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Abstract

TENSOR METHODS FOR HIGH-DIMENSIONAL PARTIAL DIFFERENTIAL

EQUATIONS

by

Alec Dektor

The numerical simulation of high-dimensional partial differential equations (PDEs) is a chal-

lenging and important problem in science and engineering. Classical methods based on tensor

product representations are not viable in high-dimensions, as the number of degrees of freedom

grows exponentially fast with the problem dimension. In this dissertation we present low-rank

tensor methods for approximating high-dimensional PDEs, which have a number of degrees of

freedom and computational cost that grow linearly with the problem dimension. These methods

are based on projecting a given PDE onto a low-rank tensor manifold and then constructing an

approximate PDE solution as a path on the manifold. In order to control the accuracy of the low-

rank tensor approximation we present a rank-adaptive algorithm that can add or remove tensor

modes adaptively from the PDE solution during time integration. We also present a tensor rank

reduction method based on coordinate transformations that can greatly increase the efficiency

of high-dimensional tensor approximation algorithms. The idea is to determine a coordinate

transformation of a given functions domain so that the function in the new coordinate system

has smaller tensor rank. We demonstrate each of the presented low-rank tensor methods by

providing several numerical applications to multivariate functions and PDEs.
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Chapter 1

Introduction

High-dimensional partial differential equations (PDEs) arise in engineering, physi-

cal sciences and mathematics as elegant formulations of many important phenomena. Classi-

cal examples are equations involving probability density functions such as the Fokker-Plank

equation [91], the Liouville equation [112, 23], or the Boltzmann equation [17, 33]. Other

examples of high-dimensional PDEs can be obtained as finite-dimensional approximations of

functional differential equation [109, 111], such as the Hopf equation of turbulence [48, 49, 76]

the Schwinger-Dyson equation [50], or functional formulations of classical statistical dynamics

[74, 51, 52, 84]. Computing the solution to high-dimensional PDEs is a challenging problem

that requires approximating high-dimensional functions, i.e., the solution to the PDE, and then

developing appropriate numerical schemes to compute such functions accurately for a given

PDE. Classical numerical methods based on tensor product representations are not viable in

high-dimensions, as the number of degrees of freedom grows exponentially fast with the di-

mension. To address this problem there have been substantial research efforts in recent years
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on high-dimensional numerical approximation theory. Techniques such as sparse collocation

[15, 22, 9, 37, 79], high-dimensional model representations (HDMR) [67, 16, 8] and, more

recently, deep neural networks [86, 87, 114] and tensor methods [57, 7, 1, 43, 20, 64] were

proposed to mitigate the exponential growth of the degrees of freedom, the computational cost

and memory requirements.

In this dissertation we present methods based on tensor networks for solving high-

dimensional PDEs. A tensor network is a factorization of an entangled object such as a mul-

tivariate function or an operator, into a set of simpler objects (e.g., low-dimensional functions

or operators) which are amenable to efficient representation and computation. The process of

building a tensor network relies on a hierarchical decomposition of the entangled object, which,

can be visualized in terms of trees [105, 34, 7]. Such a decomposition is rooted in the spectral

theory for linear operators [56], and it opens the possibility to approximate high-dimensional

functions and compute the solution of high-dimensional PDEs at a cost that scales linearly

with respect to the dimension of the object and polynomially with respect to the tensor rank.

A key observation is that the collection of all tensors with a fixed rank possesses a smooth

manifold structure [105]. This observation gives simple geometric meaning to many opera-

tions involving tensors and can be exploited in the development of numerical algorithms. Using

this geometric structure we develop numerical integration schemes for computing solutions to

high-dimensional nonlinear initial/boundary value problems of the form

∂u(x, t)

∂t
= G(x, u(x, t)), u(x, 0) = u0(x). (1.1)

Here u : Ω × [0, T ] → R is a d-dimensional (time-dependent) scalar field defined on some

2



domain Ω ⊆ Rd and G is a nonlinear operator which may depend on the spatial variables, and

may incorporate boundary conditions. The storage and computational cost of these numerical

integration schemes scales linearly in the problem dimension d and polynomially in the tensor

rank, rendering them viable for high-dimensional problems.

This dissertation is organized as follows. In Chapter 2 we develop an approximation

theory for high-dimensional multivariate functions based on recursive application of spectral

decompositions. We focus specifically on the functional tensor train (FTT) format which pro-

vides a simple and effective ansatz for demonstrating low-rank tensor methods. We discuss the

geometric structure of FTT tensors which lays the theoretical foundation used in the subsequent

chapter to develop numerical integration schemes for PDEs. In Chapter 3 we develop numer-

ical integration schemes for initial/boundary value problems of the form (1.1). We focus on

two methods: dynamic approximation and step-truncation, and prove that these two method-

ologies are consistent with each other as the temporal step size is sent to zero. We also develop

a rank-adaptive criterion for tensor integration that allows us to efficiently control the error of

the low-rank approximation to the PDE solution. Numerical applications to various linear and

nonlinear PDEs are presented. In Chapter 4 we discuss rank reducing coordinate transforma-

tions, i.e., coordinate systems which allow us to represent multivariate functions with smaller

rank than the representation of the same function in Cartesian coordinates. In the case of linear

coordinate transformations we show that this idea gives rise to a class of functions called tensor

ridge functions. Then we develop an algorithm based on Riemannian gradient descent on matrix

manifolds to compute linear rank reducing coordinate transformations. Finally we demonstrate

the effectiveness of rank reducing coordinate transformations on a prototype function approxi-
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mation problem and various linear and nonlinear PDEs.
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Chapter 2

Low-rank tensor approximation of

high-dimensional functions

We begin by introducing a mathematical setting that yields collections of functions

amenable to low-rank tensor representations. Subsequently we present low-rank tensor ap-

proximation of multivariate functions, an effective ansatz for the numerical representation of

high-dimensional functions in separable Hilbert spaces.

2.1 Separable Hilbert space

Let Ω ⊆ Rd be a Cartesian product of d real intervals Ωi = [ai, bi]

Ω =
d

×
i=1

Ωi, (2.1)

µ a finite product measure on Ω

µ(x) =

d∏
i=1

µi(xi), (2.2)

5



Figure 2.1: Geometrical interpretation of the domain Ω as a hyper-cube or torus.

and

H(Ω) = L2
µ(Ω) (2.3)

the standard weighted Hilbert space1 of square–integrable functions on Ω. Geometrically the

domain Ω can be visualized as a hyper-cube or a high-dimensional torus (see Figure 2.1). It is

convenient to define the following partial Cartesian products

Ω≤i = Ω1 × · · · × Ωi, i = 1, . . . , d,

Ω>i = Ωi+1 × · · · × Ωd, i = 1, . . . , d− 1,

(2.4)

the corresponding partial products of measures

µ≤i = µ1 × · · · × µi, i = 1, . . . , d,

µ>i = µi+1 × · · · × µd, i = 1, . . . , d− 1,

(2.5)

and partial vectors

x≤i =

[
x1 · · · xi

]⊤
i = 1, . . . , d,

x>i =

[
xi+1 · · · xd

]⊤
i = 1, . . . , d.

(2.6)

1Note that the Hilbert space H in equation (2.3) can be equivalently chosen to be a Sobolev space W 2,p (see
[29] for details).
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The goal of low-rank tensors is to approximate high-dimensional (d >> 2) functions

u(x) ∈ H(Ω) at a reasonable computational cost. It is well-known that the Hilbert space H(Ω)

can be written as a tensor product of Hilbert spaces containing functions of one variable

H(Ω) = H(Ω1)⊗H(Ω2)⊗ · · · ⊗H(Ωd). (2.7)

Given bases {ψi(xi;αi)}∞αi=1 for eachH(Ωi) the tensor product basis {ψ1(x1;α1)⊗ψ2(x2;α2)⊗

· · · ⊗ψd(xd;αd)}∞α1,...,αd=1 can be constructed for H(Ω). Expressing a function u(x) ∈ H(Ω)

relative to the tensor product basis results in a series expansion of the form

u(x) =

∞∑
α1,...,αd=1

Aα1,...,αdψ1(x1;α1)⊗ ψ2(x2;α2)⊗ · · · ⊗ ψd(xd;αd). (2.8)

Truncating each summation appearing in infinite series (2.8) to a finite number of terms, r, we

obtain the approximation

u(x) ≈
r∑

α1,...,αd=1

Aα1,...,αdψ1(x1;α1)⊗ ψ2(x2;α2)⊗ · · · ⊗ ψd(xd;αd). (2.9)

Observe that the number of coefficients (or degrees of freedom) Aα1,...,αd in the preceding

approximation of u(x) is rd. Therefore the storage cost of approximations (2.9) constructed

from a tensor product basis grows exponentially as the number of dimensions d increases. To

illustrate the computational limitations of representing high-dimensional functions relative to a

tensor product basis, consider d = 8 and r = 30 in (2.9). The number of coefficients required

to store this approximation is rd = 6.56 × 1011, which, if stored in double precision floating

point format (IEEE 754, 64 bits/number), requires around 5 terabytes of memory.

Low-rank tensor formats are an alternative to the tensor product basis representation

of high-dimensional functions which do not suffer from exponential scaling of computational
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cost with the the number of dimensions d. Such tensor formats are obtained by recursively

applying spectral decompositions (also referred to as Schmidt decompositions, bi-orthogonal

decompositions, or Karhunen-Loeve expansions depending on the application) to the function

u(x). One instance of such a spectral decomposition is realized by selecting a partition of the

relevant variables, e.g.,

{x1, x2, . . . , xd} = {x1, x2, . . . , xj} ∪ {xj+1, . . . , xd}, 1 ≤ j ≤ d− 1, (2.10)

and considering the linear operator

U : H(Ω≤j) → H(Ω>j)

g(x≤j) 7→
∫
Ω≤j

u(x)g(x≤j)dµ≤j(x≤j)

(2.11)

with formal adjoint

U∗ : H(Ω>j) → H(Ω≤j)

h(x>j) 7→
∫
Ω>j

u(x)h(x>j)dµ>j(x>j).

