., 2005). However, the genome-

wide functions and binding patterns of these factors remain unknown. 
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To validate the functions of p65 and p50 for the KLA responses of macrophages, we 

conducted ChIP-seq experiments in C57 mice for p65 and p50 to measure their genome-wide 

binding sites in KLA-treated macrophages. Based on the measured TF binding sites, we first 

investigated the binding patterns of these factors. We searched for sites with RELA or NFKB1 

motifs and computed the binding activities of NF-kB factors at those sites by counting ChIP-seq 

reads. Regions with relatively strong binding of either factor (>32 ChIP-seq reads of p65 or p50; 

Supplementary Fig. 2.9) were used to calculate the log ratios of read counts between p65 and p50 

(Fig. 2.4C). RELA motif was enriched at the co-binding sites of p65 and p50, while NFKB1 

motif was more strongly bound by p50. To connect the binding patterns to the regulatory 

elements used in MAGGIE, we overlapped the TF binding sites with the activated and repressed 

elements previously defined for C57 mice and found that the majority of activated elements were 

co-bound by both p65 and p50, while repressed elements were more often bound by p50 alone 

(Fig. 2.4D). By quantifying the regulatory activity around the binding sites of p65 and p50 by the 

level of H3K27ac, we found an overall decrease in H3K27ac around sites only bound by p50 and 

an overall increase around the co-binding sites of p65 and p50 after KLA treatment (Fig. 2.4E). 

These findings suggest a genome-wide role of p65–p50 heterodimers as a transcriptional 

activator and p50 homodimers as a repressor for KLA-treated macrophages. More importantly, 

our experimental results validated the predictions from MAGGIE regarding the divergent 

functions of p65 and p50 subunits for pro-inflammatory macrophages, showing promise of using 

MAGGIE to discover novel functions of TFs for complex epigenomic features. 
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2.5 Discussion 

To our knowledge, MAGGIE is the first work to associate the mutation of TF binding 

motif with various types of epigenomic features. In contrast to motif enrichment methods, such 

as HOMER, in which identified motifs may or may not be functionally related to epigenomic 

features, MAGGIE determines the significance of motifs based on putative functional 

consequences of local motif mutations. Due to this qualitative difference, MAGGIE and motif 

enrichment methods recover overlapping but non-identical sets of significant motifs. As the 

major difference in methodology, MAGGIE focuses on the change of motif score and 

intentionally ignores the actual motif score due to the strong correlation between motif mutation 

and change of TF binding (Fig. 2.1C) and the independency of this relationship from the actual 

motif score (Supplementary Fig. 2.1). Another reason not to incorporate the actual motif score is 

that many epigenomic features do not possess a simple relationship with motif score. Instead of 

assuming a linear relationship between motif scores and epigenomic features like many current 

methods do, MAGGIE tests for a bias in the changing direction of motif mutations. We 

demonstrated that MAGGIE is able to identify known functional motifs for TF binding (Fig. 

2.3A and B), chromatin accessibility (Fig. 2.3C), and histone modification (Fig. 2.3C). MAGGIE 

also helped to discover divergent functions of distinct NF-kB factors for the KLA response of 

regulatory elements in macrophages (Fig. 2.4), which was not found by any other motif analysis 

tools. It is worth noting that the motifs of NF-kB factors are usually too similar to be 

distinguished by motif enrichment methods, but the strategy of focusing on the change of motif 

score instead of the actual motif score is sensitive enough to capture the difference.  

MAGGIE takes binary-labeled datasets as inputs (i.e., positive and negative sequences), 

which facilitates application to most publicly available data, including aggregated datasets like 
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QTLs and processed data from sequencing experiments like ChIP-seq and ATAC-seq. However, 

for the framework to work, MAGGIE requires additional measurements and genetic variation 

information for at least two different genotypes, which may not be currently available for some 

biological problems. The primary limitation to the discovery power of MAGGIE is the degree of 

genetic variation provided by the samples being analyzed. Another limitation is the inevitable 

cutoff accompanied with binary labels, which might affect the results especially when there are 

concerns about insufficient sample size or low data quality.  

The flexibility of our statistical framework makes it applicable to any type of epigenomic 

feature that is potentially affected by TF binding. Given the stand-alone tool we provided for the 

motif analysis methods described here, it will be interesting to investigate the performance of 

MAGGIE in other features, such as chromatin interaction and DNA methylation. Another future 

extension is to switch the PWM score used in this study to other types of motif scores, such as 

more advanced representations of TF binding motifs based on hidden Markov models. It will 

also be promising to incorporate state-of-the-art machine learning approaches (e.g., deep 

learning) into our framework to consider complex interactions between motifs. For instance, we 

can integrate the prediction scores of variant impacts from deep learning models and associate 

those predictions with biased changes of motifs.  

In summary, we presented a novel method for identifying DNA sequence motifs 

mediating TF binding and function, which goes beyond enriched or correlated motifs that are 

frequently analyzed nowadays. Given the growing interest in the function of TFs and the 

unprecedented generation of epigenomic data for different individuals and animal strains, we 

expect MAGGIE to be an effective bioinformatic tool that can be included in the regular routine 

of motif analysis. 
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2.7 Supplementary figures 

 

Supplementary Figure 2.1 Relationship between change of PU.1 binding and SPI1 motif score at a similar 
level of SPI1 motif mutation. Each dot represents a PU.1 binding site that has mutation on SPI1 motif between 
BALB and C57 by a difference of motif score between 1 and 1.5. Red dots are binding sites with a higher motif 
score in C57, while blue dots are for sites with lower scores in C57. Change of PU.1 binding activity was calculated 
by the fold change of PU.1 ChIP-seq reads between BALB mice and C57 mice. Sites with a stronger PU.1 motif in 
BALB has an increase in PU.1 binding in general, but the level of binding increase is not affected by the actual 
motif score (Pearson coefficient = 0.07 with an insignificant p-value). 
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Supplementary Figure 2.2 Diminished correlations between motif score differences of SPI1 motif and fold 
changes of PU.1 binding activity using non-uniform background probabilities. Background probabilities are 
displayed under each plot with GC contents ranging from 20% (rightmost) to 80% (leftmost). 

 

 

Supplementary Figure 2.3 Diminished correlation between motif score differences of SPI1 motif and fold 
changes of PU.1 binding activity using motif at the same locations. By restricting motifs at the same locations, 
we ended up with fewer PU.1 binding sites having mutations on SPI1 motif. 

 

 

Supplementary Figure 2.4 Significance values of simulated experiments from the comparative approaches for 
the unmutated motifs. All of the methods recognize unmutated motifs as insignificant for all levels of signal-to-
noise ratio. 
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Supplementary Figure 2.5 Effect of sample size on the outputs from the comparative approaches. Different 
number of input sequences were simulated and embedded with SPI1 and CEBPB motifs, among which 50% of total 
sequences experienced mutation on the SPI1 motifs. Ten simulations were repeated for each sample size. Overall, 
significance values increased with a larger sample size for all the methods. 

 

 

Supplementary Figure 2.6 Distribution of H3K27ac ChIP-seq reads for extended open chromatin of 
macrophages at basal and KLA-treated conditions. ChIP-seq reads were counted within 1000-bp extended 
regions around open chromatin regions identified from ATAC-seq. Read counts were pooled for the four testing 
strains of mice. Regions with larger than 16 reads are within the more active half of the total regions. 
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Supplementary Figure 2.7 Correlations of motif score differences between RELA motif and other testing 
motifs. NFKB1 and NFKB2 motif have relatively better correlations with RELA motif due to their motif similarity. 
However, it is not comparable to the extreme similarity between REL and RELA motif, which has a Pearson 
correlation coefficient larger than 0.7. Motif score differences are based on strain-specific KLA-activated regulatory 
elements. 

 

 

Supplementary Figure 2.8 Motif enrichment results from HOMER for KLA-activated and KLA-repressed 
regulatory elements of C57 mice. Motif enrichment was calculated by comparing to random backgrounds with 
default parameters. The motifs are ranked by the enrichment p-values for activated elements. 
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Supplementary Figure 2.9 Distribution of ChIP-seq reads for p65 and p50 at their respective binding sites. 
ChIP-seq reads were counted within 200-bp binding sites called for p65 and p50 using HOMER “findpeaks -size 
200”. The median counts for both factors are roughly at 5 = log2(32 reads). 
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Chapter 3. Mechanisms underlying divergent responses of genetically distinct 
macrophages to IL-4 

 
3.1 Abstract 

Mechanisms by which non-coding genetic variation influences gene expression remain 

only partially understood but are considered to be major determinants of phenotypic diversity 

and disease risk. Here, we evaluated effects of >50 million SNPs and InDels provided by five 

inbred strains of mice on the responses of macrophages to interleukin 4 (IL-4), a cytokine that 

plays pleiotropic roles in immunity and tissue homeostasis. Remarkably, of >600 genes 

induced >2-fold by IL-4 across the five strains, only 26 genes reached this threshold in all 

strains. By applying deep learning and motif mutation analyses to epigenetic data for 

macrophages from each strain, we identified the dominant combinations of lineage determining 

and signal-dependent transcription factors driving IL-4 enhancer activation. These studies further 

revealed mechanisms by which non-coding genetic variation influences absolute levels of 

enhancer activity and their dynamic responses to IL-4, thereby contributing to strain-differential 

patterns of gene expression and phenotypic diversity. 

 

3.2 Introduction 

Non-coding genetic variation is a major driver of phenotypic diversity as well as the risk 

of a broad spectrum of diseases. For example, of the common single nucleotide polymorphisms 

(SNPs) and short insertions/deletions (InDels) identified by genome-wide association studies 

(GWAS) to be linked to specific traits or diseases, ~90% are typically found to reside in non-

coding regions of the genome (Farh et al., 2015). The recent application of genome-wide 

approaches to define the regulatory landscapes of many different cell types and tissues allows 

intersection of such variants with cell-specific regulatory elements and strongly supports the 
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concept that alteration of transcription factor binding sites at these locations is an important 

mechanism by which they influence gene expression (Kilpinen et al., 2013; van der Veeken et 

al., 2019; Vierstra et al., 2020). Despite these major advances, it remains difficult to predict the 

consequences of most forms of non-coding genetic variation. Major challenges that remain 

include defining the causal variant within a block of variants that are in high linkage 

disequilibrium, identifying the gene that is regulated by the causal variant, and understanding the 

cell type and cell state specific regulatory landscape in which a variant might have a functional 

consequence (Abascal et al., 2020). For example, a variant that affects the binding of a signal-

dependent transcription factor (SDTF) may only be of functional importance in a cell that is 

responding to a signal that activates that factor (Soccio et al., 2015). Also, sequence variants can 

have a range of effects on transcription factor binding motifs, from abolishing or inducing 

binding by affecting critical nucleotides to quantitatively changing binding by affecting an 

intermediate affinity motif (Behera et al., 2018; Deplancke et al., 2016; Grossman et al., 2017). 

Studies of the impact of natural genetic variation on signal-dependent gene expression 

have demonstrated large differences in absolute levels of gene expression under basal and 

stimulated conditions, which result in corresponding differences in the dynamic range of the 

response (Bakker et al., 2018; Fairfax et al., 2014; Gate et al., 2018). The molecular mechanisms 

by which genetic variation results in these qualitatively and quantitatively different signal-

dependent responses remain poorly understood but are likely to be of broad relevance to 

understanding how non-coding variation influences responses to signals that regulate 

development, homeostasis and disease-associated patterns of gene expression. 

To investigate the influence of genetic variation on signal-dependent gene expression, we 

performed transcriptomic and epigenetic studies of the responses of macrophages derived from 
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five different inbred mouse strains to the anti-inflammatory cytokine IL-4 (Fig. 3.1A). The 

selected strains include both similar as well as highly divergent strain pairs, allowing modeling 

of the degree of variation between two unrelated individuals (~4 million variants) and that 

observed across large human populations (>50 million variants). Using this approach, we 

previously showed that strain-specific variants that disrupt the recognition motif for one 

macrophage lineage determining transcription factor (LDTF, e.g., PU.1), besides reducing 

binding of the LDTF itself, also result in decreased binding of other collaborative factors and 

SDTFs (Heinz et al., 2013; Link, Duttke, et al., 2018). Collectively, these findings supported a 

model in which relatively simple combinations of LDTFs collaborate with an ensemble of 

additional transcription factors to select cell-specific enhancers that provide sites of action of 

broadly expressed SDTFs (Heinz et al., 2010). 

IL-4 has many biological roles, including regulation of innate and adaptive immunity 

(Gieseck et al., 2018). In macrophages, IL-4 drives an ‘alternatively activated’ program of gene 

expression associated with inhibition of inflammatory responses and promotion of wound repair 

(Gordon & Martinez, 2010). The immediate transcriptional response to IL-4 is mediated by 

activation of STAT6 (Goenka & Kaplan, 2011; Ostuni et al., 2013), which rapidly induces the 

expression of direct target genes that include effector proteins such as Arginase 1 (Arg1) and 

transcription factors like PPARγ (Daniel et al., 2018) and EGR2 (Daniel et al., 2020). However, 

the extent to which natural genetic variation influences the program of alternative macrophage 

activation has not been systematically evaluated. Here, we demonstrate highly differential IL-4 

induced gene expression and enhancer activation in bone marrow-derived macrophages 

(BMDMs) across the five mouse strains, thereby establishing a robust model system for 

quantitative analysis of the effects of natural genetic variation on signal-dependent gene 
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expression. Through the application of deep learning methods and motif mutation analysis of 

strain-differential IL-4 activated enhancers, we provide functional evidence for a dominant set of 

LDTFs and SDTFs required for late IL-4 enhancer activation, which include STAT6, PPARγ and 

EGR2, and validate these findings in Egr2-knockout BMDMs. Importantly, assessment of the 

quantitative effects of natural genetic variants on recognition motifs for LDTFs and SDTFs 

suggests general principles by which such variation affects enhancer activity patterns and 

dynamic signal responses. 

 

3.3 Results 

3.3.1 The response to IL-4 is highly variable in BMDMs from genetically diverse mice 

To investigate how natural genetic variation affects the macrophage response to IL-4, we 

began by performing RNA-seq in BMDMs derived from female BALB/cJ (BALB), C57BL/6J 

(C57), NOD/ShiLtJ (NOD), PWK/PhJ (PWK) and SPRET/EiJ (SPRET) mice under basal 

conditions and following stimulation with IL-4. Time course experiments in C57 BMDMs 

indicated a progressive increase in the number of differentially expressed genes from 1 to 24 

hours (Supplementary Fig. 3.1A-B). We therefore focused our analysis on the response to IL-4 in 

BMDMs from the five strains at this timepoint. Weighted Co-expression Network Analysis 

(WGCNA) identified numerous modules of highly correlated mRNAs, the majority of which 

were driven by strain differences (Fig. 3.1B). Genes that were positively regulated by IL-4 across 

strains (red module, bottom) were enriched for functional annotations related to negative 

regulation of defense responses. Conversely, the purple (top) module captured genes that were 

negatively regulated by IL-4 and were enriched for pathways associated with positive regulation 

of inflammation (Fig. 3.1B). 
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Figure 3.1 Response to IL-4 is highly divergent in BMDMs from different mouse strains. (A) Overview of 
experimental design and main data sets. (B) WGCNA clustering focused on strain-differentially regulated genes in 
IL-4 treated BMDMs. The top hit Metascape pathways are annotated for each module. *q<0.05, **q<0.01, 
***q<0.001, ****q<0.0001. (C) Ratio-ratio plots demonstrating the mRNA response to IL-4 in pairwise comparisons. 
(D) Overlap of genes significantly induced or repressed (q<0.05, >2-fold) after IL-4 treatment in BMDMs from all 
strains. (E) Gene ontology terms enriched in up- and down-regulated genes after 24 h IL-4 stimulation in BMDMs 
from all strains. Numbers indicate the rank order in pathway analysis. (F) Arg1, Slc7a2 and Msx3 as example genes 
differentially up-regulated by IL-4 in strains. TPM, transcripts per kilobase million. ****q<0.0001, compared to 
basal. Numbers indicate fold change by IL-4. (G) Categories of strain-differential IL-4 up-regulated genes based on 
the differences in basal gene expression. (H) Average log2 gene expression fold change between alleles in hybrid 
(C57xSPRET F1) and parental strain under 24 h IL-4 conditions. 
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Remarkably, of the 693 genes induced >2-fold in at least one strain, only 26 (3.75%) 

were induced at this threshold in all five strains (Fig. 3.1D, Supplementary Fig. 3.1C-D). 

Conversely, more than half of the IL-4-responsive genes identified were induced >2-fold in only 

a single strain. NOD BMDMs were notable for a generally attenuated response to IL-4 (Fig. 

3.1B, red module, 1C, second panel). A similar pattern was observed for down-regulated genes 

(Fig. 3.1D). Despite these differences at the level of individual genes, similar pathways/gene 

programs were enriched in all strains for both induced and repressed genes (Fig. 3.1E). 

