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EPIGRAPH

A common mistake that people make when trying to design something completely foolproof is to

underestimate the ingenuity of complete fools.

—Douglas S. Adams Hitchhikers Guide to the Galaxy
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ABSTRACT OF THE DISSERTATION

Opportunities and Challenges in Silicon Photonics Systems

by

Hannah Rae Grant

Doctor of Philosophy in Electrical Engineering (Photonics)

University of California, San Diego, 2018

Professor George Papen, Chair
Professor Shayan Mookherjea, Co-Chair

Silicon photonics has become a key solution to tackle the demands on current commu-

nication systems and information processing because the use of this platform can reduce power

consumption, eliminate electrical to optical conversion and leverage mature CMOS fabrication

techniques. As silicon photonic devices are introduced into system-level applications, new chal-

lenges need to be addressed. This thesis will present some solutions to these challenges. These

challenges range from device design and functionality to the post-processing and testing of sili-

con photonic devices. First, the system-level testing of a silicon photonic switch with crosstalk

using real Ethernet datastreams is presented. Next, a rapid characterization technique for post-
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processing of silicon photonic switches is shown. Finally, the functionality of barrel shifting is

demonstrated in silicon photonics. The challenges and the solutions presented in this thesis are

key steps to realizing the promise of system-level applications of silicon photonic devices.
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Chapter 1

Introduction

Silicon photonics (SiP) is an emerging device platform that combines photons and elec-

trons for cost-effective solutions for system-level applications. While utilizing optics for large-

bandwidth, power-conserving solutions has been known, SiP has additional bene�ts that make

the platform potentially cost-effective and competitive. First, SiP devices are much smaller than

bulk optical components. This alleviates the costly issues that come from operating and cooling

bulk optical components. Next, SiP is an integrated platform that combines CMOS with photon-

ics. This means SiP can utilize a highly scalable CMOS fabrication process with well-established

foundries [1]. Additionally, multi-project wafers have allowed broad access of SiP fabrication

for prototyping and R&D [1–3]. The compatibility with CMOS processing makes monolithic

integration of SiP with electronics possible [4]. By leveraging current CMOS processing, this

can lead to monolithic integration of system-level functionalities with electronic control [5–9].

As SiP device technology matures, a deeper understanding of the system-level aspects of SiP is

required. That is the topic of this thesis.

There exists a broad spectrum of system-level applications for SiP devices. With the

advent of ”big data” and the Internet of Things (IoT), there is a demand for large bandwidth

optical interconnect solutions in communication and information processing systems [10]. This
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has led to SiP becoming an important technology that can address the bandwidth bottleneck

occurring in communication systems [11–16] and information processing [17]. SiP has also been

implemented for high capacity computing [18,19] and sensing applications such as lidar [20].

Given the broad scope of SiP devices for optical communication systems and information

processing, there are opportunities and challenges that need to be addressed. These system-level

opportunities and challenges can be characterized into four broad categories: design & fabrica-

tion, packaging, system-level testing, and characterization & post-processing. Each challenge

must be overcome for the widespread use of SiP in system-level applications. This thesis dis-

cusses several of these challenges and presents promising methods to overcome some of these

issues.

1.1 Design and Fabrication

Design & fabrication addresses device design and fabrication techniques. While there is

a large body of research in this area [1, 6, 7], there are still major challenges in the fabrication

processes, design platforms, and speci�c device design for system-level applications.

The fundamental value proposition of SiP is that it can leverage mature fabrication pro-

cesses using lower resolution CMOS processing compared to current state-of-the-art microelec-

tronic chips [21]. However, the existing fabrication techniques for high-quality electronic de-

vices do not necessarily realize high-quality optical devices in large volumes [1]. Monolithic

integration of CMOS with photonics in SiP devices is strongly dependent on the design rules of

the speci�c fabrication processes leading to devices that currently have to be post-processed to

achieve high-yield [4,22].