(2.12)

The operators U,U∗ are linear, bounded, and compact since u is a Hilbert-Schmidt kernel. The

composition operators

U∗U : H(Ω≤i) → H(Ω≤i),

UU∗ : H(Ω>i) → H(Ω>i),

(2.13)

are self-adjoint compact operators that share the same spectra {σ(α)}α∈N which is countable

with one accumulation point at 0 and satisfies

∑
α∈N

σ(α) <∞. (2.14)
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The eigenfunctions {ψ≤i(x≤i;α)}α∈N (resp. {ψ>i(x>i;α)}α∈N) of U∗U (resp. UU∗) form

an orthonormal basis for H(Ω≤i) (resp. H(Ω>i)). It is a classical result of functional analysis2

that u(x) admits an expansion relative to the orthonormal bases of eigenfunctions []

u(x) =
∞∑
α=1

√
σ(α)ψ≤i(x≤i;α)ψ>i(x>i;α). (2.15)

2.2 Tensor formats

Tensor formats are obtained by sequentially applying the spectral decomposition (2.15)

to decompose a function u(x) ∈ H(Ω) into a series expansion consisting of functions depend-

ing on a fewer number of variables than u(x). The selection of variable partitions at each step

of the spectral decomposition sequence defines the structure of the series expansion for u(x)

and is called a tensor format. To demonstrate the idea of applying sequences of Schmidt de-

compositions, let us consider a three dimensional function u(x1, x2, x3). First we partition the

variables {x1, x2, x3} as {x1} ∪ {x2, x3} and use the spectral decomposition to write

u(x1, x2, x3) =
∞∑

α1=1

√
σ1(α1)ψ1(x1;α1)ψ23(α1;x2, x3). (2.16)

Since ψ23(x2, x3;α1) belongs to the Hilbert space L2
µ≤2

(Ω≤2) for each α1, we can partition the

variables {x2, x3} as {x2} ∪ {x3} and apply the spectral decomposition to ψ23 for each α1

ψ23(x2, x3;α1) =
∞∑

α2=1

√
σ2(α2)φ2(x2;α1, α2)φ3(x3;α1, α2), α1 = 1, 2, . . . . (2.17)

2This spectral decomposition is a direct generalization of the singular value decomposition for matrices to sep-
arable Hilbert spaces. Indeed, a m × n real matrix A is a linear map from Rn → Rm, its adjoint, A∗, is a
linear map Rm → Rn. The singular vectors/values of A are the eigenvectors/eigenvalues of the composition maps
A∗A : Rn → Rn and AA∗ : Rm → Rm.
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Figure 2.2: Two possible tensor formats for a four dimensional function. A balanced binary tree
(left) and a unbalanced or tensor train binary tree (right).

Now we can represent u(x) relative to the functions ψ1, φ2, φ3 which depend only on 1 contin-

uous variable

u(x) =
∞∑

α1,α2=1

√
σ1(α1)σ2(α2)ψ1(x1;α1)φ2(x2;α1, α2)φ3(x3;α1, α2). (2.18)

Comparing this expansion with the expansion in terms of tensor product basis functions ((2.8)

with d = 3) we notice that both expansions are given in terms of univariate functions, however,

(2.18) uses only two summations while (2.8) uses three summations. The construction of the

expansion (2.18) required two spectral decompositions in sequence. Of course other variable

partitions for each of these two spectral decomposition are possible, e.g., first using the par-

tition {x1, x2, x3} = {x1, x2} ∪ {x3} and then using the partition {x1, x2} = {x1} ∪ {x2}.

Yet another variant of the sequential application of spectral decompositions can be realized

by reconsidering the function ψ23(x2, x3;α1) as an element of L2
µ≤2×τ (Ω≤2 × N) where τ

is the counting measure on N. Applying the spectral decomposition with variable partition

10



{x2, x3, α1} = {x2, α1} ∪ {x3} yields the expansion

ψ23(x2, x3;α1) =

∞∑
α2=1

√
σ2(α2)ψ2(x2;α1, α2)ψ3(α2;x3). (2.19)

Here ψ3 does not depend on α1 whereas φ3 from (2.17) depends on α1. Using (2.19) together

with (2.16) we obtain the expansion of u(x)

u(x) =
∞∑

α1,α2=1

√
σ1(α1)σ2(α2)ψ1(x1;α1)φ1(x2;α1, α2)φ3(x3;α2), (2.20)

known as the three-dimensional functional tensor train (FTT) format. For a d-dimensional

function u(x) there are many possible ways to partition the variables in the sequence of spectral

decompositions. The choice of partition at each step in the sequence (and therefore the tensor

format) can be conveniently visualized using binary trees. In Figure 2.2 two possible binary

trees are shown for a four dimensional function: a balanced tree (left) and an unbalanced or

tensor train tree (right). The FTT format is described in detail for d-dimensional functions in

section 2.3.

The spectral decomposition binary trees are a useful (constructive) graphical repre-

sentation of tensor formats. Another less constructive (but useful) graphical representation of

tensor formats is tensor network diagrams. In a tensor network diagram functions (called ten-

sors) are represented by vertices. For a given vertex, each edge connected to that vertex denotes

dependence on a variable (either continuous or discrete). Summations of products of tensors

over a shared index (called tensor contractions) are represented by edges connecting vertices.

Consequently, the number of free edges in the tensor network diagram indicates the dimension

of the function the network represents. For example the tensor network diagram corresponding

to the series expansion (2.20) is shown in Figure 2.3.
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Figure 2.3: Tensor network diagram corresponding to the three-dimensional FTT format defined
by the series expansion (2.20). The left vertex corresponds to ψ1(x1;α1), the middle vertex
corresponds to ψ2(x2;α1, α2), and the right vertex corresponds to ψ3(x3;α2).

2.3 Functional tensor train (FTT) format

We proceed by giving a detailed presentation of the functional tensor train (FTT)

format, a recursive spectral decomposition for d-variate functions u(x) ∈ H(Ω) based on the

unbalanced binary tree Figure 2.2 (right). Define the operator

U1 : L
2
µ1
(Ω1) → L2

µ>1
(Ω>1)

g1 7→
∫
Ω1

u(x)g1(x1)dµ1(x1).

(2.21)

Such operator is linear, bounded, and compact since u is a Hilbert-Schmidt kernel. The formal

adjoint operator of U1 is given by

U∗
1 : L2

µ>1
(Ω>1) → L2

µ1
(Ω1)

h1 7→
∫
Ω>1

u(x)h1(x2, . . . , xd)dµ>1(x2, . . . , xd).

(2.22)

The composition operator U∗
1U1 : L2

µ1
(Ω1) → L2

µ1
(Ω1) is a self-adjoint compact Hermitian

operator. The spectrum of U∗
1U1, denoted as σ(U∗

1U1) = {λ1(1), λ1(2), . . .}, is countable with

one accumulation point at 0 and satisfies

∞∑
α1=1

λ1(α1) <∞. (2.23)
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We denote by ψ1(α1;x1) ∈ L2
µ1
(Ω1) a normalized eigenfunction of U∗

1U1 corresponding to

the eigenvalue λ1(α1), and construct an orthonormal basis of eigenfunctions {ψ1(α1;x1)}∞α1=1

for the space L2
µ1
(Ω1). The operator U1U

∗
1 : L2

µ>1
(Ω>1) → L2

µ>1
(Ω>1) is also self-adjoint,

compact, and Hermitian, and shares the same spectrum as U1U
∗
1 , i.e., σ(U1U

∗
1 ) = σ(U∗

1U1).

Its eigenfunctions3{ψ>1(α1;x2, . . . , xd)}∞α1=1 form an orthonormal basis of L2
µ>1

(Ω>1). It is

a classical result in functional analysis that u(x) can be expanded as (see [42, 4, 5])

u(x) =
∞∑

α1=1

√
λ1(α1)ψ1(α1;x1)ψ>1(α1;x2, . . . , xd). (2.24)

Next we consider ψ>1(α1;x2, . . . , xd) ∈ L2
τ×µ>1

(N × Ω>1) where τ denotes the counting

measure on N. From the orthonormality of {ψ>1(α1;x2, . . . , xd)}∞α1=1 with respect to the

inner product in L2
µ>1

(Ω>1) and the fact that u ∈ L2
µ(Ω) we have

∫
N×Ω>1

|
√
λ1(α1)ψ>1(α1;x2, . . . , xd)|2dτ(α1)dµ>1(x2, . . . , xd)

=
∞∑

α1=1

λ1(α1)

∫
Ω>1

|ψ>1(α1;x2, . . . , xd)|2dµ>1(x2, . . . , xd)

=
∞∑

α1=1

λ1(α1) <∞,

(2.25)

i.e., (
√
λ1ψ>1) ∈ L2

τ×µ>1
(N× Ω>1) is a Hilbert-Schmidt kernel. Thus the operators

U2 : L
2
τ×µ2

(N× Ω2) → L2
µ>2

(Ω>2)

g2 7→
∫
N×Ω2

√
λ1(α1)ψ>1(α1;x2, . . . , xd)g2(α1;x2)dτ(α1)dµ2(x2)

(2.26)
3We will use the notation ψ>i to denote functions that depend on variables (xi+1, . . . , xd). Similarly, ψ≤i

denotes functions depending on variables (x1, . . . , xi) and ψi denotes functions depending on xi.
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and

U∗
2 : L2

µ>2
(Ω>2) → L2

τ×µ2
(N× Ω2)

h2 7→
∫
Ω>2

√
λ1(α1)ψ>1(α1;x2, . . . , xd)h2(α1;x2)dµ>2(x2, . . . , xd)

(2.27)

enjoy the same properties as U1 and U∗
1 , in particular they are linear, bounded and compact.