Substantial differences in IL-4 target gene expression across strains are illustrated by Arg1, 

Slc7a2 and Msx3 (Fig. 3.1F, fig S1E). BMDMs from all strains exhibit a significant induction of 

Arg1 expression, but the absolute basal levels and induction folds vary by more than an order of 

magnitude. Slc7a2 exhibits similar levels of expression in C57 and NOD BMDMs after IL-4 

treatment, but its differences at the basal level result in an 8.4-fold and 1.2-fold change, 

respectively. We refer to the pattern of reduced responsiveness to IL-4 in this comparison of C57 

and NOD as being associated with ‘high basal’ activity in the less responsive strain. Conversely, 

NOD and PWK BMDMs exhibit similar levels of basal Slc7a2 expression, but IL-4 only 

increased Slc7a2 expression more than 2-fold in PWK. We refer to this pattern of reduced 

responsiveness to IL-4 in NOD compared to PWK as being associated with ‘equal basal’ 

activity. A third category is exemplified by Msx3, which is induced in C57 but not in PWK and 

SPRET BMDMs. In this case, lack of responsiveness is associated with low expression of Msx3 

under basal conditions. We refer to this pattern as ‘low basal’ in the less responsive strain. 

Quantitative analyses of pair-wise comparisons indicate that 29% of the genes with decreased 

IL-4 induced gene expression were due to low basal expression, 36% had no differences prior to 
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IL-4 stimulation (equal basal), and 35% were the result of a high basal expression level in the 

less responsive strain (Fig. 3.1G). 

To investigate local versus distant effects of genetic variation on the differential 

responses to IL-4, we crossed C57 mice with the most genetically distinct SPRET mice to 

generate F1 offspring containing each parental chromosome. 91.4% of parental-specific RNA-

seq reads in the F1 strain are within 2-fold of their values in C57 and SPRET (blue data points) 

and considered to be due to local (cis) effects of genetic variation (Fig. 3.1H, Supplementary Fig. 

3.1F), while only 2.8% was divergent between the parental strains but not in F1 BMDMs (green 

data points), indicating trans regulation. As NOD macrophages exhibited a broadly attenuated 

response to IL-4 on the level of gene expression, we followed the same strategy using F1 

C57xNOD macrophages. Interestingly, RNA-seq on IL-4 stimulated macrophages of F1 

C57xNOD macrophages showed strong convergence of expression of genes that were 

differentially regulated in the parental strain (green data points in Supplementary Fig. 3.1G), 

consistent a major contribution of trans regulation. To investigate the point at which this 

regulation occurs, we performed ChIP-Seq for RNA-Pol2 under control and IL-4 stimulated 

conditions. In contrast to mRNA levels, examination of the IL-4-depenent changes in gene body 

RNA Pol2 indicated similar magnitude changes in all strains, including NOD (Supplementary 

Fig. 3.1H). These results suggest the presence of a transacting factor in NOD that acts 

downstream of transcription to attenuate mRNA levels. Collectively, these studies uncovered 

striking variation in the cell autonomous responses of BMDMs to IL-4 across these five strains, 

providing a powerful experimental system for investigating mechanisms by which natural 

genetic variation impacts signal-dependent gene expression. 
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3.3.2 Strain-differential IL-4 induced gene expression is associated with differential IL-4 

enhancer activation 
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Figure 3.2 Divergent IL-4 response is associated with strain-differential IL-4 enhancer activation. (A) Log2 
H3K27ac signal at ATAC peaks in C57 BMDMs under basal and IL-4 conditions. (B) Comparison of H3K27ac 
signal between C57 and BALB or SPRET under the 24 h IL-4 condition. (C) Log2 H3K27ac fold changes after 24 h 
IL-4 in C57 versus other strain in enhancers. (D) Distributions of IL-4 H3K27ac log2 fold changes, Levene’s test 
was performed to test response differences in conventional versus super enhancers. (E) Ak2 super enhancer 
responsive to IL-4 and conserved across all strains. (F) Msx3 IL-4 induced enhancer in C57, BALB and NOD, but 
not PWK and SPRET BMDMs. Absolute DeepLIFT scores indicate predicted importance of single nucleotides for 
enhancer activity. Dotted lines represent locations of PWK or SPRET variants. (G, H) Enhancers were categorized 
into strain-similar and strain-differential based on fold differences in H3K27ac between C57 and one of the other 
strains. Table with percentages of enhancers containing local genetic variants (G) and the percentage of enhancers 
that contain predicted functional variants (H). (I) Log2-scaled enrichment of enhancers with variants at top-scoring 
positions based on DeepLIFT scores. The enrichment was calculated by (% enhancers in one category with top 
variants) / (% all enhancers with top variants). G and H are based on the top 100% and 20%, respectively. 
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To investigate the impact of cis variation on putative transcriptional regulatory elements, 

we defined high confidence IL-4 activated enhancers as intronic or intergenic open chromatin 

regions (based on ATAC-seq) with at least 2.5-fold increase in H3K27ac (Creyghton et al., 

2010) and RNA Pol2 (Bonn et al., 2012) after IL-4 treatment (Supplementary Fig. 3.2A to D). In 

24-hour IL-4 stimulated C57 BMDMs, 1,093 regions exhibited a >2.5-fold increase in H3K27ac, 

whereas 441 regions exhibited a >2.5-fold decrease, corresponding to putative IL-4-activated and 

IL-4-repressed enhancers, respectively (Fig. 3.2A). Comparison of C57 enhancers to those of 

other strains under IL-4 treatment conditions revealed marked differences that scaled with the 

degree of genetic variation (Fig. 3.2B, Supplementary Fig. 3.2E and F). We further subdivided 

these regions into ‘conventional enhancers’ (blue, Fig. 3.2C) and ‘super enhancers’ (orange, Fig. 

3.2C), based on the density distribution of normalized H3K27ac tag counts (Whyte et al., 2013). 

Super enhancers represent regions of the genome that are highly enriched for cell-specific 

combinations of transcription factors and co-regulators and control the expression of genes 

required for cellular identity and critical functions. In comparison to conventional enhancers, 

super enhancers exhibited significantly less variation in H3K27ac in response to IL-4 (Fig. 3.2D, 

Supplementary Fig. 3.2G). For example, IL-4 induction of the Ak2 super enhancer (Fig. 3.2E) is 

highly conserved between the five strains. In contrast, a typical example of strain specificity is 

provided by the conventional enhancers associated with the Msx3 gene. These enhancers are IL-4 

inducible only in BALB, C57 and NOD and absent in PWK and SPRET macrophages (Fig. 

3.2F). 

We next compared the fractions of enhancers containing variants in strain-similar 

enhancers (<1.5-fold differences in H3K27ac between strains) to strain-differential enhancers at 

increasing levels of difference (fold differences >1.5 to >4; Fig. 3.2G). The fraction of enhancers 
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containing variants at strain-similar enhancers ranged from 17-19% in the strains most similar to 

C57 (BALB and NOD) to 69-93% in the most genetically divergent strains (PWK and SPRET). 

As expected, the fraction of enhancers containing variants increased with increasing levels of 

difference, except for SPRET which may have reached a saturation of variation capacity (Fig. 

3.2G). These findings are consistent with local variants affecting enhancer activity, but also 

indicate that a substantial fraction of even strongly strain-differential IL-4 induced enhancers 

lack such variants, consistent with previous findings for strain-specific enhancers overall (Link, 

Duttke, et al., 2018).  

In an effort to distinguish silent variants from those affecting enhancer activities, we 

trained a DeepSEA convolutional neural network to classify enhancers as active or inactive 

under the 24 h IL-4 condition based on local sequence context (J. Zhou & Troyanskaya, 2015). 

The training data consisted of enhancers active under IL-4 conditions (positive data) and random 

background (negative data). The area under the receiver operating characteristic curve (auROC) 

was 0.894 on test data. We then used DeepLIFT (Shrikumar et al., 2017) to compute the 

importance score of each nucleotide based on the model’s classification decision. Variants at 

positions with top importance scores within surrounding 300-bp enhancer regions are 

hypothesized to affect enhancer activity. We considered variants residing in the top 20% of 

importance scores for each region as predicted functional variants. The Msx3 enhancer in Fig. 

3.2F illustrates four predicted functional variants out of fourteen variants in PWK and SPRET 

(red dotted lines). By focusing on top-scoring variants rather than all local variants, we saw an 

expected overall decreased percentage of enhancers with top-scoring variants (Fig. 3.2H, 

Supplementary Fig. 3.2H). On the other hand, enrichment of predicted functional variants 

increases as a function of importance score threshold and is strongest for enhancers that show the 



 
 

47 

highest differences across strains (Fig. 3.2I). This is true when considering all strains, including 

SPRET. These results reveal a quantitative impact of variants affecting enhancer under IL-4 

treatment conditions and suggest the extent to which a deep learning approach can distinguish 

potentially functional variants from the silent variants. 

3.3.3 IL-4 activated enhancers use pre-existent promoter-enhancer interactions to regulate 

gene activity 

Interpretation of effects of genetic variation on distal regulatory elements is facilitated by 

knowledge of cell-specific enhancer-promoter interactions (Nott et al., 2019). To identify 

connections of IL-4-responsive enhancers to target promoters, we performed HiChIP using an 

antibody to H3K4me3 (Mumbach et al., 2016) in C57 BMDMs under basal conditions and after 

24 h of IL-4 treatment. HiChIP interactions are exemplified in Fig. 3.3A at the Slc7a2 locus, a 

gene that becomes maximally activated after 24 h of IL-4 treatment and connects primarily to an 

enhancer-like region within the Mtmr7 gene which itself is expressed at negligible levels (Fig. 

3.3A). Although we observed instances of IL-4-specific interactions (e.g., yellow loops), a 

differential interaction analysis was unable to identify significantly different interactions between 

basal and IL-4 conditions, supported by the high correlation of interaction intensity between the 

two conditions (Supplementary Fig. 3.3A). Moreover, enhancer-promoter interaction intensity 

did not correlate with IL-4 induced gene activity or the level of H3K4me3 at promoters 

(Supplementary Fig. 3.3B-C). However, IL-4 activated promoters mostly interact with IL-4 

activated enhancers (Fisher’s exact test, p=2.2e-16), and repressed promoters strongly interact 

with repressed enhancers (p=1.2e-15, Fig. 3.3B). These results suggest a pre-existent and 

relatively stable landscape of enhancer-promoter interactions in macrophages, whose regulatory 

function was activated in response to IL-4. 
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Figure 3.3 IL-4 enhancers use pre-existent promoter-enhancer interactions to regulate gene activity. (A) 
HiChIP indicates the Slc7a2 promoter is highly connected with several IL-4 activated enhancers. Slc7a2 and Mtmr7 
gene expression upon IL-4 stimulation were shown. (B) Different categories of HiChIP interactions (right), and 
enhancer-promoter connections overlapping with IL-4 responsive regulatory elements in C57 BMDMs (left). Outer 
ring indicates induced or repressed promoters, while inner ring indicates their connected enhancers associated with 
IL-4-induced, IL-4 repressed or IL-4 neutral H3K27ac. (C) Correlations of H3K27ac signal between connected 
enhancers compared to non-interactive enhancers using Mann–Whitney U test. (D) Table representing enhancers 
containing DeepLIFT high-scored genetic variants locally or at connected elements in pairwise comparisons 
between C57 and other strains. (E) Strain-differential enhancer between C57 and NOD where genetic variants were 
absent locally but present at a connected enhancer with two DeepLIFT high-scored variants (red dotted lines). 

Although the HiChIP assay is designed to capture promoter-enhancer interactions based 

on preferential occurrence of H3K4me3 at promoters, we also recovered 145,907 pairs of 

interactive enhancers (Fig. 3.3B), consistent with more than one enhancer being in local 
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proximity of a target promoter. The H3K27ac correlations between interactive enhancers were 

significantly stronger than those between non-interactive enhancers (Fig. 3.3C, Supplementary 

Fig. 3.3D), consistent with their being functionally related. Noticeably, the closer enhancers 

despite being non-interactive based on our data still have much stronger correlation than 

completely random enhancers, which might be due to more frequent contacts of nearby regions 

within the same interactive domain that were not captured by H3K4me3 HiChIP. Based on the 

high correlation of enhancer activity between connected enhancers, we hypothesized that 

enhancer-enhancer interactions could explain strain-differential enhancer when local genetic 

variants were absent (Fig. 3.2H). Among 224 interactive enhancers exhibiting a >4-fold 

difference in H3K27ac signal between BALB and C57 under the IL-4 condition, the original 

~50% of strain-differential enhancers with predicted functional variants was further split into 

20.5% that had top-scoring variants on both ends and 33.6% that had only local top-scoring 

variants (Fig. 3.3D, upper left). Depending on the strain comparison, an additional 8.2%-19.9% 

of differential enhancers could be explained by genetic variants in interacting enhancers, 

indicating that enhancers may be affected by functional variants in other connected enhancers. 

Reducing the fold change requirement to 2-fold yielded a smaller proportion of strain-differential 

enhancers containing local variants overall but significantly increased the proportion having top-

scoring variants on the connected ends only (15.4%-26.5%, Fisher’s exact test p=0.002 for 

BALB, 2.8e-5 for NOD, 8.3e-7 for PWK, 3.3e-10 for SPRET), suggesting that local variants 

have a stronger effect on inducing differential activation than variants at connected enhancers 

(Fig. 3.3D lower panels, Supplementary Fig. 3.3E). Fig. 3.3E illustrates an enhancer affected by 

genetic variants at the connected enhancer. The enhancer highlighted on the left is significantly 

more active in C57 than NOD. This region lacks local variants in NOD but is connected to 
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another enhancer ~100 kb away (highlighted on the right) containing multiple variants that are 

predicted to affect activity by deep learning. These findings are consistent with genetic variants 

at an enhancer influencing the activity states of other enhancers that lack local functional variants 

within the same connected network (Grubert et al., 2015; Waszak et al., 2015). 

3.3.4 Motif mutation analysis identifies motifs that are functionally associated with IL-4 

induced enhancer activity 

IL-4 rapidly activates a set of enhancers, the majority of which exhibit maximal H3K27ac 

at 1 h or 6 h and returns to (near) basal levels by 24 h (Fig. 3.4A, top three clusters) when most 

gene expression changes were found (Supplementary Fig. 3.1B). Others are long-lasting or 

become activated at later timepoints (Fig. 3.4A, bottom three clusters). De novo motif 

enrichment analysis of enhancers exhibiting >2.5-fold increase in H3K27ac and RNA Pol2 at 1 

h, 6 h and 24 h (Supplementary Fig. 3.2A) recovered a STAT6 motif as the most enriched motif 

for all timepoints (Fig. 3.4B). Motifs for the lineage determining factors PU.1 and AP-1 family 

members were also recovered in all three classes of enhancers. Notably, an EGR2 motif was 

significantly enriched among enhancers induced at 24 h. 

As a genetic approach to identify functional transcriptional factor binding motifs, we 

assessed the quantitative impact of the genetic variation provided by the five different strains of 

mice on the IL-4 response of enhancers using the motif mutation analysis tool MAGGIE. 

MAGGIE associates changes of epigenomic features at homologous sequences (e.g., enhancer 

activation or enhancer repression) with motif mutations caused by genetic variation so that it can 

prioritize motifs that likely contribute to the regulatory function (Shen et al., 2020). This analysis 

identified more than a dozen motif clusters in which motif mutations were significantly 

associated with strain-differential IL-4 activated or repressed enhancers (Fig. 3.4C, 
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Supplementary Fig. 3.4A). The EGR motif was found as the top motif associated with enhancer 

activation at the 24 h treatment time, as well as motifs of known SDTFs STAT6 and PPARγ and 

macrophage LDTFs PU.1, AP-1 and CEBP (Fig. 3.4C). We also found KLF motifs associated 

with IL-4 enhancer activation, which fits with increased KLF4 expression by IL-4 

(Supplementary Fig. 3.4B), and an NRF motif associated with both enhancer activation (Fig. 

3.4C). 
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Figure 3.4 Motif analysis identifies motifs functionally associated with IL-4 induced enhancers. (A) Heatmap 
showing the effects of 1 h, 6 h and 24 h IL-4 stimulation on enhancer activation based on H3K27ac abundance. (B) 
Top motifs enriched at ATAC-seq peaks exhibiting gained H3K27ac at different time points. (C) MAGGIE motif 
mutation analysis on strain-differential activated and repressed enhancers after 24 h IL-4. (D) Egr gene expression in 
C57 BMDMs under basal conditions and after stimulation with IL-4, ****q<0.0001, compared to basal. (E) 
Example of a strain-differential activated enhancer upstream of the Btbd11 gene based on IL-4-induced H3K27ac 
signal in C57 but not in SPRET BMDMs, supported by binding of EGR2 and a functional variant predicted by 
DeepLIFT that mutates the EGR2 motif. 

The identification of STAT6 and PPARγ motif mutations as being functionally associated 

with strain-differential IL-4 activation is consistent with substantial prior work demonstrating the 

importance of these factors in regulating IL-4-dependent gene expression (Czimmerer et al., 
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2018; Daniel et al., 2018). Out of the Early Growth Response (EGR) family members only Egr2 

is expressed in unstimulated BMDMs and rapidly induced after IL-4 stimulation (Fig. 3.4D, 

Supplementary Fig. 3.4C). Egr2 has also been associated with late IL-4 enhancer activation in a 

recent study (Daniel et al., 2020). Examination of the Egr2 locus indicates IL-4 induced binding 

of STAT6 and PPARγ to a set of upstream super enhancers that gain H3K27ac and RNA Pol2 

signal after IL-4 stimulation (Supplementary Fig. 3.4D). These super enhancers were observed in 

BMDMs of all five different strains (Supplementary Fig. 3.4E) that are strongly connected to the 

Egr2 promoter in C57 BMDMs as indicated by H3K4me3 HiChIP interactions. Overall, these 

findings suggest a functionally important role of EGR2 in contributing to IL-4 induced enhancer 

activation in BMDMs. 

