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This work explores the application of machine learning for multi-prong jet classification at

the LHC. We compare the performance of high-level networks trained on jet observables to

low-level networks trained on the full event information. Our focus is on an extreme scenario,

evaluating the performance of the classifiers on jets with a large number of sub-jets, larger

than previously tested in the literature. The results indicate that traditional jet observables

like N -subjettiness and Energy-Flow Polynomials are good discriminants when tested on jets

with up to eight hard sub-jets, but that there is information in the events that is untapped

by these observables. We introduce Jet Rotational Metrics, a new family of observables

designed to capture features of the degree of discrete rotational symmetry of jets. These

observables prove highly valuable for the classification task, bridging the gap between the

low- and high-level networks.

This dissertation also introduces a technique for the accurate estimation of systematic un-

certainties in physics studies using Gaussian process regression. A typical approach is to

assume the factorization of the various sources of systematic uncertainties. This approach

is often extended to assume that the impact of these individual sources of uncertainty on

observables of the detector response also factories. Our technique uses Gaussian processes

to model observables as functions of the nuisance parameters. We show that this technique

xvi



is more accurate than the factorized approach and that it can learn from limited samples by

including gradient information. Additionally, we present a Bayesian-based sampling strat-

egy that efficiently explores the space of experimental response while reducing the predictive

uncertainty of the Gaussian process.
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Chapter 1

Introduction

The essence of particle physics lies in answering some of the most fundamental questions

about the universe: How many elementary particles are there? What are their properties?

And how do they interact with each other? An early answer to these questions was proposed

by Empedocles (fl. 444–443 BC), who argued that matter is composed of four elements (fire,

air, water, and earth). More recently, John Dalton formulated the first modern atomic theory

in the early 19th century, which suggested that matter is made up of discrete, indivisible

units called “atoms.” While these theories are compellingly simple, they fail to explain

experimental observations, which suggest that matter is composed of even smaller elementary

particles of a probabilistic nature, interacting through fundamental forces.

Our current best answer to the composition of the universe is the Standard Model (SM),

which was proposed in the 1970s and represents the culmination of decades of research in

theoretical and experimental physics. The SM has successfully explained the properties of

all known particles and their interactions with three of the four fundamental forces (electro-

magnetic, weak, and strong–excluding gravity). Predictions within the SM framework have

been experimentally verified across a wide range of energy scales and with a precision up
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to the order of parts-per-trillion [6]. However, despite its unprecedented success, the SM

comes with known limitations. For example, experimental observations from astronomy and

cosmology suggest that all known matter accounts for less than 5% of the universe while

the vast majority of it consists of dark matter and dark energy [7, 8], which do not fit into

the SM framework. In addition, the matter-antimatter asymmetry of the universe requires

the violation of charge and parity (CP) symmetry [9]. While the SM predicts some sources

of CP violation, they are not enough to explain the large excess of matter over antimatter.

Other limitations include neutrino oscillations, the hierarchy problem, and the integration

of the SM framework with general relativity.

The aforementioned limitations hint at the possibility of particles and fields Beyond the SM

(BSM). For decades, physicists have formulated theories proposing various extensions to the

SM. Many such theories have been found to be self-consistent, but their predictions have yet

to be tested. Experiments conducted at particle accelerators have the potential to test these

theories by providing access to the rich and generally unexplored territory of high-energy

particle collisions.

The state-of-the-art particle accelerator is the Large Hadron Collider (LHC) at CERN. At the

LHC, protons are accelerated to energies close to the speed of light and smashed together with

center-of-mass energies up to 14 TeV. This energy is converted into mass according to E =

mc2, thereby creating new particles. Experiments such as the ATLAS and CMS detectors

study the particles resulting from these high-energy collisions to probe the predictions of

the SM and to search for signals of new physics. To this day, hundreds of searches for

BSM physics have been conducted without much success. This lack of evidence of new

physics has partly been attributed to various experimental challenges. Most particles of

interest are estimated to last only fractions of a second before decaying, leaving behind only

signatures that they were ever created. These signatures are very rare and often buried in a

sea of background. For example, the most famous discovery at the LHC is the Higgs boson
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discovery at the ATLAS and CMS experiments in July 2012. Approximately only one in

every billion collisions results in a Higgs boson, from which only one in ten thousand has a

signature that is easy to see. Signatures of new physics are believed to be even more elusive,

and thus, finding them will demand our best efforts to extract and analyze all relevant

information from the data collected at particle accelerators.

To this day, the LHC has only collected a small percentage of the data it is scheduled

to collect during its lifetime. In an attempt to address the growing data volume, machine

learning (ML) methods have been employed with the promise of handling larger data batches

with better accuracy and faster execution times. These methods have been used in many

aspects of data analyses, from the first-level hardware trigger [10–12] to event selection and

object identification [13–15], and even to enhance detector simulations [16].

This thesis explores the power of machine learning for event classification. The work pre-

sented in this thesis addresses the challenges and advantages of the application of machine

learning for identifying signals of interest in simulated events. Chapter 2 introduces key

concepts of machine learning and their applications to high-energy physics. Chapter 3 com-

pares the performance of various machine learning models for event classification of jets with

multiple sub-jets. Chapter 4 expands on the work presented in Chapter 3 by introducing

a novel way of calculating event observables designed to classify jets with different topolo-

gies. Chapter 5 presents a technique for the accurate estimation of the impact of systematic

uncertainties in the calculation of detector response observables using Gaussian Processes.

Lastly, Chapter 6 provides a discussion of the work presented in this thesis and its possible

extensions.
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Chapter 2

Deep Learning and High-Energy

Physics

Machine learning (ML) is a branch of artificial intelligence dedicated to building statistical

models that can learn from data without being explicitly programmed. Physicists have long

utilized various traditional machine learning techniques to aid in physics searches. Some

of the earliest applications include simple multivariate algorithms, such as support vector

machines, random forests, and boosted decision trees [17, 18]. At the time, these tools

provided an important boost in the data analysis tasks, but their abilities were limited,

mainly due to their poor scaling with the size and dimensionality of the data.

It was not until the early 2010s that advances in graphics processing units (GPUs) allowed

for neural networks with multiple layers to train several orders of magnitude faster [19].

These networks, also known as deep neural networks, greatly outperformed the previous

state-of-the-art algorithms due to their ability to learn from data of higher complexity and

dimensionality than previously feasible. Soon after, deep neural networks quickly became

mainstream in many research fields, including particle physics.
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The integration of deep learning into particle physics has required careful thought when

interpreting the results due to the particular nature of the data. There are a few aspects that

make data collected at particle detectors unique. The first is the quantum-mechanical nature

of the collisions and subsequent interactions between particles and the detector. Quantum

mechanics tells us that these interactions are fundamentally probabilistic, and thus, the

output of the deep networks must be interpreted as such. For instance, traditional machine

learning methods for classification consider p(x|θ) to be a statistical model describing the

probability of observing label x given the parameter θ. In particle physics, however, assigning

labels to individual events is not straightforward. The labels more so refer to the probability

of finding certain particles within some small region of phase space. This probability is

calculated by various stochastic simulation tools that model the physics behind high-energy

particle collisions.

The second aspect that makes particle physics unique is the access to high-fidelity simu-

lations. For decades, experts have developed tools to simulate the progression of particle

collisions, from the particles arising during the first instants after the collisions, which are

dominated by perturbative quantum field theory (QCD) and can be modeled using first

principles, to their subsequent decays into more “stable” particles, which are modeled by

semi-classical Markov models [20, 21]. Interactions between these particles and the detec-

tor are also modeled, resulting in realistic and remarkably robust simulations of collision

events as captured by the detector [22]. The fidelity of these simulations is at the core of

most physics searches, where signals and backgrounds are simulated and used to train deep

learning models.
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2.1 Jets at the LHC

The most common phenomena observed at the LHC are jets. Jets are collimated sprays

of hadrons resulting from the hadronization and fragmentation of quarks and gluons pro-

duced in hard scattering processes. This behavior is observed directly in experiments where

hadronic final state particles appear collimated in a few directions in the detector.

Traditionally, jets have been used as proxies for the quarks and gluons produced during the

first instants after high-energy collisions. This makes jets indispensable for studying the

interactions between particles produced in such collisions. For example, jets have played

a central role in the discovery and measurements of fundamental particles, such as the

gluon [23–26] and the top-quark [27,28]. In addition, because of their large production rates

at the LHC, jets are often featured in searches of physics beyond the SM. However, inte-

grating jets into searches of new physics often comes with additional, interesting challenges.

Important information of the underlying processes is not only carried by the kinematics of

the final state particles but also by the internal composition, known as the jet substructure.

The study of jet substructure is a relatively new field, which requires an understanding of the

phenomenological features of the underlying processes and of the unfolding of the particles

as they travel through the detector.

At the detector level, jets are defined as the composite objects resulting from clustering

lists of reconstructed particles according to a jet algorithm [29]. These particles could be

reconstructed based on calorimeter cells (calorimeter jets) or on particle-flow candidates

(particle-flow jets) [30, 31]. The latter employs a cell-based energy subtraction algorithm to

remove overlaps between the momentum and energy measures made by the tracking detector

and calorimeters, respectively. The tracking detector gauges the momentum of charged par-

ticles by measuring the bent on their trajectories when subjected to strong magnetic fields.

The calorimeters are composed of cells with high-density materials designed to stop incoming
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particles, thus measuring their energy. The detectors employ two types of calorimeters: elec-

tromagnetic and hadronic. The electromagnetic calorimeter measures the energy of charged

particles, predominately electrons and photons. The hadronic calorimeter measures the en-

ergies of hadronic particles, such as protons and neutrons. Figure 2.1 shows a schematic

depiction of various particles traveling through and interacting with the ATLAS detector.

Figure 2.1: Illustration of the transverse plane of the ATLAS detector. The figure shows a
schematic depiction of how various particles travel through and interact with the detector.
ATLAS Experiment © CERN.

A popular class of jet algorithms is the sequential recombination class [32], which is based on

the concept that jets are the result of successive QCD branchings. The algorithm thus tries

to reverse the branching process by sequentially searching for the pairs of closest particles

and “recombining” them into one by adding their four-momenta (E-scheme recombination),

until the smallest distance is between a particle and the beam axis. The generalized-kT

algorithm is typically used when measuring the distances between the particles themselves
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and between a particle and the beam axis:

Inter-particle distance: dij = dji = min(p2pTi, p
2p
Tj)

∆R2
ij

R
, (2.1)

Particle-beam distance: diB = p2pTi, (2.2)

where pTi is the transverse momentum of particle i and ∆R2
ij = (yi − yj)

2 + (ϕi − ϕj)
2

is the geometric distance between particles i and j in the rapidity-azimuth plane (y, ϕ).

The parameter R is the jet radius, which controls the angular reach of the jet. Lastly, the

exponent p controls the relative weight of the energy terms. Common choices for p include

p = 1 (kt algorithm [33]), p = 0 (Cambridge-Aachen algorithm [34]), and p = −1 (anti-kt

algorithm [1]).

An example of an event clustered with the Cambridge-Aachen and anti-kt algorithms is shown

in Figure 2.2. The particle distance in the Cambridge-Aachen algorithm is only proportional

to the geometric distance, resulting in irregular jet shapes. Similarly, the kt algorithm also

often results in irregular jet shapes. On the other hand, the particle distance in the anti-kt

algorithm is inversely proportional to the pT, encouraging high-pT particles to be clustered

first. The aggregation of the particles in decreasing pT order generally results in jets with

circular shapes, which is why the anti-kt algorithm is the preferred choice in most LHC jet

analyses.

2.1.1 High-Level Variables

At the most fundamental level, a jet is a set of four-momentum vectors corresponding to the

tracks and calorimeter towers selected by the jet clustering algorithm. Several approaches

could be used to represent this information (many of which are discussed in the subsequent

sections), but the simpler and most traditional one is to calculate jet observables, also referred

to as high-level variables. The use of high-level variables has two main advantages. The first
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Figure 2.2: Sample jets obtained by clustering the same event with the Cambridge-Aachen
(left) and anti-kt (right) algorithms, with jet radius R = 1. Figures reproduced from [1].

is the dimensionality reduction of the datasets, distilling large sets of tracks and calorimeter

towers into compact, 1D variables. The second is higher interpretability; since the analytical

forms of the observables are known, physicists can use this information to gain insights into

the substructure of the jets.

Examples of traditional high-level variables include the jet invariant mass (mjet) and the

multiplicity (M) of the jet constituents, which are given by

mjet =

√√√√(∑
i∈jet

Ei

)2

−

(∑
i∈jet

p⃗i

)2

, (2.3)

M =
∑
i∈jet

i, (2.4)

where, with abuse of notation, i indices over all constituents in the jet. Ei and p⃗i are the

energy and three-momentum of constituent i, respectively.

In the literature, physicists have engineered families of observables dedicated to character-

izing jets according to specific properties. A well-known family is N -subjettiness (τβN) [35],

which measures the spread of the constituents along N candidate sub-jet axes. An observable
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in this family has the form

τβN =
∑
i∈jet

pTimin(∆R1i,∆R2i, . . . ,∆RNi)
β, (2.5)

where ∆R2
ni = (yn − yi)

2 + (ϕn − ϕi)
2 is the distance between constituent i and candidate

sub-jet n, 1 ≤ n ≤ N . The angular weighting parameter β controls the relative importance

of the spatial terms.

A more recent but commonly used family of observables is Energy-Flow Polynomials (EFPs) [4],

which uses non-isomorphic, loopless multigraphs to build jet observables. In the EFP frame-

work, a multigraph G with u vertices and (k, l) ∈ G edges corresponds to an observable of

the form

EFPG =
∑
i1∈jet

. . .
∑
iu∈jet

pTi1 . . . pTiu

∏
(k,l)∈G

∆Rikil . (2.6)

Conceptually, an EFP summarizes the information of a jet by assigning each node on a graph

a summation of all particles in a jet. The edges are assigned to pairwise distances between

particles:

For each node: j ⇐⇒
∑
ij∈jet

pTij , (2.7)

For each edge: k l⇐⇒ ∆Rikil . (2.8)

As an example, the multi-graph below corresponds to an observable of the following form

⇐⇒
∑
i1∈jet

∑
i2∈jet

∑
i3∈jet

∑
i4∈jet

pTi1pTi2pTi3pTi4∆Ri1i2∆Ri2i3∆R2
i2i4

∆Ri3i4 . (2.9)
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To avoid ambiguity when distinguishing between individual multigraphs, we accompany each

EFP with a unique identifier (u, d, k), which specifies the number of nodes (u), edges (d),

and index (k).

Lastly, we mention that Equation 2.6 is infra-red and collinear (IRC) safe–an important

property discussed in Section 2.2–but EFPs can be generalized to IRC-unsafe forms by

including energy (κ) and angular (β) weighting parameters:

EFPκ,β
G =

∑
i1∈jet

. . .
∑
in∈jet

pκTi1
. . . pκTin

∏
(k,l)∈G

∆Rikilβ. (2.10)

2.1.2 Current High-Level Techniques: Dense Neural Networks

(DNNs)

The current standard for jet classification using high-level variables is as input to dense

neural networks (DNNs). Inspired by neurological networks (the brain), DNNs consist of a

series of fully-connected layers, each of which is composed of nodes (neurons). An illustration

of a typical DNN architecture is shown in Fig. 2.3. The input to the network comes all at

once through the input layer and is processed by the input nodes, which are fully connected

to the nodes in the intermediate layers, also known as the “hidden” layers. The information

propagates through the network layer by layer until it reaches the nodes in the output layer.

At each node, the corresponding inputs are weighted and summed together, then passed

through an activation function. An illustration of these operations is shown in Fig. 2.4,

where w corresponds to the weights multiplying the inputs, b an added quantity that is often

referred to as the bias, and f the activation function. One of the most common activation

functions used in the nodes in the hidden layers is the Rectified Linear Unit (ReLU) [36],

which returns 0 if the value it receives is negative or the same value if it is positive, mimicking

the threshold of excitation in a natural neuron. A common activation function used in the
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output nodes for binary classification tasks is the sigmoid function, which returns values

between 0 and 1, and is interpreted as the probability assigned by the network of a sample

belonging to each class.

Input layer 

Hidden layers

Output 
layer

Output
prob.

Figure 2.3: Sample architecture of a DNN.

X1

X2

Xn

wn

w2

w1

Xiwi + bΣ
i = 1

n

b

f ̂y

Inputs
Weights

Bias

Activation 
function

Output
Node

Figure 2.4: Diagram of the operations cor-
responding to a typical DNN node.

The initial magnitude of the weights w and biases b is often assigned randomly, resulting in

a random initial prediction by the network. During learning, the training set is subdivided

into batches, which are processed by the network, resulting in a predicted class probability

ŷ = p(y). The quality of the predictions is evaluated by the loss function (L). A common

loss function for classification is the categorical cross-entropy:

L = −
M−1∑
m=0

ym · log(ŷm), (2.11)

whereM is the number of classes and ŷm is the network’s predicted probability of the samples

belonging to class m. The expected class ym is 1 when the samples belong to class m and 0

otherwise.

As an example, we consider the specific case of the binary cross-entropy loss (Lb):

Lb = −
∑
m=0,1

ym · log(ŷm) = −y0 · log(ŷ0)− y1 · log(ŷ1). (2.12)
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In a binary setting, ŷ1 = 1− ŷ0, and thus the loss can be simplified to

Lb = −y · log(ŷ)− (1− y) · log(1− ŷ). (2.13)

It is easy to see that Lb = −log(ŷ) when y = 1, and Lb = −log(1 − ŷ) when y = 0. Thus,

accurate network predictions minimize the loss function.

After the loss is evaluated, a learning algorithm is called to update the weights and biases

to values that are likely to minimize the loss. Typically, this is done by calling a stochastic

gradient descent optimizer, which updates the weights along the direction of the negative

gradient of the loss function. In practice, however, calculating the gradients is often com-

putationally costly, particularly for deep multi-layer networks. This is resolved by using

backpropagation, which computes the gradients of the final layer first and reuses this gradi-

ent in the calculation of the gradients in the prior layers. After this procedure is completed

for all batches in the training set, a so-called epoch is completed, and the process is repeated

until a maximum number of epochs is reached.