Hence the composition operators U∗
2U2 and U2U

∗
2 are self-adjoint compact Hermitian operators

which share a countable spectrum σ(U∗
2U2) = σ(U2U

∗
2 ) = {λ2(α2)}∞α2=1 that accumulates at

zero and satisfies
∞∑

α2=1

λ2(α2) <∞. (2.28)

We decompose
√
λ1(α1)ψ>1(α1;x2, . . . , xd) as

√
λ1(α1)ψ>1(α1;x2, . . . , xd) =

∞∑
α2=1

√
λ2(α2)ψ2(α1;x2;α2)ψ>2(α2;x3, . . . , xd), (2.29)

where {ψ2(α1;x2;α2)}∞α2=1 and {ψ>2(α2;x3, . . . , xd)}∞α2=1 are orthonormal bases of eigen-

functions corresponding to the operators U∗
2U2 and U2U

∗
2 , respectively. A substitution of (2.29)

into (2.24) yields

u(x) =

∞∑
α1=1

∞∑
α2=1

√
λ2(α2)ψ1(x1;α1)ψ2(α1;x2;α2)ψ>2(α2;x3, . . . , xd). (2.30)

Proceeding recursively in this manner yields the following FTT expansion

u(x) =

∞∑
α1,...,αd−1=1

ψ1(α0;x1;α1)ψ2(α1;x2;α2) · · ·ψd(αd−1;xd;αd), (2.31)

where α0 = αd = 1.

By truncating the expansion (2.31) so that the largest singular values are retained we

obtain

ur(x) =

r∑
α0,...,αd=1

ψ1(α0;x1;α1)ψ2(α1;x2;α2) · · ·ψd(αd−1;xd;αd), (2.32)
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where r = (1, r1, . . . , rd−1, 1) is the FTT-rank (or rank if the FTT format is clear from context).

It is known that the truncated FTT expansion converges optimally with respect to the L2
µ(Ω)

norm [13]. More precisely, for any given function u ∈ L2
µ(Ω) the FTT approximant (2.32)

minimizes the residual Rr = ∥u− ur∥L2
µ(Ω) relative to independent variations of the functions

ψi(αi−1;xi;αi) on a tensor manifold with constant rank r. It is convenient to write (2.32) in a

more compact form as

ur(x) = Ψ1(x1)Ψ2(x2) · · ·Ψd(xd), (2.33)

where Ψi(xi) is a ri−1 × ri matrix with entries [Ψi(xi)]jk = ψi(j;xi; k). The matrix-valued

functions Ψi(xi) will be referred to as FTT cores, and we denote by Mri−1×ri(L
2
µi(Ωi)) the set

of all ri−1 × ri matrices with entries in L2
µi(Ωi). To simplify notation, we will often suppress

explicit tensor core dependence on the spatial variable xi, allowing us to simply write Ψi =

Ψi(xi) and ψi(αi−1, αi) = ψi(αi−1;xi;αi) as the spatial dependence is indicated by the tensor

core subscript. Throughout this dissertation we also denote the FTT tensor ur as uTT whenever

it is cumbersome to keep track of the rank r of the FTT tensor. Specifically the notation uTT is

useful for the rank-adaptive algorithms presented in Chapter 3. We may compute rank-r FTT

decompositions at quadrature points by first discretizing u(x) on a tensor product grid and then

using a tensor product quadrature rule together with known algorithms for computing a discrete

TT decomposition of a full tensor as discussed in [13]. This procedure for constructing low-

rank FTT approximations requires evaluating u(x) on a full tensor product grid in d-dimensions

which is not feasible even for moderately large d. Alternative methods for constructing low-

rank FTT approximations include the TT-cross algorithm [81] and the more recently developed

TT-sketching algorithms [113].
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2.3.1 Orthogonalization and truncation of FTT tensors

Many arithmetic operations on FTT tensors results in a significant increase of FTT

rank. For example The sum of two FTT tensors ur and vs with ranks r and s respectively

results in a new FTT tensor ur + vs with (non-optimal) FTT rank r + s that can often be

compressed to a smaller FTT rank. Another example is the multiplication of the FTT tensors

ur and vs which results in a FTT tensor ur · vs with FTT rank r ◦ s where ◦ denotes element-

wise multiplication. Thus a key algorithm for working with FTT tensors is truncation which is

based on truncating singular value spectra in the FTT tensor. The spectra of an FTT tensor can

be effectively computed by performing orthogonalizations of FTT tensors based on recursive

applications of matrix decompositions such as the QR factorization. Hereafter we describe in

detail the orthogonalization and truncation of FTT tensors.

For any tensor core Ψi ∈Mri−1×ri(L
2
µi(Ωi)) we define the matrix

⟨Ψ⊤
i Ψi⟩i ∈Mri×ri(R) (2.34)

with entries4

〈
Ψ⊤

i Ψi

〉
i
(j, k) =

ri−1∑
p=1

∫
Ωi

ψi(p;xi; j)ψi(p;xi; k)dµi(xi). (2.35)

The FTT representation (2.32) is given in terms of FTT cores Ψi satisfying5

〈
Ψ⊤

i Ψi

〉
i
= Iri×ri , i = 1, . . . , d− 1,〈

ΨdΨ
⊤
d

〉
d
=

√
Λ,

(2.36)

4The averaging operation in (2.35) can be viewed as a an inner product on the space
ri−1×
n=1

L2
µi
(Ωi).

5Equation (2.36) follows immediately from the orthogonality of {ψi(αi−1;xi;αi)}αi relative to the inner prod-
uct in L2

τ×µi
(N× Ωi).
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where Λ is a diagonal matrix with entries λ(αd−1) (αd−1 = 1, . . . , rd−1). Other orthogonal

representations can be computed, e.g., based on recursive QR decompositions. To describe

different orthogonalizations of FTT tensors, let Ψi ∈ Mri−1×ri(L
2
µi(Ωi)) and consider each

column of Ψi as a vector in
ri−1×
n=1

L2
µi(Ωi). Performing an orthogonalization process (e.g. Gram-

Schmidt) on the columns of the FTT core Ψi relative to the inner product (2.55) yields a QR-

type decomposition of the form

Ψi = QiRi, (2.37)

where Qi is an ri−1 × ri matrix with elements in L2
µi(Ωi) satisfying

〈
Q⊤

i Qi

〉
i
= Iri×ri , and

Ri is an upper triangular ri × ri matrix with real entries. Next consider an arbitrary FTT tensor

ur = Ψ1Ψ2 · · ·Ψd, where the matrix ⟨Ψ⊤
i Ψi⟩i may be singular. One way to orthogonalize

ur is by performing QR decompositions recursively from left to right as we will now describe.

Begin by decomposing Ψ1 as

Ψ1 = Q1R1, Q1 ∈Mr0×r1(L
2
µ1
(Ω1)),

〈
Q⊤

1 Q1

〉
1
= Ir1×r1 ,

R1 ∈Mr1×r1(R) is upper triangular.

(2.38)

Now we may write ur = Q1R1Ψ2 · · ·Ψd. Next, perform another QR decomposition

R1Ψ2 = Q2R2, Q2 ∈Mr1×r2(L
2
µ2
(Ω2)),

〈
Q⊤

2 Q2

〉
2
= Ir2×r2 ,

R2 ∈Mr2×r2(R) is upper triangular.

(2.39)

Proceeding recursively in this way we obtain a representation for ur of the form

ur = Q1 · · ·Qd−1QdRd, (2.40)

where each Qi ∈ Mri−1×ri(L
2
µi(Ωi)) satisfies

〈
QT

i Qi

〉
i
= Iri×ri . We refer to such a rep-

resentation as a left orthogonalization of ur. We may stop orthogonolizing at any step in the
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recursive process to obtain the partial left orthogonalization

ur = Q≤iRiΨ>i. (2.41)

Similar to orthogonalizing from the left, we may also orthogonalize ur from the right. To do

so, begin by performing a QR decomposition

Ψ⊤
d = KdWd, Kd ∈Mrd×rd−1

(L2
µd
(Ωd)),

〈
K⊤

d Kd

〉
d
= Ird−1×rd−1

,

Wd ∈Mrd−1×rd−1
(R) is upper triangular.

(2.42)

A substitution of (2.42) into (2.32) yields the expansion ur = Ψ1 · · ·Ψd−1W
⊤
d K⊤

d . Next

perform a QR decomposition

WdΨ
⊤
d−1 = Kd−1Wd−1,

Kd−1 ∈Mrd−1×rd−2
(L2

µd−1
(Ωd−1)),

〈
K⊤

d−1Kd−1

〉
d−1

= Ird−2×rd−2
,

Wd−1 ∈Mrd−2×rd−2
(R) is upper triangular.

(2.43)

Proceeding recusively in this way we obtain the right orthogonalization

ur = W⊤
1 K⊤

1 · · ·K⊤
d . (2.44)

We may have stopped the orthogonalization process at any point to obtain the partial right

orthogonalization

ur = Ψ≤iW
⊤
i+1K

⊤
>i. (2.45)

It is also useful to orthogonalize from the left and right to obtain expansions of the form

ur = Q≤iRiW
⊤
i+1K

⊤
>i, (2.46)

where the rank of the matrix RiW
⊤
i+1 is the i-th component of the true FTT rank of the tensor

ur.
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Figure 2.4: Discretization of the low-rank FTT tensor representation (2.33) using N points per
dimension.