Mature design platforms that support complex simulations of photonic devices exist and

is commonly utilized [1, 23, 24]. However, design and fabrication software that are common

to CMOS processing such as layout versus schematic (LVS) tools are still being developed to
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streamline the design-to-fabrication process of SiP devices [25,26].

There also exists a range of challenges for devices designed and fabricated for system-

level applications. These challenges include the design of microrings to mitigate crosstalk [27]

to the design of polarization insensitive devices [28]. Additionally, optimized system-level de-

sign of SiP devices requires a co-optimization between the functions implemented in photonics

and the functions implemented in electronics so that the limitations of one technology can be

overcome by the other technology [29].

This challenge presents an opportunity to explore linear optical transformations in SiP

for signal-processing systems [30]. As electronic functionalities are reaching their limits in

terms of bandwidth and power consumption, exploring optical implementations of key function-

alities is evident. The implementation of these functionalities lead to new design and fabrication

challenges. One of these functionalities, called barrel shifting, is explored in a SiP platform in

Chapter 5.

1.2 Packaging

Packaging is not speci�cally addressed in this thesis, but it plays a major role in system-

level implementations of SiP devices. This section provides a brief overview of these challenges.

Cost-effective robust packaging is required for SiP devices to be marketable. In order for

silicon photonics to be a viable platform, there is a requirement for the automation of packag-

ing [31]. Major problems in packaging are high-volume optical connections, thermal stability,

and proper packaging of electronic components [32–35].

Most commercial SiP devices are transceivers [16,36]. Typically electronic connections

are provided by wire-bonded or �ip-chip bonded to an electrical PCB [35]. Optical connections

are typically provided by grating-couplers. Grating couplers are less sensitive to misalignment

compared to edge-coupling [35]. However, grating couplers are wavelength selective making
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their use for large spectral-bandwidth solutions dif�cult. To solve the issue of spectral band-

width, development of packaged edge-coupled �bers and �ber arrays for low-loss, high-volume

packaging has been on-going area of research and development [31, 35, 37]. The sensitivity

to misalignment for edge-coupling makes high-volume manufacturing dif�cult. Solutions are

being developed to address this issue [38,39].

Thermal stability is also a major issue in the packaging of SiP devices [17]. Because

some SiP devices use the large thermally-induced change in the refractive index [1], the devices

must be packaged such that external temperature �uctuations do not alter the operation of the

device. Packaging with thermal electric coolers (TEC) is becoming more common. However,

these components add to the over all power and cost of the device.

1.3 System-Level Testing

System-level testing is required to validate the device functionality in a system-level

environment. System-level testing procedures have been developed for SiP devices such as

transceivers and variable-optical-attenuators (VOAs) [16, 36, 40]. Devices such as SiP switches

are more dif�cult to test for system-level performance due to large port counts and crosstalk

sensitivity. To date, most of the characterization of SiP switches has been at a device level

measuring crosstalk power or measuring the bit error rate (BER) of a single channel without

considering the additional interference from other channels. Speci�cally, there are few studies

of the effect of interference within a switch-chip on the BER performance of a SiP switch-

chip under real Ethernet traf�c. For SiP switch-chips, this measurement can be dif�cult as

signi�cant calibration is required to ensure proper testing. Chapter 3 of this thesis will present

the characterization of a SiP switch-chip for crosstalk generated from clock-synchronous or

clock-asynchronous operation. This study underscores the importance of a system parameter

such as the type of clocking on the switch performance as quanti�ed by the crosstalk.
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1.4 Characterization and Post-Processing

Characterization & post-processing is essential for SiP devices to enter the market. Pre-

viously, these functions were done on a small scale in research laboratories. It has been shown

that high-volume characterization techniques for photonic devices are currently expensive [41].