2.1.3 Low-Level Data

Recent advances in machine learning have made it feasible for networks to learn directly from

the sets of particle tracks and calorimeter towers constituting jets, also known as low-level

data. Appropriately, low-level data represents the jets at the lowest levels of abstraction and

thus encodes all obtainable information.

Jet classification tasks have benefited immensely from using low-level data as input to deep

neural networks. The main advantage has been an increase in performance when compared to

networks operating on high-level variables [37–44], which makes low-level classifiers powerful

probes of the information content of the jets.
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On the other hand, a disadvantage of low-level classifiers is that they are often very expensive

to train due to the high dimensionality of the data. In addition, training networks directly

on the jet constituents leads to lower interpretability of the results since it is not possible to

know which specific function of the input the networks are learning.

The following sections review some of the most common low-level neural networks for jet

classification.

2.1.4 Convolutional Neural Networks (CNNs)

Inspired by computer vision research, Convolutional Neural Networks (CNNs) are one of the

first deep neural networks trained on low-level detector data [37]. The main idea behind

CNNs is to downsize an image into a form that is easier to process by extracting the critical

features in the image structure. Particle physicists employ CNNs by treating the detector

as a camera and a collision event as a snapshot. The event snapshots are mapped onto 2D

images, reducing the jet classification task to one of image classification. Fig. 2.5 shows an

example of a single jet calorimeter image where each pixel represents the energy deposited

in a calorimeter cell. Similarly, Fig. 2.6 shows the average of 1,000 calorimeter images.

1 0 1

1.0

0.5

0.0

0.5

1.0

10 3

10 2

10 1

Figure 2.5: Sample jet image (qq̄ → qq̄).

1 0 1

1.0

0.5

0.0

0.5

1.0

10 7

10 6

10 5

10 4

10 3

Figure 2.6: Average of 1,000 jet images
(qq̄ → qq̄).
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A typical CNN architecture for binary classification is shown in Fig. 2.7. The main building

blocks of CNNs are convolutional layers. A convolution is a linear operation that involves

the dot product between the input image and a 2D array of learnable weights called a filter.

The filter is, by design, usually smaller than the input image. It slides across the height

and width of the input, creating a two-dimensional output array called the feature map.

The dimensions of the feature map are controlled by the stride and padding parameters.

The stride controls the step size of the filter as it slides over the input, with larger strides

corresponding to smaller output feature maps. Padding controls the number of zero-valued

pixels added to the perimeter of the input. The feature map can be further reduced by

applying a pooling layer. Two commonly used pooling layers are max-pooling and average-

pooling, which create new feature maps containing the maximum/average pixel values of

the original feature map. An example of a convolution layer is shown in Fig. 2.8, and of a

max-pooling layer is shown in Fig. 2.9.

The convolution and pooling layers result in feature maps containing relevant features of

the input images. These feature maps can be passed as inputs to additional convolutional

and pooling layers or flattened and fed to a fully-connected layer. With each layer, the

network increases in complexity, with earlier layers identifying simple features, such as colors

and edges, and later layers focusing on the more complex elements of the image that are

characteristic of each class.

2.1.5 Transformers

Inspired by natural language processing research, Transformer networks learn context by

extracting relevant information in sequential data. First introduced in [45], Transformers

currently provide state-of-the-art results in many machine learning tasks, including jet clas-

sification [46, 47]. However, a disadvantage of deep Transformer networks is that they are
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Figure 2.7: Sample architecture of a CNN.
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Figure 2.8: Illustration of a convolution operation.
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Figure 2.9: Illustration of a
max-pooling operation.

often expensive to train, and like most low-level classifiers, their classification strategies are

hard for physicists to interpret.

At the core of Transformer networks is the attention mechanism, which enables the model

to learn long-range dependencies in the data, helping identify relevant features in the input

sequence. The main components of the attention mechanism are the query (q), key (k),

and value (v) vectors. The query vector encodes the information the model is inquiring

about. The key vector is used as a reference, and it helps determine the similarity between

elements in the query and elements in the input sequence. Lastly, the value vector encodes

information about the input sequence. To compute the attention, the dot product between

the query and key vectors is calculated. This dot product is scaled by the dimension of the

vectors (dk), and then passed through a softmax function which returns values between 0
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and 1. The resulting values are used to weight the elements in the value vector, with weights

larger in magnitude highlighting the elements that are deemed important by the network.

These operations can be summarized as

attention(Q,K,V) = softmax(
QKT

√
dk

)V, (2.14)

where Q, K, and V are the matrices that aggregate all query, key, and value vectors, respec-

tively. The scaled dot-product attention mechanism is illustrated in Fig. 2.10.

In practice, [45] finds that having multiple heads that compute the attention on different

learned linear projections of the same query, key, and value vectors works better than a

single attention computation. The results of each attention head are concatenated and fed

to a linear network. This procedure is called the multi-head attention mechanism and is

illustrated in Fig. 2.11.

Matrix multiplication

Q K

Scale by � (dk)

V

Matrix multiplication

Softmax

Figure 2.10: Diagram of the dot-
attention mechanism.

Q K V

LinearLinearLinear LinearLinearLinear LinearLinearLinear

AttentionAttentionAttention

h �×

Concatenate

Linear

Figure 2.11: Diagram of the multi-head attention
mechanism with h parallel attention heads.
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A sample Transformer architecture is shown in Fig. 2.12. In brief, the Transformer follows

an encoder-decoder structure. The role of the encoder, illustrated by the blue block, is to

map an input sequence to a sequence of continuous representations. The encoder block

consists of two sub-blocks: the first implements the multi-head attention mechanism and the

second is a feed-forward network. Residual connections are employed around each sub-block,

followed by a normalization layer. The role of the decoder, illustrated by the lilac block, is

to receive the output of the encoder, together with the decoder output at a previous time

step, and to generate an output sequence. The decoder block consists of three sub-blocks:

the first receives the output of the previous decoder block in the stack, augments it with

positional information, and implements a masked multi-head attention1. The second sub-

block receives the queries from the first sub-block and the keys and values from the encoder

output and implements multi-head attention. Lastly, the third sub-block implements a feed-

forward network. Residual connections are employed around each sub-block, followed by a

normalization layer. The positional encoding operations at the bottom of the encoder and

decoder blocks are implemented to provide a sense of order to the input sequence, though

particle physics applications of Transformer networks often omit positional encoding since

particles in an event are permutation-invariant.

Typically, the architecture has multiple stacks of the encoder and decoder blocks, usually six

stacks of each. The final output of the decoder stack is passed to a final sub-block specific to

the learning task at hand. In classification tasks, this generally consists of a dense network

followed by a softmax or sigmoid activation function, which outputs the probability of each

class.

1The masking of the multi-head attention is to ensure that predictions depend only on known outputs.
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Figure 2.12: Sample Transformer architecture.

2.1.6 Physics-Inspired Networks

Many networks have been specifically designed for jet classification. As an example of such

networks, we review the Particle-Flow (PFN) and Energy-Flow (EFN) networks [48]. In-

spired by deep-set networks [49], which treat their inputs as permutation invariant point

clouds, PFNs and EFNs provide a framework for learning permutation invariant representa-

tions of low-level particle data.

A sample architecture of a PFN is shown in Fig. 2.13. The network consists of the Φ-block

and the F -block, represented by the blue and green blocks, respectively. The Φ-block takes

as input the kinematic information of the constituents in a jet and processes them through

a series of fully-connected layers, learning per-particle mappings (ϕ). The output of the
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last fully-connected layer is summed over all constituent mappings, generating event-level

features that are permutation invariant (O). These features are passed as the input to the

F -block, which processes them through a series of fully-connected layers ending in an output

node with softmax or sigmoid activation function that returns the probability of the jet

belonging to each class.

The EFN is similar to the PFN but enforces IRC safety (discussed in the following section) in

the per-particle mappings in the Φ block by learning only latent feature representations that

are linear in energy. This is achieved by feeding only angular information of the constituents

to the Φ block. The learned per-particle mappings are later weighted by the pT of the

constituents and summed over to generate the event-level features. A sample architecture of

an EFN is shown in Fig. 2.14.

2.2 IRC-Safety

Infra-red and collinear (IRC) safety is a core guiding principle for constructing jet substruc-

ture observables that are calculable in perturbative quantum chromodynamics (pQCD) [50].

Compliance with IRC safety refers to whether the cross-section of an observable will be finite

in any fixed order.

An observable O acting on M particles is IRC-safe if it is insensitive to soft emissions or

collinear splittings [51]:

Infrared safety: O({pµ1 . . . , pµM}) = lim
ϵ→0

O({pµ1 . . . , pµM , ϵpµM+1}), ∀p
µ
M+1, (2.15)

Collinear safety: O({pµ1 . . . , pµM}) = O({pµ1 . . . , (1− λ)pµM , λpµM}), ∀λ ∈ [0, 1],

(2.16)

where pµi is the four-momentum vector of particle i.
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Figure 2.14: Sample EFN architecture.

By examining Equation 2.15, it is easy to see that observables must depend on positive

powers energy to satisfy infrared safety. This way, the contributions of the particles whose

energy tends to zero would also tend to zero. Similarly, by examining Equation 2.16, one can

see that collinear safety has two requirements. The first is that observables must be linear

in energy. The second is that observables must depend on positive powers of the angular

terms. The latter is required to minimize the contributions of small-angle splittings.

Many attempts have been proposed to enforce IRC safety in jet observables [4, 35] or in

network architectures [48,52]. While the performance of the networks operating on IRC-safe
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information is formidable, studies have found a small but persistent gap in the performance

between such networks and networks operating on the full event information [5, 48]. Expla-

nations for the performance gap include:

• Networks operating on the full event information make use of soft and collinear radia-

tion.

• The current IRC-safe observables do not capture all IRC-safe information that could

be extracted from the constituents.

In the following chapters, we explore the nature of the information learned by deep networks

to shed light on their learning strategies. With the classification of multi-prong jets as the

case study, we compare the performance of various low- and high-level classifiers and study

their potential for characterizing jet substructure.
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Chapter 3

Multi-Prong Jet Classification

3.1 Introduction

We recall how jet classification is crucial to disentangling the various processes occurring at

particle accelerators. Typical physics searches aim to sort through the overwhelming back-

ground of QCD jets to find jets of interest originating from processes beyond the standard

model. Such jets can have complex energy patterns, including multiple, distinct sub-jets [53].

While jets with two or three sub-jets have been observed and extensively studied [54–60], jets

with additional sub-jets are expected to become more important in future physics searches.

As the LHC enters its high-luminosity era, physicists anticipate larger datasets in which

high-pT objects will appear in greater numbers [61, 62], leading to the creation of jets with

multiple prongs.

Many theoretically motivated observables have been proposed and studied to identify jets

with multiple prongs [4, 35, 63]. These observables have been used as inputs to neural net-

works, resulting in good classification performances. However, in practice, these networks

are often outperformed by networks trained on low-level data [46, 64–67], suggesting that
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there is often additional information available in the jet constituents that is not captured by

the observables.

Specifically, studies with two hard sub-jets [41, 68] have found a small but statistically sig-

nificant gap when comparing the performance of networks trained on low-level data vs. jet

observables. This gap in performance has also been observed in several studies with three

hard sub-jets in the context of top-quark tagging [69–72]. Studies with four hard sub-jets

have utilized jet observables as input to classification taggers [73–75], but without a com-

parison to the performance of networks trained on low-level data.

In this chapter, we extend multi-prong jet classification studies to jets with up to eight hard

sub-jets. The primary focus of this study is to answer the question of whether the low-

vs. high-level performance gap found in jets with a low number of sub-jets is also found in

jets with several sub-jets. To our knowledge, this is the first study of the performance gap

for jets with more than three hard sub-jets. We employ calorimeter jets, but the strategy

presented in this chapter could be applied to jets containing tracking information, which is

left for future studies.

The rest of this chapter is organized as follows: Section 3.2 introduces the dataset. Section 3.3

specifies the jet observables that are used as input to dense networks. Similarly, Section 3.4

specifies the low-level networks. Section 3.5 shows the classification results of the networks.

Section 3.6 presents a strategy for expanding the observable set with energy-flow polynomials

(EFPs). Section 3.7 discusses the dependence of the classifiers on the topology of the jets.

Section 3.8 presents the results of turning the multi-class classifier into a binary classifier.

Concluding remarks and discussion are given in Section 3.9.
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3.2 Dataset

Simulated proton-proton collision events enriched in jets with many collimated quarks are

generated using the processes shown in Figure 3.1. Most samples use the decay of a hypothet-

ical heavy particle, such as a graviton (G), which subsequently decays via heavy Standard

Model (SM) particles such as W bosons, Higgs bosons, or top quarks. Subsequent hadronic

decays of these particles yield collimated pairs and triplets of quarks that contribute N = 2

hard sub-jets per boson or N = 3 hard sub-jets per top quark. For processes with N ≥ 4

hard sub-jets, events are further required to contain high-energy photon radiation, which

can, for example, boost a G→ tt̄ decay into a single jet with N = 6 hard sub-jets.
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Figure 3.1: Feynman diagrams for processes that generate jets with N = 1, 2, 3, 4b, 4q, 6, 8
hard sub-jets. The lines in red indicate the components that are required to be truth-matched
to the jet. See text and Table 3.1 for further generation details.
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Samples are generated for N = 1, 2, 3, 4, 6, 8 hard sub-jet classes. To probe the dependence

of the classification on the topology of the decay, the N = 4 class is subdivided into two:

the N = 4q class, in which two collimated W bosons produce a jet with four hard sub-jets

from four light quarks, and the N = 4b class, in which two collimated Higgs bosons result

in a jet with four hard sub-jets from four b-quarks. A summary of the generated samples is

given in Table 3.1.

Table 3.1: Processes used to generate jets with N = 1, 2, 3, 4b, 4q, 6, 8 hard sub-jets. Also
shown are the particle masses and generator-level requirements used to more efficiently pro-
duce jets with pT ∈ [1000, 1200] GeV and mass ∈ [300, 700] GeV. All masses and momenta are
in GeV. Selected W boson masses of (264.5,440.8,617.1) correspond to MZ = (300, 500, 700),
respectively. See Figure 3.1 for the corresponding Feynman diagrams.

N hard sub-jets Process MW Mh Mt MG requirements
1 qq̄ → qq̄ pqT > 1000
2 qq̄ → G→ W+W− 80.4 2200

264.5 2200
440.8 2500
617.1 2800

3 qq̄ → G→ tt̄ 300 2200
500 2500
700 3000

4b qq̄ → γG→ γhh 400 pγT > 1000
600 pγT > 1000
800 pγT > 1000

4q qq̄ → γG→ γW+W− 400 pγT > 1000
600 pγT > 1000
800 pγT > 1000

6 qq̄ → γG→ γtt̄ 400 pγT > 1000
600 pγT > 1000
800 pγT > 1000

8 qq̄ → γtt̄h 100 125 pγT > 1000
125 175 pγT > 1000

Proton-proton collisions at a center-of-mass energy
√
s = 13 TeV are simulated with Mad-

graph5 v2.8.1 [21], showered and hadronized with Pythia 8.244 [20], and the detector

response is simulated with Delphes 3.4.2 [22] using an ATLAS-like card with calorime-

ter grids of uniform width 0.0125 in both η and ϕ. This fine granularity ensures that our
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studies include some of the effects of detector response while probing the limits of the al-

gorithms rather than the resolution of the detector. Jets are clustered using the anti-kT

algorithm [1] with radius parameter R = 1.2 using FastJet 3.1.2 [76]. Only jets whose pT

lies in the range [1000, 1200] GeV and jet mass in the range [300, 700] GeV are kept. The

quarks produced from each process are truth-matched to the large-radius jet by requiring

∆R =
√
∆ϕ2 +∆η2 < 1.2; only jets with the full set of quarks passing this requirement are

kept.

To generate jets with a variety of masses, several choices are made for the intermediate

particle masses. The resulting spectrum of jet masses features clear artifacts due to these

choices. Similarly, the distribution of jet pT shows some dependence on the process used

to generate the set of collimated quarks. To avoid learning artifacts in jet mass and pT,

we selectively reject events until we achieve uniform distributions of jet mass and pT for all

classes. This process yields a balanced sample of unweighted events at the expense of reduced

generation efficiency. The balanced histograms are shown in Figure 3.2, demonstrating an

approximately uniform distribution in jet mass and pT.
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Figure 3.2: Distributions of jet pT, mass, and constituent multiplicity for the simulated jets
with N = 1, 2, 3, 4b, 4q, 6, 8 hard sub-jets.

The jets are preprocessed by normalizing the pT of their constituents to sum to unity and

centered based on the pT-weighted arithmetic mean in η and circular mean in ϕ. In addition,
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we add zero-padding to the events to ensure all jets have a fixed-sized length of 230. We find

that padding the events to this length is more than enough to capture all hard constituents

in the events, as they have a mean constituent multiplicity of 82; see Figure 3.2.

In total, we have 108,359 simulated jets (around 15,480 of each class), which we divide into

a training set, a validation set, and a test set with proportions 80 : 10 : 10, respectively. We

use 10-fold cross-validation to ensure statistical robustness for all results.

3.3 High-Level Models

Identification of jets with N hard sub-jets is a well-explored topic experimentally for N ≤ 3,

for which many theoretically motivated observables have been constructed to summarize

the information contained in the jet energy patterns [4, 35, 37, 63]. These observables have

the advantage that they are compact and physically interpretable and can, in principle, be

applied to jets with many more hard sub-jets. Here, we use N-subjettiness [35], together

with the jet mass, as a well-known benchmark. Following Ref. [77], we calculate a total

of 135 N-subjettiness observables (τβN) along the kT axis, with the sub-jet axis parameter

N = 1, . . . , 45, and angular weighting exponent β = 1
2
, 1, 2, which together with the jet mass

account for 136 jet observables. Distributions of some of the N-subjettiness observables are

shown in Figure 3.3.