The truncation of FTT tensors based on their spectra is obtained by computing a sin-

gular value decomposition of the matrix RiW
⊤
i+1 in (2.46) for i = 1, 2, . . . , d−1 and truncating

the singular values and corresponding singular vectors up to a given tolerance. Efficient algo-

rithms to perform this operation for TT tensors (a TT tensor is the discrete analogue of the FTT

tensor) can be found in [82, section 3] and in [26, 27]. Such algorithms are easily adapted to

FTT tensors by replacing QR decompositions of matrices with the QR of FTT cores given in

(2.37) and SVD decomposition of matrices with Schmidt decompositions. In numerical imple-

mentations, this adaptation amounts to introducing appropriate quadrature weight matrices into

the algorithms.

2.3.2 Discretization and computational cost

In order to work with the low-rank FTT representation (2.33) numerically, each con-

tinuous function appearing in the expansion must be discretized. One possible discretization6 of

low-rank FTT tensor representations of multivariate functions is obtained by discretizing each
6Other discretizations can be obtained by representing one-dimensional tensor cores relative to appropriate sets

of basis functions [13].
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Figure 2.5: Number of entries in the discretized tensor product representation (2.9) and the low-
rank FTT tensor representation (2.33) using N = 128 points per dimension and truncation rank
r = 20.

one-dimensional domain Ωi with N points and considering a collocation representation in each

of the tensor cores Ψi. Upon discretization, the FTT representation (2.33) becomes a discrete

TT tensor which is depicted in Figure 2.4. Assuming that each entry of the FTT rank r (exclud-

ing the first entry and the last entry which are always equal to 1) is equal to the same number r,

the total number of entries in a discrete TT representation with N points in each dimension is

2Nr + (d− 2)Nr2, which, scales linearly in the number of dimensions d and quadratically in

the rank r. In Figure 2.5 we compare the number of entries in the full tensor product representa-

tion of a multivariate function (2.9) with the number of entries in a discrete FTT representation

for N = 128, r = 20 and various dimensions d. We observe that for d > 3 the low-rank FTT

representation has significantly fewer entries. In addition to the storage cost scaling linear in

dimension, the computational cost of many arithmetic operations with FTT format also scales
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linear with the number of dimensions d.

2.3.3 Numerical example

As a demonstration of the FTT format let us consider a three-dimensional (d = 3)

function that we define as a sum of Gaussian functions

u(x) =

Ng∑
i=1

wi exp

−
d∑

j=1

1

βij

(
R

(i)
j · x+ tij

)2 . (2.47)

Here Ng is the number of Gaussian functions, βij are positive real numbers, wi are positive

weights satisfying
d∑

i=1

wi = 1,

R
(i)
j is the j-th row of a d× d rotation matrix R(i), and tij are translations. For our demonstra-

tion we set Ng = 3, wi = 1/3,

β11 = 2, β12 = 1/3, β13 = 1/2,

β21 = 3, β22 = 4, β23 = 1/6,

β31 = 1, β32 = 1/5, β33 = 5,

t11 = 0, t12 = 0, t13 = 0,

t21 = −1, t22 = 1/2, t23 = −1/3,

t31 = 1/2, t32 = −1/4, t33 = 1,

(2.48)

and the rotation matrices

R(i) = exp




0 θi(1) θi(2)

−θi(1) 0 θi(3)

−θi(2) −θi(3) 0



 , (2.49)

with

θ1 =


π/4

π/3

π/5

 , θ2 =


π/3

π/6

π/4

 , θ3 =


π/3

π/3

π/7

 . (2.50)
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Figure 2.6: Numerical example of FTT decomposition applied to the three dimensional Gaus-
sian mixture (2.47).

We discretize the Gaussian mixture (2.47) on the computational domain [−12, 12]3 (which

is large enough to enclose the numerical support of (2.47)) using N = 200 evenly-spaced

points in each variable. In the top row of Figure 2.6 we provide a volumetric plot of the

three-dimensional Gaussian mixture. From the discretization of (2.47) we compute the FTT

decomposition ur(x) using singular value decompositions recursively. After the first singular
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value decomposition we obtain a representation of the function u(x) in terms of orthonormal x1

tensor modes ψ1(x1;α1), orthonormal x2, x3 tensor modes ψ23(α1;x2, x3) and singular values

λ1(α1) (α1 = 1, 2 . . . , N)

u(x) =
N∑

α1=1

√
λ1(α1)ψ1(x1;α1)ψ23(α1;x2, x3). (2.51)

Then we truncate the expansion (2.51) to retain all singular values with square root larger than

10−6 resulting in the first element of the FTT rank r1 = 32. In the second row of Figure 2.6 we

plot the first two x1 tensor modes, the first x2, x3 tensor mode, and the singular values which

satisfy
√
λ1(α1) < 10−6. Next we perform a second singular value decomposition on the

collection of x1, x2 tensor modes weighted by their corresponding singular values to obtain an

expansion in terms of orthonormal x2 tensor modes, orthonormal x3 tensor modes, and singular

values λ2(α2)

ψ23(α1;x2, x3) =
N∑

α2=1

√
λ2(α2)ψ2(α1;x2;α2)ψ3(α2;x3). (2.52)

Then we truncate the expansion (2.52) to retain all singular values with square root larger than

10−6 resulting in the second element of the FTT rank r2 = 30. In the third row of Figure

2.6 we plot two x2 tensor modes, two x3 tensor modes, and the singular values which satisfy√
λ2(α2) < 10−6. The final FTT approximation of the Gaussian mixture (2.47) is then given

in terms of the tensor modes depending on one spatial variable

u(x) ≈ ur(x) =

r1∑
α1=1

r2∑
α2=1

ψ1(x1;α1)ψ2(α1;x2;α2)ψ3(α2;x3). (2.53)
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2.4 The geometry of FTT tensors

A key feature of low-rank tensor formats is that collections of tensors of a given

rank form a smooth submanifold of the corresponding ambient Hilbert space. Many algorithms

involving low-rank tensors including the algorithms we present in Chapter 3 and Chapter 4 rely

on this feature. In this section we prove that the space of constant rank FTT tensors is a smooth

manifold, which therefore admits a tangent space and a normal space at each point. To prove that

the space of constant rank FTT tensors is a smooth manifold, we follow a similar construction

as presented in [78, 77]. Closely related work was presented in [21] in relation to Slater–type

variational spaces in many particle Hartree–Fock theory. Also, the discrete analogues of the

infinite-dimensional tensor manifolds discussed hereafter were studied in detail in [105, 47].

Let Φ denote an arbitrary s1 × s2 matrix with entries in L2
µi(Ωi), L

2
µ≤i

(Ω≤i) or

L2
µ>i(Ω>i). We write such a matrix as

Φ =


ϕ(1, 1) · · · ϕ(1, s2)

...
. . .

...

ϕ(s1, 1) · · · ϕ(s1, s2)

 , (2.54)

where ϕ(j, k) depends on variable xi if ϕ(j, k) ∈ L2
µi(Ωi). Similarly, ϕ(j, k) depends on the

variables (x1, . . . , xi) if ϕ(j, k) ∈ L2
µ≤i

(Ω≤i) or on the variables (xi+1, . . . , xd) if ϕ(j, k) ∈
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L2
µ>i(Ω>i). For the following discussion it is convenient to define the integrals

⟨Φ⟩i =
∫
Ωi

Φ(xi)dµi(xi),

⟨Φ⟩≤i =

∫
Ω≤i

Φ(x1, . . . , xi)dµ≤i(x1, . . . , xi),

⟨Φ⟩>i =

∫
Ω>i

Φ(xi+1, . . . , xd)dµ>i(xi+1, . . . , xd).

(2.55)

Denote by V (i)
ri−1×ri

the set of all FTT tensor cores Ψi ∈ Mri−1×ri(L
2
µi(Ωi)) with the property

that the covariance matrix ⟨Ψ⊤
i Ψi⟩i ∈ Mri×ri(R) is invertible. We are interested in the subset

Mr ⊆ L2
µ(Ω) consisting of rank-r FTT tensors in d dimensions

Mr = {u ∈ L2
µ(Ω) : u = Ψ1Ψ2 · · ·Ψd, Ψi ∈ V

(i)
ri−1×ri

, ∀i = 1, 2, . . . , d}. (2.56)

The set

V = V
(1)
r0×r1 × V

(2)
r1×r2 × · · · × V

(d)
rd−1×rd

(2.57)

can be interpreted as a latent space for Mr via the mapping

π : V → Mr,

(Ψ1,Ψ2, . . . ,Ψd) 7→ Ψ1Ψ2 · · ·Ψd.

(2.58)

Each tensor ur ∈ Mr has many representations in V , that is the map π(·) is not injective. The

purpose of the following Lemma 2.4.1 and Proposition 2.4.1 is to characterize all elements of

the space V which have the same image under π.

Lemma 2.4.1. If {ψk(αi, αj)}rαj=1, {ψ̃k(αi, αj)}rαj=1 are two bases for the same finite dimen-

sional subspace of L2
τ×µk

(N × Ωk) and Ψk , Ψ̃k are the corresponding matrices (2.54), then

the matrix ⟨Ψ⊤
k Ψ̃k⟩k is invertible.
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Proof. The matrix under consideration is given by

⟨Ψ⊤
k Ψ̃k⟩k =



r∑
i=1

〈
ψk(i, 1)ψ̃k(i, 1)

〉
k

· · ·
r∑

i=1

〈
ψk(i, 1)ψ̃k(i, r)

〉
k

...
. . .