3.3.5 IL-4 induced EGR2 contributes to late IL-4 enhancer activation 

In order to incorporate EGR2 into a comprehensive analysis of the impact of genetic 

variation on IL-4 responses, we next performed ChIP-seq for EGR2 under basal and 24 h IL-4 

treatment conditions. This confirmed the prediction that mutations in EGR binding sites 

contribute to strain-differential enhancer activation by altering the binding of EGR2. An example 

is provided by the Btbd11 enhancer, which is IL-4 inducible in C57, but not in SPRET BMDMs 

(Fig. 3.4E). Consistent with the loss of EGR2 binding in SPRET, a C-to-T variant in SPRET 

mutated an EGR2 motif.  
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Figure 3.5 IL-4 induced EGR2 contributes to late IL-4 enhancer activation. (A) Heatmap displaying EGR2 
ChIP-seq binding intensity after IL-4 stimulation over time in C57 BMDMs. (B) Number of EGR2 binding sites 
after 24 h IL-4 compared to the basal condition in C57 BMDMs. (C) H3K27ac profiles at 24 h IL-4 induced 
intergenic and intronic EGR2 peaks in C57 BMDMs. (D) Expression of IL-4 regulated genes in Egr2WT and 
Egr2MKO BMDMs with top gene ontology terms displayed for cluster 2. (E) Enhancer activity of IL-4 regulated 
enhancers in Egr2WT and Egr2MKO BMDMs. Enriched motifs at EGR2-dependent and EGR2-independent IL-4 
induced enhancers using each other as backgrounds. (F) H3K27ac profiles at IL-4 induced EGR2 binding sites in 
Egr2WT and Egr2MKO BMDMs. 90% confidence intervals are shown together with the average profiles. 

To study EGR2 binding and its effects on gene regulation over time, we additionally 

measured EGR2 binding at 1 h and 6 h after IL-4. We saw a marked expansion of the EGR2 

cistrome after stimulation with IL-4 (Fig. 3.5A-B). Most EGR2 binding sites had an increasing 

binding intensity over time and reached maximum values at 24 h (Fig. 3.5A, Supplementary Fig. 
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3.5A). In constrast, STAT6 binding was strong immediately after 1 h and slowly decreased in its 

binding intensity (Supplementary Fig. 3.5A). At 24 h, there were over 20,000 newly gained 

EGR2 binding sites (Fig. 3.5B), which were associated with an increase in H3K27ac and RNA 

Pol2 signals over time, supporting a major role of EGR2 in late enhancer activation (Fig. 3.5C, 

Supplementary Fig. 3.5B).  

To extend these analyses, we crossed Egr2flfl (Du et al., 2014) (Egr2WT) with LyzM-Cre+ 

mice to obtain LyzM-Cre+ Egr2flfl (Egr2MKO) mice. This resulted in efficient deletion of Egr2 in 

BMDMs (Supplementary Fig. 3.5C-D). RNA-seq data from Egr2WT and Egr2MKO BMDMs 

indicated that at the mRNA level, EGR2 is regulating ~40% of the 24 h IL-4 induced genes (Fig. 

3.5D, Supplementary Fig. 3.5E), many of which correspond to gene ontology terms related to 

cytokine production and signaling (Fig. 3.5D). At the regulatory level, we found that ~40% of 

the IL-4 induced enhancers at 24 h had significantly decreased activity in Egr2MKO BMDMs 

(blue cluster, Fig. 3.5E, Supplementary Fig. 3.5F-H). In concordance, the IL-4 induction in 

H3K27ac was found to be decreased at IL-4 induced EGR2 binding sites in Egr2MKO BMDMs 

(Fig. 3.5F). Based on a motif enrichment analysis of the EGR2-dependent IL-4 activated 

enhancers (blue cluster “deactivated”) with the EGR2-independent enhancers as background 

(green cluster “activated”), we found EGR2 as the most significantly enriched motif and SMAD3 

and CEBP motifs as the second and the third hits (Fig. 3.5E). When comparing the EGR2-

independent activated enhancers (“activated”) to the EGR2-dependent ones (“deactivated”), the 

STAT6 motif was most significantly enriched (Fig. 3.5E), suggesting STAT6 could work 

independently of EGR2 to maintain the late activation for a subset of enhancers. Together, these 

findings establish an essential role of EGR2 in IL-4 dependent enhancer activation and gene 

expression and are in full agreement with the recent studies of Daniel, et al., (Daniel et al., 2020). 
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3.3.6 Collaborative and hierarchical transcription factors interact at IL-4 dependent 

enhancers 

Analysis of the genome-wide binding patterns of EGR2, STAT6 and PPARγ indicated 

intensive co-binding at IL-4 activated enhancers (Supplementary Fig. 3.6A). To achieve highly 

strain-differential responses to IL-4 that are observed at the level of gene expression (Fig. 3.1) 

and enhancer activation (Fig. 3.2), these factors are hypothesized to exert their transcriptional 

effects via correspondingly divergent genomic binding patterns. About 4,000 EGR2 binding sites 

exhibited more than 4-fold differences in normalized tag counts between C57 and BALB, and 

about 10,000 between C57 and SPRET ( 

Fig. 3.6A). Similar relationships are observed for STAT6 (Supplementary Fig. 3.6B). 

Within the strain comparisons of C57 to BALB and SPRET, C57-specific EGR2 binding sites 

are associated with stronger H3K27ac signal in C57 (Fig. 3.6B, green boxes). At these C57-

specific EGR2 binding sites, H3K27ac signal is more strongly downregulated in Egr2MKO 

macrophages (Fig. 3.6B, orange boxes). An example of this is demonstrated in Supplementary 

Fig. 3.6C in which C57-specific binding of EGR2 is associated with an IL-4 induced increase in 

H3K27ac, which is absent in SPRET (where the EGR2 motif is disrupted, Fig. 3.4E) and is 

decreased in Egr2MKO BMDMs. 
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Figure 3.6 Collaborative and hierarchical transcription factors interact at IL-4 enhancers. (A) Scatter plots 
comparing binding of EGR2 in C57 versus BALB and C57 versus SPRET IL-4 stimulated BMDMs. (B) Log2 fold 
changes of H3K27ac signal between different strains (green boxes) or between Egr2WT and Egr2MKO BMDMs 
(orange boxes) at C57-specific and strain-shared EGR2 binding sites. Distributions of C57-specific sites were 
compared to those of strain-shared sites in the same category using the two-sample t-test. ****p<0.0001. (C) 
Functional motifs from MAGGIE analysis at EGR2, STAT6, PPARγ, C/EBPβ and PU.1 binding sites. (D) STAT6 
and PPARγ binding at IL-4 induced EGR2 peaks in Egr2WT and Egr2MKO BMDMs. Cohen’s d effect size and p-
values from Mann–Whitney U tests are shown. (E) Co-binding of STAT6, EGR2, and PPARγ at the Mmp12 
enhancer. (F) C/EBPβ and PU.1 binding at IL-4 induced EGR2 peaks in Egr2WT and Egr2MKO BMDMs. 

The strain-differential binding patterns of SDTFs and LDTFs enabled motif mutation 

analysis to study the importance of motifs for SDTF and LDTF binding (Fig. 3.6C). As a 

validation, LDTF and SDTF binding depended on their own motifs (e.g., PU.1 motif mutation 
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was significantly associated with PU.1 binding, indicating that when PU.1 binding is lost in one 

strain, it is often found that the PU.1 motif score is reduced in that strain compared to the other). 

In addition, mutations in the motifs of LDTFs PU.1, C/EBP and AP-1 influence the binding of 

all LDTFs and SDTFs, which fits with earlier observations (Heinz et al., 2013). We found that 

the PPAR motif is only significant for PPARγ binding, and likewise, the STAT6 motif is not 

associated with binding of other SDTFs or LDTFs but STAT6. Interestingly, we found that 

mutations in EGR2 motifs are significantly associated with binding of SDTFs STAT6 and 

PPARγ and LDTFs PU.1, C/EBPβ under IL-4 conditions, but not under basal conditions. These 

analyses also provided evidence for functional roles of several additional transcription factors. 

Mutations in NRF motifs were strongly associated with the IL-4-dependent binding of all SDTFs 

and LDTFs. Both NRF1 and NRF2 are expressed in BMDMs (Supplementary Fig. 3.4B) and are 

involved in lipid metabolism and stress responses (Kobayashi et al., 2016; Widenmaier et al., 

2017). Mutations in KLF motifs were strongly associated with EGR2 binding under both basal 

and IL-4 conditions. KLF2, KLF4 and KLF6 are expressed in BMDMs (Supplementary Fig. 

3.4B) and KLF4 has previously been associated with anti-inflammatory roles in macrophages 

(Liao et al., 2011). Mutations in IRF motifs were moderately associated with IL-4-dependent 

STAT6 binding. Multiple IRFs, including IRF4, are expressed in BMDMs (Supplementary Fig. 

3.6D) and IRF4 has previously been linked to macrophage polarization by IL-4 (El Chartouni et 

al., 2010; Satoh et al., 2010). 

A prediction emerging from the analysis results above is that EGR2 should have a small 

effect on the co-binding of SDTFs and LDTFs under basal conditions and a significant effect 

following 24 h of IL-4 treatment. To examine this prediction, we performed ChIP-seq for 

STAT6, PPARγ, PU.1 and C/EBPβ in Egr2WT and Egr2MKO BMDMs and evaluated their binding 
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in the vicinity of IL-4 induced EGR2 binding sites. Deletion of Egr2 had little effect on PPARγ 

and STAT6 binding under basal conditions and a much greater effect following 24 h of IL-4 

treatment (Fig. 3.6D). As an example, in Egr2MKO BMDMs, PPARγ and STAT6 binding was 

found decreased at the Mmp12 enhancer at sites where EGR2 normally binds (Fig. 3.6E). 

Similarly, PU.1 and C/EBPβ binding was more significantly affected by Egr2 deletion under the 

IL-4 condition than the basal condition (Fig. 3.6F). In concert, these findings provide evidence 

for collaborative interactions between PU.1, C/EBPs, AP-1, STAT6, PPARγ and EGR2 as major 

drivers of late enhancer activation in response to IL-4. EGR2 is a strong collaborative factor as it 

promotes binding of LDTFs PU.1 and C/EBPβ and SDTFs STAT6, PPARγ after IL-4 

stimulation. 

3.3.7 Quantitative variations in motif affinity determine dynamic responses of IL-4 

enhancers 

We next investigated the possibility that the mutational status of the dominant motifs 

recovered by MAGGIE analysis was sufficient to predict qualitative patterns of strain-

differential responses of IL-4 induced enhancers. Following the classification of strain-

differential mRNA responses (Fig. 3.1), we used H3K27ac to define three different categories of 

strain-differential IL-4-induced enhancers (Fig. 3.7A, left column): enhancers exhibiting lower 

levels of basal activity in the lowly induced strain (low basal); enhancers with a similar level of 

basal activity (equal basal); enhancers in which a lack of IL-4 induced activity was associated 

with relatively higher basal activity compared to the more responsive strain (high basal). Using 

these criteria, we identified 760 low basal, 2797 equal basal and 2013 high basal enhancers from 

all pairwise comparisons of the five strains that exhibited >2-fold differences in H3K27ac 

induction (Fig. 3.7B). The closest genes for enhancers of these three categories follow similar 
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trends as observed for enhancer activity (Supplementary Fig. 3.7A). Low basal, equal basal and 

high basal enhancers are exemplified by enhancers associated with the Treml2, Ripk2 and Cd36 

genes, respectively (Fig. 3.7C-E, Supplementary Fig. 3.7B-D). 

 

Figure 3.7 Quantitative variations in motif affinity determine dynamic responses of IL-4 enhancers. (A) Three 
different categories of strain-differential IL-4 activated enhancers with distributions of ATAC and H3K27ac signal. 
Dashed lines in each distribution indicate quartiles. (B) Numbers of enhancers in the three categories. (C-E) 
Example of low (C), equal (D) and high (E) basal enhancers with high impact variants predicted by DeepLIFT. (F) 
MAGGIE motif mutation analysis on different categories of enhancers. (G, H) Binding intensities of PU.1 (G) and 
STAT6 (H) in non-induced and induced strains at different categories of enhancers. (I) Graphical representation of 
the general mechanisms for different categories of IL-4 induced enhancers. 
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Consideration of chromatin accessibility as determined by ATAC-seq further uncovered 

potential mechanisms that distinguished the three enhancer categories (Fig. 3.7A, right column). 

The enhancers in the low basal category showed low to absent basal ATAC signal in non-

induced strains, suggesting a lack of LDTFs under the basal condition to pre-occupy chromatin 

required for subsequent recruitment of SDTFs after IL-4 stimulation. In contrast, high basal 

enhancers exhibited a higher basal level of ATAC in non-induced strains compared to induced 

strains (Fig. 3.7A, right column), suggesting stronger LDTF binding in non-induced strains under 

the basal condition. Different from the other categories, equal basal enhancers exhibited similar 

levels of chromatin accessibility under both basal and IL-4 conditions between comparative 

strains, suggesting that the recruitment of SDTFs might be the key determinant for the strain 

difference instead of basal LDTF binding.  

To test the hypotheses above regarding the different determinants for the three categories 

of enhancers, we performed MAGGIE motif mutation analysis on each category of enhancers 

that contain motif mutations (Supplementary Fig. 3.7E). We found that mutations in motifs of 

LDTFs PU.1/ETS and C/EBP were associated with low basal enhancers and resulted in better 

motifs in induced strains, while mutations in motifs of SDTFs EGR, STAT6, PPAR and 

NRF/MAF were associated with the equal basal category leading to better motifs in induced 

strains (Fig. 3.7F, Supplementary Fig. 3.7F). Mutations in EGR motifs were also associated with 

the low basal category, suggesting another role of EGR2 as a strong collaborative factor under 

the IL-4 condition, which is supported by the significant decrease in open chromatin under IL-4 

conditions after deletion of Egr2 (Supplementary Fig. 3.5F). Of particular interest, the high basal 

category of enhancers was most strongly associated with negative significance scores for LDTF 
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PU.1, C/EBP and AP-1 as well as NRF/MAF, meaning higher motif affinity in non-induced 

strains (Fig. 3.7F). 

We validated these findings with our ChIP-seq data by examining the binding profiles of 

PU.1, C/EBPβ, STAT6, PPARγ and EGR2 in three categories of enhancers. In low basal 

enhancers, we saw significantly reduced binding of PU.1 and C/EBPβ in non-inducible strains 

under both basal and IL-4 conditions (Fig. 3.7G, Supplementary Fig. 3.7G). This pattern was 

accompanied by significantly weaker binding of SDTFs STAT6, EGR2 and PPARγ after IL-4 

stimulation (Fig. 3.7H, Supplementary Fig. 3.7H). The example in Fig. 3.7C showed the absence 

of C/EBPβ binding in NOD under the basal condition likely due to two local variants at high-

scored positions according to DeepLIFT that together mutated a C/EBP motif. Upon IL-4 

stimulation, neither C/EBPβ nor EGR2 was further recruited. For equal basal enhancers, we 

found that PU.1 and C/EBPβ binding was similar under basal conditions in induced and non-

induced strains (Fig. 3.7G, Supplementary Fig. 3.7G). Upon IL-4 stimulation, the induced strains 

displayed significantly stronger binding of SDTFs STAT6, EGR2 and PPARγ (Fig. 3.7H, 

Supplementary Fig. 3.7H). In the example in Fig. 3.7D, STAT6 binding was strongly induced by 

IL-4 at the Ripk2 enhancer in PWK but was absent in SPRET. Despite the clear difference in 

STAT6 binding, none of the local variants between the two strains was predicted functional 

when using a neural network model trained with random genomic backgrounds. To better 

capture the sequence patterns relevant for enhancer activation, we retrained neural networks 

using non-induced enhancers as the background, which emphasized a relatively divergent set of 

k-mers and focused less on those matched with LDTF motifs (Supplementary Fig. 3.7I). As a 

result, our retrained model assigned a high DeepLIFT score to one of the nucleotides in a STAT6 

motif that was mutated by a variant in SPRET (Fig. 3.7D). For high basal enhancers, we found 
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stronger binding of not only the LDTFs PU.1 and C/EBPβ (Fig. 3.7G, Supplementary Fig. 3.7G) 

but also the SDTFs STAT6 and PPARγ (Fig. 3.7H, Supplementary Fig. 3.7H) in non-induced 

strains under basal conditions. For example, high basal levels of C/EBPβ and STAT6 binding 

were observed at the Cd36 enhancer in NOD mice (Fig. 3.7E). The only local variant in PWK 

was at a predicted functional position and mutated a C/EBP motif likely causing the low basal 

C/EBPβ binding in PWK. In concert, these analyses validated the importance of LDTF motif 

mutations as primary determinants of differential enhancer activation in low basal and high basal 

enhancers, while also demonstrating the expected consequences of SDTF motif mutations in 

determining strain-differential activation of equal basal enhancers (Fig. 3.7I). 