We train a DNN on the 136 high-level variables, which we refer to as DNN136. A grid

search of the hyperparameters of the dense network indicates that the best structure for

the network has six hidden layers of size (800-800-800-800-800-64) and ReLu [36] activation

function. To prevent overfitting and to facilitate training stability, dropout with rate 0.3 and

batch normalization are applied respectively after every hidden layer. The output layer is a
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Figure 3.3: Distributions of N-subjettiness variables (τβN) with N = 1, . . . , 8, and β ∈ {1
2
, 1, 2},

in samples of simulated jets with N = 1, 2, 3, 4b, 4q, 6, 8 hard sub-jets.
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7-dimensional softmax function, with one dimension for each category of N hard sub-jets.

Refer to Table A.1 for the model summary of DNN136.

3.4 Low-Level Models

We train low-level networks directly on the jet constituents, focusing on two such network

architectures: Particle-Flow Networks (PFN) [48] and Transformers [45]. Both networks

have matched or outperformed other low-level network architectures, such as convolutional

networks, in a variety of classification tasks [48, 64, 68], but the choice of these particular

networks lies in their specific learning strategies. PFNs learn an event-level latent represen-

tation of the jets; see Section 2.1.6. On the other hand, Transformers learn a contextualized

embedding of the constituents and use attention mechanisms to determine which parts of

the embedded input sequence to focus on when making predictions, see Section 2.1.5. Both

networks are invariant to the input order, which makes them well-suited for jet classification

tasks.

3.4.1 Particle-Flow Network

A grid search of the hyperparameters of the PFN finds that the best structure for the

network has two layers in the Φ module of size (128, 128) and two layers in the F module

of size (1024, 1024), with a dropout rate of 0.2. All hidden layers have ReLu [36] activation

functions. The output layer is the same as for DNN136, a 7-dimensional softmax with one

element for each value of N hard sub-jets. Refer to Table A.1 for a summary of the PFN

model.
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3.4.2 Transformer

We employ the Encoder model from the Transformer in [78], which has a stack of multiple

attention vectors computed in parallel to increase the expressiveness of the network. A

grid search of the hyperparameters of the Transformer finds that the best structure for the

network has four transformer layers, with hidden size of 256 and intermediate dimension

of 128. For computational efficiency and to compare networks of similar complexity (see

Table A.1), we focus our search on smaller architectures compared to the ones used in the

original paper [45,78]. Refer to Table A.1 for a summary of the Transformer model.

3.5 Performance

The predictive accuracy of a network is measured as the fraction of correctly identified

samples. In this case, it refers to the fraction of jets whose predicted class matches the true

class. The 10-fold accuracy of the networks is shown in Figure 3.4. The Transformer network

achieves the highest overall classification performance with an accuracy of 91.27 ± 0.31%,

followed by the PFN with an accuracy of 89.19±0.23%.1 The DNN136 is the least performant

model, with an accuracy of 86.90± 0.20%.

The accuracy of the networks is not uniform across all classes, with some classes having

better classification performances than others. Despite this, the relative ranking of the three

networks is mostly the same for each class, with the exception of N=4b, where the DNN136

outperforms the PFN. The classes with the lowest accuracy scores are N = 2, N = 3, and

N = 4b. The confusion matrices showing the mean 10-fold classification predictions are

shown in Figure 3.5. These matrices show that the networks often misclassify the N =

1We compared the performance of the PFN to an EFN [48], which has a strictly linear dependence on
pT, enforcing IRC safety. The performances of the networks were equivalent, indicating that the PFN was
not learning IRC unsafe information.
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2, 3, 4b classes among each other (and with N = 1 to a lesser extent), which explains the

lower performance. The confusion matrices also show that for a given N class, the largest

classification mistype is often with the N ± 1 classes. This suggests that the networks have

learned to identify the number of hard sub-jets. Lastly, we note that the class with the

highest accuracy score is the N = 4q class and how infrequently it is misclassified with the

N = 4b class, suggesting that the networks are learning more information than simply the

number of hard sub-jets.
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Figure 3.4: Mean 10-fold accuracy and statistical uncertainty of the network predictions for
jets in each class.
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Figure 3.5: Confusion matrices of the networks. The entries show the frequency at which
the networks predict a jet class for a given class.

To study whether the networks have a learned dependence on the pT of the jets, we show

the accuracy of their predictions as a function of jet pT in Figure 3.6. The accuracy of the

networks remains relatively constant across the spectrum, indicating that the networks do
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not have a strong pT dependence. In all ranges, the Transformer slightly outperforms the

PFN, both followed by the DNN136.

We also study whether the networks have a learned dependence on the jet mass by assessing

the accuracy of their predictions as a function of jet mass,2 shown in Figure 3.7. The

Transformer again outperforms the PFN and DNN136 in all ranges. However, unlike the pT

spectrum, the prediction accuracy of the networks increases with jet mass. This dependence

is further studied in Section 3.6.2 by inspecting the correlations between the most important

high-level variables and the jet mass.
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Figure 3.6: Mean 10-fold accuracy and statistical uncertainty of the network predictions
for jets within the specified ranges of jet pT. The jets are binned according to their pT in
intervals of 25 GeV. The x-axis labels correspond to the upper bound of the intervals.

350 400 450 500 550 600 650 700
Jet Mass [GeV]

0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

Transformer acc: 91.27±0.31% PFN acc: 89.19±0.23% DNN136 acc: 86.90±0.20%

Figure 3.7: Mean 10-fold accuracy and statistical uncertainty of the network predictions for
jets within the specified ranges of jet mass. The jets are binned according to their mass in
intervals of 50 GeV. The x-axis labels correspond to the upper bound of the intervals.

2As a crosscheck, we tested the mass dependence of the networks across smaller mass ranges and found
that their performance agrees with the results shown in Figure 3.7.
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The results indicate that the observables are powerful discriminants for multi-prong jets but

that they are often outperformed by networks trained directly on the jet constituents. This

suggests that low-level networks may be identifying additional information not captured by

the observables.

3.6 Closing the Performance Gap

In the following sections, we attempt to bridge the gap between high- and low-level informa-

tion by expanding the observable set. A strategy for identifying jet observables that are able

to bridge the performance gap is described in Ref. [68]. This strategy consists of searching

among a pool of observables called energy flow polynomials (EFPs) [4] to identify those that

yield similar classification decisions as networks trained on low-level detector data. This

strategy, however, applies only to binary decision functions [64, 65]. We leave a generaliza-

tion of that method to multi-class networks for future work and instead apply a simpler but

commonly used technique for variable selection. First, we expand the observable set by in-

cluding a large number of EFPs. Then, we systematically reduce the number of observables

to find the minimum set that best approximates the performance of the low-level networks.

The reason for choosing EFPs as complimentary observables is that they form a basis of

IRC-safe information [4]. In principle, an infinite number of EFPs should capture most, if

not all, of IRC-safe information in the jet constituents.

3.6.1 Adding Energy-Flow Polynomials

For our studies, we select all connected (prime) EFP graphs with five or fewer edges and

weighting factors κ = 1 and β = 1
2
, 1, 2, for a total of 162 observables, which are denoted by

EFPβ(u, d, k) in what follows; see Equation 2.10. We also include the constituent multiplicity,
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which is described by the one-node EFP with κ = 0, and has been shown to be a useful

observable for jet discrimination [79]. Combined with the N-subjettiness variables and the

jet mass, the new augmented dataset has 299 observables. We train a dense network on the

299 observables, labeled DNN299. For consistency, we utilize the same hyperparameters as

in DNN136. The resulting overall accuracy is 89.23 ± 0.26%, and the accuracy per class is

shown in Figure 3.8. With the augmented set, we are able to match the overall performance

of the PFN and to close the performance gap with the Transformer to within 2%.

The accuracies of DNN299 across the jet pT and mass spectra are shown in Figure 3.9 and

Figure 3.10, respectively. In most ranges, DNN299 matches or closely approximates the per-

formance of the PFN. A small but persistent gap remains between the DNN299 and Trans-

former models, indicating that the Transformer model is still utilizing useful information

not available in the augmented observable set. Additional EFP observables may be able to

further narrow the gap. Such EFPs might have energy and angular measures not considered

in this paper or a larger number of edges (degree), which allow for more complex polynomial

forms. The costly computation of these variables makes this infeasible at the present time

and so is left for future work.

3.6.2 Feature Selection

The next step in the selection process is to identify a subset of observables that can approxi-

mate the performance of the full set, which would facilitate the feature analysis and provide

insights into the classifiers’ strategies. We employ a simple feature selection method based

on L1 [80] regularization, also known as LASSO regularization. This type of regularization

is commonly used in linear regression for feature selection. The core idea behind it is to pe-

nalize the loss function by adding a term proportional to the absolute values of the weights

of the linear terms, which encourages irrelevant weights to be zeroed out. Here, we penalize
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Figure 3.8: Mean 10-fold accuracy and statistical uncertainty of the network predictions jets
in each class. The results for all networks in the study are shown.
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Figure 3.9: Mean 10-fold accuracy and statistical uncertainty of the network predictions
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intervals of 25 GeV. The x-axis labels correspond to the upper bound of the intervals. The
results for all networks in the study are shown.
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results for all networks in the study are shown.
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the loss function of the dense network by adding a term proportional to the weights of the

input features. We recall that the input layer has dimension 299, and it is fully-connected

to the first hidden layer of dimension 800, which results in a weight matrix of size 299× 800.

Thus, feature i has weights wi = [w1, . . . , w800]
T where wi is a column vector of length 800.

We implement a learnable gate parameter gi that multiplies the weight vector of feature i;

wi → giwi. The LASSO regularization is applied to the gate parameters such that if gi is

zeroed out, so is the entire weight vector of feature i, and we can confidently exclude the ith

observable during training. The loss function can then be written as

L = − log f(y, ŷ) + λ ·
299∑
i=1

|gi|, (3.1)

where the first term, − log f(y, ŷ), is the negative log-likelihood of the predicted label ŷ and

true label y, and the second term is the LASSO regularization term on the gate parameter

g with regularization strength parameter λ.

We note that although the LASSO-inspired strategy can help us identify useful features, it

does not guarantee that the selected features are the ideal ones that capture all relevant

information for the classification task. Finding such features would require a more in-depth

analysis of the features and their correlations, which we reserve for future studies.

A grid search of the regularization strengths ranging from 1 to 10 indicates that the best

regularization strength parameter value for the classification task is λ = 5. To further limit

the minimum observable set, only observables with a gate parameter of |gi| > 0.01 are

kept. With these settings, the selection strategy results in 31 selected observables whose

distributions are shown in Figures 3.11 and 3.12.

We train a dense network operating on the 31 selected observables, labeled DNN31. A

hyperparameter search indicates that the best structure for the network has six hidden

layers of size (800-800-800-800-800-32) and ReLu [36] activation function. Dropout with
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Figure 3.11: Distributions of the first half of the selected observables. The plots are ranked
left-to-right top-to-bottom in order of importance according to the method described in
Section 3.6.2. For each EFP observable, the corresponding graph is also displayed for visual-
ization purposes. The jet mass, which ranks between τ 13 and τ 0.52 as the 12th most important
variable, is omitted for brevity as this distribution is approximately flat by design and is
already shown in Figure 3.2. The distributions of the rest of the selected observables are
shown in Figure 3.12.
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Figure 3.12: Distributions of the second half of the selected observables. The plots are
ranked left-to-right top-to-bottom in order of importance according to the method described
in Section 3.6.2. For each EFP observable, the corresponding graph is also displayed for
visualization purposes. The distributions of the rest of the selected observables are shown
in Figure 3.11.
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rate 0.3 and batch normalization are applied respectively after every hidden layer. Refer to

Table A.1 for the model summary of DNN31.

The DNN31 network achieves an overall accuracy of 89.11 ± 0.32%, and the accuracy per

class is shown in Figure 3.8. We note that for all classes, the DNN31 matches or closely

approximates the performance of the DNN299, indicating that the LASSO selection strat-

egy has successfully identified observables that capture most of the information in the full

observable set.3

Figure 3.9 and Figure 3.10 show the accuracies across the jet pT and mass spectra, re-

spectively. Both figures show similar trends for DNN31 as for the other networks: uniform

predictions across the jet pT spectrum and generally rising accuracy with jet mass.

After narrowing down the set of observables to the 31 selected observables, we attempt to

interpret the strategies of the low-level networks in terms of these observables by ranking

them in order of importance.

We measure the reliance of the DNN31 model on each of the observables by randomly shuffling

them during test time. In other words, the k-th observable (k ∈ {1, . . . , 31}) in the test set is

shuffled by randomly replacing it with a corresponding observable value from the training set

on an event-by-event basis. This maintains the marginal distribution for the k-th observable

but destroys any correlations with other observables. The performance of the network is

then evaluated on the set of events that includes the shuffled observable. Assuming that

the observables are weakly correlated, this method allows us to determine the importance of

the k-th observable by measuring the drop in the performance of the network relative to the

unshuffled set4. By this method, an observable is considered important if shuffling its values

3Although the selected observables do a good job at matching the performance of the full 299 observable
set, the overlapping nature of the EFP observables makes it likely that this is not a unique solution and that
different settings in the LASSO selection process may yield a somewhat different subset of observables.

4A full, proper ranking of the observables accounting for correlations would be too computationally costly.
Instead, we rank their contributions as individual discriminators.
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decreases the accuracy of the model. Likewise, an observable is considered unimportant if

shuffling its values leaves the accuracy unchanged since it suggests that the model does not

heavily rely on that singular observable when making predictions.

Table 3.2 shows the ranking of the 31 selected observables. These observables mainly consist

of EFP variables with four or fewer nodes and N-subjettiness variables with N < 8. The

latter is not surprising given to the pronginess of the jets.

Rank Observable Accuracy drop
1 EFP2 (2, 4, 0) 50.60± 1.95%
2 EFP2 (2, 5, 0) 44.81± 2.28%
3 EFP2 (3, 5, 1) 41.68± 2.35%
4 τ 11 41.49± 1.06%
5 EFP1 (2, 4, 0) 38.81± 1.41%
6 EFP0.5 (4, 3, 1) 37.99± 1.02%
7 EFP0.5 (2, 2, 0) 37.26± 1.38%
8 EFP2 (4, 5, 0) 35.37± 0.70%
9 τ 12 34.97± 0.63%
10 EFP0.5 (2, 5, 0) 33.66± 2.02%
11 τ 13 30.26± 1.08%
12 Norm. Jet Mass 29.44± 0.92%
13 τ 0.52 29.38± 0.90%
14 EFP2 (4, 5, 2) 27.66± 1.66%
15 EFP1 (3, 5, 3) 27.58± 0.88%
16 τ 14 26.74± 0.96%

Rank Observable Accuracy drop
17 τ 22 26.17± 0.92%
18 Norm. Multiplicity 24.87± 0.77%
19 τ 0.53 24.53± 0.68%
20 EFP2 (4, 5, 4) 23.00± 1.10%
21 EFP0.5 (5, 5, 6) 22.59± 1.07%
22 EFP2 (3, 5, 2) 21.39± 0.80%
23 EFP1 (6, 5, 0) 19.82± 1.09%
24 τ 23 16.35± 0.77%
25 τ 0.55 15.00± 0.85%
26 τ 16 13.14± 0.69%
27 τ 0.521 5.08± 0.40%
28 τ 110 4.94± 0.37%
29 τ 0.513 4.15± 0.44%
30 τ 25 2.75± 0.34%
31 τ 27 0.63± 0.25%

Table 3.2: Ranking of the 31 selected observables in order of importance, with the most
important corresponding to the largest drop in accuracy of the model. The corresponding
distributions and EFP graphs are displayed in Figures 3.11 and 3.12.

We recall how Figure 3.10 shows that the accuracy of the networks has a dependence on the

jet mass. We investigate this dependence in Figures 3.13 and 3.14 by showing the contour

plots of the selected observables versus the jet mass. The contour plots indicate that there

is a correlation between the top-ranked observables and the jet mass. This correlation is

particularly striking for the τ 11 variable, which is the fourth most important observable and

can be interpreted as a measure of how collimated the jet constituents are, with lower τ 11

values corresponding to more collimated constituents. By inspection of this observable, we

41



can explain the lower accuracy at lower jet mass values, as jets with lower jet masses may

be more collimated and thus harder to classify.

Lastly, we note that an observable that may be important for the classification of a given

class may be irrelevant for another. We measure the reliance of each class on each of the

31 selected observables by measuring the drop in class accuracy when the observables are

shuffled. Figures 3.15 and 3.16 show the drop in class accuracy of the top 10 observables per

class. For the N = 1, 2, 3, 4b, 4q classes, the top observables mainly consist of EFP variables

with four or fewer nodes and N-subjettiness variables with three or fewer sub-jet axes. We

note that the constituent multiplicity and jet mass are highly important for the N = 2 class.

It is also interesting how the N = 4b, 4q classes share some top observables, but the ranking

of the observables varies between the classes.

For most classes, the most relevant observables are two-node EFPs or N-subjettiness variables

with relatively small N (N =1, 2, 3, or 6). Subsequent observables generally consist of EFPs

with more complex shapes or N-subjettiness variables with larger N. This suggests that

the network may be focusing on distinguishing between the different classes of jets by first

utilizing observables that broadly capture the number of sub-jets and later utilizing more

complex observables that specialize in capturing specific traits for each class, such as the

presence of collimated jets or subtle differences in the topologies of the jets. The latter is

further explored in Section 3.7.

3.7 Topology Dependence

The networks have learned to distinguish jets with various numbers of hard sub-jets. We

do not, however, claim that they have learned to identify any jet with this number of hard

sub-jets. On the contrary, it is likely that the patterns of energy depositions depend on the
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Figure 3.13: Contour plots showing the probability density of the first half of the selected
observables versus the jet mass. The plots are ranked in order of importance, excluding the
normalized jet mass, which ranks at number 12 and is omitted for brevity. The contour plots
of the rest of the selected observables are shown in Figure 3.14.