...
r∑

i=1

〈
ψk(i, r)ψ̃k(i, 1)

〉
k

· · ·
r∑

i=1

〈
ψk(i, r)ψ̃k(i, r)

〉
k


. (2.59)

We will show that the columns of this matrix are linearly independent. To this end, consider the

linear equation

r∑
j=1

aj



r∑
i=1

〈
ψk(i, 1)ψ̃k(i, j)

〉
k

...
r∑

i=1

〈
ψk(i, r)ψ̃k(i, j)

〉
k


= 0, aj ∈ R, (2.60)

the p-th row of which we may write as

r∑
i=1

〈
ψk(i, p)

r∑
j=1

ajψ̃k(i, j)

〉
k

= 0, p = 1, . . . , r. (2.61)

If not all the aj are equal to zero then (2.61) implies that
r∑

j=1

ajψ̃k(i, j) is orthogonal to ψk(i, p)

in L2
τ×µk

(N × Ωk) and therefore linearly independent for all p = 1, . . . , r. This contradicts

the assumption that {ψk(i, j)}rj=1, {ψ̃k(i, j)}rj=1 span the same finite dimensional subspace of

L2
τ×µk

(N× Ωk). Hence aj is equal to zero for all j = 1, . . . , r.

Proposition 2.4.1. Let (Ψi)
d
i=1 , (Ψ̃i)

d
i=1 be elements of V . Then

π(Ψ1, . . . ,Ψd) = π(Ψ̃1, . . . , Ψ̃d) (2.62)

if and only if there exist matrices Pi ∈ GLri×ri(R) (i = 0, 1, . . . , d) such that Ψi = P−1
i−1Ψ̃iPi

with P0,Pd = 1.
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Proof. We prove the forward implication by induction on d. For d = 2 we have

Ψ1Ψ2 = Ψ̃1Ψ̃2 (2.63)

implies

Ψ1 = Ψ̃1

〈
Ψ̃2Ψ

⊤
2

〉
2

〈
Ψ2Ψ

⊤
2

〉−1

2
. (2.64)

Set P1 =
〈
Ψ̃2Ψ

⊤
2

〉
2

〈
Ψ2Ψ

⊤
2

〉−1

2
which is a change of basis matrix and therefore invertible.

Substituting Ψ1 = Ψ̃1P1 into (2.63) we see that

Ψ̃1P1Ψ2 = Ψ̃1Ψ̃2, (2.65)

which implies

Ψ2 = P−1
1 Ψ̃2. (2.66)

This proves the proposition for d = 2. Suppose the proposition holds true for d− 1 and that

Ψ1 · · ·Ψd = Ψ̃1 · · · Ψ̃d. (2.67)

Then,

Ψ1 · · ·Ψd−1 = Ψ̃1 · · · Ψ̃d−1

〈
Ψ̃dΨ

⊤
d

〉
d

〈
ΨdΨ

⊤
d

〉−1

d
, (2.68)

and we are gauranteed the existence of invertible matrices P1, . . . ,Pd−2 such that

Ψ1 = Ψ̃1P1,

Ψ2 = P−1
1 Ψ̃2P2,

...

Ψd−2 = P−1
d−3Ψ̃d−2Pd−2,

Ψd−1 = P−1
d−2Ψ̃d−1

〈
Ψ̃dΨ

⊤
d

〉
d

〈
ΨdΨ

⊤
d

〉−1

d
.

(2.69)
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Let Pd−1 =
〈
Ψ̃dΨ

⊤
d

〉
d

〈
ΨdΨ

⊤
d

〉−1

d
. Substituting the expressions for Ψi (i = 1, . . . , d− 1) in

(2.69) into (2.67) yields

Ψ̃1 · · · Ψ̃d−2Ψ̃d−1Pd−1Ψd = Ψ̃1 · · · Ψ̃d, (2.70)

which implies

Pd−1Ψd = Ψ̃d. (2.71)

From the preceding equation we realize that the matrix Pd−1 is a change of basis matrix and

therefore invertible. Upon writing

Ψd = P−1
d−1Ψ̃d, (2.72)

we prove the forward implication. The backward implication is trivial.

With Proposition 2.4.1 in mind we define the group7

G = GLr1×r1(R)× GLr2×r2(R)× · · · × GLrd−1×rd−1
(R), (2.73)

with group operation given by component-wise matrix multiplication. Let G act on V by

(P1, . . . ,Pd−1) · (Ψ1, . . . ,Ψd) = (Ψ1P1,P
−1
1 Ψ2P2, . . . ,P

−1
d−1Ψd) (2.74)

for all (P1, . . . ,Pd−1) ∈ G and (Ψ1, . . . ,Ψd) ∈ V . It is easy to see that this is action is free and

transitive making G, V , Mr and π a principal G-bundle [96]. In particular V/G is isomorphic

to Mr which allows us to equip Mr with a manifold structure. Thus, we may define its tangent
7In equation (2.73) GLr1×ri(R) denotes the general linear group of ri × ri invertible matrices with real entries,

together with the operation of matrix multiplication.
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Figure 2.7: A few curves y(s) on the tensor manifold Mr parameterized by s ∈ (−δ, δ) passing
through ur. The velocities of all such curves define the tangent space TurMr to Mr at the point
ur.

space TurMr at a point ur ∈ Mr. We represent elements of the tangent space TurMr as

equivalence classes of velocities of curves passing through the point ur

TurMr =
{
y′(s)|s=0 : y ∈ C1 ((−δ, δ),Mr) , y(0) = ur

}
. (2.75)

Here C1 ((−δ, δ),Mr) is the space of continuously differentiable functions from the interval

(−δ, δ) to the space of constant rank FTT tensors Mr. The following Lemma guarantees a

convenient representation for each ur ∈ Mr in the space V .

Lemma 2.4.2. For any ur ∈ Mr there exist Ψi ∈ V
(i)
ri−1×ri

(i = 1, 2, . . . , d) such that ur =

Ψ1Ψ2 · · ·Ψd and
〈
Ψ⊤

i Ψi

〉
i
= Iri×ri for all i = 1, . . . , d− 1.

Proof. Let us first represent ur ∈ Mr relative to the tensor cores {Ψ̃1, . . . , Ψ̃d}. Since〈
Ψ̃⊤

1 Ψ̃1

〉
1

is symmetric there exists an orthogonal matrix P1 such that Λ1 = P⊤
1

〈
Ψ̃⊤

1 Ψ̃1

〉
1
P1

is diagonal. Set Ψ1 = Ψ̃1P1Λ
−1/2
1 and Ψ̂2 = Λ

1/2
1 P T

1 Ψ̃2 so that
〈
Ψ⊤

1 Ψ1

〉
1
= Ir1×r1 and
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Ψ1Ψ̂2Ψ̃3 · · · Ψ̃d = Ψ̃1 · · · Ψ̃d. The matrix
〈
Ψ̂⊤

2 Ψ̂2

〉
2

is symmetric so there exists an or-

thogonal matrix P2 such that Λ2 = P⊤
2

〈
Ψ̂⊤

2 Ψ̂2

〉
2
P2 is diagonal. Set Ψ2 = Ψ̂2P2Λ

−1/2
2 and

Ψ̂3 = Λ
1/2
2 P T

2 Ψ̃3 so that
〈
Ψ⊤

2 Ψ2

〉
2
= Ir2×r2 and Ψ1Ψ2Ψ̂3Ψ̃4 · · · Ψ̃d = Ψ̃1 · · · Ψ̃d. We pro-

ceed recursively in this way until Ψ1Ψ2 · · ·Ψd−1Ψ̂d = Ψ̃1 · · · Ψ̃d with
〈
Ψ⊤

i Ψi

〉
i
= Iri×ri ,

i = 1, . . . , d − 1. Upon setting Ψd = Ψ̂d, the required collection of cores {Ψ1, . . . ,Ψd} is

obtained.

Since L2
µ(Ω) is an inner product space, for each u ∈ L2

µ(Ω) the tangent space

TuL
2
µ(Ω) is canonically isomorphic to L2

µ(Ω). Moreover, for each ur ∈ Mr the normal space

to Mr at the point ur, denoted by NurMr, consists of all vectors in L2
µ(Ω) that are orthogonal

to TurMr with respect to the inner product in L2
µ(Ω)

NurMr = {w ∈ L2
µ(Ω) : ⟨w, v⟩L2

µ(Ω) = 0, ∀v ∈ TurMr}. (2.76)

Since the tangent space TurMr is closed, for each point ur ∈ Mr the space L2
µ(Ω) admits a

decomposition into tangential and normal components

L2
µ(Ω) = TurMr ⊕NurMr. (2.77)

The partition (2.77) will be useful for the development of rank-adaptive tensor integrators in

Chapter 3.
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Chapter 3

Low-rank tensor approximation of

high-dimensional nonlinear PDEs

In this chapter we use FTT manifolds Mr to approximate a function u(x, t) governed

by the autonomous evolution equation (1.1). We present two methodologies for approximating

u(x, t) with a time-dependent FTT tensor. This first is dynamic approximation which is based

on projecting the PDE dynamics onto the tensor manifold tangent space at each time step. The

second is step-truncation which is based on projecting the solution onto the tensor manifold at

each time step. These methods are discussed in sections 3.2 and 3.3 respectively. In section 3.4

we show that the integration schemes resulting from these two methodologies are consistent as

the time step size approaches zero. Before presenting the schemes we discuss representations

of the operator G : H(Ω) → H(Ω) defining the dynamics of the PDE (1.1) that are compatible

with FTT tensors ur.
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3.1 Separable operators

As is well-known, solving (1.1) numerically involves repeated application of G. In

particular, if the approximate solution of the given PDE is represented as a FTT tensor u ≈ uTT

then the operator G must be represented in a form that can take uTT as an input and output

another FTT tensor. If G is a linear operator then such a representation is given by the rank g

FTT-operator (or TT-matrix after disceretization [82])

G(·,x) ≈ GTT(·,x) =
g1∑

α1=1

g2∑
α2=1

· · ·
gd−1∑

αd−1=1

A1(x1;α1)⊗A2(α1;x2;α2)⊗· · ·⊗Ad(αd−1;xd),

(3.1)

where, for fixed αi−1 and αi, Aj is a one-dimensional operator acting only on functions of xj .