While some characterization techniques used for CMOS characterization can be used for SiP [1],

there is a need for scalable optical characterization techniques [42–45]. Wafer-level optical char-

acterization is enabled when using grating-couplers, but these components have limited spatial

bandwidth and high losses [1]. In some instances, brute-force characterization techniques have

been implemented, but these are not scalable [42, 43]. Cost-effective and scalable characteriza-

tion techniques for large-port count SiP devices is a critical requirement for wide-spread use of

SiP in systems. Chapter 4 presents a simple solution for the rapid characterization of planar SiP

switch-chips.

1.5 Conclusion

This thesis presents several approaches to overcome key challenges for system-level ap-

plications of SiP. Chapter 2 describes current �gures-of-merit for system applications and de-

scribes current �gures-of-merit for SiP devices. Chapter 3 presents a system-level characteriza-

tion of a SiP switch using real Ethernet data of the crosstalk. Chapter 4 presents a methodology

for rapid characterization of SiP switches. Chapter 5 presents an optical implementation of barrel

shifting in a SiP platform. The combined impact of this work leads to an improved understand-

ing for the design, system-level testing, and characterization & post processing of SiP devices

for system-level applications.
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Chapter 2

Background

This chapter presents background material for SiP devices designed for system-level

applications. First, several system-level �gures-of-merit are discussed, focusing on optical inter-

connects and switching. Similar �gures-of-merit apply to other system-level applications. Next,

device-level �gures-of-merit are discussed for optical communication systems.

2.1 System-Level Figures-of-Merit

There are several key �gures-of-merit that apply to the majority of optically-switched

network architectures. These �gures-of-merit are optical link budget, power consumption, scal-

ability, and throughput.

2.1.1 Optical Link Budget

Optical link budget is a calculation of the total optical power required for a reliable link

and includes all losses. The optical link budget is calculated for each data rate over a set distance

in a given �ber. For example, the standard 100GBASE-LR4 has a maximum link budget of

� 8:6dB for a distance of 10km and 100GBASE-ER4 has a maximum link budget of� 21:4dB
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for a distance of 40km [46]. Since this is the overall budget for an optical link, components

with higher losses can be balanced with lower-loss components or higher-power input sources.

However, compensating for higher-loss components leads to higher power consumption.

2.1.2 Power Consumption

Power consumption is the total power required to operate and maintain a communication

system. The dominant source of power consumption in conventional communication systems

is the electrical-to-optical (EO) and optical-to-electrical (OE) conversion [47,48] and the clock-

data recovery circuits. Optical solutions using either bulk-optical components or SiP components

can eliminate EO/OE conversion to reduce power consumption in communication systems [21,

49–52]. This is particularly important as faceplate power densities in data centers are becoming a

major issue at 400G where conventional transceiver designs lead to a max power consumption of

16W [53,54]. Reducing the amount of power consumption at the faceplate is a key opportunity

for SiP.

2.1.3 Throughput

Throughput is how much data can be transported between the desired end-points of a sys-

tem per unit time [55]. Two major factors contribute to the throughput in an optically-switched

network: the bandwidth and the duty cycle. Bandwidth is the average rate in which data is trans-

ferred. The duty cycle is the fraction of time the switch remains in a state compared to the overall

cycle of the switch. The product of these two factors is the communication system throughput.

A large throughput requires large bandwidth with a high duty cycle.

The bandwidth is typically the bisection bandwidth, which is the bandwidth between

two partitions of a communication system. Optical components are advantageous for low-loss,

high-data-rate systems. In comparison, electronic components can have high loss for increasing
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bandwidths. Bulk optical components and �bers are commonly used in data centers [52, 56].

For example, Google's Jupiter data center, which already leverages optics, in 2012 reported a

bisection bandwidth of 1:3Pbits� 1 [52]. The push for SiP devices to replace current bulk-optical

components is driven by the reduction in power consumption (cf. Section 2.1.2).