 

3.4 Discussion 

Here, we report a systematic investigation of the effects of natural genetic variation on 

signal-dependent gene expression by exploiting the highly divergent responses of BMDMs from 

diverse strains of mice to IL-4. Unexpectedly, despite broad conservation of IL-4 signaling 

pathways and downstream transcription factors in all five strains, only 26 of more than 600 genes 

observed to be induced >2-fold by IL-4 at 24 hours reached that level of activation in all five 

strains and more than half were induced in only a single strain. To the extent that this remarkable 

degree of variation observed in BMDMs occurs in tissue macrophages and other cell types in 

vivo, it is likely to have significant phenotypic consequences with respect to innate and adaptive 

immunity, tissue homeostasis and wound repair. Notably, only ~25% of the variation in response 

to IL-4 was due to altered dynamic ranges in the context of an equivalent level of basal 

expression. Nearly half of the genes showing strain-specific impairment in IL-4 responsiveness 

exhibited low basal activity, whereas lack of induction was associated with constitutively high 
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basal levels of expression in the remaining ~25%. These qualitatively different patterns of strain 

responses to IL-4 imply distinct molecular mechanisms by which genetic variation exerts these 

effects. 

Motif mutation analysis of strain-differential enhancer activation recovered a dominant 

set of motifs recognized by known LDTFs PU.1, C/EBPβ and AP-1 family members, as well as 

motifs recognized by SDTFs STAT6 and PPARγ that have been previously established to play 

essential roles in the IL-4 response. In addition, effects of mutations in motifs for EGR, NRF and 

KLF also strongly implicate these factors as playing important roles in establishing basal and 

induced activities of IL-4 responsive enhancers, which was genetically confirmed for EGR2 in 

this study as well as a recent study (Daniel et al., 2020). It will be of interest in the future to 

perform analogous studies of NRF and KLF factors. 

Analysis of strain-differentially activated enhancers revealed qualitative differences in 

basal and IL-4-dependent activity that were analogous to the qualitative differences observed for 

strain-differentially activated genes. As expected, sequence variants reducing the affinity of 

SDTFs STAT6, PPARγ and EGR2 were the major forms of variation resulting in strain-

differential IL-4 induction of equal basal enhancers. From the standpoint of interpreting the 

effects of non-coding variation, these types of sequence variants are silent in the absence of IL-4 

stimulation. As also expected, sequence variants strongly reducing the binding affinity of LDTFs 

prevented the generation of open chromatin required for subsequent binding of SDTFs. Such 

variants are thus expected to result in loss of enhancer function in a signal-independent manner. 

Of particular significance, these analyses also provide strong evidence that quantitative variation 

in suboptimal motif scores for LDTFs is a major determinant of differences in the absolute levels 

and dynamic range of high basal enhancers across strains. The importance of low affinity motifs 
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in establishing appropriate quantitative levels of gene expression within a given cell type and cell 

specificity across tissues has been extensively evaluated (Crocker et al., 2015; Farley et al., 2015; 

Kribelbauer et al., 2019). Here we present evidence that improvement of low affinity motifs for 

LDTFs not only increases basal binding of the corresponding transcription factor but is also 

associated with increased basal binding of STAT6 and PPARγ, thereby rendering their actions 

partially or fully IL-4 independent. These findings thus provide evidence that quantitative effects 

of genetic variation on LDTF motif scores play major roles in establishing different absolute 

enhancer activity levels and dynamic ranges of their responses to IL-4 that are observed between 

strains.  

To go beyond the discovery of mechanisms mediating the IL-4 response using natural 

genetic variation, a major objective of these studies was to use the resulting data sets as the basis 

for interpreting and predicting the effects of specific variants. As expected, enhancers exhibiting 

strain specific differences in IL-4 responses were significantly enriched for sequence variants. 

However, the background frequencies of variants in the much larger sets of strain-similar 

enhancers ranged from 17% to 93%, consistent with the vast majority of such variants being 

silent and underscoring the challenges of discriminating them from functional variants. The 

application of recently developed deep learning approaches illustrates both the potential of these 

methods to improve predictive power as well as their current limitations. Nucleotides predicted 

by DeepLIFT to be of functional importance frequently intersected with variants at strain-

differential enhancers that significantly altered LDTF or SDTF motifs, with over 8-fold 

enrichment in enhancers with strongest strain differences (top 1% variants for C57 vs. BALB 

comparison, Fig. 3.2I), strongly suggesting causality. Even though DeepLIFT scored a 

significant fraction of variants present in strain-similar enhancers with low importance, a large 



 
 

66 

fraction of remaining strain-similar enhancers contained variants associated with high DeepLIFT 

scores, most likely representing false positives. Further, we found that the highest scoring 

variants in some cases depended on the choice of data used to train the convolutional neural 

network (e.g. using random vs. non-induced enhancers as negative training examples). This 

observation has significant implications with respect to application of deep learning models to 

identify potential functional variants in disease contexts. The data sets generated by these studies 

will therefore provide an important resource for further improvements in methods for 

interpretation of local genetic variation. 

These analyses further indicated that 20%-50% of the most divergent IL-4-responsive 

enhancers lacked any functional variants in the proximity of open chromatin. This fits with 

previous observations that variant-free enhancers can reside in cis regulatory domains (CRD) 

containing functionally interacting enhancers, suggesting that a variant strongly affecting one 

enhancer within the CRD could have domain-wide effects (Link, Duttke, et al., 2018). This 

concept was supported and extended here by HiChIP experiments. In addition to demonstrating 

that the IL-4 response was primarily associated with pre-existing enhancer-promoter 

connections, the HiChIP assay also captured a large number of enhancer-enhancer interactions. 

Examination of these connected enhancers provided evidence that a significant fraction of strain-

differential enhancers lacking local variants were connected to strain-differential enhancers 

containing functional variants. An important future direction will be to further investigate the 

significance and mechanisms underlying these associations. 

Collectively, these studies reveal general mechanisms by which noncoding genetic 

variation influences signal-dependent enhancer activity, thereby contributing to strain-

differential patterns of gene expression and phenotypic diversity. A major future goal will be to 
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incorporate these findings into improved algorithms for prediction of absolute levels and 

dynamic responses of genes to IL-4 at the level of individual genes. 

 

3.5 Materials and methods 

3.5.1 Experimental Design 

To investigate the influence of genetic variation on signal-dependent gene expression, 

enhancer activation and transcription factor binding, we performed RNA-sequencing, ATAC and 

ChIP-sequencing to study the responses of macrophages derived from five different inbred 

mouse (C57BL/6J, BALB/cJ, NOD/ShiLtJ, PWK/PhJ, and SPRET/EiJ) strains to the anti-

inflammatory cytokine IL-4. 

3.5.2 Mice  

Female and male breeder mice for C57BL/6J, BALB/cJ, NOD/ShiLtJ, PWK/PhJ, and 

SPRET/EiJ mice were purchased from Jackson Laboratory. F1 C57 x SPRET mice were crossed 

and Egr2fl/fl mice were generously donated by dr. Lazarevic and dr. Warren (NIH) and crossed to 

LyzM-Cre mice (Jackson) to achieve myeloid specific targeted deletion of Egr2. Mice were 

housed at the UCSD animal facility on a 12h/12h light/dark cycle with free access to normal 

chow food and water. All animal procedures were in accordance with University of California 

San Diego research guidelines for the care and use of laboratory animals. 8-12-week-old healthy 

female mice were used for all our experiments.  

3.5.3 Bone marrow-derived macrophage (BMDM) culture 

Femur, tibia and iliac bones from the different mouse strains were flushed with DMEM 

high glucose (Corning) and red blood cells were lysed using red blood cell lysis buffer 

(eBioscience). After counting, 20 million bone marrow cells were seeded per 15cm non-tissue 
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culture plates in DMEM high glucose (50%) with 20% fetal bovine serum (FBS, Omega 

Biosciences), 30% L929-cell conditioned laboratory-made media (as source of M-CSF, as 

described before (Link, Duttke, et al., 2018)), 100 U/ml penicillin/streptomycin+L-glutamine 

(Gibco) and 2.5µg/ml Amphotericin B (HyClone). After 4 days of differentiation, 16.7 ng/ml 

mouse M-CSF (Shenandoah Biotechnology) was added to the media. After an additional 2 days 

of culture, adherent cells which were scraped and subsequently seeded onto tissue culture-treated 

petri dishes in DMEM containing 10% FBS, 100 U/ml penicillin/streptomycin+L-glutamine, 

2.5µg/ml Amphotericin B and 16.7 ng/ml M-CSF. Macrophages were left untreated or treated 

with 20 ng/mL mouse recombinant IL-4 (Peprotech) for 1, 6 or 24 hours.  

3.5.4 Immunofluorescence 

Cells were fixed with Cytofix/Cytoperm Buffer (BD, BD554714) for 10 min at room 

temperature. Cytofix/Cytoperm buffer was removed, and cells were washed twice with HBSS 

containing 2% BSA and 1mm EDTA. Cells were kept in permeabilization/wash buffer (BD, 

BD554714) for one hour at 4C or until the experiment was performed. Fixed cells were blocked 

using 3% BSA, 0.1% Triton-PBS for 30 min at room temperature and then with 1/200 of the 

EGR2 antibody (abcam) overnight at 4C. Next day, cells were washed with 0.1% Triton-PBS, 

incubated with 1/200 donkey anti-rabbit 555 (ThermoFisher, #A31572) secondary antibody, 

phalloidin (abcam, ab176759) for staining actin filaments and nuclei were counter-stained with 

DAPI. After washing with 0.1% Triton-PBS, slides were mounted with Prolong Gold Antifade 

Reagent (Life Technology, #10144). Images were taken using a Leica SP8 with light 

deconvolution microscope. 
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3.5.5 RNA-seq library preparation 

Total RNA was isolated from cells and purified using RNA Directzol micro prep 

columns and RNase-free DNase digestion according to the manufacturer’s instructions (Zymo 

Research). Sequencing libraries were prepared in biological replicates from polyA enriched 

mRNA as previously described (Link, Duttke, et al., 2018). Libraries were PCR-amplified for 9-

14 cycles, size selected using TBE gels or one-sided 0.8X Ampure clean-up, quantified by Qubit 

dsDNA HS Assay Kit (Thermo Fisher Scientific) and 75bp single-end sequenced on a HiSeq 

4000 or NextSeq 500 (Illumina). 

3.5.6 Crosslinking for ChIP-seq 

For histone marks, PU.1, C/EBPβ and RNA Pol2 ChIP-seqs, culture media was removed 

and plates were washed once with PBS and then fixed for 10 minutes with 1% formaldehyde 

(Thermo Fisher Scientific) in PBS at room temperature and reaction was then quenched by 

adding glycine (Thermo Fisher Scientific) to 0.125M. For STAT6, PPARγ, and EGR2 ChIP-seq, 

cells were cross-linked for 30 minutes with 2mM DSG (Pierce) in PBS at room temperature. 

Subsequently cells were fixed for 10 minutes with 1% formaldehyde at room temperature and the 

reaction was quenched with 0.125M glycine. After fixation, cells were washed once with cold 

PBS and then scraped into supernatant using a rubber policeman, pelleted for 5 minutes at 400xG 

at 4°C. Cells were transferred to Eppendorf DNA LoBind tubes and pelleted at 700xG for 5 

minutes at 4°C, snap-frozen in liquid nitrogen and stored at -80°C until ready for ChIP-seq 

protocol preparation. 

3.5.7 Chromatin immunoprecipitation  

Chromatin immunoprecipitation (ChIP) was performed in biological replicates as 

described previously (Seidman et al., 2020). Samples were sonicated using a probe sonicator in 



 
 

70 

500 µl lysis buffer (10 mM Tris/HCl pH 7.5, 100 mM NaCl, 1 mM EDTA, 0.5mM EGTA, 0.1% 

deoxycholate, 0.5% sarkozyl, 1 × protease inhibitor cocktail). After sonication, 10% Triton X-

100 was added to 1% final concentration and lysates were spun at full speed for 10 minutes. 1% 

was taken as input DNA, and immunoprecipitation was carried out overnight with 20 µl Protein 

A Dynabeads (Invitrogen) and 2 µg specific antibodies for PU.1 (Santa Cruz, sc-352X), 

H3K4me2 (Millipore, 07-030), H3K4me3 (Millipore, 04-745), H3K27ac (Active Motif, 39135), 

RNA Pol2 (Genetex, GTX102535), STAT6 (Santa Cruz, sc-374021), EGR2 (abcam, ab43020) 

and C/EBP-β (Santa Cruz, sc-150). Beads were washed three times each with wash buffer I 

(20mM Tris/HCl, 150mM NaCl, 0.1% SDS, 1% Triton X-100, 2mM EDTA), wash buffer II 

(10mM Tris/HCl, 250mM LiCl, 1% IGEPAL CA-630, 0.7% Na-deoxycholate, 1mM EDTA), TE 

0.2% Triton X-100 and TE 50mM NaCl and subsequently resuspended 25 µl 10 mM Tris/HCl 

pH 8.0 and 0.05% Tween-20 and sequencing libraries were prepared on the Dynabeads as 

described below. 

For PPAR-γ ChIP-seq, fixed cells were lysed in 500 µl RIPA lysis buffer (20 mM 

Tris/HCl pH7.5, 1 mM EDTA, 0.5 mM EGTA, 0.1% SDS, 0.4% Na-Deoxycholate, 1% NP-40 

alternative, 0.5 mM DTT, 1x protease inhibitor cocktail (Sigma)) and chromatin was sheared 

using a probe sonicator. 1% was taken as input DNA, and immunoprecipitation was carried out 

overnight with 20 µl Protein A Dynabeads (Invitrogen) and 2 µg of both PPAR-γ antibodies 

(Santa Cruz, sc-271392 and sc-7273). Beads were then collected using a magnet and washed 

with 175 µl ice cold buffer as indicated by incubating samples on ice for 3 minutes: three times 

RIPA wash buffer (20 mM Tris/HCl pH7.5, 1 mM EDTA, 0.5 mM EGTA, 0.1% SDS, 0.4% Na-

Deoxycholate, 1% NP-40 alternative, 0.5 mM DTT, 1x protease inhibitor cocktail (Sigma)), six 

times LiCl wash buffer (10 mM Tris/HCl pH7.5, 250mM LiCl, 1 mM EDTA, 0.7% Na-
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Deoxycholate, 1% NP-40 alternative, 1x protease inhibitor cocktail (Sigma)), twice with TET 

(10 mM Tris/HCl pH 8.0, 1 mM EDTA, 0.2% Tween-20, 1x protease inhibitor cocktail (Sigma)), 

and once with TE-NaCl (10 mM Tris/HCl pH 8.0, 0.1 mM EDTA, 50 mM NaCl, 1x protease 

inhibitor cocktail (Sigma)). Bead complexes were resuspended in 25 µl TT (10 mM Tris/HCl pH 

8.0, 0.05% Tween-20) and sequencing libraries were prepared on the Dynabeads as described 

below. 

3.5.8 ChIP-seq library preparation 

ChIP libraries were prepared while bound to Dynabeads using NEBNext Ultra II Library 

preparation kit (NEB) using half reactions. DNA was polished, polyA-tailed and ligated after 

which dual UDI (IDT) or single (Bioo Scientific) barcodes were ligated to it. Libraries were 

eluted and crosslinks reversed by adding to the 46.5 µl NEB reaction 16 µl water, 4 µl 10% SDS, 

4.5 µl 5M NaCl, 3 µl 0.5 M EDTA, 4 µl 0.2M EGTA, 1 µl RNAse (10 mg/ml) and 1 µl 20 

mg/ml proteinase K, followed by incubation at 55C for 1 hour and 75C for 30 minutes in a 

thermal cycler. Dynabeads were removed from the library using a magnet and libraries were 

cleaned up by adding 2 µl SpeedBeads 3 EDAC (Thermo) in 124 µl 20% PEG 8000/1.5 M NaCl, 

mixing well, then incubating at room temperature for 10 minutes. SpeedBeads were collected on 

a magnet and washed two times with 150 µl 80% ethanol for 30 seconds. Beads were collected 

and ethanol removed following each wash. After the second ethanol wash, beads were air dried 

and DNA eluted in 12.25 µl 10 mM Tris/HCl pH 8.0 and 0.05% Tween-20. DNA was amplified 

by PCR for 14 cycles in a 25 µl reaction volume using NEBNext Ultra II PCR master mix and 

0.5 µM each Solexa 1GA and Solexa 1GB primers. Libraries were size selected using TBE gels 

for 200 – 500 bp and DNA eluted using gel diffusion buffer (500 mM ammonium acetate, pH 

8.0, 0.1% SDS, 1 mM EDTA, 10 mM magnesium acetate) and purified using ChIP DNA Clean 
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& Concentrator (Zymo Research). Sample concentrations were quantified by Qubit dsDNA HS 

Assay Kit (Thermo Fisher Scientific) and 75bp single-end sequenced on HiSeq 4000 or NextSeq 

500 (Illumina). 

3.5.9 ATAC-seq library preparation  

Approximately 80k cells were lysed in 50 µl room temperature ATAC lysis buffer (10 

mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630), 2.5 µL DNA 

Tagmentation Enzyme mix (Nextera DNA Library Preparation Kit, Illumina) was added. The 

mixture was incubated at 37°C for 30 minutes and subsequently purified using the ChIP DNA 

purification kit (Zymo Research) as described by the manufacturer. DNA was amplified using 

the Nextera Primer Ad1 and a unique Ad2.n barcoding primers using NEBNext High-Fidelity 2X 

PCR MM for 8-14 cycles. PCR reactions were size selected using TBE gels for 175 – 350 bp and 

DNA eluted using gel diffusion buffer (500 mM ammonium acetate, pH 8.0, 0.1% SDS, 1 mM 

EDTA, 10 mM magnesium acetate) and purified using ChIP DNA Clean & Concentrator (Zymo 

Research). Samples were quantified by Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific) 

and 75bp single-end sequenced on HiSeq 4000 or NextSeq 500 (Illumina). 