43



400 600
Jet Mass [GeV]

0.1

0.2

2 2

400 600
Jet Mass [GeV]

0.25

0.50

0.75

N
or

m
. M

ul
t.

400 600
Jet Mass [GeV]

0.2

0.4

0.
5

3

400 600
Jet Mass [GeV]

2.5

5.0

7.5

E
FP

2  
(4

, 5
, 4

)

400 600
Jet Mass [GeV]

0.2

0.4

E
FP

0.
5  

(5
, 5

, 6
)

400 600
Jet Mass [GeV]

2

4

E
FP

2  
(3

, 5
, 2

)

400 600
Jet Mass [GeV]

0.2

0.4

0.6

E
FP

1  
(6

, 5
, 0

)

400 600
Jet Mass [GeV]

0.05

0.10

2 3

400 600
Jet Mass [GeV]

0.2

0.4

0.
5

5

400 600
Jet Mass [GeV]

0.05

0.10

0.15

1 6

400 600
Jet Mass [GeV]

0.0

0.1

0.2

0.
5

21

400 600
Jet Mass [GeV]

0.05

0.10

1 10

400 600
Jet Mass [GeV]

0.0

0.1

0.2

0.
5

13

400 600
Jet Mass [GeV]

0.025

0.050

0.075

2 5

400 600
Jet Mass [GeV]

0.02

0.04

2 7

0.00
1.68
3.36
5.03
6.71
8.39×10 2

0.00
0.30
0.60
0.91
1.21
1.51×10 2

0.00
0.39
0.79
1.18
1.58
1.97×10 2

0.00
0.32
0.63
0.95
1.26
1.58×10 2

0.00
1.59
3.17
4.76
6.34
7.93×10 2

0.00
0.45
0.89
1.34
1.78
2.23×10 2

0.00
1.60
3.19
4.79
6.38
7.98×10 2

0.00
0.33
0.66
0.99
1.32
1.65×10 1

0.00
0.61
1.22
1.82
2.43
3.04×10 2

0.00
0.20
0.40
0.60
0.81
1.01×10 1

0.00
0.70
1.41
2.11
2.82
3.52

×10 2

0.00
0.29
0.57
0.86
1.15
1.44×10 1

0.00
0.74
1.49
2.23
2.97
3.71×10 2

0.00
0.80
1.60
2.40
3.20
4.00×10 1

0.00
1.34
2.69
4.03
5.37
6.72×10 1

Figure 3.14: Contour plots showing the probability density of the second half of the selected
observables versus the jet mass. The contour plots of the rest of the selected observables are
shown in Figure 3.13.
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Figure 3.15: Accuracy drop and statistical uncertainty of the top 10 observables per input
class N = 1, 2, 3, 4b, 4q. The observables are ranked in order of importance, where the
most important are those resulting in the largest drops in the accuracy of the model when
randomly replaced with observable values from the training set. The EFP graphs are included
for visualization purposes.
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Figure 3.16: Accuracy drop and statistical uncertainty of the top 10 observables per input
class N = 6, 8. The observables are ranked in order of importance, where the most important
are those resulting in the largest drops in the accuracy of the model when randomly replaced
with observable values from the training set. The EFP graphs are included for visualization
purposes.

details of the topology, such as the invariant mass of intermediate resonances and the jet

flavors. The networks’ ability to distinguish jets from G→ HH → 4b and G→ WW → 4q

is an example. In this section, we explore the dependence of the networks’ classification

strategies on these details of the sub-jet topology.

We generate two additional samples of jets with N = 4 hard sub-jets. In the first, labeled

4bMW , jets are produced with the G→ HH → 4b process, but the mass of the Higgs boson

has been set to the mass of the W boson to more closely align with the 4q sample. In the

second, labeled 4qMH , jets are produced with the G→ WW → 4q process, but the mass of

the W boson mass has been set to the mass of the Higgs boson to more closely align with

the 4b sample. Like with the other samples, the 4bMW and 4qMH samples are selected such

that they have uniform distributions in jet mass and pT.

We evaluate the networks’ predictions on the 4bMW and 4qMH samples. The frequency of

classification outputs of these two samples is shown in Figure 3.17. In the 4qMH case, all
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three networks mainly classify the samples as N = 4b jets and rarely classify them as N = 4q

jets. This suggests a strong correlation between the intermediate masses and the final state

kinematics that the networks are learning. Conversely, in the 4bMW case, the high- and low-

level networks result in different classification predictions. The low-level networks mainly

classify the 4bMW samples as N = 3 jets, while the DNN31 mainly classifies these samples as

N = 4q or N = 3. The more frequent prediction of N = 3 by the low-level networks hints at

the possibility that these networks are identifying complex details of the jet topology, which

goes beyond simply identifying hard sub-jets, as the N = 3 sample includes an intermediate

W boson as well as a b-jet.

The different predictions by the networks come as no surprise since they each have different

learning strategies. The DNN31 learns functions of the 31 selected observables, the PFN

learns an event-level latent representation of the jets by summing over the constituents, and

the Transformer uses self-attention mechanisms to determine which parts of the constituent

sequence it should focus on when making predictions.5 It is interesting to note that despite

their different learning strategies, all taggers seem to be dependent on the detailed topologies,

which is a benefit rather than a flaw in studies aiming to classify specific sub-jet topologies.

3.8 Multi-Class to Binary Classification

Multi-class output networks like the ones used in this paper can efficiently distinguish among

the different types of jets. A more realistic case, however, is the separation of jets with many

hard sub-jets from the overwhelming background of N = 1 jets from QCD production. Here,

we reinterpret the 7-dimensional network output vector α to perform six binary classification

tasks.

5We analyzed the redundancy of the networks’ strategies by computing the boost in performance obtained
by concatenating their outputs. A mild boost in performance was found when concatenating the outputs,
suggesting that the networks are using unique information. Further investigation of the nature of this unique
information was reserved for future work.
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Figure 3.17: Frequency of class identification on samples with modified topology (4bMW and
4qMH) for networks trained with the standard topologies (N = 1, 2, 3, 4b, 4q, 6, 8).

For discrimination between N = 1 and N = k classes, we define the decision contrast score:

Ck =
αk

αk + α1

, (3.2)

where α1 is the element in α corresponding to the probability of a jet having N = 1 sub-jets.

Likewise, αk corresponds to the probability of the jet having N = k sub-jets. It is easy

to see that Ck tends to 1 if the network predicts a higher probability of the N = k class,

and that it tends to zero if it predicts a higher probability of the N = 1 class. The binary

classification performance can then be measured using the area under the receiver operating

curve (ROC-AUC); see Table 3.3 for the ROC-AUC scores and Figure 3.18 for the ROC

curves.

The binary classification results agree with the confusion matrices in Figure 3.5, which show

a larger degree of confusion between the N = 1 and the N = 2, 3, 4b classes and almost

perfect classification between the N = 1 and the N = 4q, 6, 8 classes.

As a cross-check, the PFN and DNN31 are retrained to perform the binary classification tasks.

The results are included in Table 3.3 as PFNbinary and DNN31,binary. The multi-class taggers

slightly outperform the binary taggers, particularly for lower N . This suggests that training

on the different N -sub-jet classes may have resulted in a more robust decision boundary

48



Model N = 2 N = 3 N = 4b
Transformer 99.06 ± 0.26 99.58 ± 0.11 99.66 ± 0.11
PFN 99.19 ± 0.13 99.31 ± 0.14 99.57 ± 0.12
PFNbinary 98.84 ± 0.2 99.01 ± 0.20 99.29 ± 0.17
DNN136 97.04 ± 0.28 98.97 ± 0.16 99.39 ± 0.076
DNN299 98.07 ± 0.23 99.36 ± 0.17 96.61 ± 0.063
DNN31 98.02 ± 0.22 99.31 ± 0.16 99.57 ± 0.068
DNN31,binary 97.74 ± 0.28 99.03 ± 0.13 99.33 ± 0.11

Model N = 4q N = 6 N = 8
Transformer 99.98 ± 0.021 99.95 ± 0.033 99.95 ± 0.047
PFN 99.93 ± 0.039 99.91 ± 0.048 99.93 ± 0.034
PFNbinary 99.79 ± 0.079 99.87 ± 0.052 99.84 ± 0.1
DNN136 99.96 ± 0.016 99.92 ± 0.038 99.96 ± 0.021
DNN299 99.98 ± 0.014 99.96 ± 0.026 99.98 ± 0.014
DNN31 99.97 ± 0.018 99.95 ± 0.036 99.97 ± 0.021
DNN31,binary 99.91 ± 0.044 99.95 ± 0.034 99.92 ± 0.034

Table 3.3: ROC-AUC percentage score for classifying jets with N = k versus N = 1 hard
sub-jets, averaged over results from 10-fold cross-validation.

for the N = 1 class. This hypothesis aligns with the results in [81, 82], where training on

sub-classes helped improve multi-class classification performance.

3.9 Discussion

In this chapter, we have studied the task of classifying jets with a large number of hard

sub-jets (up to N = 8). We have trained a network on a very typical set of high-level

variables: jet mass and N -subjettiness observables. Our studies show that these observables

are good sub-jet discriminators, particularly for jets with many hard sub-jets or large jet

masses. However, we show that a dense network trained on these observables falls short in

classification accuracy when compared to two low-level networks, a PFN and a Transformer,

trained directly on the jet constituents. The results suggest that the low-level networks may

be using information not captured by the observables.
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Figure 3.18: ROC curves of the various network studies classifying jets with N = k versus
N = 1 hard sub-jets. See Table 3.3 for the ROC-AUC percentage scores.

We attempt to bridge the gap between networks operating on low- and high-level information

by supplementing the observable set with EFP observables. EFPs form a basis of IRC-safe

information, which makes them good candidates for features implementing the observable

set. By augmenting the high-level dataset with EFPs, we are able to match the performance

of the PFN. However, a small but non-negligible gap in performance still remains with respect

to the Transformer. This suggests that the Transformer may be utilizing information not

captured even by the augmented high-level dataset. The nature of this missing information

is studied in Chapter 4.

To gain insights into the classification strategies used by the classifiers, we find a subset of

features that capture most of the information in the augmented observable dataset. This is

done by employing a feature selection technique inspired by LASSO regularization, which

narrows down the number of observables by zeroing out the weights of irrelevant observables

during training. With this technique, we identify 31 observables that well-approximate the
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performance of the full observable dataset. The 31 features are ranked according to their

individual contributions to the dense model by measuring the drop in accuracy when each

feature is shuffled during test time. By this measure, we find that the most important

observables are mainly EFPs with four or fewer nodes and N-subjettiness variables with

N < 8. We also find that the constituent multiplicity is one of the top observables, and it is

particularly relevant for classifying N = 2 jets.

Our studies suggest that the dense classifier may focus first on simple observables that

broadly capture the number of sub-jets, such as EFP polynomials with only a few nodes or

N-subjettiness variables with small N values. Later, the classifier may utilize more complex

observables to capture subtle traits of the topology of the jets. This is further confirmed

in our results, which reveal the classifiers to have a strong topology dependence, as they

appear to be sensitive to the sub-jet resonance masses and flavor rather than simply being

sensitive to the sub-jet multiplicity. Future work may involve disentangling the nature of this

information to probe more deeply the classification strategy for high-multiplicity sub-jets.

Our results bode well for future jet studies in high-energy collider settings, where jets with

additional hard sub-jets will become more important as the high-luminosity LHC collects

large datasets in which high-pT objects appear in greater numbers [61,62].
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Chapter 4

Jet Rotational Metrics

4.1 Introduction

In this chapter, we extend our studies of multi-prong jet classification to include a new family

of novel observables called Jet Rotational Metrics (JRMs). Embedding symmetries in the

architectures of deep neural networks has generally resulted in improved performance and

faster network convergence in the context of jet classification [69,83–87]. These results hint at

the existence of symmetries in the jet energy depositions, such as rotational symmetry, arising

from physical features of the underlying processes. Having compact, high-level features that

capture the symmetries in the data could increase the performance of jet classification studies

while helping physicists quantify the statistical uncertainties of the data and the models.

Several jet observables have been utilized as high-level features to distinguish between jets

of different topologies, such as the jet thrust [88, 89], angularities [90, 91], energy-flow poly-

nomials (EFPs) [4], and N-subjettiness [92], among others. These observables provide great

insights into the interior of jets, but they do not provide a robust measure of their degree of

rotational symmetry. For example, quark- and gluon-jets are expected to have isotropic-like
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patterns of energy depositions, thus having a high degree of rotational invariance. On the

other hand, multi-prong jets could have patterns of energy depositions that are not isotropic

but instead display multiple areas rich in harder constituents. While these jets are less likely

to be rotationally invariant, they may show varying degrees of discrete, or n-fold, rotational

symmetry (Cn).

A common approach is to treat symmetries in a binary fashion and determine whether data

possesses a given symmetry or not. But in reality, symmetries exist along a spectrum, and

data may possess a given symmetry in varying degrees [93]. Based on this notion, and on

continuous symmetry measures [94], we introduce Jet Rotational Metrics (JRMs)1, a new

type of jet observables that provide insights into the degree of n-fold rotational symmetry

of a jet. JRMs are defined by the similarity (S) between a jet (J) and a reference jet (Jn)

with n constituents arranged to have exact Cn symmetry:

JRMn(J) ∝ S(J, Jn). (4.1)

The construction of Jn is discussed in Section 4.3. We emphasize that JRMs measure the

deviation between J and the specific Cn symmetry element in the reference jet. We do not

claim to measure a jet’s absolute deviation from Cn symmetry.

While observables like sphericity [95] and event isotropy [2] provide comparable measures by

estimating the degree of isotropy in an event, and thus also its degree of rotational symmetry,

we find that breaking down this symmetry into its discrete form results in better network

performance when classifying jets with multiple sub-jets. As an example, in Fig. 4.1, we

compare the differences between N-subjettiness (τ), a measure of isotropy (I) similar to those

introduced in [2], and JRMs. Fig. 4.1a shows a four-prong jet with 4-axis N-subjettiness

variable of τ4 ≈ 0.04, isotropy measure of I ≈ 0.96, and JRM gauging C4-symmetry of

JRM4 ≈ 0.18. In Fig. 4.1b, the same jet is modified such that it has a more symmetric

1We call them “Jerms.”
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constituent dispersion while maintaining the same τ4 value. We find that the modified jet

has a similar isotropy measure to the original jet, I ≈ 0.96. The most dramatic difference is

in the JRM, which decreases to JRM4 ≈ 0.08. In this example, the isotropy measure does

not capture the change in the constituent dispersion as well as the JRM4. This is likely

because the discretization of the rotational symmetry helps capture more subtle changes in

the jet’s geometry.
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(a) Comparison of the various observables calculated on a jet (J).
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(b) Comparison of the various observables calculated on a jet (J ′), which has been modified
to be more C4-symmetric.

Figure 4.1: Panel (a) shows a four-prong jet (J). The second image in this panel shows
the four sub-jet axes (orange dots) used to calculate the N-subjettiness τ4 measure. The
third image shows the isotropic event, Jiso (red dots), used in the calculation of the isotropy
measure; I(J) ≡ EMD(J, Jiso) [2], where EMD is the Energy Mover’s Distance [3]. Lastly,
the fourth image shows the C4-symmetric event, J4 (pink dots), used in the calculation of
the JDM4; JDM4 ≡ S(J, J4). The images in panel (b) show similar events but with the jet
modified to have a higher degree of C4 symmetry (J ′). The area and color intensity of the
jets’ constituents is proportional to their pT.
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The classification power of JRMs is tested on the dataset from Section 3. We show that

JRMs achieve a good classification performance on their own. We also show that when com-

bined with N-subjettiness and EFPs observables, JRMs increase the classifier’s performance

significantly; a dense network trained on these parameters surpasses the accuracy of the PFN

and Transformer introduced in Section 3.4. The N-subjettiness and EFP families of observ-

ables form complete bases of IRC-safe information, and in principle, a combination of such

observables could also gauge the degree of Cn symmetry of the jets. In practice, however,

classifiers operating on these observable families tend to saturate quickly with the number

of input features [4], which means that they may not capture this information as efficiently

as JRMs. Evidence of this is in the boost in performance obtained by supplementing the

N-subjettiness and EFPs with JRMs.

The rest of this chapter is organized as follows: Section 4.2 introduces the similarity measure

used to compare the jets. Section 4.3 details the procedure to calculate the JRMs. Section 4.4

presents the results of using JRMs as high-level features for jet classification in the benchmark

dataset. Concluding remarks and discussion are given in Section 4.5.

4.2 Similarity Measure

JRMs require a similarity measure between two jets. If we consider jets as point clouds, many

distance metrics could be used, such as the Chamfer distance [96], the Hausdorff distance [97],

the Earth Mover’s distance [98] or its physics-inspired modification, the Energy Mover’s

distance (EMD) [3]. The last measures the work necessary to transform one event into

another by solving a system of linear optimal transport equations. Any of these metrics could

be used in the calculation of the JRMs, but many are computationally expensive2. A useful,

2We performed a test comparing the results of JRMs using EMD vs. the simple similarity measure used
in this paper and found them to be comparable in performance, but the EMD is more computationally
expensive.
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cost-effective alternative is to sum the pT-weighted distance between nearest neighbors:

S(J, Jn)
β =

∑
i∈J

pTimin
j∈Jn

(
∆Ri,j

R

)β

, (4.2)

where i and j index over the constituents of J and Jn, respectively. Each constituent i in

J queries its nearest neighbor in Jn. For massless constituents, the pairwise distance ∆Ri,j

is their distance in the (η, ϕ) plane3, which is normalized by the jet radius R. The distance

between nearest neighbors is weighted by pTi, the transverse momentum of constituent i.