The representation (3.1) is also known as matrix product operator (MPO) [75]. After applying

GTT to a FTT tensor uTT with rank r, the new FTT tensor GTT(uTT,x) has rank determined by

the element-wise (Hadamard) product of the two ranks g ◦ r, which then has to be truncated.

The computational cost of such a truncation scales cubically in the new FTT rank. If the product

rank g ◦ r is prohibitively large then the FTT operator GTT can be split into sums of low rank

operators

GTT =

n∑
k=1

G
(k)
TT , (3.2)

where each G(k)
TT has FTT operator rank g(k), which is less than g. Hence, instead of applying

GTT directly to the solution tensor, we can apply each G(k)
TT (k = 1, 2, . . . , n) to uTT, truncate

each G(k)
TT (uTT,x), and then add them together. After the addition, one more truncation pro-

cedure must be performed to ensure the result of the FTT addition has optimal ranks. This
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procedure can be written mathematically as

GTT(uTT,x) ≈ Tδ

[
n∑

k=1

Tδ

(
G

(k)
TT (uTT,x)

)]
, (3.3)

where Tδ is a truncation (or rounding) operator for FTT tensors with relative accuracy δ. Al-

ternatively, one can use randomized algorithms, e.g., based on tensor sketching, for computing

sums of many TT tensors [26]. This can increase efficiency of applying high rank FTT operators

to FTT tensors.

3.2 Dynamic approximation methods

As mentioned above, the dynamic approximation approach for initial/boundary value

problems of the form (1.1) aims at determining the vector in the tangent space of Mr at the

point ur that best approximates ∂ur/∂t at each t in the time domain of interest [0, T ]. One way

to obtain the optimal tangent vector is by orthogonal projection which we now describe. For

each u ∈ L2
µ(Ω), the tangent space TuL2

µ(Ω) is canonically isomorphic to L2
µ(Ω). Moreover,

for each ur ∈ Mr the normal space to Mr at the point ur, denoted by NurMr, consists of all

vectors in L2
µ(Ω) that are orthogonal to TurMr with respect to the inner product in L2

µ(Ω). For

each ur ∈ Mr the space L2
µ(Ω) admits the decomposition into a tangential component and a

normal component (see equation (2.77)). Assuming that the solution to the PDE (1.1) lives on

the manifold Mr at time t, we may write its velocity ∂ur/∂t = G(ur) as a unique combination

of tangential and normal components relative to Mr

G(ur) = v + w, v ∈ TurMr, w ∈ NurMr (3.4)
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Figure 3.1: A sketch of the tangent and normal components of ∂ur/∂t = G (ur) to the manifold
Mr at the point ur.

(see Figure 3.1). The orthogonal projection we are interested in computing for dynamic approx-

imation is

Pur : L2
µ(Ω) → TurMr,

G(ur) 7→ PurG(ur).

(3.5)

If the initial condition u0(x) is on the manifold1 Mr, then the solution to the initial/boundary

value problem 
∂ur
∂t

= PurG(ur),

u(x, 0) = u0(x),

(3.6)

remains on the manifold Mr for all t ≥ 0. The solution to (3.6) is known as a dynamic

approximation to the solution of (1.1).

In practice, we can compute the image of Pur at each t ∈ [0, T ] by solving the

1If the initial condition u0(x) does not belong to Mr then it can be projected onto Mr using a truncation
operator (see section 2.3.1
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following minimization problem over the tangent space of Mr at ur

min
v∈TurMr

∥∥∥∥v(x, t)− ∂ur(x, t)

∂t

∥∥∥∥2
L2
µ(Ω)

= min
v∈TurMr

∥v(x, t)−G(ur(x, t))∥2L2
µ(Ω) . (3.7)

We emphasize that (3.7) defines an infinite family of optimization problems parameterized by

t ∈ [0, T ]. Prior to solving the optimization problems in (3.7), let us establish that they admit a

unique solution.

Proposition 3.2.1. Fix t ∈ [0, T ]. If G(ur) ̸∈ TurMr then there exists a unique solution to the

minimization problem (3.7), i.e., a unique global minimum.

Proof. We first notice that the feasible set TurMr is a real vector space and thus a convex set.

Next we show that the functional F [v] = ∥v − G(ur)∥2L2
µ(Ω) is strictly convex. Indeed, take

v1, v2 ∈ TurMr distinct and q ∈ (0, 1). Then for all t ∈ [0, T ]

(F [qv1 + (1− q)v2])
1/2 = ∥qv1 + (1− q)v2 −G(ur)∥L2

µ(Ω)

= ∥q(v1 −G(ur)) + (1− q) ((v2 −G(ur)) ∥L2
µ(Ω)

≤ q∥v1 −G(ur)∥+ (1− q)∥v2 −G(ur)∥L2
µ(Ω),

(3.8)

with equality if and only if there exists an α > 0 such that q(v1 − G(ur)) = α(1 − q)(v2 −

G(ur)). However, the existence of such an α implies that v1 − βv2 = (1− β)G(ur) for some

real number β, whence G(ur) ∈ TurMr. Therefore if G(ur) ̸∈ TurMr then the inequality

in (3.8) is strict and the functional (F [v])1/2 is strictly convex. Since the function x2 is strictly

increasing on the image of F 1/2 it follows that F is strictly convex and therefore admits a unique

global minimum over the feasible set TurMr.
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It can easily be shown that the unique solution to each of the optimization problems in (3.7)

is PurG(ur). Hereafter we will compute the orthogonal projection PurG(ur) by solving the

optimization problems (3.7) at each t ∈ [0, T ]. Then we will use this tangent vector to integrate

the solution of the PDE (1.1) forward in time on the manifold Mr. First, we must assume that

the solution u(x, t) to the PDE at time t is on the manifold Mr. Under this assumption, the

solution admits an expansion in terms of FTT cores

ur(x, t) = Ψ1(t)Ψ2(t) · · ·Ψd(t) (3.9)

satisfying
〈
Ψ⊤

i (t)Ψi(t)
〉
i
= Iri×ri for i = 1, 2, . . . , d − 1 (see Lemma 2.4.2). In order to

solve the optimization problem (3.7) at time t, we expand an arbitrary C1 curve y(t, s) on the

manifold Mr passing through ur(x, t) ∈ Mr at s = 0 in terms of s-dependent FTT cores (see

Figure 2.7)

y(t, s) = Γ1(t, s) · · ·Γd(t, s)

=

r∑
α0,...,αd=1

γ1(t, s;α0, α1)γ2(t, s;α1, α2) · · · γd(t, s;αd−1, αd).

(3.10)

This allows us to represent any element of the tangent space TurMr at ur(x, t) as

v =
∂

∂s
[Γ1(t, s) · · ·Γd(t, s)]s=0 , (3.11)

with Γ1(t, 0) · · ·Γd(t, 0) = ur(x, t). At this point we notice that minimizing the functional in

(3.7) for a fixed t ∈ [0, T ] over the tangent space TurMr is equivalent to minimizing the same

functional over the velocity of each of the FTT cores. In other words, rather than solving (3.7)

we will instead solve

min
∂Γ1
∂s

∣∣∣
s=0

,...,
∂Γd
∂s

∣∣∣
s=0

∥∥∥∥ ∂∂s (Γ1 · · ·Γd)

∣∣∣∣
s=0

−G(ur)

∥∥∥∥2
L2
µ(Ω)

(3.12)
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at each t ∈ [0, T ]. In view of Lemma 2.4.1, the FTT core velocities which solve the minimiza-

tion problem (3.12) are not unique. In order to obtain a unique solution of the optimization

problem (3.12) at each t ∈ [0, T ], we enforce constraints on the cores Γi(t, s). One set of

constraints which allows us to obtain a unique solution can be written as

〈
Γ⊤
i (t, s)Γi(t, s)

〉
i
= Iri×ri , ∀t ∈ [0, T ], ∀s ∈ (−δ, δ), ∀i = 1, . . . , d− 1. (3.13)

Note that any curve (3.10) admits an expansion in terms of cores satisfying (3.13) thanks to

Lemma 2.4.2. In order to introduce these constraints into the minimization problem we first

recast them as equations involving both the cores and their velocities as follows. Differentiate

(3.13) with respect to s to obtain〈
∂Γ⊤

i (t, s)

∂s
Γi(t, s)

〉
i

= −
〈
Γ⊤
i (t, s)

∂Γi(t, s)

∂s

〉
i

, (3.14)

which is attained when〈
Γ⊤
i (t, s)

∂s
Γi(t, s)

〉
i

= 0ri×ri , ∀t ∈ [0, T ], ∀s ∈ (−δ, δ), ∀i = 1, . . . , d− 1. (3.15)

Hence the set of constraints

〈
Γ⊤
i (t, s)

∂s
Γi(t, s)

〉
i

= 0ri×ri , ∀t ∈ [0, T ], ∀s ∈ (−δ, δ), ∀i = 1, . . . , d− 1,

〈
Γ⊤
i (t, 0)Γi(t, 0)

〉
i

= Iri×ri , ∀t ∈ [0, T ], ∀i = 1, . . . , d− 1,

(3.16)

are equivalent to the constraints in (3.13). Using the constraints given in (3.16), we will obtain

the optimal core velocities ∂Γ̃i(t, 0)/∂s which minimize (3.12) at each time t ∈ [0, T ]. These

optimal core velocities define the optimal tangent vector (3.11) for the minimization problem

(3.7), i.e., the orthogonal projection Pur(G(ur)) (see equation (3.5)). To integrate the low-rank
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solution (3.9) forward in time, we set the time derivative of the FTT solution cores equal to the

core velocities defining the optimal tangent vector

∂Ψi(t)

∂t
=
∂Γ̃i(t, 0)

∂s
, ∀i = 1, 2, . . . , d. (3.17)

This yields the minimization problem2

min
∂Ψ1
∂t

,...,
∂Ψd
∂t

∥∥∥∥ ∂∂t [Ψ1Ψ2 · · ·Ψd]−G(ur)

∥∥∥∥2
L2
µ(Ω)

subject to:

〈
Ψ⊤

i (t)

∂t
Ψi(t)

〉
i

= 0ri×ri , ∀t ∈ [0, T ], ∀i = 1, 2, . . . , d− 1.