3.5.10 H3K4me3 HiChIP  

For H3K4me3 HiChIP, 10 million formaldehyde crosslinked cells per condition in 

biological replicates were used. HiChIP was performed as described before (Mumbach et al., 

2016). In our experiments, 375 U of MboI (NEB, R0147M) restriction enzyme was used for 

chromatin digestion. Shearing was performed in three Covaris microtubes per sample and using 

the following parameters on a Covaris E220 (Fill Level = 6, Duty Cycle = 5, PIP = 140, 

Cycles/Burst = 200, Time = 200s). H3K4me3 IP was performed using 7.5 μg of antibody 

(Millipore, 04-745). Final PCR was performed using NEBNext High-Fidelity PCR MM and 
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Nextera general Primer Ad1 and specific Nextera Primer Ad2.n. PCR product was run on a TBE 

gel (Invitrogen) and libraries were size selected from 250bp to 700bp and cleaned up using 150 

ul gel diffusion buffer (500 mM ammonium acetate, pH 8.0, 0.1% SDS, 1 mM EDTA, 10 mM 

magnesium acetate) and purified using ChIP DNA Clean & Concentrator (Zymo Research). 

Samples were quantified by Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific) and 75bp 

paired-end sequenced on a NextSeq 500 (Illumina). 

3.5.11 Data mapping 

Custom genomes were generated for BALB/cJ, NOD/ShiLtJ, PWK/PhJ, and SPRET/EiJ 

mice from the C57BL/6J or mm10 genome as before (Link, Duttke, et al., 2018) using 

MMARGE v1.0 (Link, Romanoski, et al., 2018) and the VCF files from the Mouse Genomes 

Project (Keane et al., 2011). Data generated from different mouse strains were first mapped to 

their respective genomes using STAR v2.5.3 (Dobin et al., 2013) for RNA-seq data, or bowtie2 

v2.2.9 (Langmead & Salzberg, 2012) for ATAC-seq, ChIP-seq, and HiChIP data. Then the 

mapped data was shifted to the mm10 genome using the MMARGE v1.0 ‘shift’ function (Link, 

Romanoski, et al., 2018) for downstream comparative analyses.  

3.5.12 RNA-seq data analysis 

3.5.12.1 RNA-seq data processing 

Transcripts were quantified using HOMER v4.11.1 “analyzeRepeats” script (Heinz et al., 

2010). TPM values were reported by using the parameters -count exons -condenseGenes -tpm. 

Log-scaled TPM values were computed by log2(TPM+1). Raw read counts within transcripts 

were reported by using the parameters -count exons -condenseGenes -noadj. Differentially 

expressed genes were identified by feeding raw read counts into DESeq2 (Love et al., 2014) 

through the “getDiffExpression” script of HOMER. IL-4-induced and IL-4-repressed genes were 
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called by fold changes greater than 2 or less than half, respectively, together with q-values 

smaller than 0.05. Gene ontology analysis was performed using Metascape (Y. Zhou et al., 

2019). 

3.5.12.2 Categorization of strain-differential genes 

Strain-differential genes were defined based on pairwise comparisons between C57 and 

one of the other strains as being called IL-4-induced or IL-4-repressed in one strain but not in the 

other. Strain-differential IL-4-induced genes were further classified into three categories based 

on the relative level of basal expression between the induced strain versus the non-induced 

strain: high basal, equal basal, and low basal. In the “high basal” group, the non-induced strain 

has at least 1.5-fold greater basal expression level than the induced strain. The direction of 

difference flipped for the “low basal” group where the induced strain has over 1.5-fold greater 

basal expression than the non-induced strain. The genes in between are categorized into the 

“equal basal” group.  

3.5.12.3 F1 mice data processing 

RNA-seq data from F1 mice was mapped to both parental genomes (C57 and SPRET) 

and analyzed in the same way as before (Link, Duttke, et al., 2018). In short, the read counts for 

each transcript were multiplied by the ratio of reads overlapping mutations time 10 and assigned 

to the parental genomes. Transcripts without any assigned reads in one of the F1 alleles were 

filtered out. To determine cis versus trans effects of genetic variation on gene expression, the 

difference of fold change between parental alleles and F1 alleles were calculated. The genes with 

majorly cis effects were defined by -1 < log2(parental fold change) – log2(F1 fold change) < 1, 

while those with majorly trans effects were defined by F1 fold change < parental fold change for 

genes with over +/- 2 fold-change in parental alleles. 
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3.5.13 WGCNA analysis 

For each strain a differential gene expression analysis was performed to compare IL-4 to 

basal with Limma Voom (Law et al., 2014). A linear model was fit for all 5 differential 

comparisons at once, and 1912 genes that were significant with q-value below 0.05 and an 

absolute fold change of 1.5 in any comparison where included in a Weighted gene co-expression 

network analysis (WGCNA) (Langfelder & Horvath, 2008). WGCNA was performed with a 

softpower value of 20, and a signed network was generated. Modules were cut with min module 

size of 50 and cut-height of 0.999 including PAM-stage. 9 modules were detected of which 2 

genes were part of the grey (non-connected) module which was subsequently excluded. Module 

Eigengenes were calculated and visualized using the verbose-boxplots function that also 

performed a Kruskall Wallis significance test to test whether all ME values belong to the same 

distribution and all modules were significantly different between conditions (all P-values below 

< 0.0012). Two modules exhibited consistent differential expression between IL-4 and notx 

across strains, while the other 6 modules were most prominently influenced in a strain specific 

manner. Modules were annotated with Metascape (Y. Zhou et al., 2019). 

3.5.14 ATAC-seq and ChIP-seq data analysis 

Based on the HOMER tag directories created from mapped sequencing data, the 

reproducible ATAC-seq and transcription factor ChIP-seq peaks were identified by using 

HOMER to call unfiltered 200-bp peaks (parameters -L 0 -C 0 -fdr 0.9 -size 200) and running 

IDR v2.0.3 on replicates of the same sample with the default parameters (Li et al., 2011). The 

levels of histone modifications and RNA polymerase II were quantified within +/- 500 bp around 

the centers of ATAC-seq reproducible peaks using HOMER annotatePeak.pl with parameters “-

size -500,500 -norm 1e7”. The transcription factor binding intensities were quantified within +/- 
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300 bp around the identified ChIP-seq peaks using parameters “-size -150,150 -norm 1e7”. For 

comparisons across multiple samples (e.g., different time points, mouse strains, transcription 

factors), we merged the set of peaks first using HOMER mergePeaks “-d given” before 

quantifying the features above. To visualize the average profile of a dataset around a certain set 

of peaks, we used HOMER annotatePeaks.pl with parameters “-norm 1e7 -size 4000 -hist 20” to 

help compute the histograms of 20-bp bins within +/- 2000 bp regions.  

3.5.15 Identification of IL-4 responsive regulatory elements 

IL-4 responsive enhancers were identified by the strong fold changes of H3K27ac and 

RNA Pol2 at intergenic or intronic open chromatin. Reproducible ATAC peaks called from each 

mouse strain for the basal and IL-4 conditions were first merged and then annotated for genomic 

positions and the enrichment of H3K27ac and RNA Pol2 within +/- 500 bp using HOMER 

v4.11.1. Based on the genomic annotations from HOMER annotatePeaks.pl, we classified 

regions at promoter-TSS as promoters and regions at intergenic or intronic positions as 

enhancers. Regions with less than 16 normalized tags of H3K27ac or less than 8 normalized tags 

of RNA Pol2 were filtered out. For the remaining promoters and enhancers, we computed the 

fold changes of the normalized tags of H3K27ac and RNA Pol2 between basal and IL-4 

conditions for each mouse strain. Regions were called IL-4 induced or IL-4 repressed if there 

were at least 2.5-fold increases or decreases, respectively, from basal to IL-4 state for both 

histone markers. Regions with less than 1.4-fold changes were called neutral elements.  

3.5.16 Super enhancer 

We used ROSE to call super enhancers for the five mouse strains (Whyte et al., 2013). 

The active enhancers were first merged within each strain for both basal and IL-4 conditions to 

obtain a set of starting conventional enhancers. Then the ROSE algorithm was run for each strain 
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on the mapped H3K27ac ChIP-seq data with parameter “-t 2500” to exclude TSS. The overall 

activity of a super enhancer was quantified by the H3K27ac ChIP-seq read counts within the 

entire identified super enhancer region.  

3.5.17 H3K4me3 HiChIP 

3.5.17.1 H3K4me3 ChIP-seq HiChIP reference preprocessing 

H3K4me3 ChIP-seqs from basal and 24 h IL-4 stimulated macrophages were performed 

in duplicate with input controls. Fastq files were aligned with bowtie2 (Langmead & Salzberg, 

2012) to the mm10 reference genome and peak calling was done with MACS (Zhang et al., 

2008) for each replicate separately. Significant peaks were merged using bedtools (Quinlan & 

Hall, 2010) into a general bed file that was used as corresponding peak-file for MAPS.  

3.5.17.2 H3K4me3 HiChIP preprocessing 

HiChIP-seq data was processed with MAPS (Juric et al., 2019) at 5000-bp resolution as 

described previously for PLAC-seq (Nott et al., 2019) for all four samples separately, basal and 

24 h IL-4 duplicate samples combined, and a merge of all four samples.  

3.5.17.3 Differential analysis 

In order to identify interactions that were significantly stronger in IL4 or control, a 

differential analysis was performed as described in (Nott et al., 2019). Briefly, significant 

interactions that were identified in the combined duplicate analysis of IL-4 and control were 

merged in a general interaction set. Paired end read counts that fell within these interactions were 

quantified for each sample separately. The quantified matrix of all significant interactions for all 

cell types was used as input for Limma (Ritchie et al., 2015) differential interaction analysis. A 

linear model was fit, with one pairwise contrast (IL4 vs control), with and without batch 

correction. No interactions were identified that were significantly different between IL4 and 
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control by either method (FDR < 0.1, and absolute log2 FC > 1). Hence, the combined 

interaction set (generated using both IL4 and control samples) was used for downstream analysis. 

3.5.18 Interactions among promoters and enhancers 

Significant interactions captured by HiChIP-seq were overlapped with previously 

identified active promoters and enhancers for the five mouse strains using HOMER mergePeaks 

“-d 2500” in order to identify three categories of interactive pairs: enhancer-enhancer, enhancer-

promoter, and promoter-promoter. Enhancer-promoter interactions have enhancers on one end 

and promoters on the other end, while enhancer-enhancer or promoter-promoter interactions are 

the linked pairs of enhancers or promoters, respectively. We ended up with 145,907 enhancer-

enhancer interactions, 81,411 enhancer-promoter interactions, and 10,710 promoter-promoter 

interactions. To better understand the regulatory landscape associated with IL-4 stimulation, we 

subsequently focused on enhancer-promoter interactions that contained IL-4 induced, repressed 

and/or neutral promoters on one end, and IL-4 induced, neutral, and or repressed enhancers on 

the other end, and quantified the number of interactions between these possible promoter-

enhancer combinations in 9 categories as a contingency table. Fisher’s exact test was applied to 

the contingency table to determine if the any categories were significantly different for three 

comparisons of interest: IL-4 induced enhancer/promoter interactions vs non-induced 

enhancer/promoters; IL-4 repressed enhancer/promoter interactions vs non-repressed 

enhancer/promoters; and IL-4 induced enhancer/promoter interactions vs IL4 repressed 

enhancer/promoter interactions. For enhancer-enhancer interactions, we pre-selected enhancers 

that have at least 4-fold difference in H3K27ac ChIP-seq tags between any two strains under the 

24 h IL-4 condition to obtain a set of strongly strain-differential enhancers. We then computed 

the Pearson correlation of H3K27ac tags across the five strains for every pair of interactive 
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enhancers among the pre-selected set. To obtain non-interactive enhancers, we either randomly 

paired pre-selected enhancers on the same chromosome (same-chromosome random enhancers) 

or looked for enhancers within certain distances but not connected based on our data (distance-

matched random enhancers).  

3.5.19 Genetic variants at local and connected enhancers 

Genetic variation between C57 and the other four strains at strain-differential enhancers 

was extracted using MMARGE annotate_mutations (Link, Romanoski, et al., 2018), which was 

based on the VCF files from the Mouse Genomes Project (Keane et al., 2011). Variants were 

searched within +/- 150 bp around the centers of enhancers. At least one genetic variant from the 

comparative strain needs to be present within the search area for such enhancer to be counted as 

having variants.  

3.5.20 Motif analysis 

3.5.20.1 Motif enrichment analysis 

Given a certain set of peaks, we used HOMER findMotifsGenome.pl with parameters “-

size 200 -mask” to identify de novo motifs and their matched known motifs (Heinz et al., 2010). 

The background sequences were either the default random sequences or a different set of peaks 

from a comparative condition in the main text and in the figure legends.  

3.5.20.2 Motif mutation analysis 

To integrate the genetic variation across mouse strains into motif analysis, we used 

MAGGIE, which is able to identify functional motifs out of the currently known motifs by 

testing for the association between motif mutations and the changes in specific epigenomic 

features (Shen et al., 2020). The known motifs are obtained from the JASPAR database (Fornes 

et al., 2020). We applied this tool to strain-differential IL-4-responsive enhancers and 
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transcription factor binding sites. Strain-differential IL-4 responsive enhancers were defined as 

previously described for KLA-responsive enhancers (Shen et al., 2020). In brief, from every 

pairwise comparison across the five strains, enhancers identified as “IL-4 activated” or “IL-4 

repressed” only in one of the compared strains were called strain-differential and were pooled 

together. For enhancer sites to be included in the analysis, enhancer activity had to be 

differentially regulated between two strains. As required by MAGGIE, sequences from the 

genomes of the responsive strains were input as “positive sequences”, and those from the other 

strains as “negative sequences”. Strain-differential transcription factor binding sites were defined 

by reproducible ChIP-seq peaks called in one strain but not in the other. “Positive sequences” 

and “negative sequences” were specified as sequences from the bound and unbound strains, 

respectively. The output p-values with signs indicating directional associations were averaged for 

clusters of motifs grouped by a maximum correlation of motif score differences larger than 0.6. 

Only motif clusters with at least one member showing a corresponding gene expression larger 

than 2 TPM in BMDMs were shown in figures.  

3.5.21 Categorization of IL-4-induced enhancers 

Among the strain-differential IL-4-induced enhancers as described above, we further split 

them into three categories based on the level of H3K27ac under the basal condition in non-

induced strains. “High basal” enhancers have more than 2-fold stronger H3K27ac in non-induced 

strains, while “low basal” enhancers have more than 2-fold stronger H3K27ac in induced strains 

(lower basal H3K27ac in non-induced strains). “Equal basal” enhancers are those in between.  
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3.5.22 Deep learning 

3.5.22.1 Neural network training 

We adapted a similar strategy as AgentBind (Zheng et al., 2021) for our training 

procedure. We started with a pre-trained DeepSEA (J. Zhou & Troyanskaya, 2015) model 

consisting of three convolutional layers and two fully connected layers and then fine-tuned it to 

generate three models based on our data: IL-4 active enhancers vs. random backgrounds (auROC 

= 0.894), IL-4 induced enhancers vs. random backgrounds (auROC = 0.919), and IL-4 induced 

enhancers vs. non-induced enhancers (auROC = 0.796). The enhancer sequences were extended 

to 300-bp long. In all experiments, we left out sequences on chromosome 8 for cross validation 

and sequences on chromosome 9 for testing. IL-4 active enhancers and non-induced enhancers 

were from C57 mice, while IL-4 induced enhancers were pooled from all the five strains in order 

to reach a comparable sample size. Random genomic backgrounds were generated by randomly 

selecting nearby GC-matched equal-length sequences on the mm10 genome. We applied binary 

cross-entropy as the loss function. During each training, the initial learning rate was set as 1e-4 

and reduced by a factor of 0.9 when learning stagnated. The training process stopped when the 

loss value had not decreased for more than 20 epochs.  

3.5.22.2 DeepLIFT and importance score 

We used DeepLIFT (Shrikumar et al., 2017) to generate importance scores with single-

nucleotide resolution using uniform nucleotide backgrounds. For each input sequence, we 

generated two sets of scores, one for the original sequence and the other for its reverse 

complement. The final scores were the absolute maximum at each aligned position. We defined 

predicted functional nucleotides by the top 20% (i.e., top 60) positions within each input 300-bp 

sequence. To interpret the most important sequence patterns learned by neural networks, we 
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computed the odds ratio of each 5-mer within top 10% of all 5-mers (Zheng et al., 2021). 

Fisher’s Exact test was performed to determine whether 5-mers were enriched. We used 

TOMTOM (Gupta et al., 2007) to match 5-mers with known transcription factor binding motifs. 

3.5.23 Data and code availability 

All sequencing data have been made available by deposition in the GEO database: 

GSE159630. The UCSC genome browser was used to visualize sequencing data. The codes for 

neural network model training and interpretation are available on our Github repository: 

https://github.com/zeyang-shen/macrophage_IL4Response. 