The free parameter β controls the weight of the angular terms.

Eq. 4.2 resembles the clustering inertia used to measure how well a dataset is clustered by

the centroids in k-means clustering, which is also used in N-subjettiness. For simplicity, we

refer to this measure as the “distance” between J and Jn, though this is not a true distance

function as the triangle inequality does not hold.

The distance measure defined in Eq. 4.2 is IRC-safe (for β > 0), but can be generalized to

non-IRC-safe versions by varying the exponent of the energy term:

S(J, Jn)
κ,β =

∑
i∈J

pT
κ
i min
j∈Jn

(
∆Ri,j

R

)β

. (4.3)

Small κ values (κ < 1) enhance the contributions of softer constituents while large κ values

(κ > 1) dampen their contributions. Varying κ can provide a sense of the relative dispersion

of the softer/harder constituents. Similarly, varying β can provide a sense of the relative

importance of the geometric terms.

3Or in the (y, ϕ) plane if constituents are not massless.
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For consistency, we preprocess jets to have net pT of unity and center them on their pT-

weighted mean in the (η, ϕ) plane. For each constituent i ∈ J :

pTi → pTi /
∑
j∈J

pTj, (4.4)

ηi → ηi −
∑
j∈J

pTj ηj/
∑
j∈J

pTj, (4.5)

ϕi → ϕi −
∑
j∈J

pTj ϕj/
∑
j∈J

pTj, (4.6)

By normalizing the pT, Eq. 4.2 is dimensionless and lies in the range [0, 1]. S(J, Jn) = 0

indicates that the constituents in J are perfectly arranged like those in Jn while S(J, Jn) ≈ 1

indicates a dissimilar arrangement.

4.3 Gauging Cn Rotational Symmetry

We recall that JRMs measure the similarity between a jet J and a reference jet Jn with Cn

symmetry. A potential obstacle is that there are infinite possible choices of Jn, each with

perfect Cn symmetry but distinct elements. Ideally, one would choose the reference jet that

is closest to J , minimizing the distance metric. In practice, an exhaustive search would be

computationally prohibitive. To simplify the calculation, we develop a search recipe for the

reference jet:

1. Consider n points in a circle centered at (η, ϕ) = (0, 0). The points are located at

the angles 2πi/n, i = 0, . . . , n − 1. These points represent the n constituents in the

reference jet.

2. Let the points be located at a distance equal to the pT-weighted mean constituent

radius (r̄).
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3. Rotate the points by a common θ to minimize the distance between J and Jn, as

measured by Eq. 4.3.

Following the steps specified above, Jn is characterized by three parameters: the number

of points (constituents) n, the radius r̄, and the rotation angle θ ∈ [0, 2π/n). With this in

mind, JRMs can then be defined as

JRMκ,β
n := min

θ
S(J, Jn(r̄, θ))

κ,β. (4.7)

For clarity, the measure with κ = 1 and β = 1 is simply written as JRMn. See Appendix B.1

for further discussion about the construction of Jn.

An illustration of JRMs with n = 2, 3, 4, 8 for a two-prong jet is shown in Fig. 4.2. Inter-

estingly, JRM3 > JRM2, which makes sense considering how the constituents of the jet are

mainly concentrated in two areas, and it would be hard to compare them to a reference

jet with three equidistant constituents. By contrast, the same observables are illustrated in

Fig. 4.3 for an eight-prong jet. The constituents in the jet are distributed more uniformly,

which makes the JRM measure decrease with n; JRMn−1 > JRMn. An analysis of JRM

ratios is shown in Appendix B.3.
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Figure 4.2: Illustration of the various JRMn observables calculated on the same two-prong
jet (J) in green. The area and color intensity of the constituents is proportional to their pT.
The pink dots represent the constituents of the Cn symmetric jet (Jn), which is compared
against J . The gray lines depict the nearest neighboring constituents between J and Jn.
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Figure 4.3: Illustration of the various JRMn observables calculated on the same eight-prong
jet (J) in purple. The area and color intensity of the constituents is proportional to their pT.
The pink dots represent the constituents of the Cn symmetric jet (Jn), which is compared
against J . The gray lines depict the nearest neighboring constituents between J and Jn.

In Fig. 4.2, we note how similar JRM2, JRM4, and JRM8 are for the two-prong jet. Because

of the nearest neighbor operation, the majority of the constituents are assigned to only

two reference constituents in the JRM4 and JRM8 observables. While this may seem like

a weakness, we find that attempts to penalize the measure for an unbalanced constituent

assignment result in slightly lower performances by the classifiers. This suggests that the

networks may find useful information in JRMns having similar values for various n4.

4.4 Multi-Prong Jet Classification

In this section, we evaluate the performance of JRMs in the classification of jets with multiple

sub-jets using the dataset introduced in Section 3.2. We anticipate JRMs to perform well at

this classification task since the various topologies that produce jets with different numbers

of hard sub-jets are expected to have patterns of energy deposition with varying degrees of

n-fold rotational symmetry. We recall that the dataset consists of jets with N = 1, 2, 3, 4, 6, 8

hard sub-jets. The N = 4 class is subdivided into N = 4q and N = 4b, for a total of seven

classes.

4Further evidence of the networks subtracting relevant information from JRMs using the simple distance
measure from Eq. 4.3 is in how the results are comparable to JRMs using the EMD [3] as the distance
measure.
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Figure 4.4: Distributions of the JRMκ,β
2 observables with the specified κ, and β parameters.

We calculate 30 JRMκ,β
n observables with the following parameter combinations5: n =

2, 3, 4, 6, 8, κ = 1
2
, 1, and β = 1

2
, 1, 2. As an example of these observables, we show the

distributions of the JRM2 features in Fig. 4.4. It is apparent that the JRM2 observables

provide useful insights into the substructure of the jets. For example, the N = 2 and N = 4q

classes have the lowest mean JRM2 values. Conversely, the N = 6 and N = 8 classes have

the highest mean JRM2 values, which suggests that the constituents in these classes are less

likely to be collimated in such a way that they are concentrated in two symmetric areas.

To highlight the differences between JRM2 and the 2-axis N-subjettiness features (τβ2 ), we

show the latter in Fig. 4.5. The classes with the lowest τ2 values are N = 1 and N = 2,

while the N = 4q class falls in the middle of all classes. Similarly to JRM2, the N = 6 and

N = 8 classes have the largest τ2 values.

5We utilized the same n values as the number of sub-jets, which perform well for the classification task,
though this may not always be the case. The optimal JRM feature for identifying jets with N sub-jets may
have n ̸= N .
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Figure 4.5: Distributions of the N-subjettiness features with N=2 (τβ2 ) observables with the
specified β parameters.

The rest of the distributions are shown in Appendix B.4. In our experiments, the JRMn

observables nearly saturate for n = 8. This is seen in the distributions in Appendix B.4,

where the JRM6 measures resemble JRM8. In addition, including JRMn observables with

n > 8 does not increase the classifier’s performance.

To assess the performance of these observables and the uniqueness of the information they

capture, we compare the performance of dense networks operating on JRMs to those operat-

ing on the N-subjettiness and EFP observables from Section 3.3. The set of N-subjettiness

variables consists of 135 observables calculated along the kT axis, with sub-jet axis param-

eter N = 1, . . . , 45 and angular weighing parameter β = 1
2
, 1, 2. The EFP set consists of

162 observables representing prime multi-graphs with five or fewer edges, energy weighing

parameter κ = 1, and angular weighing parameter β = 1
2
, 1, 2. We consider both sets to be

extensive, as including more N-subjettiness or EFP observables is not likely to increase the

performance of the networks, and if so, marginally.

For consistency and to test the boost in performance obtained by including JRMs, all dense

networks share the same architecture of six hidden layers of size (800-800-800-800-800-64)

and ReLu [36] activation function. Dropout with rate 0.3 and batch normalization are

applied respectively after every hidden layer. The output layer has dimension seven and a

softmax activation function.
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To gain a better understanding of the nature of the information used by the models, we

distinguish between IRC-safe and IRC-unsafe observables. Table 4.1 shows the results of the

networks operating on IRC-safe observables. The DNN trained on IRC-safe JRMs achieves

an overall accuracy of 85.49±0.35%. The DNN trained on the larger set 297 of N-subjettiness

and EFPs exceeds that, with an overall accuracy of 88.94 ± 0.37%. The highest accuracy

of 90.72 ± 0.23% is achieved by combining all observables, which indicates that the JRMs

capture unique information not captured by the N-subjettiness or EFP observables. This

new information is highly valuable for the classification process since it not only increases the

overall accuracy by more than 1.5% but also the accuracy of each class; see Appendix B.2

for the classification accuracies per class.

Table 4.2 shows the results of the models whose input is IRC-agnostic. The PFN and

Transformer models are used as the benchmark low-level networks to compare against the

high-level features. The DNN trained on the full set of 30 JRMs does very well, achiev-

ing an overall accuracy of 89.30 ± 0.26% and outperforming the overall accuracy of the

PFN [48] (89.19 ± 0.23%), which operates on low-level information, constituent momenta.

More significant is the boost in performance obtained when combining all the JRMs with the

N-subjettiness and EFPs, which together achieve the top overall accuracy of 91.52± 0.26%

and outperform the Transformer (91.27 ± 0.31%), which also operates on constituent mo-

menta. By including the IRC-unsafe JRM observables, the gap between the Transformer

and dense networks is bridged. This suggests that deep, low-level networks trained on the

full event information may make use of soft and collinear radiation, which is not well-defined

in the perturbative QCD regime. Moreover, these results provide insights into how the IRC-

unsafe information is used, suggesting that low-level networks may look at the macroscopic

structure of the radiation and learn functions of the global dispersion, such as the degree of

rotational symmetry. We note that the contributions of the IRC-unsafe features are small

when compared to the classification power of the IRC-safe ones, which is expected, but they
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cannot be discarded when accounting for statistical uncertainty of the low-level networks

due to deviations in the particle simulations [99].

Table 4.1: Mean 10-fold prediction accuracy and statistical uncertainty of the DNNs oper-
ating on the specified IRC-safe observables. Only the 15 JRMs with κ = 1 are used as input
to the DNNs.

Network Input (IRC-safe) Input Dim. Overall Acc. (%)
DNN JRM 15 85.49 ± 0.35
DNN N-subs, EFPs 297 88.94 ± 0.37
DNN N-subs, EFPs, JRMs 312 90.72 ± 0.23

Table 4.2: Mean 10-fold prediction accuracy and statistical uncertainty of the various net-
works. The input to the PFN and Transformer is the constituents’ three-momentum, which
is zero-padded to have a uniform length of 230. See Section 3.4 for further details about the
PFN and Transformer networks. The full set of 30 JRMs is used as input to the DNNs.

Network Input Input Dim. Overall Acc. (%)
DNN JRMs 30 89.30 ± 0.26
DNN N-subs, EFPs, JRMs 327 91.52 ± 0.26
PFN Constituents (230, 3) 89.19 ± 0.23
Transformer Constituents (230, 3) 91.27 ± 0.31

4.4.1 Feature Selection

We continue our exploration of JRMs for multi-prong classification by identifying their rele-

vant importance in the classification task. We employ the LASSO-inspired feature selection

method introduced in Section 3.6.2 and apply it to the 312 IRC-safe observables.

The feature selection method has identified 29 IRC-safe observables, which are shown in

Table 4.3. A DNN trained on these observables reaches an accuracy of 89.97 ± 0.28%, well

approximating the accuracy of the full IRC-safe observable set and slightly surpassing the

accuracy of the PFN. These results are impressive given the limited number of input features.

The choice of features provides insights into the classification strategies of the dense networks.

The family of observables with the most selected features is N-subjettiness, and most of these
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Table 4.3: IRC-safe observables chosen by the LASSO-inspired feature selection method,
which achieve an overall accuracy of 89.97 ± 0.28% when used as input to a DNN. The
selected N-subjettiness observables, τβN, are shown in the leftmost column. The selected JRM
observables are shown in the middle column. The selected EFP observables, EFPβ(u, d, k),
are shown in the rightmost column and are accompanied by their unique identifiers indicating
the number of nodes (u), edges (d), and index (k); see [4]. The observables are listed in no
particular order.

N-subjettiness JRMs EFPs
τ 12 JRM(C2)1,0.5 EFP0.5(2, 1, 0)
τ 22 JRM(C2)1,1 EFP2(2, 2, 0)
τ 0.53 JRM(C3)1,0.5 EFP2(2, 5, 0)
τ 13 JRM(C3)1,2 EFP0.5(3, 3, 1)
τ 14 JRM(C3)1,1 EFP2(3, 4, 3)
τ 15 JRM(C4)1,0.5 EFP2(4, 5, 0)
τ 17 JRM(C4)1,1 EFP2(4, 5, 3)
τ 0.516 JRM(C6)1,0.5

τ 0.522 JRM(C6)1,2

τ 0.539 JRM(C8)1,1

τ 0.539

τ 0.545

variables have N< 8, which makes sense given the pronginess of the jets in the dataset. The

next family of observables is JRMs. For every Cn symmetry considered, at least one JRM

observable is chosen. These results suggest that the network utilizes the measures of discrete

rotational symmetry. The feature selection method also chooses a fair amount of EFP

variables with 2, 3, and 4 nodes. Some of these observables correlate to other well-known jet

observables, such as EFP(2, 1, 0) and the jet mass [4].

The 29 IRC-safe observables listed in Table 4.3 do a great job capturing information relevant

to the classification task. However, we recall how including IRC-unsafe observables increased

the performance of the dense networks, slightly surpassing that of the Transformer. We do

not perform feature selection on the IRC-unsafe JRMs, but we note that including them in

the training set still shows a boost in performance. For example, adding the five IRC-unsafe

JRMs with n = 2, 3, 4, 6, 8, κ = 1
2
and β = 1 to the 29 selected IRC-safe observables increases

the overall accuracy to 90.78± 0.38.
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4.5 Discussion

In this chapter, we have introduced a new family of jet observables, JRMs, that gauge the

degree of discrete, or n-fold, rotational symmetry of a jet. The core idea behind JRMs is that

the patterns of energy deposition of a jet are highly dependent on features of the underlying

process, such as the number of sub-jets and the resonance masses, which could result in jets

displaying varying degrees of n-fold rotational symmetry. For example, quark- and gluon-jets

are expected to have uniform radiation patterns that yield isotropic constituent dispersions.

On the other hand, multi-prong jets could have constituent dispersions that are not isotropic

but instead have multiple areas rich in harder constituents.

We have tested the discriminative power of JRMs on a benchmark dataset for classifying

jets with multiple sub-jets, more specifically with N = 1, 2, 3, 4, 6, 8 sub-jets. We find that

the JRMs are very useful discriminants, achieving formidable classification accuracies when

used as input to dense neural networks. Moreover, we find that when combining JRMs with

more traditional observables, such as N-subjettiness and EFP variables, the dense neural

networks manage to outperform two benchmark low-level networks. From these results,

we draw two conclusions: first, the JRMs capture unique information not captured by the

more traditional observables. Second, this unique information is highly relevant for the

classification task, bridging the gap between high- and low-level networks and shedding light

on the learning strategies used by these networks.

Recent advances in machine learning for jet classification have focused on deep, low-level

networks. These networks learn functions directly from the jet constituents, so it is no

surprise that they currently provide state-of-the-art results in many applications [46, 64–

67]. However, the high performance of these networks comes with the downside of lower

interpretability as it is not clear which specific functions of the complex, low-level input they

have learned.
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On the other hand, high-level observables, like JRMs, make it more feasible for physicists

to understand the nature of the information learned by the networks. These observables

are often used as inputs to dense neural networks, which are easier to interpret since we

can control the functional forms of their inputs. An example of this is observables that are

IRC-safe, an important property to test the substructure of an event while being insensitive

to soft and collinear radiation. Although observable families like N-subjettiness and EFPs

form bases of IRC-safe information, capturing all such relevant information in a small set of

features has been proven difficult, often due to classifiers saturating quickly with respect to

the number of features. We show that the IRC-safe JRMs are good complements to these

observable families, likely because they capture information not efficiently captured by a

small number of N-subjettiness or EFPs variables.

In addition, we find a small but non-negligible reliance of networks on observables with

IRC-unsafe forms. This finding is important as it shows that low-level networks may rely on

IRC-unsafe information, which is not well-defined in the perturbative QCD regime.

Lastly, we acknowledge that there could be many natural extensions to the JRMs, either by

utilizing different forms of Cn-symmetric elements to measure the rotational symmetry or

by employing different distance metrics. We leave further exploration of these choices for

future work.
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Chapter 5

Systematic Uncertainties in LHC data

5.1 Introduction

This dissertation has so far focused on aspects of multi-prong jet classification. In this

chapter, we change gears and focus on another important aspect of data analyses at the

LHC: the estimation of systematic uncertainties.

As the LHC continues to collect large experimental datasets, precise measurements of sys-

tematic uncertainties will become increasingly more vital. For instance, precision tests of

the SM require the comparison between experimental measurements of particle properties

and theoretical predictions. In many cases, potential discrepancies between measurements

and predictions rely on the accurate estimation of systematic uncertainties. The recent mea-

surement of the W boson mass [100] and the muon anomalous magnetic moment [101] are

two examples where it has been claimed that the experimental measurements vary from the

theoretically predicted values. These results are meaningful because they claim that the

discrepancy is larger than the systematic uncertainties. However, a full, rigorous assessment

of the systematic uncertainties is often computationally intractable since experiments gener-
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ally have several sources of uncertainty, which create a high-dimensional space that must be

characterized. To overcome this issue, most measurements rely on simplifying assumptions,

such as the factorization of the various sources of uncertainty.

When dealing with multiple sources of uncertainty, several procedures have been established

to simplify their estimations by factorizing their underlying correlations. Common proce-

dures include orthogonalization [102–104] and treatment of residual correlations [105, 106].