The duty cycle is also affected by the recon�guration time. The recon�guration time is

the time a switch is change state. A fast recon�guration time leads to a higher duty cycle and a

larger throughput. A fast recon�guration time also leads to lower latency in the network.

2.1.4 Scalability

As a system grows larger, the characteristics of the devices may change affecting the

scalability of the system. For example, the port-to-port loss of an optical switch is a function of

the number of ports (or the radix) of the switch. Generally, each physical-layer component of a

communication system needs to effectively scale for the overall system to scale. Scalability is

dependent on device-level parameters such as loss, crosstalk and power consumption. Each of

these device �gures-of-merit is discussed separately.

2.2 Device-Level �gures-of-merit

Key �gures-of-merit for SiP devices are loss, modulation bandwidth, crosstalk, and spec-

tral bandwidth.

2.2.1 Loss

Loss plays a major role in the ability to use SiP devices at a system-level. Loss can occur

on the device, which is referred to as on-chip loss, or at the coupling interfaces, which is referred

to as off-chip loss. On-chip loss and off-chip loss will be discussed separately.
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On-Chip Losses

The predominant on-chip loss is the loss per unit lengtha in inverse meters, which leads

to the total lossa over the optical path length given by

a = exp(� a � L) (2.1)

whereL is the total optical path length in meters [57]. The dominant mechanism for propagation

loss is surface scattering. Typically, the propagation loss is 2� 3dBm� 1 for standard CMOS

processing [1]. Additional on-chip losses can occur from bends [5] and dopant implantation [58].

Off-Chip Losses

Appendix A addresses various coupling losses for different SiP platforms. This section

provides an overview of the current state-of-the-art for coupling losses.

The predominant off-chip loss is the coupling loss between the off-chip optics, such as

an optical �ber, and the SiP device. Coupling optics are required to direct light on and off a

device. Typical optical coupling components used are optical �bers or arrays of optical �bers.

Coupling losses directly affect the cost of incorporating SiP devices into a system.

Currently, there are two classes of solutions for low-loss coupling. Coupling losses on

the order of� 1:5dB at 1550nm using a standard 220nm silicon-on-insulator (SOI) platform

have been shown. The best performance is edge-coupling using Si3Ni4 layers to create a taper

at the edge of the SOI die, which resulted in a coupling loss of� 0:5dB at 1550nm for a range

100µm [59]. While this was shown using a 220nm platform, the amount of post-processing

to achieve this loss is not typically compatible with wafer-level fabrication. A grating coupler

using a 260nm platform was shown to have� 0:9dB of loss with a 38:8nm range of operate at

1550nm [60]. Were a 220nm platform used, this grating coupler would have an expected loss

of � 1:5dB loss.
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The most robust solution has been shown by IBM Beauxmont [38, 39] where a slot v-

groove is created on the SI die to allow to place the coupling optic and a polymer lid is used

to seal the structures into place. While this solution is costly in terms of required die space, it

reproducibly yields losses of� 1:3dB of loss at 1310nm and� 1:4dB at 1550nm.

Given these state-of-the-art coupling solutions, the best edge-coupling is around� 1:5dB=facet.

This means there is a total of� 3dB for on/off chip coupling. Comparing this to the optical link

budgets mentioned in Section 2.1.1 leaves� 5:6dB of optical link budget for a 100GBASE-LR4

transceiver. This calculation neglects any on-chip losses. More conventional solutions suffer

from higher coupling losses, which are presented in Appendix A.

2.2.2 Modulation Bandwidth/Switch Time

The modulation bandwidth is a key �gure of merit for active components. Communi-

cation system components such as transmitters require high modulation bandwidth. SiP offers

signi�cant advantages for high-speed optical communications and processing. These devices

can use the electric-optic effect [58, 61–65] for high speed operation. The current state-of-the-

art planar SiP optical switch utilizes carrier-depletion with Mach-Zehnder interferometers. This

leads to switching times on the order of 1ns [64].