3.5.24 Statistical Analysis 

Two independent groups were tested using Mann–Whitney U test for medians and using 

Levene’s test for variance. Gene expression comparisons were reported by adjusted p-values 

(i.e., q-values) from DESeq2 (Love et al., 2014). Enrichment was computed by odds ratio and 

tested by Fisher’s exact test. Effect sizes were reported by Cohen’s d. All gene expression data 

are displayed as means with 95% confidence interval. All data distributions are shown with 

means, 25th percentiles, and 75th percentiles. 
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Supplementary Figure 3.1 Response to IL-4 is slow and highly divergent in macrophages from different 
mouse strains. (A) PCA plot showing the variance in RNA-seq IL-4 time course data in C57 and SPRET 
macrophages. (B) Scatter plot showing the effects of 1 h, 6 h and 24 h IL-4 stimulation on gene expression in C57 
and SPRET BMDMs (n=2 per condition). (C) PCA plot showing the variation in macrophages from different strains 
in response to 24 h IL-4. (D) Venn diagram of the IL-4 response in macrophages from the five different strains. 
Repressed and activated genes are plotted that have a twofold change and an q-value<0.05 between untreated and 
IL-4 stimulated conditions. (E) Kinetics of IL-4 induced gene expression for Arg1, Slc7a2 and Msx3 in C57 and 
SPRET macrophages. (F) Ratio-ratio fold change plots of allele-specific RNA-seq reads in F1 (C57xSPRET) vs 
parents C57 or SPRET under basal conditions. (G) Ratio-ratio fold change plots of allele-specific RNA-seq reads in 
F1 (C57xNOD) vs parents C57 or NOD under basal and 24h IL-4 conditions. (H) Ratio-ratio plots demonstrating 
the RNA Pol2 over gene bodies in response to IL-4 in pairwise comparisons. 
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Supplementary Figure 3.2 Strain-differential IL-4 induced gene expression is the result of differential IL-4 
enhancer activation in macrophages derived from genetically diverse mice. (A) Enhancer and promoter 
selection criteria, including criteria for activated, neutral or repressed elements. (B) Clustering of ATAC-seq data in 
strains macrophages stimulated with IL-4 for 24 h. (C) Clustering of H3K27ac ChIP-seq data in strains macrophages 
stimulated with IL-4 for 24 h. (D) Clustering of RNApolII ChIP-seq data in strains macrophages stimulated with IL-
4 for 24 h. (E) Comparison of C57 ATAC peaks with H3K27ac signal to those of NOD or PWK under IL4 
treatment conditions. (F) Comparison of C57 ATAC peaks with RNA Pol2 signal to those of BALB or SPRET 
under IL4 treatment conditions. (G) Violin plots showing the difference in H3K27ac in response to 24 h IL-4 
between super enhancers and conventional enhancers in BALB, NOD, PWK and SPRET macrophages. Mann–
Whitney U test was performed to test the difference between super enhancers and conventional enhancers. (H) 
Percentages of enhancers that contain variants at high-ranked positions based on DeepLIFT scores using different 
cut-offs. 
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Supplementary Figure 3.3 IL-4 enhancers use pre-existent promoter-enhancer interactions to regulate gene 
activity. (A) The correlation of HiChIP reads between basal and 24 h IL-4 stimulated C57 macrophages. The reads 
were counted within the bins of both sides of the connection. Each dot represents a connection. (B) Comparison 
between HiChIP read changes and gene expression changes. (C) Comparison between HiChIP read changes and 
H3K4me3 signal changes. (D) Distance distributions of enhancer pairs. Distance-matched random enhancers have 
similar distances compared to connected enhancers, while the distances between same-chromosome random 
enhancers are spread out. (E) Percentages of interactive enhancers that contain predicted functional variants using 
different cut-offs for C57 versus the other strains. 
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Supplementary Figure 3.4 Enhancer mutation motif analysis identifies EGR2 to be strongly associated with 
late IL-4 enhancer activation. (A) Overlap in IL-4 enhancer activation and repression in pairwise comparisons 
between C57 and one of the other strains. (B) Gene expression of transcription factors whose motifs were identified 
significant by MAGGIE for enhancer activation in response to 24 h IL-4. (C) Gene expression of all Egr family 
members in SPRET BMDMs under basal conditions and after stimulation with IL-4 for 1 h, 6 h or 24 h. 
****q<0.0001, compared to basal. (D) Egr2 promoter connected to several upstream enhancers in C57 BMDMs as 
determined by H3K4me3 HiChIP. Connected enhancers bound by SDTFs STAT6 and PPARγ display increased 
H3K27ac and RNA Pol2 by IL-4. (E) Super enhancers of the Egr2 gene that are strongly conserved in macrophage 
of the five different strains. 
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Supplementary Figure 3.5 Egr2 deletion results in decreased IL-4 induced enhancer activation and gene 
expression. (A) STAT6 and EGR2 binding intensity as measured with ChIP-seq after IL-4 stimulation over time in 
C57 BMDMs. (B) Enhancer activity as measured with RNA Pol2 binding at 24 h IL-4 induced at intergenic and 
intronic EGR2 peaks in C57 BMDMs. (C) Efficient deletion of Egr2 in LyzM-Cre+ Egr2flfl (Egr2 macrophage 
knock-out, Egr2MKO) macrophages, one out of two representative experiments is shown, n=2 per condition. One out 
of two replicates is shown, ****q<0.0001, compared to Egr2WT macrophages. (D) Immunofluorescence of EGR2 in 
combination with DAPI and Phalloidin in untreated and IL-4 stimulated Egr2WT and Egr2MKO macrophages, one out 
of two representative experiments is shown. (E) PCA plot showing the variance in RNA-seq samples IL-4 time 
course data in Egr2WT and Egr2MKO macrophages. (F) ATAC profile over IL-4 induced EGR2 peaks in Egr2WT and 
Egr2MKO macrophages under basal conditions and after 24 h IL-4 stimulation. (G) H3K4me2 profile over IL-4 
induced EGR2 peaks in Egr2WT and Egr2MKO macrophages under basal conditions and after 24 h IL-4 stimulation. 
(H) RNA Pol2 binding at IL-4 induced EGR2 peaks in Egr2WT and Egr2MKO macrophages under basal conditions 
and after 24 h IL-4 stimulation. 90% confidence intervals are shown together with the average profiles. 
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Supplementary Figure 3.6 Collaborative and hierarchical transcription factor interactions at IL-4 dependent 
enhancers. (A) Overlap of binding as determined with ChIP-seq of the SDTFs STAT6 and PPARγ with EGR2 at 
IL-4 activated enhancers in C57 and SPRET BMDMs. (B) Scatter plots comparing binding of STAT6 in C57 versus 
BALB and C57 versus SPRET IL-4 stimulated BMDMs. (C) Example of a strain-differential activated enhancer 
upstream of the Btbd11 gene which is decreased in Egr2MKO BMDMs as well. (D) Gene expression of transcription 
factors that were identified significant from the MAGGIE analysis. 
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Supplementary Figure 3.7 Determinants of absolute levels and dynamic responses of IL-4 responsive 
enhancers. (A) Fold changes of gene expression between induced and non-induced strains for the three categories 
of enhancers (left). Gene expression changes between basal and 24 h IL-4 conditions (right). P-values from two-
sample t-test were reported for the comparison between induced and non-induced strains. (B) Treml2 gene 
expression in C57 and NOD macrophages. (C) Ripk2 gene expression in PWK and SPRET macrophages. (D) Cd36 
gene expression in NOD and PWK macrophages. (E) Percentages of enhancers with motif mutations of the 
positively significant motifs according to MAGGIE results. (F) Score differences of PU.1 and EGR2 motifs between 
induced and non-induced strains for the three categories of enhancers. (G) C/EBPβ binding in non-induced and 
induced strains in the three different categories of enhancers. (H) EGR2 and PPARγ binding in non-induced and 
induced strains in the three different categories of enhancers. (I) Enrichment of 5-mers at top-ranked positions based 
on different neural network models. 5-mers matched with LDTF (red) or SDTF (blue) motifs based on significant 
results from TOMTOM are highlighted. 
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Chapter 4. Natural genetic variation affecting transcription factor spacing at 
regulatory regions is generally tolerated 

 
4.1 Abstract 

Regulation of gene expression requires the combinatorial binding of sequence-specific 

transcription factors (TFs) at promoters and enhancers. Prior studies showed that alterations in 

the spacing between TF binding sites can influence promoter and enhancer activity. However, 

the relative importance of TF spacing alterations resulting from naturally occurring insertions 

and deletions (InDels) has not been systematically analyzed. To address this question, we first 

characterized the genome-wide spacing relationships of 75 TFs in K562 cells as determined by 

ChIP-sequencing. We found a dominant pattern of a relaxed range of spacing between 

collaborative factors, including forty-five factors exclusively exhibiting relaxed spacing with 

their binding partners. Next, we exploited millions of InDels provided by genetically diverse 

mouse strains and human individuals to investigate the effects of altered spacing on TF binding 

and local histone acetylation. Spacing alterations resulting from naturally occurring InDels are 

generally tolerated in comparison to genetic variants directly affecting TF binding sites. A 

remarkable range of tolerance was further established for PU.1 and C/EBPβ, which exhibit 

relaxed spacing, by introducing synthetic spacing alterations ranging from 5-bp increase to >30-

bp decrease using CRISPR/Cas9 mutagenesis. These findings provide implications for 

understanding mechanisms underlying enhancer selection and for interpretation of non-coding 

genetic variation. 

 

4.2 Introduction 

Genome-wide association studies (GWASs) have identified thousands of genetic variants 

associated with diseases and other traits (MacArthur et al., 2017; Visscher et al., 2017). Single 
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nucleotide polymorphisms (SNPs) and short insertions and deletions (InDels) represent common 

forms of these variants. The majority of GWAS variants fall at non-protein-coding regions of the 

genome, implicating their effects on gene regulation (Farh et al., 2015; Ward & Kellis, 2012). 

Gene expression is regulated by transcription factors (TFs) in cell-type-specific manner. TFs 

bind to short, degenerate sequences at promoters and enhancers, often referred to as TF binding 

motifs. Active promoters and enhancers are selected by combinations of sequence-specific TFs 

that bind in an inter-dependent manner to closely spaced motifs. SNPs and InDels can create or 

disrupt TF binding motifs and are a well-established mechanism for altering gene expression and 

biological function (Behera et al., 2018; Deplancke et al., 2016; Grossman et al., 2017; Heinz et 

al., 2013). InDels can additionally change spacing between motifs, but it remains unknown the 

extent to which altered spacing are relevant for interpreting natural genetic variation in human 

population or between animal species. 

Previous studies reported two major categories of motif spacing between inter-dependent 

TFs (Slattery et al., 2014). One category requires specific spacing, or “constrained” spacing. 

These are mainly TFs that form ternary complexes recognizing composite binding sites, 

exemplified by GATA, Ets and E-box in mouse hematopoietic cells (Ng et al., 2014), MyoD and 

other cell-type-specific factors in muscle cells (Nandi et al., 2013), Sox2 and Oct4 in embryonic 

stem cells (Rodda et al., 2005), and 315 interactive TF pairs displaying cooperative binding 

based on CAP-SELEX studies (Jolma et al., 2015). Similar constrained spacing was also found 

between independent motifs at the interferon-β enhanceosome for the optimal binding and 

function of interacting TFs (Panne, 2008). In comparison to constrained spacing, another major 

category of motif spacing allows TFs to interact over a relatively broad range (e.g., 100-200 bp), 

which we call “relaxed” spacing. This type of spacing relationship is frequently observed in 
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collaborative TFs that do not target promoters or enhancers as a cooperative unit (Heinz et al., 

2010; Jiang & Singh, 2014; Slattery et al., 2014).  

Substantial evidence showed that the two different categories of spacing requirement can 

experience a divergent level of impact from genetic variation. Reporter assays examining 

synthetic alterations of motif spacing revealed examples of TFs that require constrained spacing 

and have high sensitivity of transcription factor binding (Ng et al., 2014; Panne, 2008) and gene 

expression (Farley et al., 2015) on spacing. On the contrary, flexibility in motif spacing has been 

demonstrated using parallel reporter assays in Drosophila (Menoret et al., 2013) and HepG2 cells 

(Smith et al., 2013). However, these studies did not distinguish the impact of altered spacing on 

transcription factor binding or subsequent recruitment of co-activators required for gene 

activation. Moreover, it remains unknown the extent to which these findings are relevant to 

interpret spacing alterations resulting from naturally occurring genetic variation.  

To investigate the effects of altered spacing on TF binding and function, we first 

characterized the genome-wide binding patterns of seventy-five TFs based on their binding sites 

determined by chromatin immuno-precipitation sequencing (ChIP-seq). We developed a 

computational framework that assigned each spacing relationship to “constrained” and “relaxed” 

category and associated spacings to the naturally occurring InDels observed in human population 

to study the selective constraints of different spacing relationships. As specific case studies, we 

leveraged natural genetic variation from five strains of mice and numerous human samples to 

study the effect size of spacing alterations on TF binding activity and local histone acetylation. 

We find that InDels altering TF spacing have selective constraints similar to motif mutations 

when they occur between TF pairs with a constrained spacing relationship but are generally less 

constrained and well tolerated when they occur between TF pairs exhibiting relaxed spacing 
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relationships. Finally, we established remarkable tolerance in spacing for PU.1 and C/EBPβ by 

introducing a wide range of InDels between their respective binding sites at representative 

endogenous genomic loci using CRISPR/Cas9 mutagenesis. 

 

4.3 Results 

4.3.1 Most transcription factor pairs bind with a relaxed spacing relationship 

We downloaded and processed over 70 TF ChIP-seq data from ENCODE data portal for 

K562 cells (Davis et al., 2018). After obtaining reproducible TF binding sites based on 

replicates, we first used the position weight matrix (PWM) of corresponding TF from JASPAR 

database (Fornes et al., 2020) to scan through the sequence of every binding site and identified 

the locations of high-affinity motifs (Fig. 4.1A, Supplementary Fig. 4.1). We then merged the 

binding sites of every pair of TFs and computed the edge-to-edge motif spacing for all the co-

binding sites. Spacings of the co-binding sites were eventually aggregated in a density plot 

showing the distribution of motif spacing within +/- 100 bp. To categorize a spacing relationship, 

we used permutation tests on the averaged gradients to test for specific spacing constraints and 

used Kolmogorov–Smirnov test (KS test) to test for a relaxed spacing relationship against 

random distribution.  

We applied this computational framework to all possible TF pairs in K562 cells. Overall, 

more TF pairs follow relaxed spacing relationships in comparison to constrained spacing 

relationships (Fig. 4.1B). Among the TF pairs with constrained spacing relationships, we saw 

examples binding very close to each other like GATA1 and TAL1 (Fig. 4.1C), which is 

consistent with the frequently observed composite motif of GATA and E-box (Ng et al., 2014). 

here are also TF pairs, exemplified by EGR1 and JUND, that bind relatively further away from 
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each other but still require some specific spacing (Fig. 4.1C).  Previous studies demonstrated 

interactions between EGR1 and AP-1 factors (Levkovitz & Baraban, 2002; Nakashima et al., 

2003), but the underlying mechanism for such constrained spacing at 29 bp needs to be further 

investigated. In addition, both constrained and relaxed spacing relationships are usually 

invariable for different motif orientations (Fig. 4.1C), consistent with previous findings (Lis & 

Walther, 2016). The same TF pairs, however, can have similar or different spacing relationships 

in different cell types (Supplementary Fig. 4.2). By dissecting each TF’s binding sites based on 

their spacing relationships with co-binding TFs, we found that many TFs interact only in a 

relaxed spacing relationship, and some can interact in two distinct relationships depending on co-

binding TFs (Fig. 4.1D). Very few TFs interact with only constrained spacing, some of which 

might show relaxed spacing relationships by expanding the current set of TFs. 
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Figure 4.1 Characterization of spacing relationships for transcription factor pairs. (A) Schematic of data 
analysis pipeline for characterizing the spacing relationships based on TF ChIP-seq data. (B) Circos plot 
summarizing spacing relationships for TFs in K562 cells. Orange and blue bands represent significant constrained 
and relaxed spacing relationships, respectively. TFs are grouped and colored by the same family. (C) Examples of 
TF pairs with constrained spacing relationships or relaxed spacing relationships. Since TAL1 motif is completely 
palindromic, the motif orientation is only differentiated by its co-binding partners. (D) Dissection of TF binding 
sites based on spacing relationships. Each dot represents the co-binding peak number of the corresponding TF and 
one other TF with certain spacing relationship. Bar heights indicate means among all the TFs with the same spacing 
relationship. 
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4.3.2 Spacings between transcription factors with a relaxed spacing relationship are under 

less selective constraint 

 

Figure 4.2 Comparison of selective constraints for different spacing relationships. (A) Aggregated normalized 
InDel rates for TF pairs of the same spacing relationship. InDel rates at motifs and those between motifs are 
compared within each spacing relationship using two-sample t-tests. ****p<0.0001. Cohen’s d was displayed to 
indicate effect size. (B) Aggregated normalized SNV rates for the same set of TF pairs as used for calculation of 
InDel rates. 