The advantages and limitations of these procedures have been well-studied in the litera-

ture [102]. What has not been as well-studied is the impact that these simplifying assump-

tions have on the experimental response. For example, if the sources of uncertainty are

assumed to be factorizable, then the space of the experimental response is generally also

assumed to be factorizable in terms of the individual sources, such that each source cor-

responds to its own axis within the space. Then, the impact of multiple sources (off-axis)

can be extrapolated from the impact of individual sources (on-axis). While this approach

is simple and computationally inexpensive, it relies on the validity of the assumption that

the off-axis values can be calculated from linear combinations of the on-axis values. Such an

assumption may be appropriate for smaller, less complex datasets, but it will likely fail in

the context of larger datasets with multiple sources of uncertainty.

In the following sections, we describe a strategy for characterizing the experimental response

in terms of the systematic uncertainties without assuming factorization. Our strategy uses

Gaussian processes (GPs) to regress observables of the experimental response given the

various sources of uncertainty of a model. Gaussian processes are flexible, nonparametric

machine learning models that have been used in high-energy physics studies involving back-

ground selection and signal extraction [107–109]. GP applications have been less widely used

in estimating systematic uncertainties. We leverage the fact that the functional forms of ex-

perimental observables are often known to calculate their gradients and use them to enhance

the GP regression. We show that GPs enhanced with derivative information are a power-
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ful tool for estimating systematic uncertainties, even when dealing with non-differentiable

observables.

In our example scenarios, the GP approach outperforms the factorized approach with sig-

nificantly fewer samples. However, in cases where the impact of the sources of uncertainty

is not straightforward to learn, few samples may not be enough for a GP model to accu-

rately estimate the observables. In such cases, having a strategy to efficiently sample the

space of the experimental response is essential. We use Bayesian experimental design (BED)

as the sampling strategy, which we show is more efficient than random or grid sampling,

particularly in higher dimensions.

The rest of this chapter is organized as follows: Section 5.2 describes the role of systematic

uncertainties in statistical inference and discusses typical assumptions in the assessment of

systematic uncertainties. Section 5.3 describes the elements of GP regression and section 5.4

the elements of the BED strategy. In Section 5.5, we demonstrate our method on a one-

dimensional toy example, followed by Sections 5.6 and 5.7, where we respectively demonstrate

our approach in two-dimensional and four-dimensional realistic high-energy physics scenarios.

Section 5.8 contains our conclusions and future work.

5.2 Systematic Uncertainties

Experimental measurements in particle physics are typically based on the statistical inference

of theoretical parameters of interest (θ) and nuisance parameters (ν) from experimental data

(x). The parameters of interest represent parameters of the theory, such as signal strength or

resonance masses. In contrast, the nuisance parameters are treated as sources of systematic

uncertainty. A major obstacle to inferring the values of these parameters is the lack of access

to a tractable likelihood, p(x|θ,ν), which would make parameter estimation and limit-setting

69



straightforward. Instead, the likelihood is often approximated as a product of Poisson terms

for each bin of a histogram:

p(x|θ,ν) ≈
∏

i∈bins

Pois(ni|ηi(θ,ν)), i = 1, . . . , B, (5.1)

where x = (n1, . . . , nB) are the observed bin counts and ηi(θ,ν) the number of expected

events in bin i estimated from simulation, which depends on θ and ν. The expected number

of events is often expressed as a function of the parameters, ηi(θ,ν) = si(θ)ϵs,i(ν)+biϵb,i(ν),

where si(θ) and bi are the expected number of signal and background events, and ϵs,i(ν),

ϵb,i(ν) the respective efficiencies.

In addition, some auxiliary measurements (a) may be used to constrain the nuisance pa-

rameters through additional prior estimates, pc(a|ν) [110]. If there are multiple nuisance

parameters, the sources of uncertainty are typically assumed to be independent, and thus

their contributions to the model are assumed to be the product of the individual nuisance

parameters. All in all, the likelihood can be approximated as

p(x,a|θ,ν) ≈
∏

i∈bins

Pois(ni|ηi(θ,ν)) ·
∏
νj∈ν

pc(a|νj), (5.2)

where

ηi(θ,ν) =si(θ)ϵs,i(ν) + biϵb,i(ν). (5.3)

However, even if the sources of uncertainty are independent such that the product of pc(a|νj)

holds, that does not guarantee that the experimental response can be factorized in terms

of the individual nuisance parameters. For example, the response of the efficiencies to si-

multaneous changes in the nuisance parameters will likely not factorize. In addition, this

assumption does not capture the lack of pre-fit correlations in the sources of uncertainty
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given the chosen auxiliary measurements or any resulting post-fit correlations among the

nuisance parameters induced by the efficiencies.

In the following sections, we review the procedure for GP regression with and without deriva-

tive observations. We also introduce the BED strategy, which uses the GPs as surrogate

models and can efficiently sample the space of the experimental response.

5.3 Gaussian Process Regression

A GP [107] is a collection of random variables such that the joint distribution of any finite

choice of variables forms a multivariate Gaussian. To illustrate this, consider a set D of N

observation pairs, D = {(xi, yi)}, i = 1, . . . , N , where xi ∈ RD denotes an input vector and

yi ∈ R denotes a scalar output. To simplify the notation, the input vectors are aggregated

in matrix X of size N × D, and the targets are collected in the vector y of length N , so

we can write D = (X,y). In the GP framework, the output values are seen as being drawn

from a Gaussian distribution with mean function µ(x) and covariance function k(x,x′):

f(x) ∼ N (µ(x), k(x,x′)), (5.4)

where

µ(x) = E[f(x)] (5.5)

k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))]. (5.6)

For simplicity, we let the mean function be zero (µ(x) = 0), assuming no prior information

contradicts this hypothesis. We also let the covariance function take the form of the squared
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Figure 5.1: Covariance function as the distance between scalar inputs xi and xj is varied in
the range [-5, 5]. The α2 and ℓ2 parameters represent the signal variance and length scale of
the squared exponential in the covariance. See Equation 5.7.

exponential (SE) function, also known as the radial basis function:

cov [yi, yj] = k (xi,xj) = α2 exp

(
−∥xi − xj∥2

2ℓ2

)
. (5.7)

The parameters α ∈ R and ℓ ∈ RD control the signal variance and length scale of the squared

exponential, respectively. When the input values are the same, xi = xj, the covariance is

equal to α2. As the input values grow farther apart, the covariance approximates zero at

a rate dictated by ℓ2; smaller ℓ2 values result in the covariance approaching zero at faster

rates. Fig. 5.1 illustrates the covariance as a function of the distance between two scalar

inputs for two sets of α2 and ℓ2 parameters.

Let ω = {α, ℓ} be the set of free parameters of the model, which are commonly referred to

as the hyperparameters. In principle, one could choose any combination of hyperparameters

to describe the model, but in practice, their values are often chosen by maximizing the log

marginal likelihood (lml), or equivalently, by minimizing its negative form:

L(ω) = − log p(y | X) = −1

2
yTK−1y − 1

2
log | K | −N

2
log(2π), (5.8)
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where K is the N × N matrix of covariances evaluated at every input of the training data

X, such that Kij = k(xi,xj).

A common approach to minimizing the negative lml is to perform gradient optimization,

which requires the computation of the gradients with respect to each hyperparameter:

∂L(ω)

∂ω
=

1

2
Tr

[
K−1∂K

∂ω

]
− 1

2
yTK−1∂K

∂ω
K−1y. (5.9)

Once the hyperparameters have been selected, we can define the joint probability distribution

of the data as

p(y1, . . . , yN |x1, . . . ,xN) = N (0, K). (5.10)

But in general, we are not interested in sampling functions from the prior, but in incorpo-

rating the information that the training observations provide to make predictions about the

function. Say we want to predict the outcome y∗ at a new input location x∗. Recalling

that under the GP framework, the joint distribution of any finite set of variables must be

Gaussian, the joint distribution between training outputs y and the new output y∗ must

followy
y∗

 ∼ N
0,

 K k(X,x∗)

k(x∗, X) k(x∗,x∗),


 (5.11)

where k(X,x∗) is the N × 1 vector of covariances between X and x∗, and similarly for

k(x∗, X) = k(X,x∗)
T , and k(x∗,x∗).

Predictions are achieved by conditioning the joint probability distribution on the observed

data D = (X,y) and x∗; p(y∗|x∗, X,y). This conditional distribution is a Gaussian with
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mean µ∗ and covariance Σ∗ given by [111]

µ∗ = k (x∗, X)K−1y, (5.12)

Σ∗ = k (x∗,x∗)− k (x∗, X)K−1k (X,x∗) . (5.13)

So far, we have only considered noise-free observations. But more realistic applications

assume that we only have access to noisy function observations, such that y = f(x+ ϵ). As-

suming the noise ϵ is an additive independent identically distributed Gaussian with variance

σ2, the covariance between noisy observations becomes

cov [yi, yj] = k(xi,xj) + σ2δij. (5.14)

The magnitude of σ2 is treated as a hyperparameter of the model. The δij term follows

from the independence assumption about the noise, which, once we consider the full set of

training observations, is equivalent to adding the noise term to the diagonal of the matrix of

covariances. Thus, we can write the joint distribution between the training outputs y and a

new output y∗ as

y
y∗

 ∼ N
0,

K + σ2I k(X,x∗)

k(x∗, X) k(x∗,x∗)


 . (5.15)

The mean and covariance of the predictive distribution for noisy outputs then becomes

µ∗ = k (x∗, X)
[
K + σ2I

]−1
y, (5.16)

Σ∗ = k (x∗,x∗)− k (x∗, X)
[
K + σ2I

]−1
k (X,x∗) . (5.17)
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5.3.1 Including Derivative Information

If derivative observations are available, either by direct calculation or linearization, they can

be incorporated into the GP framework. Suppose we are given new sets of input/output

observation pairs D′
d = {(xd,i, wd,i)}, d = 1, . . . , D, i = 1, . . . , Nd corresponding to the Nd

partial derivatives of f(x) along dimension d:

wd,i =
∂f(xd,i)

∂xd

. (5.18)

The covariances between function and partial derivative observations must satisfy [112]

cov [wd,i, yj] =
∂

∂xd

cov [yi, yj] = −α2 (xd,i − xd,j)

ℓ2d
exp

(
−∥xi − xj∥2

2ℓ2

)
, (5.19)

cov [wd,i, we,j] =
∂2

∂xd∂xe

cov [yi, yj] = α2 (δd,e − (xd,i − xe,j)/ℓ
2
e)

ℓ2d
exp

(
−∥xi − xj∥2

2ℓ2

)
.

(5.20)

Fig. 5.2 illustrates the covariances as a function of the distance between two scalar inputs

with hyperparameters α2 = 1 and ℓ2=1.

To make predictions, we must aggregate the function and derivative observations accordingly.

For the training covariance matrix, this means aggregating the function (Equation 5.7),

cross (Equation 5.19), and derivative (Equation 5.20) covariances into a single mixed block
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Figure 5.2: Covariance functions as the distance between scalar inputs xi and xj is varied in
the range [-5, 5], with hyperparameters α2 = 1 and ℓ2 = 1. See Equations 5.7, 5.19, and 5.20.

covariance:

Kmxd =



Kyy · · · Ky,wd
· · · Ky,wD

...
. . .

...
. . .

...

Kwd,y · · · Kwd,wd
· · · Kwd,wD

...
. . .

...
. . .

...

KwD,y · · · KwD,wd
· · · KwD,wD


, (5.21)

where Kyy is the N × N matrix of covariances between function observations, Ky,wd
is

the N ×Nd matrix of cross covariances between function and derivative observations along

dimension d, and similarly Kwe,wd
the Ne×Nd matrix of covariances derivative observations

along dimensions e and d.

The outputs must also be aggregated, creating the mixed output vector

ymxd = [y1, . . . , yN , w1,1, . . . , w1,N1 , . . . , wd,1, . . . , w1,Nd
, . . . , wD,1, . . . , wD,ND

]T. (5.22)

Similarly to the regular GP regression, predictions are achieved by conditioning the joint

probability on the observed data. The predictive mean and covariance correspond to the
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forms as Eqs. 5.16 and 5.17, but the output vector and covariances are updated to represent

the mixed nature of the data:

µ∗ = k (x∗, X)mxd [Kmxd + σ2
mxdI]

−1ymxd, (5.23)

Σ∗ = k (x∗,x∗)− k (x∗, X)mxd [Kmxd + σ2
mxdI]

−1k (X,x∗)mxd . (5.24)

Like in Equations 5.16 and 5.17, white noise is added to the training covariance to account

for statistical fluctuations in the data or the model. In practice, these fluctuations may vary

between function and derivative observations, and thus the σ2
mxd term is a vector containing

the variances added to the diagonal elements of the function (Kyy) and derivative (Kwd,wd
)

block covariances in Kmxd.

We refer to a GP model that incorporates derivative observations as a derivative GP. By

contrast, we refer to a GP model without derivative observations as a regular GP.

5.3.2 Efficient Gaussian Process Regression with Approximated

Gradients

The physics examples in this paper focus on estimating the efficiency (ϵ) as a function of the

nuisance parameters (ν). For a dataset with many events, evaluating the efficiency is gener-

ally a computationally expensive task involving evaluating each event over a predetermined

selection criteria.

The selection criteria are often based on statistical cuts, which are non-differentiable. To

obtain the derivative observations of the efficiency, we replace the cuts with sigmoid functions

(S), which are easily differentiable, allowing us to calculate an approximation of the gradients

of the efficiency with respect to the nuisance parameters. We modify the sigmoid functions

with the parameters a and c, which control the steepness and horizontal shift of the sigmoid
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curve, respectively:

S(x, a, c) =
1

1 + e−a(x−c)
(5.25)

The sigmoids are shifted to match threshold values of the statistical cuts by adjusting c, and

the sign and magnitude of the steepness parameter a are tuned depending on the specifics

of the selection criteria. Absolute values of a larger than unity result in steeper sigmoids,

while absolute values smaller than unity result in less steep sigmoids.

Other methods may be used to calculate automated numerical derivatives of detector ob-

servables [113, 114], which can then be used to enhance the GP regression. In our studies,

we find that replacing the statistical cuts with sigmoid functions results in more accurate

GP regressions.

We note how derivative GPs have a higher computational cost than regular GPs (O(N3D3)

vs. O(N3)) when conditioned on N samples in D dimensions. However, we expect the

training and inference time of the GPs to be relatively negligible compared to the time it

may take to directly sample the efficiency or other observables of the detector response.

In addition, recent work has been done to scale derivative GPs in low- [115] and high-

dimensions [116,117].

5.4 Bayesian Experimental Design

We introduce a BED sampling strategy designed to efficiently select new training observations

while reducing the predictive uncertainty of a GP model. At the core of the BED strategy is

the utility function U . With every BED iteration, the utility function is maximized to find

the next sampling point.
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5.4.1 Utility

Suppose we have observed N input/output pairs D = {(xi, yi)}, i = 1, . . . , N , which have

been used to train a GP model. We then wish to make a new observation, but due to high

sampling costs, we wish to make an informative decision and observe the (xN+1, yN+1) that

is most likely to reduce the predictive uncertainty of the model.

Intuitively, the computation of the utility is as follows: we define a test utility input Xu that

is believed to be representative of the input space, and it could be, for example, a set of

grid points spanning the input domain. Then, we compute the posterior covariance Σu of

the model evaluated at each point in Xu. For some arbitrary new input x, we temporarily

augment the model to include additional training data at x, Daug ← D ∪ {(x, µ)}, where µ

is the predictive mean calculated according to Equation 5.16. The augmented model is used

to reevaluate the posterior covariance Σaug
u at each point in Xu. By comparing Σu and Σaug

u ,

we can estimate the relative loss in the predictive uncertainty of the model.

Many quantities could be used to characterize the predictive uncertainty, such as:

• Determinant: Considers the determinant of the posterior covariance matrix, which

is correlated to the error ellipsoid of the model.

• Trace: Considers the trace of the posterior covariance matrix, which quantifies the

net variance of the model.

• Maximum variance: Considers the maximum entry in the diagonal of the predictive

covariance matrix, which quantifies the maximum variance of the model.

In our studies, we find that using the trace is a good and cost-efficient way to reduce the

predictive variance of the model, thus reducing the overall uncertainty. In addition, we find
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the trace more numerically stable than the determinant, which can tend to zero when the

input variables are strongly correlated.

Ideally, the trace of Σaug
u should be smaller than the trace of Σu. With this in mind, we

define the utility as

U(x,D, Xu) ≡ 1− Tr(Σaug
u )/Tr(Σu). (5.26)

The pseudocode of the utility function is shown in Algorithm 1. We note that we could

alternatively define the utility as simply the negative of Σaug
u with the same effect, but we

prefer the form above as it provides a better sense of the relative loss in the variance of the

model.

Algorithm 1 Utility function (U)

Input: (x,D, Xu)
Evaluate Σu at every point in Xu according to Equation 5.17.
Evaluate µ at x according to Equation 5.16.
Temporarily augment the training dataset D:
Daug ← D ∪ {(x, µ)}.

Evaluate Σaug
u at every point in Xu according to Equation 5.17.

return 1− Tr(Σaug
u )/Tr(Σu).

5.4.2 Choice of Utility Input

A key choice in our BED strategy is the choice of utility input, Xu. Ideally, evaluating the

posterior covariance at the utility input should provide a sense of the uncertainty of the

model’s predictions over the input space, and thus high-resolution uniform grids are good

candidates for Xu. However, this choice has two disadvantages: first, evaluating the model

at each grid point in Xu for every BED iteration can become expensive, particularly for

models of high dimensionality. Second, the BED could overtrain on Xu by choosing samples
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that are most likely to reduce the uncertainty near the chosen grid instead of exploring the

full input space.

To offset the issues mentioned above, we use uniform grids for Xu, but with added regular-

ization. After every BED iteration, we perturb Xu by adding Gaussian noise with standard

deviation of magnitude γ2. Choosing an adequate γ2 parameter may prevent the BED

from overtraining on Xu. In addition, this strategy may result in cheaper BED evaluations

since it allows us to choose grids with lower resolution while still making the BED strategy

exploratory enough to span the input space over multiple iterations.