(3.18)

The solution to this problem provides the optimal time derivative of the FTT approximation

of the solution to the PDE (1.1) on the manifold Mr. The minimization problem (3.18) is

a convex optimization problem subject to linear equality constraints, which therefore is still

convex. Hence, any local minimum is also a global minimum. To solve (3.18), it is convenient

to construct an action functional A which introduces the constraints via Lagrange multipliers

λ
(i)
αiβi

and expands the products of FTT cores as summations of scalar functions. The action

functional is given explicitly as

A
(
∂ψ1(α0, α1)

∂t
, . . . ,

∂ψd(αd−1, αd)

∂t

)
=∥∥∥∥∥∥ ∂∂t

 r∑
α0,...,αd=1

ψ1(α0, α1)ψ2(α1, α2) · · ·ψd(αd−1, αd)

−G(ur)

∥∥∥∥∥∥
2

L2
µ(Ω)

+

d−1∑
i=1

ri∑
αi,βi=1

λ
(i)
αiβi

〈
∂ψi(αi−1, αi)

∂t
, ψi(αi−1, βi)

〉
L2
τ×µi

(N×Ωi)

.

(3.19)

2Note that if the FTT decomposition of the initial condition satisfies the second line of equality constraints
in (3.16), i.e.,

〈
Ψ⊤
i (0)Ψi(0)

〉
i

= Iri×ri (i = 1, 2, . . . , d − 1), then the constraints in (3.18) imply that〈
Ψ⊤
i (t)Ψi(t)

〉
i
= Iri×ri (i = 1, 2, . . . , d− 1) for all t ∈ [0, T ].
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At this point, we are ready to formulate the FTT propagator for the nonlinear PDE (1.1), which

is the system of Euler-Lagrange equations corresponding to the unique global minimum of

(3.19). Such propagator provides velocities of the FTT solution cores corresponding to the

orthogonal projection (3.5). These core velocities determine the best dynamic approximation of

the solution to (1.1) on a FTT tensor manifold with constant rank.

Theorem 3.2.1. The unique global minimum of the functional (3.19) is attained at FTT tensor

cores satisfying the PDE system

∂Ψ1

∂t
=

[〈
G(ur)Ψ

⊤
>1

〉
>1

−Ψ1

〈〈
Ψ⊤

1 G(ur)
〉
1
Ψ⊤

>1

〉
>1

]〈
Ψ>1Ψ

⊤
>1

〉−1

>1
,

∂Ψk

∂t
=

[〈〈
Ψ⊤

≤k−1G(ur)
〉
≤k−1

Ψ⊤
>k

〉
>k

−Ψk

〈〈
Ψ⊤

≤kG(ur)
〉
≤k

Ψ⊤
>k

〉
>k

]〈
Ψ>kΨ

⊤
>k

〉−1

>k
, k = 2, 3, . . . , d− 1,

∂Ψd

∂t
=
〈
Ψ⊤

≤d−1G(ur)
〉
≤d−1

,

(3.20)

where Ψ≤k = Ψ1Ψ2 · · ·Ψk and Ψ>k = Ψk+1 · · ·Ψd.

We prove Theorem 3.2.1 in Appendix 3.A. We refer to the PDE system (3.20) as the dynami-

cally orthogonal [99] functional tensor train (DO-FTT) propagator. The DO-FTT system (3.20)

involves several inverse covariance matrices
〈
Ψ≥kΨ

⊤
≥k

〉−1

≥k
, which can become poorly condi-

tioned in the presence of tensor modes with small energy (i.e. autocovariance matrices with

small singular values). This phenomenon has been shown to be a result of the fact that the cur-

vature of the tensor manifold at a tensor is inversely proportional to the smallest singular value

present in the tensor [61, section 4]. A slight improvement to the numerical stability of (3.20)

39



can be obtained by right orthogonalizing (see section 2.3.1) the partial products

Ψ≥k = R⊤
k Q

⊤
≥k, k = 2, . . . , d. (3.21)

Using the orthogonality of Qk it can easily be verified that Rk =
〈
Ψ≥kΨ

⊤
≥k

〉1/2
≥k

. With these

right orthogonalized cores, the DO-FTT system (3.20) can be written as

∂Ψ1

∂t
=

[
⟨G(ur)Q>1⟩>1 −Ψ1

〈
Ψ⊤

1 G(ur)Q>1

〉
≥1

]〈
Ψ>1Ψ

⊤
>1

〉−1/2

≥2
,

∂Ψk

∂t
=

[〈
Ψ⊤

≤k−1G(ur)Q>k

〉
≤k−1,>k

−Ψk

〈
Ψ⊤

≤kG(ur)Q>k

〉
≥1

]〈
Ψ>kΨ

⊤
>k

〉−1/2

>k
, k = 2, 3, . . . , d− 1,

∂Ψd

∂t
=
〈
Ψ⊤

≤d−1G(ur)
〉
≤d−1

,

(3.22)

where
〈
Ψ≥kΨ

⊤
≥k

〉−1/2

k,...,d
denotes the inverse of the matrix square root. Since the condition

number of
〈
Ψ≥kΨ

⊤
≥k

〉
≥k

is larger than the condition number of
〈
Ψ≥kΨ

⊤
≥k

〉1/2
≥k

, we have that

the inverse covariances at the right hand side of (3.22) can be computed more accurately than

the ones in (3.20) in the presence of small singular values. To increase robustness of the DO-

FTT system even further, they may be treated with operator splitting methods or unconventional

integration schemes (see section 3.2.1 for more details).

We conclude this section with a few important remarks on the DO-FTT propagator

(3.20). As the solution evolves in time on the tensor manifold Mr, it is possible for the so-

lution rank to decrease. Consequently, the auto-correlation matrices
〈
Ψ>kΨ

⊤
>k

〉
>k

become

singular and the equations (3.20) are no longer valid. In this case, the solution lives on a tensor

manifold of smaller rank, say Ms, where si ≤ ri for all i = 1, 2, . . . , d, and the dynamic

tensor approximation can be constructed on Ms. On the other hand, if the PDE (1.1) is not
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well approximated on Mr, then one can increase the tensor rank r adaptively in time to retain

accuracy, e.g. by thresholding the norm of the velocity vector Nur(G(ur)) normal to the tensor

manifold [28] (see section 3.5 for an in depth discussion of rank-adaptive tensor integration).

Finally, we mention that it is possible to transform the dynamically orthogonal tensor cores Ψi

into bi-orthogonal cores (with corresponding bi-orthogonal evolution equations) by adopting

the proofs given in [29, 24]. In light of the discussion above on the optimality of the DO-FTT

propagator on Mr and Lemma 2.4.1, it is clear that FTT with bi-orthogonal cores is also an

optimal3 dynamic approximation on Mr.

3.2.1 Temporal integration using operator splitting methods

One of the challenges of dynamic approximation of PDEs on low-rank tensor man-

ifolds relates to the curvature of the manifold, which is proportional to the inverse of the

smallest singular value of
〈
Ψ≥kΨ

⊤
≥k

〉
≥k

[61, section 4]. Such curvature appears naturally

at the right hand side of the DO-FTT system (3.20) in the form of inverse covariance matrices〈
Ψ≥kΨ

⊤
≥k

〉−1

≥k
. Clearly, if the tensor solution is comprised of cores with small singular val-

ues, then the covariance matrices
〈
Ψ≥kΨ

⊤
≥k

〉
≥k

are ill-conditioned and therefore not easily

invertible. Moreover, it is desirable to add and remove tensor modes adaptively during tem-

poral integration, and adding a mode with zero energy immediately yields singular covariance
3By selecting a collection of time-dependent invertible matrices Pi(s) ∈ GLri×ri(R), i = 2, 3, . . . , d − 1,

defined by the matrix differential equation 
dPi(s)

ds
= Gi(Pi)

Pi(0) = Pi,0

(3.23)

it is possible to develop evolution equations other than (3.20) for Ψi(s), which still solve the minimization problem
(3.12). The bi-orthogonal method discussed in [29, 24] is a result of one choice of matrix differential equation (3.23).
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matrices (see [29]). The problem of inverting the covariance matrices
〈
Ψ≥kΨ

⊤
≥k

〉
≥k

when

integrating (3.20) can be avoided by using projector-splitting methods. These methods were

originally proposed for integration on tensor manifolds by Lubich et. al in [69, 59, 70]. The key

idea is to apply an exponential operator splitting scheme, e.g., the Lie-Trotter scheme, directly

to the projection operator onto the tangent space defining the dynamic approximation (see equa-

tion (3.5)). To describe the method, we begin by introducing a general framework for operator

splitting of dynamics on the FTT tangent space. We first rewrite the orthogonal tangent space

projection (3.5) as

PurG(ur) = Ψ̇1Ψ≥2 +Ψ1Ψ̇2Ψ≥3 + · · ·+Ψ≤d−1Ψ̇d

= Ψ̇1

〈
Ψ≥2Ψ

⊤
≥2

〉1/2
≥2

Q⊤
≥2 +Ψ1Ψ̇2

〈
Ψ≥3Ψ

⊤
≥3

〉1/2
≥3

Q⊤
≥3 + · · ·+Ψ≤d−1Ψ̇d,

(3.24)

where in the second line we used the right orthogonalizations in equation (3.21) and we denoted

a derivative with respect to time with a dot above the corresponding tensor core, i.e., Ψ̇i =