2.2.3 Crosstalk

Crosstalk describes the amount of energy coupled from one channel of a device to another

channel of a device. Crosstalk is an inherent property of devices based on mode coupling. When

crosstalk is treated as noise, crosstalk can signi�cantly reduce the optical-signal-to-noise-ratio

(OSNR) leading to detection error. Fig. 2.1 shows an example of crosstalk on a signal channel.

As shown, a crosstalk signal is called an aggressor, and the desired output is called the signal

channel.
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Figure 2.1: Crosstalk Example: a signal channel being af�icted by an aggressor.

Different SiP structures lead to different levels of crosstalk. For a single standard Mach-

Zehnder interferometer, the best reported crosstalk is� 27dB [66]. The crosstalk can be im-

proved by incorporating tunable couplers [67] or using nested Mach-Zehnder interferometers

[68]. For microring resonators, a second-order coupled microring have been reported to achieve

crosstalk on the order of� 50dB to� 70dB [29,61,69,70]. The trade-offs of using higher-order

coupled microrings are discussed in detail in Chapter 5.

2.2.4 Spectral Bandwidth

The spectral bandwidth is the operational frequency (or wavelength) range of the device.

It is typically a speci�cation of the system. For communication system architectures, wave-

lengths are chosen from an International Telecommunication Union's (ITU) Telecommunication

Standardization Sector (ITU-T) frequency grid [71].

Typically a SiP Mach-Zehnder interferometer will have a large passive spectral band-

width on the order of 30nm [66]. On the other hand, a microring resonator will have a much

narrower spectral bandwidth on the order of 1nm [63,69,72,73].
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Chapter 3

System-Level Testing of a Silicon Photonic

Switch-Chip

A major issue for commercially-viable SiP devices is the development of system-level

testing. This chapter discusses a speci�c system-level testing methodology for a SiP switch-chip.

Conventionally, the characterization of a SiP switch-chip has been at the device level.

This characterization measured the crosstalk power and bit error rate (BER) of a single channel

without additional interference using test patterns that were not real data. Instead, this chapter

presents the �rst characterization of a SiP switch-chip for crosstalk using 10Gbits� 1 Ethernet

frames for clock-synchronous and clock-asynchronous operation. The key contribution of this

work is providing a deeper understanding of how the crosstalk and BER of a switch-chip is

affected by system-level parameters such as the type of clocking.

3.1 Experimental Setup and Measurements

The experimental set-up is shown in Figure 3.1. The experiments used four 10 Gb/s

ethernet data streams generated in a Virtex-6 FPGA development board. The channel under test
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Figure 3.1: Experimental setup.

consisted of Ethernet frames �lled with a PRBS sequence, while the aggressors were 64b/66b

idles. One of the four channels is utilized for system level bit error rate and packet loss rate

measurements from the FPGA, which generates 1000 byte Ethernet frames consisting of a 4

byte sequence number and 996 bytes of a PRBS, attaches a standard Ethernet FCS, then 64b/66b

encodes and transmits the data with a standard 10GBASE-R PHY. On the receive side, the frame

check sequence (FCS) is used to determine good packets. Frames with an invalid FCS are saved

for BER analysis.

For the 64b/66b code, any single bit error at the receiver produces two additional errors

after decoding, any of which may fall outside of the frame. Therefore, a compensation method

to remove these duplicates was developed, differing from the true BER by a worst case value of

0.73%. By utilizing multiple 10G network interface cards, clock-synchronous or -asynchronous

driven data is achieved.

For the experiments, one signal datastream and three agressor datastreams were used to

drive a separate SFP+ module at one of four wavelengths (1563.05nm, 1563.77nm, 1564.60nm,

1565.42nm), each input to a port on the switch. The switch is fabricated at the Institute of

Microelectronics, Singapore, using a standard 220-nm thick silicon photonic platform. The

switch consists of four directional-coupler-based Mach Zehnder interferometers (MZI) arranged
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