5.4.3 Updating the Beliefs About the Model

Once the utility function has been maximized, the location of the new observation is selected:

xN+1 = argmax
x∈X

U(x,D, Xu). (5.27)

We then sample yN+1 and recondition the GP model with the updated set of training ob-

servations, D ← D ∪ {(xN+1, yN+1)}. This process is repeated until a stopping criterion is

reached.
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5.5 Simple 1D Toy Model

In this section, we test the GP regression and BED strategy on a simple 1D toy model that

is described by the following sinusoidal dynamical system with scalar input x and output y:

y = x cos(x), (5.28)

dy

dx
= cos(x)− x sin(x), (5.29)

The function (y) and derivative ( dy
dx
) observations are shown in Fig. 5.3.
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Figure 5.3: Function output (y) and and derivative ( dy
dx
) of the simple 1D toy model for

x ∈ [−10, 10].

5.5.1 Gaussian Process Regression

We sample the system at four random points within x ∈ [−10, 10]. The four observations are

used to train regular and derivative noise-free GP models with hyperparameters α2 = 1 and

ℓ2 = 1. The models are tested on 100 points uniformly distributed within the same range.

The mean prediction (µtest) and uncertainty bands are shown in Fig. 5.4.

The regular and derivative GP models reveal different predictions even when trained on the

same observations. With the help of the gradients, the derivative GP is able to predict the
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Figure 5.4: Panel (a) shows the four observations (red dots) used to train the regular GP
model, µtest (blue line), and confidence band (light blue area), together with three functions
sampled from the posterior (gray dotted lines). Similarly, panel (b) shows the predictions of
the derivative GP model using the same four observations but augmented by their gradients
(red tangent segments).

turning points near the training observations, while the regular GP fails to capture most

turning points, as well as the inflection point at x = 0.

5.5.2 Bayesian Experimental Design

We use the BED strategy to sample 20 additional observations. For the choice of utility

input, we select the same input as the test set, 100 points uniformly distributed between

x ∈ [−10, 10]. A visualization of the evolution of the GP models for the first three BED

iterations is shown in Fig. 5.5. With every iteration, the utility is maximized and a new

training observation is selected. As we condition the models to include the latest observation,

their predictions resemble more and more the function shown in Fig. 5.3 while the uncertainty

band decreases in area.

In total, 20 sequential BED iterations are performed. After every iteration, we update the

predictive mean (µtest) and the predictive covariance (Σtest). The predictive mean is used

to calculate the mean-squared-error (MSE) of the models, and the trace of the covariance

(Tr(Σtest)) is used as a measure of the uncertainty of the predictions. Lower Tr(Σtest) values
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Figure 5.5: First three BED iterations of the regular (a) derivative (b) GP models. The
panels show the initial observations (red dots), the observations selected by the BED (orange
dots), µtest (blue line), and the uncertainty band (light blue area). Also shown are the utility
function (green line) and the location of the next observation (dotted vertical line), which is
selected by maximizing the utility.

84



suggest lower predictive uncertainty. To test the sensitivity of the BED to initial random

conditions, we run the BED ten times using different initial random seeds. The results are

shown in Fig. 5.6.
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Figure 5.6: MSE and Tr(Σtest) after each of the 20 BED iterations. The models are tested on
100 points uniformly distributed between x ∈ [−10, 10]. The solid lines represent the mean
values of 10 runs of the BED strategy with different initial random seeds and the shaded
areas represent the standard deviation.

The derivative GP has the edge over the regular GP, resulting in lower MSE and Tr(Σtest)

values, corroborating the power of including derivative information. The BED strategy does

a good job at decreasing the overall uncertainty of the models, as seen by the monotonic

decrease in Tr(Σtest).

5.6 High-Energy Physics: 2D Efficiency Estimation

In this section, we apply the GP regression and BED strategy to experiments in high-energy

physics. We focus on estimating the efficiency (ϵ) as a function of two jet energy scales.

Efficiency often plays an important role in estimating systematic uncertainties (Equation 5.2)

and having a strategy to accurately estimate it based on limited samples can be a powerful

tool in high-energy physics experiments.
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The dataset consists of 30K events with three jets each. The jets are arranged in descending

pT order, with j1 corresponding to the hardest jet in an event, followed by j2 and j3. The

pT distribution of the two leading jets is shown in Fig. 5.7.
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Figure 5.7: Distribution of the transverse momentum of j1 (pT1) and j2 (pT2).

We estimate the efficiency as a function of the following nuisance parameters:

• ν1: The jet energy scale of the leading jet, j1.

• ν2,3: The jet energy scale of the two softer jets, j2 and j3.

And the following pT-based selection criteria:

pT1

ν1
> 200 GeV,

pT2

ν2,3
< 200 GeV,

(5.30)

where pT1 and pT2 are the nominal transverse momentum of j1 and j2, respectively. Once

the events have been selected according to the selection criteria, we calculate the efficiency

(ϵ) of events with missing transverse energy (Emiss
T ) of less than 50 GeV. The calculations of
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Emiss
T and ϵ can be summarized as

Emiss
T (ν1, ν2,3) =

√√√√( ∑
i=1,2,3

pTix

νi

)2

+

( ∑
i=1,2,3

pTiy

νi

)2

, (5.31)

ϵ(ν1, ν2,3) =
NEmiss

T <50GeV

Npass(ν1, ν2,3)
, (5.32)

where ν2,3 = ν2 = ν3, Npass(ν1, ν2,3) is the number of events that satisfy the selection criteria

in Equation 5.30, and NEmiss
T <50GeV is the number of events with Emiss

T (ν1, ν2,3) < 50 GeV.

For reference, Fig. 5.8 shows the efficiency for ν1, ν2,3 ∈ [0.5, 1.5] in 25× 25 intervals of size

0.4× 0.4. The efficiency has been normalized by the central value ϵ(1, 1). The values shown

in Fig. 5.8 are used as the ground truth to test the models employed throughout this section.
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Figure 5.8: Efficiency as a function of the jet energy scales, normalized by ϵ(1, 1).

Directly evaluating the efficiency can be an expensive task, particularly when it involves

datasets that are large in size and dimensionality. In such cases, simple sampling tech-

niques are often employed to approximate the efficiency. These techniques often assume

that efficiency can be factorized in terms of the nuisance parameters. As an example of such

techniques, we consider the following regression, which we call the on-axis regression (OAR):

ϵ(ν1, ν2,3)OAR
∼= ϵ(ν1, 1)× ϵ(1, ν2,3). (5.33)
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The idea behind the on-axis regression is to sample the efficiency along the central axes of

the input space, which in this case correspond to ν1, ν2,3 = 1. These samples are then used to

estimate the rest of the efficiency by assuming that the off-axis values can be approximated

by the product of the corresponding on-axis values.

To implement the on-axis regression, we sample 49 on-axis observations (24 along each

axis plus the central value), which are used to calculate the off-axis efficiency according to

Equation 5.33. The results are shown in Fig. 5.9. The on-axis regression is significantly

cheaper than evaluating the efficiency directly at every input location, but the performance

is poor as it fails to capture correlations between the off-axis variables. For example, Fig. 5.8

shows that the highest efficiency values are concentrated near the diagonal starting from the

top left corner. The on-axis regression fails to predict the high efficiency in the diagonal

correctly. Instead, it predicts the center of the input space to be the area with the highest

efficiency.
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Figure 5.9: Prediction (left) of the normalized efficiency by on-axis regression, and the
absolute difference (right) between ground truth and prediction. The red dots represent the
samples used in the on-axis regression.
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5.6.1 Gaussian Process Regression

As an alternative, we approximate the efficiency by GP regression. Like in the on-axis

regression, we begin by sampling the efficiency along the ν1, ν2,3 = 1 axes. To test the

predictive power of the GPs, we only sample five observations (two along each axis plus the

central value):

(ν1, ν2,3) =(0.7, 1.0), (1.0, 1.0), (1.3, 1.0), (1.0, 0.7), (1.0, 1.3).

These five samples are used to condition a regular GP model with hyperparameters α2 = 0.1,

ℓ2 = 0.252, and σ2 = 1e−3. The hyperparameters are selected by grid search. The results are

shown in Fig. 5.10a. The prediction is similar to that of the on-axis regression. Both predict

higher efficiencies near the center of the grid and have the highest error along the diagonal.

We also condition a derivative GP model using the same five training samples. For con-

sistency, we use the same hyperparameters used in the regular GP model, but we add a

white noise with variance σ2 = 1e−1 to the derivative terms. To obtain the gradients of the

efficiency with respect to ν1 and ν2,3, we replaced the inequalities in Equations 5.30 and 5.32

with sigmoid functions, which are shifted to match the 200 GeV threshold (c = 200) and

scaled by | a |= 1/10 to smooth out the gradients. The sign of a is determined by the sign of

the statistical thresholds and its magnitude by a grid search. We find | a |= 1/10 to provide

a good trade-off between the smoothness and fidelity of the sigmoids when approximating

the cuts. The results are shown in Fig. 5.10b. The derivative GP does surprisingly well

compared to the regular GP and the on-axis regression. With only five samples, it captures

the general trend along the diagonal.
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Figure 5.10: Prediction (left), standard deviation (middle), and the absolute difference
(right) between ground truth and prediction by the specified GP model. The red dots
represent the samples used to train the models.

5.6.2 Bayesian Experimental Design

We use the BED strategy to obtain 44 additional samples for a total of 49, the same number

sampled in the on-axis regression. We consider the following options for choice of utility

input: a 25 × 25 with γ2 = 1/125, a 10 × 10 grid with γ2 = 1/50, and a 5 × 5 grid with

γ2 = 1/10. Larger γ2 values are necessary for the lower-resolution grids to encourage more

explorative grid perturbations. As an example, we illustrate the 5×5 and 10×10 grids after

two sample BED iterations in Fig. 5.11.

After every iteration, we update the predictive mean (µtest) and covariance (Σtest). The

MSE and Tr(Σtest) results of the various choices of utility input are shown in Fig. 5.12. We

observe a trade-off between the grid size and the efficacy of the BED strategy. This trade-off,
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Figure 5.11: The panels illustrate two choices of utility input. The left images show the
grids before regularization. The two right-most images show the grids after regularization
by adding Gaussian noise N (0, γ2). The grids are perturbed after every BED iteration. The
color scale of the jet efficiency shown in the background is dimmed down for clarity.

however, is only marginal; the 5× 5 and 10× 10 grids are roughly equivalent to the 25× 25

grid and significantly cheaper to evaluate.

We compare the results of the regular and derivative GP models to those of the on-axis

regression in Fig. 5.13. For simplicity, we only show the results with the 10× 10 grid choice

of utility input, but they generalize to the other choices. Like in the toy 1D model, the

derivative GP has the edge over the regular GP with lower MSE and Tr(Σtest) values. The

error of the on-axis regression is initially comparable to that of the regular GP and almost

twice as large as that of the derivative GP. As we add more training observations to the GP

models, both the MSE and Tr(Σtest) values of the models quickly diminish. A visualization

of the evolution of the GP models for the first three BED iterations is shown in Fig. 5.14.
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Figure 5.12: MSE and Tr(Σtest) of the regular and derivative GP model after each of the 44
BED iterations for the various choices of utility input. The models are tested on a 25× 25
grid uniformly distributed between ν1, ν2,3 ∈ [0.5, 1.5]. The solid lines represent the mean
values of 10 BED runs with different initial random seeds and the shaded areas the standard
deviation.
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Figure 5.13: Comparison of the MSE and Tr(Σtest) of the various models. The models are
tested on a 25 × 25 grid uniformly distributed between ν1, ν2,3 ∈ [0.5, 1.5]. The solid lines
represent the mean values of 10 BED runs with different initial random seeds and the shaded
areas the standard deviation.
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Figure 5.14: Prediction (first column), standard deviation (second column), utility (third
column), and the absolute difference (fourth column) between ground truth and prediction
by the specified GP model. The panels show the initial training samples (red dots), the
training samples selected by the BED (pink dots), and the location of the next sample
selected by the BED by maximizing the utility (pink cross).
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A critical question is whether the BED has successfully selected samples that efficiently

reduce Tr(Σtest). To answer this question, we compare the BED to random and grid sam-

pling. In the random sampling case, we sequentially add 44 uniformly distributed random

observations to the training set. In the grid sampling case, we sample squared grids of size

n × n, n = 2, . . . , 6, which are separately added to the initial five training samples. Unlike

the BED and random sampling strategies, the grid sampling strategy is not sequential. See

Appendix C for a sample visualization of the random and grid sampling strategies.

Figure 5.15 shows the MSE and Tr(Σtest) of the different sampling strategies. Random sam-

pling performs the worst with the highest overall MSE and Tr(Σtest) values. Grid sampling

performs better but falls behind the BED in the first couple of iterations. The BED has the

lowest overall Tr(Σtest) values, regardless of the choice of utility input, suggesting that the

BED sampling strategy has selected samples that efficiently reduced Tr(Σtest) in both the

regular and derivative GP cases.

5.7 High-Energy Physics: 4D Efficiency Estimation

Lastly, we increase the dimensionality of the efficiency by considering four jet energy scales,

which are dependent on the pseudorapidity of the jets, and roughly correspond to the central

and outer calorimeter regions:

• νcentral
1 : The jet energy scale of j1 with | η1 |< 1.

• νouter
1 : The jet energy scale of j1 with | η1 |≥ 1.

• νcentral
2,3 : The jet energy scale of j2 and j3 with |

∑
i=2,3

pTi ηi/
∑
i=2,3

pTi |< 1.

• νouter
2,3 : The jet energy scale of j2 and j3 with |

∑
i=2,3

pTi ηi/
∑
i=2,3

pTi |≥ 1.
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Figure 5.15: MSE and Tr(Σtest) after each iteration of the various sampling strategies. The
models are tested on a 25× 25 grid uniformly distributed between ν1, ν2,3 ∈ [0.5, 1.5]. In the
BED and random sampling cases, the solid lines represent the mean values of 10 sampling
runs using different initial random seeds and the shaded areas the standard deviation.

Where ηi is the pseudorapidity of ji. The distribution of the pseudorapidities is shown in

Fig. 5.16. For every event, either νcentral
1 or νouter

1 is selected as the jet energy scale of j1.

Likewise, either νcentral
2,3 or νouter

2,3 is selected as the jet energy scale of j2 and j3. The efficiency

is then calculated according to the procedure specified in Sec. 5.6 and normalized by the

central value ϵ(1, 1, 1, 1).
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Figure 5.16: Distribution of the pseudorapidity of j1, and the pT-weighted pseudorapidity
mean of j2 and j3.

Visualizing the efficiency as a function of the four jet energy scales is challenging due to

the high dimensionality of the input space. For illustration purposes, we show only a slice

of the efficiency space by plotting the efficiency as we vary νcentral
1 and νcentral

2,3 in the range

[0.5, 1.5] while we fix νouter
1 and νouter

2,3 to have a magnitude of 0.5. The selected slice is shown

in Fig. 5.17.
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Figure 5.17: Efficiency as νcentral
1 and νcentral

2,3 are varied in the range [0.5, 1.5] while
νouter
1 =νouter

2,3 = 0.5. The efficiency is normalized by ϵ(1, 1, 1, 1).

We first approximate the efficiency by on-axis regression. We sample a total of 97 on-axis

observations (24 along each central axis plus the central value) and use them to estimate the
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off-axis values according to

ϵ(νcentral
1 , νouter

1 , νcentral
2,3 , νouter

2,3 )OAR
∼=ϵ(νcentral

1 , 1, 1, 1)× ϵ(1, νouter
1 , 1, 1)×

ϵ(1, 1, νcentral
2,3 , 1)× ϵ(1, 1, 1, νouter

2,3 ).

(5.34)

Fig. 5.18 shows the results of the on-axis regression on the selected slice of the efficiency

space. The on-axis regression is cheap but performs poorly as it again fails to predict the

higher efficiency values along the diagonal.

0.5 1.0 1.5

νcentral
1

0.5

1.0

1.5

ν
ce

n
tr

al
2,

3

Pred

0.5 1.0 1.5

νcentral
1

Diff

0.05

0.10

0.15

0.1

0.2

Figure 5.18: Prediction (left) of the selected slice of the efficiency space by on-axis regression
and the absolute difference (right) between ground truth and prediction. The red dots
represent the samples used in the on-axis regression.

5.7.1 Gaussian Process Regression

As an alternative, we approximate the efficiency by GP regression. We sample nine observa-

tions along the central axes (two along each axis plus the central value). Like in the 2D case,

the initial observations are on-axis at the input values 0.7, 1, 1.3. These nine observations

are used to condition a regular and a derivative GP model with the same hyperparameters

used in the 2D case. To obtain the gradients with respect to all four jet energy scales, we

replace the pseudorapidity-based cuts with sigmoid functions, which are shifted to match

the | η |< 1 threshold (c = 1) and scaled by | a |= 1/100. We also scale the sigmoids that
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replace the pT-cut in eq. 5.30 by | a |= 1/100. The change the a scaling is necessary to

compensate for the additional sigmoids. The variance of the Gaussian noise added to the

derivative terms is increased to σ2 = 10, which we have selected by grid search. The results

are shown in Fig. 5.19.
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Figure 5.19: Prediction (left) of the selected slice of the efficiency space, standard deviation
(middle), and the absolute difference (right) between ground truth and prediction by the
specified GP model. The red dots represent the samples used to train the models.