After a global view of the TF spacing relationships, we studied whether these 

relationships associate with different levels of sensitivity to spacing alterations. Here, we 

leveraged more than 60 million InDels from gnomAD data (Karczewski et al., 2020), which 

were based on over 75,000 genomes from unrelated individuals. We first compared the InDel 

rates at the binding sites of TF pairs representative of the different spacing relationships. The 

InDel rate is calculated as the total allele count of InDels per base pair occurring at motifs or 

between motifs divided by that occurring at background regions. For TF pairs with a constrained 

spacing relationship, we saw that the InDel rates at motifs are similar to those between motifs, 

while TF pairs with a relaxed or random spacing relationship have significantly lower InDel rates 

at motifs than those between motifs (Fig. 4.2A). Since common variants are associated with less 

deleteriousness and rare variants with more deleteriousness (Lek et al., 2016),  our data suggest a 

weak effect of InDels that alter spacing of TFs with relaxed spacing relationships. In addition, 

the InDel rates at motifs are generally lower than those at background regions (log2 rate < 0), 
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consistent with the likely damaging effects of motif mutations. It also implicates that InDels 

between motifs of TFs with constrained spacing could be just as damaging as those at motifs. 

As a comparative study, we applied the same approach to single nucleotide variants 

(SNVs) from gnomAD data (Karczewski et al., 2020) and calculated the SNV rates at the same 

TF co-binding sites as previously used for calculation of InDel rates (Fig. 4.2B). Relaxed and 

random spacing relationships showed significantly more SNVs between motifs compared to 

those at motifs. On the contrary, TFs with constrained spacings had much weaker difference in 

the SNV rate. Even though the aggregated results showed generally more SNVs occurring 

between motifs than those at motifs (Fig. 4.2B), we found TF pairs with either direction of 

change, exemplified by GATA1-TAL1 for more SNVs at motifs and FOSL1-NFATC3 for more 

SNVs between motifs. These results indicate that sequences between motifs of constrained TFs 

are generally under strong selective constraints, suggesting a comparable deleterious effect of 

changes at motifs and between motifs. All these findings regarding InDel rate and SNV rate 

suggest a weak selective constraint at sequences between motifs of TFs with a relaxed spacing 

relationship and potentially a small effect on TF binding by spacing alterations. 
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4.3.3 Spacing alterations by natural genetic variation of mouse strains are generally 

tolerated for transcription factor binding and promoter and enhancer function 

 

Figure 4.3 Effects of spacing alterations resulting from natural genetic variation across mouse strains. (A) 
Spacing distributions of PU.1 and C/EBPβ motif at co-binding sites. (B) Density plots showing the relationship 
between TF binding activity and motif spacing for the co-binding sites. Log2 ChIP-seq tags were calculated within 
300 bp to quantify the binding activity of PU.1 and C/EBPβ. The color gradients represent the number of sites. 
Spearman correlation coefficients together with p-values are displayed to show the level of correlation. (C, E, G) 
Absolute log2 fold changes of ChIP-seq tags between C57 and another strain for (C) PU.1 binding, (E) C/EBPβ 
binding, or (G) H3K27ac level. Boxplot shows the median and quartiles of every distribution with its Cohen’s d 
effect size displayed on top comparing against variant-free regions. (D, F, H) Correlations between change of motif 
spacing or motif score and change of (D) PU.1 binding, (F) C/EBPβ binding, or (H) H3K27ac level. Pearson 
correlation coefficients together with p-values are displayed to show the level of correlation. 

To investigate the potential of using motif spacing alterations to interpret natural genetic 

variation, we leveraged more than 50 million SNPs and 5 million InDels from five genetically 
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diverse mouse strains and the ChIP-seq data of key TFs and histone modifications for the 

macrophages in each one of the five strains (Link, Duttke, et al., 2018). The five mouse strains 

include C57BL/6J (C57), BALB/cJ (BALB), NOD/ShiLtJ (NOD), PWK/PhJ (PWK), and 

SPRET/EiJ (SPRET). We first characterized the spacing relationship between the macrophage 

lineage-determining TFs (LDTFs), PU.1 and C/EBPβ, which have been found to bind in a 

collaborative manner at regulatory regions of macrophage-specific genes (Heinz et al., 2010). 

Based on our computational framework (Fig. 4.3A), these two TFs follow a relaxed spacing 

relationship regardless of their motif orientations (Fig. 4.3A; KS p-value < 1e-6). Moreover, both 

PU.1 and C/EBPβ binding activities quantified by the ChIP-seq tags were not correlated with the 

motif spacing, suggesting no direct association between spacing and TF binding (Fig. 4.3B).  

We then conducted independent comparisons between C57 and one of the other four 

strains to investigate the effects of spacing alterations caused by natural genetic variation. We 

first identified the co-binding sites of PU.1 and C/EBPβ for each strain and then, for each 

pairwise analysis, pooled the co-binding sites of C57 and the compared strain to obtain the 

testing set of regions. Based on the impacts of genetic variants with regard to motif affinity and 

motif spacing, we categorized the testing regions into the following non-overlapping groups: 1) 

mutated PU.1 (i.e., SPI1) motif, 2) mutated C/EBPβ (i.e., CEBPB) motif, 3) mutated other 

functional motifs (i.e., MAGGIE motif), 4) altered spacing, 5) no motif affinity/spacing effect, 

and 6) variant free. Functional motifs were identified from PU.1 and C/EBPβ binding sites 

respectively using MAGGIE (Shen et al., 2020), which is a computational tool that can prioritize 

motifs whose affinity changes are associated with TF binding changes based on the ChIP-seq 

tags across different mouse strains (Supplementary Fig. 4.3). The effect of genetic variation was 

quantified by the log2 fold difference of ChIP-seq tags between strains (Fig. 4.3C). All the four 
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independent comparisons showed that PU.1 binding is most strongly affected by PU.1 motif 

mutation (average Cohen’s d=2.3), followed by C/EBPβ motif mutation (average Cohen’s d=1.6) 

and other functional motif mutation (average Cohen’s d=0.95). Spacing alterations have much 

smaller effect size than any of these motif mutations (average Cohen’s d=0.54), but still a larger 

effect than variants affecting neither motif affinity nor spacing (average Cohen’s d=0.07). 

Despite the moderate effect size of spacing alterations, we found such effect was independent 

from the size and direction of InDels (Fig. 4.3D), suggesting the effects of InDels in this 

category might not be directly resulted from the spacing alterations but from other reasons. On 

the contrary, changes of motif affinity are strongly correlated with changes of PU.1 ChIP-seq 

tags (Fig. 4.3D). The effects of motif mutation and spacing alteration did not vary by the initial 

spacing between PU.1 and C/EBPβ motifs (Supplementary Fig. 4.4). The similar relationships 

were found in C/EBPβ binding, except that C/EBPβ motif mutation had the largest effect size 

and strongest correlation with changes in C/EBPβ binding activity (Fig. 4.3E, F, Supplementary 

Fig. 4.4). 

To investigate whether the effects of altered spacing on PU.1 and C/EBPβ binding can be 

generalized to hierarchical interactions with signal-dependent transcription factors, we leveraged 

the ChIP-seq data of PU.1, the NF-kB subunit p65, and an AP-1 factor cJun for macrophages 

treated with the TLR4-specific ligand Kdo2 lipid A (KLA) in the same five strains of mice 

(Link, Duttke, et al., 2018). Upon macrophage activation with KLA, p65 enters the nucleus and 

primarily binds to poised enhancer elements that are selected by LDTFs including PU.1 and AP-

1 factors (Heinz et al., 2015). We observed a relaxed spacing relationship between PU.1 and p65 

and also between cJun and p65 (Supplementary Fig. 4.5). In addition, InDels altering motif 
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spacing had a much smaller effect size on TF binding than motif mutations (Supplementary Fig. 

4.6), consistent with our finding from PU.1 and C/EBPβ. 

Although alterations in motif spacing had generally weak effects at the level of DNA 

binding, it remained possible that changes in motif spacing could influence subsequent steps in 

enhancer and promoter activation. To examine this, we extended our analysis to local acetylation 

of histone H3 lysine 27 (H3K27ac), which is a histone modification that is highly correlated with 

enhancer and promoter function (Creyghton et al., 2010). We leveraged the H3K27ac ChIP-seq 

data of untreated macrophages in the five strains of mice (Link, Duttke, et al., 2018) and 

calculated the log fold changes of H3K27ac level within the extended 1000-bp regions of the 

PU.1 and C/EBPβ co-binding sites. Similar to what was observed for TF binding, altered spacing 

demonstrated weaker effects on histone acetylation than motif mutations (Fig. 4.3G, 

Supplementary Fig. 4.2), which is supported by the high consistency between change of TF 

binding and change of histone acetylation (Supplementary Fig. 4.7). The relative tolerance of 

spacing alteration was further reflected by a weak correlation between the change of acetylation 

level and the size of InDels, in comparison to a much stronger correlation with changes in motif 

affinity (Fig. 4.3H). 
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4.3.4 Human quantitative trait loci are depleted of variants changing motif spacing 

 

Figure 4.4 Effects of chromatin QTLs in human endothelial cells.  (A) Spacing distributions of ERG and RELA 
motif at co-binding sites. (B) Classification of chromatin QTLs based on the effects on motif and spacing. (C) 
Absolute correlation coefficients of different QTLs. Cohen’s d effect sizes together with p-values comparing against 
the “other” group are displayed on top. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (D) Example QTLs for 
large effect size due to ERG motif mutation (top) and trivial effect due to spacing alteration (bottom). 

To study the effects of spacing alteration in human, we leveraged the ChIP-seq data of 

ERG, p65, and H3K27ac in endothelial cells from many individuals (Stolze et al., 2020). ERG is 

a predominant ETS factor as well as an LDTF in endothelial cells that selects poised enhancers 

where p65 binds in a hierarchical manner upon interleukin one beta (IL-1β) stimulation (Hogan 

et al., 2017). ERG and p65 follow a relaxed spacing relationship according to our computational 

framework (Fig. 4.4A). Based on 22 ERG samples in untreated endothelial cells and 35 p65 

samples in IL-1β-treated endothelial cells, we identified 2,669 TF binding quantitative trait loci 

(bQTLs) for ERG and 10,723 bQTLs for p65 (Supplementary Fig. 4.8). By overlaying 42 

H3K27ac samples of IL-1β-treated endothelial cells at a pooled set of p65 binding sites and 
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another 42 H3K27ac samples of untreated endothelial cells at a pooled set of ERG binding sites, 

we identified 7,693 and 16,419 histone modification QTLs (hQTLs) for untreated and IL-1β-

treated cells, respectively. We further classified bQTLs and hQTLs based on their impacts on 

motif affinity and spacing: 1) mutated both ERG and p65 (i.e., RELA) motif, 2) mutated ERG 

motif only, 3) mutated p65 motif only, 4) mutated other functional motifs identified by MAGGIE 

(Shen et al., 2020), 5) altered spacing, 6) none of the above. To find functional motifs, we fed 

MAGGIE with 100-bp sequences around QTLs before and after swapping alleles at the center 

(Supplementary Fig. 4.9). As a result, only a small portion of bQTLs and hQTLs directly mutates 

an ERG or RELA motif (Fig. 4.4B, Supplementary Fig. 4.10) even though such motif mutations 

are still enriched in QTLs compared to non-QTLs (Fisher’s exact p < 1e-4). On the contrary, 

InDels that alter motif spacing are significantly depleted in QTLs (Fisher’s exact p < 1e-9). The 

majority of QTLs have an impact on other functional motifs, implicating the complexity of TF 

interactions. Roughly a quarter of the QTLs affect neither motif affinity nor motif spacing, which 

can be explained by the high correlation of non-functional variants with functional variants due 

to the linkage disequilibrium.  

We further compared the effect sizes of different categories of QTLs. Despite being the 

minority group among all QTLs, variants that mutate both ERG and RELA motif have the 

strongest effects on both p65 binding and histone acetylation in IL-1β-treated endothelial cells 

(Fig. 4.4C). In comparison, ERG binding and the basal level of histone acetylation are mainly 

affected by ERG motif mutations in untreated endothelial cells, while p65 motif mutations have 

trivial effects, consistent with the hierarchical interaction of p65 only upon IL-1β stimulation 

(Supplementary Fig. 4.11). In both states of endothelial cells, spacing alterations have the least 

effect size among all the categories and are not significantly different from likely non-functional 
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variants in the “other” group. The examples showed a variant being both a p65 bQTL and a 

hQTL due to its impact on an ERG motif, and also another variant associated with no change in 

p65 binding and H3K27ac despite its impact on increasing the motif spacing between ERG and 

p65 by 4 bp (Fig. 4.4D).  

4.3.5 Transcription factor binding tolerates synthetic spacing alterations 

 

Figure 4.5 Effects of variable sizes of synthetic spacing alterations. (A) Schematic for generating and analyzing 
synthetic spacing alterations. (B, E) Experimental co-binding site of PU.1 and C/EBPβ. The sequencing data were 
based on ER-Hoxb8 cells. The target enhancer region is highlighted, and its DNA sequence from PU.1 motif to 
C/EBPβ motif is shown. (C, F) The distribution of valid read counts from the input sample based on the InDel sizes 
of the reads. Negative InDel size means deletion, while positive size means insertion. (D, G) Log2 odds ratios by 
comparing TF ChIP-seq reads and input sample reads at certain InDel sizes. Y=0 line indicates where TF binding 
has an expected amount of activity. 

After seeing generally small regulatory effects of spacing alterations based on naturally 

occurring InDels, we tested the robustness and the extent of such tolerance using experimentally 

synthetic InDels. We tested on the LDTFs PU.1 and C/EBPβ of mouse macrophages using a 
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combination of CRISPR, deep target sequencing, and bioinformatic techniques (Fig. 4.5A). We 

started with ER-Hoxb8 cells, which is an immortalized macrophage progenitor cell line, and 

transduced the cells with the CRISPR/Cas9 system that targeted certain co-binding sites of PU.1 

and C/EBPβ at the sequences between motifs. The Cas9 nuclease was supposed to cut at specific 

positions and generate various sizes of InDels in different cells. After sorting the successfully 

infected ER-Hoxb8 cells and differentiating them into macrophages, we then conducted ChIP-

seq experiments plus very deep sequencing to amplify the target regions with the aim of 

capturing signals coming from different cells, which have different InDels. Lastly, the reads were 

mapped to the target regions by allowing various sizes of gaps at the cut sites and were 

quantified by comparing to the input DNA samples.  

Here, we showed two testing regions, one with supportive evidence from naturally 

occurring InDels of mouse strains (Fig. 4.5B-D) and one without (Fig. 4.5E-G). For the region 

with supportive evidence, the highlighted Ly9 enhancer has a 5-bp insertion between PU.1 and 

C/EBPβ motifs in BALB, NOD, and PWK, and shows unaffected binding of PU.1 and C/EBPβ 

in the BMDMs of these strains. This region also has strong binding of both PU.1 and C/EBPβ in 

ER-Hoxb8 cells and strong signals of H3K27ac and chromatin accessibility by ATAC-seq, 

indicating a potential regulatory function of this region (Fig. 4.5B). The PU.1 and C/EBPβ motif 

at this region are 41 bp apart. Based on the bioinformatic analysis of the ultra-deep sequencing 

reads from the input DNA sample, we saw the CRISPR/Cas9 system mostly generated deletions, 

more likely leading to shorter deletions (Fig. 4.5C). By calculating the odds ratio between 

C/EBPβ ChIP-seq reads with certain deletion and input sample reads with the same size of 

deletion, we produced the effect size of deletion on C/EBPβ binding in the function of deletion 

size (Fig. 4.5D). Overall, deletion ranging from 1 to 35 bp did not have much effect on TF 
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binding, indicated by a log2 odds ratio close to 0. On the contrary, deletions greater than this 

range resulted in a decrease in TF binding activity, likely due to the elimination of at least one of 

the two motifs. The similar results were found at the other region without supportive evidence 

from naturally occurring InDels (Fig. 4.5E-G). This region is located near genes Pold3 and 

Pgm2l1 and has strong signals of TF binding and regulatory activity (Fig. 4.5E). The distribution 

of input sample reads shows a higher chance of seeing shorter deletions from the Cas9 (Fig. 

4.5F). The TF binding activity was not generally affected by deletions less than 45 bp (Fig. 

4.5G). Beyond this range, the deletions likely crossed over motifs and diminished TF binding 

activity. 

 

4.4 Discussion 

 By classifying the genome-wide spacing relationships of 75 co-binding TFs as 

“constrained” or “relaxed”, we revealed that relaxed spacing relationships were the dominant 

pattern of interaction for majority of these factors. Among these factors, approximately half 

could also participate in constrained spacing relationships with specific TF partners. We 

confirmed TF pairs known to exhibit constrained relationships (e.g., GATA1-TAL1) and 

identified previously unreported constrained relationships for additional pairs, including EGR1 

and JUND. Overall, this finding of a subset of constrained TF interactions on a genome wide 

level is consistent with the locus-specific examples provided by functional and structural studies 

of the interferon-β enhanceosome (Panne, 2008) and in vivo studies of synthetically modified 

enhancer elements in Ciona (Farley et al., 2015). Each of these examples represents genomic 

regulatory elements in which key TF motifs are tightly spaced in their native contexts (i.e., 0-9 

bp between motifs). Direct protein-protein interactions are observed between bound TFs at the 
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interferon-β enhanceosome, analogous to interactions defined for cooperative TFs that form 

ternary complexes (Morgunova & Taipale, 2017). In the present studies, InDels between TF 

pairs exhibiting constrained spacings were under large selective constraints that were comparable 

to InDels at motifs, suggesting a deleterious effect of these spacing alterations on TF binding. 