5.7.2 Bayesian Experimental Design

We use the BED strategy to sample 88 additional observations for a total of 97, the same

number sampled in the on-axis regression. For the utility input Xu, we consider 4D uniform

grids of size 104, 54, and 34 uniformly distributed within the input space with γ2 = 1/50, 1/10,
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and 1/5, respectively. Higher resolution grids are not considered due to high computational

costs. The BED results with the various choices of utility input are shown in Fig. 5.20. The

trade-off between grid size and the efficacy of the BED strategy is more noticeable than

in the 2D case. Still, we note how even the cheapest, lowest-resolution 34 grid performs

relatively well.
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Figure 5.20: MSE and Tr(Σtest) of the regular and derivative GP models after each of the
88 BED iterations for the various choices of utility input. The models are tested on a 254

grid uniformly distributed within the input space. The solid lines represent the mean values
of five BED runs with different initial random seeds and the shaded areas the standard
deviation.
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Figure 5.21: Comparison of the MSE and Tr(Σtest) of the various models. The models are
tested on a 254 grid uniformly distributed within the input space. The solid lines represent
the mean values of five BED runs with different initial random seeds and the shaded areas
the standard deviation

We compare the results of the regular and derivative GP models to those of the on-axis

regression in Fig. 5.21. For simplicity, we only compare the BED results with the 54 grid

choice of utility input, but they generalize to the other choices. The derivative GP once more

outperforms the regular GP, resulting in lower MSE and Tr(Σtest) values. Unlike the 1D toy

and 2D high-energy physics cases, the edge that the derivative GP has over the regular GP is

less pronounced. This is because the derivative information is less accurate as the gradients

are approximated by multiple sigmoid functions. Both GP models greatly outperform the

on-axis regression with lower MSE values. With only nine samples, the MSE of the GP

models is lower than that of the on-axis regression. These results emphasize the potential

of GP models for learning the dependence of experimental observables on multiple nuisance

parameters.

To answer the important question of whether the BED has selected samples that efficiently

reduce Tr(Σtest), we again compare the BED results to random and grid sampling. In the

random sampling case, we sequentially add 88 uniformly distributed random observations to
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the training set. In the grid sampling case, we sample 4D uniform grids of size 24 and 34,

which are separately added to the training set. The results are shown in Fig. 5.22.
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Figure 5.22: MSE and Tr(Σtest) after each iteration of the various sampling strategies. The
models are tested on a 254 grid uniformly distributed within the input space. In the BED
and random sampling cases, the solid lines represent the mean values of five sampling runs
using different initial random seeds and the shaded areas the standard deviation.

The results show that the BED has a clear advantage over the other sampling methods.

This advantage is more evident in higher dimensions, where an efficient exploration of the

input space is key. The grid sampling strategy performs the worst. While uniform grids
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are a common sampling strategy, they are rarely optimal in higher dimensions due to their

exponential growth with the dimensionality of the input space. Random sampling results in

lower Tr(Σtest) values than grid sampling, but it has large variations in the MSE. Overall,

the BED strategy has the lowest MSE and Tr(Σtest), regardless of the choice of utility input

or GP model.

5.8 Discussion

Nuisance parameters, which can be viewed as sources of systematic uncertainty, play a

crucial role in high-precision measurements at the LHC, where their accurate estimation

can be a pivotal factor in a potential new discovery. However, rigorous assessments of

the impact of nuisance parameters on the experimental response are generally intractable.

Experiments are often marred by multiple sources of systematic uncertainty, which create a

high-dimensional parameter space that must be characterized. Several techniques have been

employed for assessing the impact of nuisance parameters on the experimental observables,

but most of them rely on simplifying assumptions, such as the factorization of the underlying

correlations of the parameters. This approach is typically extended to assume the impact

of the parameters on the observables also factorizes. In this chapter, we argue that such

assumptions are not always reliable.

We propose a more accurate method for assessing the impact of multiple nuisance parame-

ters on observables of the detector response without assuming factorization. Our approach

uses GP regression to learn a representation of observables as a function of the nuisance

parameters. If the analytical forms of the observables are known, we take advantage of this

and use their gradients to enhance the GP regression. We test our approach by estimating

the efficiency of high-energy physics events as a function of multiple (two and four) nuisance

parameters.
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In our examples, the GP regression outperforms the factorized approach even when condi-

tioned on significantly fewer samples. However, in cases where the impact of the nuisance

parameters may be more complicated to learn, more samples may be needed to condition

the GP models. In such cases, having an efficient sampling strategy is essential. We use a

Bayesian sampling strategy to efficiently sample the observable space and select the samples

that are likely to reduce the predictive uncertainty of the GP models. We show that the

Bayesian sampling approach is more efficient than random or grid sampling, which are rarely

optimal in high-dimensional spaces.
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Chapter 6

Conclusion

Recent advances in machine learning for jet classification have focused on deep, low-level

networks. These networks learn directly from the jet constituents and, thus, have access to

information at the lowest level of abstraction. It comes as no surprise that they currently

provide state-of-the-art results in various jet classification tasks [46,64–67]. But a significant

drawback of these networks is the lower interpretability of their results, as it is not clear

which specific functions of their complex input they have learned.

On the other hand, high-level networks that learn from jet observables are generally easier

to interpret since physicists can control the functional forms of their inputs. The higher

interpretability generally comes at the cost of decreased performance. This is because it can

be challenging to capture all relevant information in the jet constituents into a finite set of

observables.

The work presented in this dissertation has explored the performance and learning strategies

of low- and high-level neural networks in the context of multi-prong jet classification. While

the classification of jets with up to four hard sub-jets has been widely studied in the litera-

ture [54–60, 73–75], we ask whether these results could be extended to jets with additional
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sub-jets. To our knowledge, this is the first study exploring the classification strategies of

neural networks on jets with up to eight hard sub-jets.

In Chapter 3, we have compared the results of two mainstream low-level networks (a PFN [48]

and a Transformer [45]) to networks trained on traditional jet observables (N -subjettiness [92]

and EFPs [4]). We find a small but non-negligible gap in performance between the low- and

high-level networks, suggesting that the traditional features fail to capture all information

used by the low-level networks.

In Chapter 4, we have introduced a novel family of jet observables, Jet Rotational Metrics

(JRMs), designed to capture features of the discrete rotational symmetry of the jets. By

supplementing the traditional observables with IRC-safe JRMs, we are able to narrow the

gap between low- and high-level networks significantly. These results are impressive, indi-

cating that the JRMs are able to capture unique information not captured by the traditional

observables, and that this information is highly relevant for the classification task.

We bridge the gap between low- and high-level networks by also including IRC-unsafe JRMs.

IRC-unsafe information is not calculable in the perturbative QCD regime and, thus, warrants

careful consideration when accounting for the statistical uncertainties in the data on which

the models are trained. Our results suggest that the learning strategies of low-level networks

may rely, in part, on IRC-unsafe information. Based on our results, we emphasize that

physicists should be more careful at the prospect of end-to-end low-level classifiers, where

the nature of the information learned by the networks is not always known.

In Chapter 5, we change gears and study another important aspect of physics studies at

the LHC: the estimation of systematic uncertainties. Directly evaluating detector response

observables, such as the event efficiency, is generally a computationally expensive task due

to the large number of parameters that may impact the experimental response. Some pa-

rameters can be estimated from theoretical predictions, but others must be inferred from
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experimental data. The latter are referred to as nuisance parameters and are often treated

as sources of systematic uncertainty. A typical approach is to assume that the nuisance

parameters factorize. This approach is frequently extended to assume the impact of the in-

dividual nuisance parameters on the detector response also factorizes. While this approach

generally decreases the computational costs significantly, we show that it is not always valid,

particularly when the observables depend on multiple nuisance parameters, which create a

high-dimensional space that must be characterized.

We introduce a technique to calculate the impact of the nuisance parameters on the detector

response without assuming factorization. Our approach uses Gaussian process models to

regress detector observables as functions of the nuisance parameters. When the functional

forms of the observables are known, we calculate their gradients and use them to enhance

the regressions. The results greatly outperform the factorized approach. In addition, we pro-

vide a technique to efficiently explore the space of the experimental response, thus reducing

the predictive uncertainty of the Gaussian process models by using Bayesian Experimental

Design. We show that this technique is more efficient than random and grid sampling, partic-

ularly when dealing with multiple nuisance parameters. Our approach shows great potential

for the accurate and efficient analysis of systematic uncertainties in physics experiments,

which deserve careful examination lest they mimic or obscure discoveries.
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Appendix A

Multi-Prong Jet Classification

A.1 Technical Details of the Classifiers

In this appendix, we describe the details of the machine learning models and network ar-

chitectures. The Transformer and PFN models are trained on the three-momenta of the

simulated jet constituents, which are preprocessed normalizing the jet pT to unity and sub-

tracting the pT-weighted angular means, as described in Section 3.2. The dense networks

are trained on high-level variables, which are strict functions of the preprocessed constituent

three-momenta. This ensures that the dense networks have access to only a subset of the

information available in the low-level jet constituents.

The 10-fold average accuracy of the models and the number of parameters are summarized in

Table A.1. Common properties across all networks include ReLu [36] activation functions

for all hidden layers and 7-dimensional softmax output functions to classify between all

seven sub-jet classes. All networks are trained using the Adam [118] optimizer for up to

1000 epochs and with a batch size of 256.
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Table A.1: Summary of the machine learning models used in the classification task. The
table shows a brief description of each of the models, as well as the number of trainable
parameters and the accuracy measured using 10-fold cross-validation.

Model Description No. of Params. Accuracy

Transformer
Transformer Network trained on
the jet constituents.

1,388,807 91.27 ± 0.31 %

PFN
Particle-Flow Network trained on
the jet constituents.

1,205,895 89.19 ± 0.23 %

DNN136

Fully-connected neural network
trained on the 135 N-subjettiness
observables and the norm. jet mass.

2,732,519 86.90 ± 0.20 %

DNN299

Fully-connected neural network
trained on the 135 N-subjettiness,
observables the normalized jet mass,
and the full set of EFP observables.

2,862,919 89.23 ± 0.26 %

DNN31

Fully-connected neural network
trained on the 31 LASSO-selected
observables.

2,622,663 89.11 ± 0.32 %

All networks were optimized by a hyperparameter search using the Sherpa [119] hyperpa-

rameter optimization library while ensuring that the range of trainable parameters in the op-

timization is roughly the same for all networks.1 The hyperparameters of the dense networks

were optimized in the ranges: intermediate dimension [600, 800], dropout ratio [0.3, 0.4], and

learning rate [10−3, 10−4]. The hyperparameters of the PFN were optimized in the ranges:

ϕ-module dimension [128, 1024], F -module dimension [128, 2014], F -module drop out rate

[0.1, 0.2], and learning rate [10−3, 10−4]. The hyperparameters of the Transformer were op-

timized in the ranges: hidden layer size [256, 512], number of layers [4, 8], and learning rate

[10−3, 10−4].

Training of the Transformer and all dense networks was implemented in PyTorch [120] using

NVIDIA V100 GPUs. Training of the PFN was implemented in Keras [121] with Tensor-

flow [122] backend using an NVIDIA RTX 2080 Ti GPU. The accuracy of the networks was

1PFN, Transformers, and DNN136 models with a larger number of parameters were also considered,
resulting in slightly better accuracy values, but these networks were excluded from the study as their increased
performances were only marginal when compared to the large computational cost of training the larger
models.
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checked to be insensitive to the deep learning library and GPU. Using the NVIDIA RTX

2080 Ti GPU as a benchmark, the average inference time for 256 samples was calculated

to be 2.46±0.12 ms for the Transformer; 2.90±0.36 ms for the PFN; 0.58±0.01 ms for the

DNN136; 0.59±0.02 ms for the DNN299; and 0.60±0.03 ms for the DNN31. We note that we

did not perform any inference optimization. The inference times are provided merely to give

a sense of the scale of the latency of each algorithm.
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Appendix B

Jet Rotational Metrics

B.1 Further Discussion on the Choice of Jn

We mention in Sec. 4.3 how, ideally, the JRMs would measure the distance between a jet

J and its closest Cn-symmetric element. In practice, however, finding this element would

be computationally prohibitive due to the infinite possible ways to construct Cn-symmetric

elements, all with different numbers of constituents, radii, and orientations. To simplify this

task, we developed a recipe to construct the reference jet by (1) considering n equidistant

points centered at (η, ϕ) = (0, 0), (2) placing them at a radius equal to the pT-weighted

constituent mean radius, and (3) rotating points to minimize their distance to J . The final

arrangement of the points represents the constituents in the reference jet, which we call Jn.

In this appendix, we test whether the aforementioned recipe for Jn results in good discrim-

inants or if different choices yield features with better classification performances. We test

step (2) by comparing the standard JRMs to similar features where we set the radius equal

to the jet radius. The results are shown in the second to last row of Table B.1. These new
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features achieve an overall accuracy of 87.83± 0.47%, which is roughly 1.5% less than that

of the standard JRMs.

We also test step (3) by comparing the standard JRMs to similar features where the polygon

was not rotated to minimize its distance to the jet. The results are shown in the last row of

Table B.1. These new features achieve an overall accuracy of 87.81 ± 0.23%, which is also

roughly 1.5% less than that of the standard JRMs.

The results suggest that the recipe used to construct Jn results in good jet substructure

discriminants. We note, however, that while this recipe greatly simplifies the search for

Cn-symmetric elements, it is not computationally trivial since it requires the calculation of

the mean constituent radius and angular optimization. We show that when these steps are

omitted, some information is lost, resulting in lower accuracies, but even then, the simplified

features achieve good classification performances.

Table B.1: Mean 10-fold prediction accuracy and statistical uncertainty of DNNs operating
on the specified input features.

Input Overall Acc. (%)
Standard JRM 89.30 ± 0.26
JRM modified so the radius of the polygon is at the jet radius 87.83 ± 0.47
JRM without the θ optimization 87.81 ± 0.23
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B.2 Per-Class Accuracy

Here, we show the results of the various networks on each class of the multi-prong classi-

fication dataset. The results of the dense networks operating on IRC-safe observables are

shown in Table B.2. The results of the networks operating on IRC-agnostic input are shown

in Table B.3.

Table B.2: Mean 10-fold class prediction accuracy and statistical uncertainty of the DNNs
operating on the specified IRC-safe observables. See Table 4.1 for the overall accuracy values.

Net. Input
Acc. per Class (%)

N = 1 N = 2 N = 3 N = 4b N = 4q N = 6 N = 8

DNN JRMs 92.3±0.8 79.3±1.3 78.6±1.0 76.6±1.1 97.1±0.5 91.1±0.6 83.2±1.0

DNN
N-subs,
EFPs 93.0±0.6 83.0±0.9 82.9±1.3 83.7±0.5 98.0±0.3 92.0±0.7 90.1±1.2

DNN
N-subs,
EFPs,
JRMs

94.6±0.5 85.5±1.1 85.2±0.8 85.1±1.3 98.5±0.2 94.7±0.6 91.4±0.8

Table B.3: Mean 10-fold class prediction accuracy and statistical uncertainty of the various
networks. The input to the PFN and Transformer is the constituents’ three-momentum,
which is zero-padded to have a uniform length of 230. See [5] for further details about the
PFN and Transformer networks. The full set of 30 JRMs is used as input to the DNN. See
Table 4.2 for the overall accuracy values.

Net. Input
Acc. per Class (%)

N = 1 N = 2 N = 3 N = 4b N = 4q N = 6 N = 8

DNN JRMs 96.0±0.6 86.6±1.1 84.2±0.5 80.1±0.9 98.2±0.3 93.4±0.7 88.4±1.0

DNN
N-subs,
EFPs,
JRMs

95.7±0.8 87.2±1.3 86.4±0.8 86.2±1.0 98.6±0.3 94.9±0.6 91.5±0.6

PFN Consts. 96.4±0.6 85.2±1.3 82.9±1.1 78.8±0.5 98.0±0.3 93.4±0.9 89.7±0.9
Trans. Consts. 96.0±0.5 88.1±1.2 86.7±1.1 84.6±1.2 98.5±0.3 94.0±1.1 91.1±1.2
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B.3 JRM Ratios

In this dissertation, we have used the high-level observables as input to dense networks, but

a common approach is to utilize their ratios in statistical-cut-based analyses. For example,

ratios of τN/τN−1 N-subjettiness observables have been used to classify jets with different

topologies [92, 123]. A jet that is very “N-subjetty” will show a relatively large difference

between the τN and τN−1 variables, which will be reflected in their ratio.

Because of the nature of JRMs, we do not expect ratios of JRMn/JRMn−1 to vary greatly

for large n. Useful ratios could be JRM3/JRM2, and between JRM3 and a larger n that

captures features of the isotropy of the jets, such as JRM8/JRM3. Distributions of such

ratios are shown in Fig. B.1. We do not perform an analysis using statistical cuts on the

ratios, but their distributions show a good degree of class separation.
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Figure B.1: Distributions of the selected JRM ratios.
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B.4 JRM Distributions

Here, we show the distributions of the 30 JRM observables used in the classification task.

The distributions are shown in Fig. B.2 and Fig. B.3.
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Figure B.2: Distributions of the JRMκ,β
n features with κ = 1

2
, and the specified n and β

parameters. The rest of the distributions are shown in Fig. B.3.
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Figure B.3: Distributions of the JRMκ,β
n features with κ = 1, and the specified n and β

parameters. The rest of the distributions are shown in Fig. B.2.
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Appendix C

Sampling Strategies

C.1 Random Sampling

Figure C.1 shows a sample visualization of the random sampling strategy mentioned in

Section 5.6. After every BED iteration, a random observation is added to the training set of

the GP models.

C.2 Grid Sampling

Figure C.2 shows a sample visualization of the grid sampling strategy mentioned in Sec-

tion 5.6. For every BED iteration, observations forming a uniform grids are individually

added to the training set of the GP models. The first iteration considers a grid of size 2× 2,

the second iteration considers a grid of size 3× 3, and so on.
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Figure C.1: Prediction (first column), standard deviation (second column), and the absolute
difference (third column) between ground truth and prediction by the regular GP model
as new observations (purple dots) are added to the training set according to the random
sampling strategy.
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Figure C.2: Prediction (first column), standard deviation (second column), and the absolute
difference (third column) between ground truth and prediction by the regular GP model as
new observations (purple dots) are added to the training set according to the grid sampling
strategy.
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