However, the spacing analyses in this study did not directly consider the possible overlap or lack 

of spacing between TF binding sequences. Thus, we are not able to clearly distinguish effects of 

spacing alterations from effects of InDels on motifs at sites of tightly spaced composite motifs. 

The observation that most TF pairs exhibited relaxed spacing relationships has intriguing 

implications for the mechanisms by which functional enhancers and promoters are selected from 

chromatinized DNA. In contrast to ternary complexes of TFs that cooperatively bind to 

composite elements as a unit, relaxed spacing relationships appear to not require specific protein-

protein interactions between TFs for collaborative binding at most genomic locations. Although 

pioneering TFs necessary for selection of cell-specific enhancers have been reported to recognize 

their motifs within the context of nucleosomal DNA, the basis for collaborative binding 

interactions between TFs with relaxed spacings remains poorly understood. 

While the current studies relying on natural genetic variation and mutagenesis 

experiments concluded clear tolerance of spacing alterations between motifs of TFs with relaxed 

spacings, the extent to which this set of binding sites is representative of all regulatory elements 

is unclear. For example, we observed outliers in which significant differences in TF binding 

between mouse strains were associated with InDels occurring between motifs. However, the 

proportion of outliers was generally similar to that observed at genomic regions lacking such 

InDels, and such strain differences may be driven by distal effects of genetic variation on 

interacting enhancer or promoter regions (Link, Duttke, et al., 2018). The remarkable tolerance 
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of synthetic InDels at two independent endogenous genomic locations between PU.1 and 

C/EBPβ binding sites strongly support the generality of relaxed binding interactions for these 

two proteins. Intriguingly, while the densities of C/EBP motifs increase with decreasing distance 

to PU.1 motifs over a 100 bp range (Fig. 4.3A), deletions from 1 to >30 bp in the context of 

PU.1-C/EBPβ pairs 41 or 54 bp apart did not result in improved binding. Instead, relatively 

constant binding was observed with progressive deletions bringing two motifs close together 

until the deletions started to cause mutations in one or both motifs. This is consistent with the 

lack of correlation between DNA binding strengths and distances between these factors (Figure 

4.3B). A limitation of these studies is that very few insertions were obtained, preventing 

conclusions as to the extent to which increases in spacing are tolerated. 

In concert, the present studies provide a basis for estimation of the potential phenotypic 

consequences of naturally occurring InDels in non-coding regions of the genome. In most cases, 

InDels between motifs for TFs that have relaxed binding relationships are unlikely to alter TF 

binding and function. In contrast, InDels between motifs for TFs that have constrained binding 

relationships have the potential to result in biological consequences. Application of these 

findings to the interpretation of non-coding InDels that are associated with disease risk will 

require knowledge of the relevant cell type in which the InDel exerts its phenotypic effect and 

the types of TF interactions driving the selection and function of the affected regulatory 

elements. 
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4.5 Methods 

4.5.1 Sequencing data processing 

We downloaded two replicates for each TF ChIP-seq data from ENCODE data portal 

(Davis et al., 2018). The mouse macrophage data and the human endothelial cell data were 

downloaded from the GEO database with accession number GSE109965 (Link, Duttke, et al., 

2018) and GSE139377 (Stolze et al., 2020), respectively. We mapped the ChIP-seq reads using 

Bowtie2 v2.3.5.1 with default parameters (Langmead & Salzberg, 2012). All the human data 

downloaded from ENCODE were mapped to the hg38 genome. Data from C57BL/6J mice were 

mapped to the mm10 genome. Data from other mouse strains and endothelial cell data from 

different individuals were mapped to their respective genomes built by MMARGE v1.0 (Link, 

Romanoski, et al., 2018). More details are described below.  

Based on the mapped ChIP-seq data, we then called TF binding sites or peaks using 

HOMER v4.9.1 (Heinz et al., 2010). For data with replicates including ENCODE data and 

mouse data, we first called unfiltered 200-bp peaks using HOMER “findPeaks” function using 

parameters “-style factor -L 0 -C 0 -fdr 0.9 -size 200” and then ran IDR v2.0.3 with default 

parameters (Li et al., 2011) to obtain reproducible peaks. For data without replicates including 

human endothelial cell data, we called peaks using HOMER “findPeaks” with the default setting 

and parameters “-style factor -size 200”.  

Activity of TF binding was quantified by the ChIP-seq tag counts within 300-bp around 

peak centers and normalized by library size using HOMER “annotatePeaks.pl” script with 

parameters “-norm 1e7 -size -150,150”. Activity of promoter and enhancer was quantified by 

normalized H3K27ac ChIP-seq tags within 1000-bp regions around TF peak centers using 

parameters “-norm 1e7 -size -500,500”. 
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4.5.2 Motif identification 

Based on DNA sequences of the TF binding sites, we calculated motif scores by the dot 

products between position weight matrices (PWMs) from the JASPAR database (Fornes et al., 

2020) and sequence vectors using Biopython package (Cock et al., 2009). The PWMs were 

trimmed to obtain only the core motifs from the first position where information content greater 

than 0.3 to the last position of information content greater than 0.3 (Ng et al., 2014). The valid 

motifs were identified by a motif score passing a false positive rate 0.1% and a location within 

50 bp close to the peak center. The motif spacing is computed as the edge-to-edge distance 

between two motifs at TF co-binding sites. If there are multiple valid motifs for one or both TFs, 

we computed the spacing between all possible combinations of valid motifs. 

4.5.3 Characterization of different motif spacing relationships 

To test for the constrained spacing relationship between any two TFs, we developed a 

method to identify “spikes” in the spacing distribution. We first counted the TF pair distances at 

single-base-pair resolution ranging from -100 bp to +100 bp. Next, we computed the slope at 

each position using the following formula:  

𝑆𝑆𝑖𝑖 =
Δ𝑖𝑖,𝑖𝑖−1 + Δ𝑖𝑖,𝑖𝑖+1

2
, 𝑖𝑖 ∈ [−99,99] 

Δ𝑖𝑖,𝑖𝑖−1 = 𝑁𝑁𝑖𝑖 − 𝑁𝑁𝑖𝑖−1 

Si is the average of single-step forward and backward slope at position i. Ni represents the 

number of TF pair at position i, and Δ is the difference in the number of TF pairs between two 

locations. We conducted permutation tests to compare each Si to a simulated null distribution to 

determine a p-value based on the percentile rank. P-value smaller than 6.25e-05 is called 

significant (familywise error rate=0.05/200/4), indicating a spike is found among motif spacing 
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between the testing TF pair. The null distribution was generated by 1,000 iterations of 1,000 

random spacing between 0 and 100 bp.  

To test for the relaxed spacing relationship, we used Kolmogorov–Smirnov (KS) test to 

compare a spacing distribution to the random distribution. We randomly sampled integers 

between -100 and 100 to match the same size of the testing spacing distribution and then tested 

the spacing distribution against the distribution of the random integers to obtain a p-value. We 

repeated the above process 100 times and computed an average p-value for the final report. 

Significance threshold was adjusted by familywise error rate: 0.05/4/C#TF
2 . 

4.5.4 Calculation of variant rate 

We obtained SNPs and InDels from gnomAD v3.1 (Karczewski et al., 2020) and 

overlapped the gnomAD variants with TF co-binding sites, specifically with two TF motifs 

(denoted as motif1 and motif2) and their intermediate sequences (denoted as mid). To account 

for local background, we also overlapped variants with 100 bp upstream and downstream region 

outside of the motifs (denoted as surrounding). For each co-binding site, the normalized variant 

rate for motif1, motif2 and mid region is calculated as: 

𝐹𝐹𝑖𝑖 =
𝐶𝐶𝑖𝑖/𝑆𝑆𝑖𝑖 + pseudo

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + pseudo
, 𝑖𝑖 ∈ {𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2,𝑚𝑚𝑚𝑚𝑚𝑚} 

where Ci denotes variant count in certain region (motif1, motif2, or mid), Si represent size of the 

region. Csurrounding represents variant count within the surrounding regions outside of motifs, and 

Ssurrounding represents the size of surrounding regions, set as 200 bp in this study. To avoid 

division by zero, a small pseudo-rate 0.005 is added. 

4.5.5 Genetic variation processing and genome building 

Genetic variation of the five mouse strains was obtained from (Keane et al., 2011), and 

that of the human individuals from which endothelial cell data were generated was derived from 
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(Stolze et al., 2020). We used MMARGE v1.0 with default variant filters (Link, Romanoski, et 

al., 2018) to build separate genomes for each mouse strain and human individual. The 

sequencing data from different samples were respectively mapped to the corresponding genomes 

and were then shifted to a common reference genome using MMARGE “shift” function to 

facilitate comparison at homologous regions. The reference genome is mm10 for mouse strains 

and hg19 for human individuals. 

4.5.6 Identification of QTLs 

ChIP-seq tags from human endothelial cells were counted surrounding every genetic 

variant within +/- 150 bp for ERG and p65 or +/- 1000 bp for H3K27ac. Tag counts of the same 

genotype from different individuals were aggregated and regressed across genotypes 0/0, 0/1 (or 

1/0), and 1/1. Variants associated with no more than 16 tags in any individual were removed. 

QTLs were identified as the variants associated with a linear regression p-value smaller than the 

familywise error rate corrected by the total number of variants within the peaks of each signal. 

4.5.7 Motif mutation analysis 

We used MAGGIE (Shen et al., 2020) to identify functional motifs for different TF 

binding. To prepare the inputs into MAGGIE based on the mouse strains data, we adapted a 

similar strategy as described in Shen et al., 2020. In brief, we conducted pairwise orthogonal 

comparisons of TF peaks between each possible pair of the five strains to find strain-differential 

peaks. We then extracted pairs of 200-bp sequences around the centers of the differential peaks 

from the genomes of two comparative strains, the ones with TF binding as positive sequences 

paired with those without TF binding as negative sequences. For the QTLs of human endothelial 

cells, MAGGIE can directly work with a VCF file of QTLs with effect size and effect direction 

indicated in a column of the file. We ran MAGGIE separately for each type of QTLs. The 
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significant hits passed FDR < 0.05 after the Benjamini–Hochberg controlling procedure, and the 

p-values output from MAGGIE were reported. 

4.5.8 Categorization of genetic variation 

We categorized genetic variation based on its impact on motif affinity and motif spacing. 

Motif mutations were defined by at least 1-bit difference in the motif score, which is equivalent 

to 2-fold difference in the binding likelihood. Mutations of other functional motifs identified by 

MAGGIE required that at least one of the functional motifs had motif mutations. InDels were 

first classified into motif mutation categories if eligible before being considered in motif spacing. 

Spacing alterations included InDels between target motifs, which did not have any mutations. 

Variants fitting neither motif mutation nor spacing alteration were gathered in a separate group 

as a control. Another control category during analysis of mouse strains data was defined by TF 

binding sites that have no genetic variation between strains. 

4.5.9 Statistical testing of effect size 

Effect size of genetic variation was computed by the ratio of ChIP-seq tag counts at 

orthogonal sites between two comparative samples followed by log2 transformation. We 

conducted Mann-Whitney tests between “Variant free” and other categories to test significant 

differences in their distributions. We also obtained the Cohen’s d between the sampled variant-

free set and the testing category as the effect size (Sullivan & Feinn, 2012). 
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4.7 Supplementary figures 

 

 
 
Supplementary Figure 4.1 Effects of different motif scanning criteria. (A) Motifs proximal to peak centers are 
potentially more confident than motifs distal from peak centers. (B) All motifs passing FPR < 0.001 are potentially 
as confident as the best motif of every peak. 

 
 

 
Supplementary Figure 4.2 Comparison of the spacing relationships of same TF pairs in different cell types. 
Example of TF pairs with (A) similar or (B) different spacing relationships in different cell lines. 
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Supplementary Figure 4.3 Functional motifs identified by MAGGIE for different TF binding. 

 
 

 
Supplementary Figure 4.4 Absolute log2 fold changes of ChIP-seq tags in relationship with the initial spacing 
between PU.1 and C/EBPβ motif. 

 

 
Supplementary Figure 4.5 Spacing distributions between LDTFs and SDTFs. Left: p65 and PU.1. Right: p65 
and cJun. 
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Supplementary Figure 4.6 Absolute log2 fold changes of ChIP-seq tags between C57 and another strain for 
LDTFs and SDTFs. (A) PU.1 and p65 binding at their co-binding sites and (B) cJun and p65 binding at their co-
binding sites. 

 
 

 
 
Supplementary Figure 4.7 Correlations between changes in TF binding activity and changes in the H3K27ac 
level. 
 
 

 

Supplementary Figure 4.8 Distribution of effect sizes of TF binding QTLs. 
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Supplementary Figure 4.9 Functional motifs identified by MAGGIE based on bQTLs. 

 
 

 
 

Supplementary Figure 4.10 Classification of chromatin QTLs based on the effects on motif and spacing for 
basal condition. 

 

 
 

Supplementary Figure 4.11 Absolute correlation coefficients of different QTLs for basal condition. Cohen’s d 
effect sizes together with p-values comparing against the “other” group are displayed on top. *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. 
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Chapter 5. Conclusion 
 

Here I investigated the effects of genetic variation on different aspects of transcriptional 

regulation, including TF binding and regulatory activity, and linked the regulatory effects to gene 

expression. TF plays as an important anchor in this work that connects DNA sequences with 

transcriptional regulation via TF binding motifs. Relevant to motifs, I studied the effects of 

genetic variation that alters motif or motif spacing. In Chapter 4, I summarized my findings that 

some TFs require constrained spacing since they form ternary complex and recognize composite 

motifs, but most collaborative TFs do not have such constraint and can tolerate spacing 

alterations in the scale of naturally occurring InDels and beyond. On the contrary, motif 

mutations have much stronger impacts regardless of whether the alterations occur at the motifs of 

bound TFs or collaborative TFs. These findings suggest the universal relevance of interpreting 

non-coding genetic variation in the context of motif mutations, while for a few TFs with 

constrained spacing relationships, spacing alterations may also be relevant. 

To facilitate the interpretation of variants in the context of motif mutations, I described a 

new bioinformatic approach called MAGGIE in Chapter 2 that can identify functional motifs for 

TF binding and regulatory function based on motif mutations. Using this approach, I reproduced 

known important TFs for the regulatory function of lymphoblastoid cell lines and two different 

states of macrophages. The significant motifs from MAGGIE often overlap with those found by 

motif enrichment methods, providing additional support for them to be the targets of genetic 

variation that influences transcriptional regulation. In some cases, exemplified by the pro-

inflammatory state of macrophages, MAGGIE showed exceptional ability to distinguish the 

functions of relatively similar motifs based on their associations with different functions. In 

Chapter 3, such capability of MAGGIE helped discover quantitative variations in motif affinity 
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underlying the divergent anti-inflammatory response of macrophages. It would be important to 

validate this finding using mutagenesis experiments and study this phenomenon in other systems 

in the future. Overall, this finding suggests the importance of considering motif as a continuous 

and quantitative variable instead of a binary variable with only the status of presence or absence.  

Besides the consideration of quantitative motif mutations, this work also support that the 

effects of motif mutations should be extended to collaborative TFs. The functional motifs of 

collaborative TFs identified by MAGGIE based on TF binding sites (Fig. 2.3 and 3.6) and the 

strong impacts on TF binding from motif mutations at collaborative TFs’ motifs (Fig. 4.2 and 

4.3) all indicate the inter-dependence of different motifs. In Chapter 3, I leveraged deep learning 

techniques to model an entire non-coding sequence so that multiple motifs together with their 

relative locations could be preserved and incorporated into the model. This approach 

successfully prioritized non-coding variants that are associated with changes in regulatory 

function, showing a strong promise of using deep learning to identify functional non-coding 

variants. Many of these prioritized variants are located at known functional motifs, which adds 

more confidence to these variants being functional. As a future direction, it would be interesting 

to further classify the prioritized variants to find those that do not influence motifs. The 

mechanisms underlying these non-motif mutations might provide insights for novel aspects of 

variant interpretation.  

Either motif-focused approaches or deep learning application in this study discussed the 

effects of genetic variation within at most hundreds of base pairs. The analysis of chromatin 

conformation data in Chapter 3 indicated the potential of extending variant interpretation from 

local effects to a longer range of effects on interactive regions. This work showed a significant 

correlation of regulatory activity between interactive enhancers. Many of these interactive 
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enhancers had genetic variation only on one side but were under a synchronized effect from the 

genetic variation. Variants prioritized by deep learning are significantly enriched at the 

interactive enhancers of those that do not have local variants. Further investigation is needed to 

validate the significance and mechanisms underlying these associations, but still, it implicates the 

possibilities of studying the effects of non-coding variants by taking the chromatin conformation 

into consideration. The insights provided by our findings could inspire an extension of current 

deep learning application to model long-range associations of regulatory elements and 

potentially improve the performance in predicting the effects of non-coding variants.  

Building upon many great works studying the effects of genetic variation on 

transcriptional regulation, this work pushed the boundaries a bit further by applying state-of-the-

art computational tools and conducting novel analyses that integrate different types of data. As 

much as I hope my work has demonstrated deep dissection of non-coding genetic variation from 

a couple of aspects, I hope it will provoke thinking on how we can study this problem by going 

wide to integrate a variety of data types and going deep into the current data with novel analysis 

approaches. 
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