∂Ψi/∂t. A substitution of the expressions for Ψ̇k we obtained in (3.22) into (3.24) yields

PurG(ur) = P+
d G(ur) +

d−1∑
i=1

P+
i G(ur)− P−

i G(ur), (3.25)

where we defined the following projection operators from L2
µ(Ω) onto TurMr

P+
k z(x) = Ψ≤k−1

〈
Ψ⊤

≤k−1z(x)Q≥k+1

〉
≤k−1,≥k+1

Q⊤
≥k+1, k = 1, . . . , d,

P−
k z(x) = Ψ≤k

〈
Ψ⊤

≤kz(x)Q≥k+1

〉
≥1

Q⊤
≥k+1, k = 1, . . . , d− 1,

(3.26)

for any z(x) ∈ L2
µ(Ω). Also we set Ψ0 = 1. The key point in (3.25) is that inverse covariance

matrices no longer appear. To establish a general operator splitting framework, let us assume

that there exists an evolution operator EPurG for the solution of the initial/boundary value prob-
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lem (3.6), where PurG is given in (3.25). Such evolution operator EPurG : L2
µ(Ω) × [0, T ] →

L2
µ(Ω) satisfies a semi-group property and it maps the initial condition u0(x) into the solution

to (3.6) at a later time

u(x, t) = EPurG(u0(x), t). (3.27)

We write such an evolution operator formally as an exponential operator with generator DPurG

(see e.g. [63])

u(x, t) = etDPurGu0(x), 0 ≤ t ≤ T, (3.28)

where DPurG is the Lie derivative associated with PurG. We now discretize the temporal

domain of interest [0, T ] into N + 1 evenly-spaced time instants,

ti = i∆t, ∆t =
T

N
, i = 0, 1, . . . , N. (3.29)

An approximation to the exact solution of (3.6) is then obtained by the recurrence relation

ur(x, tn+1) ≈ S(∆t, ur(x, tn)), (3.30)

where S is an exponential operator splitting that approximates the exact evolution operator

S(t, ·) =
s∏

i=1

eγi,dtP+
d G

d−1∏
j=1

(
eγi,jtP

+
j Geγi,jtP

−
j G
) . (3.31)
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Setting s = 1 and γ1,j = 1 for all j = 1, . . . , d in (3.31) yields the well-known Lie-Trotter

splitting, which is first-order in time. The discrete time version of this scheme can be written as

u+1 (ti+1) = u+1 (ti) + ∆tP+
1 G(ur), u+1 (ti) = ur(ti),

u−1 (ti+1) = u−1 (ti)−∆tP−
1 G(ur), u−1 (ti) = u+1 (ti+1),

...

u+j (ti+1) = u+j (ti) + ∆tP+
j G(ur), u+j (ti) = u−j−1(ti+1),

u−j (ti+1) = u−j (ti)−∆tP−
j G(ur), u−j (ti) = u+j (ti+1),

...

u+d (ti+1) = u+d (ti) + ∆tP+
d G(ur), ud(ti) = u−d−1(ti+1),

ur(ti+1) = u+d (ti+1).

(3.32)

This allows us to compute ur(ti+1) given ur(ti). Although each equation in (3.32) involves

a FTT tensor, it was shown in [69, Theorem 4.1] that each equation only updates one tensor

core. Clearly this is computationally more efficient than updating a full tensor. Moreover, in

(3.32) there is no need to invert covariance matrices, which is a distinct advantage over iterating

a discrete form of (3.20) or (3.22).

Regarding computational cost, suppose we discretize the d-dimensional domain Ω

using a tensor product grid with n points per dimension. It was pointed out in [69] that the

computational complexity of the sweeping algorithm to update the tensor cores for the Lie-

Trotter scheme (3.32) applied to a linear PDE (i.e. equation (3.6) with linear G) is linear in

the dimension d but has high polynomial complexity in the tensor rank. On the other hand,

discretizing such linear PDE on the same tensor product grid and performing one time step with
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a first-order time stepping scheme (e.g. Euler forward) has computational complexity which

scales exponentially with the dimension d. Specifically, assuming that the operator G in (1.1)

is linear with rank g =

[
g · · · g

]
(see section 3.1), the computational cost of one time step

of Euler forward is dnd+1g + ndg floating point operations, hence exponential in d.

3.3 Step-truncation methods

Another methodology to integrate nonlinear PDEs on fixed-rank tensor manifolds

Mr is step-truncation [60, 92, 93]. The idea is to integrate the solution off of Mr for short

time, e.g., by performing one time step of the full equation with a conventional time-stepping

scheme, followed by a truncation operation back onto Mr. To describe this method further let

us define the truncation operator4

Tr : L2
µ(Ω) → Mr

Tr(u) = argmin
ur∈Mr

∥u− ur∥L2
µ(Ω),

(3.33)

which provides the best approximation of u on Mr. Such a map is known as a metric projec-

tion or closest point function and in general it may be multivalued, i.e., the set of ur ∈ Mr

which minimize ∥u−ur∥L2
µ(Ω) is not a singleton set. However, since Mr is a smooth subman-

ifold of L2
µ(Ω), we have by [97, Proposition 5.1] that for each u0 ∈ Mr there exists an open

neighborhood U of u0 such that Tr is well-defined and smooth on U . Let

u(x, tk+1) = u(x, tk) + ∆tΦ (G, u(x, tk),∆t) (3.34)

4Throughout this discussion we will also use the truncation operator Tδ which adaptively selects the rank r of
the output tensor to have relative accuracy δ, i.e., ∥T(uTT(x))− uTT(x)∥H(Ω) ≤ δ∥uTT(x)∥H(Ω).
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be a convergent one-step time integration scheme5 approximating the solution to the initial value

problem (1.1). Assume that the solution u(x, t0) at time t0 is on Mr.6 In order to guarantee

the solution u(x, tk) at time step tk is an element of the manifold Mr for each k = 1, 2, . . .,

we apply the truncation operator to the right hand side (3.34). This yields the following step-

truncation method

ur(x, tk+1) = Tr (ur(x, tk) + ∆tΦ (G, ur(x, tk),∆t)) . (3.35)

For example the step-truncation Euler forward scheme is

uTT(x, tk+1) = Tδ [uTT(x, tk) + ∆tTδ (GTT(uTT(x, tk))] , (3.36)

and a step-truncation Adams-Bashforth 2 (AB2) scheme7 is

uTT(x, tk+1)

= Tδ

[
uTT(x, tk) + ∆t

(
3

2
Tδ [GTT(uTT(x, tk))]−

1

2
Tδ [GTT(uTT(x, tk−1))]

)]
.

(3.37)

In the step-truncation Euler scheme and AB2 scheme (3.36)-(3.37) we denote FTT tensors by

uTT instead of ur in order to not specify the exact rank of the FTT solution at each time step.

The rank at of uTT(x, tk) at each time step tk is determined by the truncation operator Tδ with

accuracy δ. See [92] for more details on rank-adaptive step-truncation integrators. In section

3.5 we present rank-adaptive methods for dynamic approximation integrators.
5Time stepping schemes of the form (3.34) include Runge-Kutta methods and linear multi-step methods [92].
6If u(x, t0) is not on Mr then it may be mapped onto Mr by evaluating Tr(u(x, t0)).
7Other step-truncation schemes can be obtained from the Adams-Bashforth 2 time discretization by inserting or

removing truncation operations following operator applications or summations of tensors.
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3.4 Consistency of dynamic approximation and step-truncation

Next we ask what happens in the step-truncation algorithm in the limit of time step ∆t

approaching zero. The result of such a limiting procedure results in a scheme which keeps the

solution u(x, t) on the manifold Mr for all time t ≥ t0 in an optimal way. We now show that

this limiting procedure in fact results in precisely the dynamic approximation method described

in section 3.2. In other words, by sending ∆t to zero in (3.35) we obtain a solution of (3.6).

For similar discussions connecting these two approximation methods in closely related contexts

see [35, 36, 60]. To prove consistency between step-truncation and dynamic approximation

methods we need to compute Tr(u(x, t)) for t infinitesimally close to t0. Such quantity depends

on the derivative

∂Tr(u(x, t))

∂t

∣∣∣∣
t=t0

= lim
∆t→0

Tr(u(x, t))− Tr(u(x, t0))

∆t
. (3.38)

The following proposition provides a representation of the derivative ∂Tr(u(x, t))/∂t in terms

of G(u(x, t)) and the Fréchet derivative [111] of the operator Tr(u).

Proposition 3.4.1. If the solution u0 = u(x, t0) to (1.1) at time t0 is on the manifold Mr, then

∂Tr(u(x, t))

∂t

∣∣∣∣
t=t0

= (Tr)
′
u0
G(u(x, t)), (3.39)

where (Tr)
′
u0

is the Fréchet derivative of the nonlinear operator Tr at the point u0.

Proof. Express the solution of (1.1) at time t ≥ t0 as

u(x, t) = u0(x) + h(x, t), (3.40)

where

h(x, t) =

∫ t

t0

G(u(x, τ))dτ. (3.41)
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Expanding Tr(u(x, t)) in a Taylor series around u0(x) we obtain [80, Theorem 6.1]

Tr(u(x, t)) = u0(x) + (Tr)
′
u0
h(x, t) +

1

2
(Tr)

′′
u0
h(x, t)2 + · · · . (3.42)

Differentiating (3.42) with respect to t and evaluating at t = t0 we obtain

∂Tr(u(x, t))

∂t

∣∣∣∣
t=t0

= (Tr)
′
u0
G(u(x, t0)), (3.43)

where we assumed that ∂/∂t commutes with (Tr)
′
u0

and used the fact that ∂h(x, t)/∂t =

G(u(x, t)) for the first order term. All of the higher order terms are seen to be zero by commut-

ing ∂/∂t with (Tr)
(n)
u0 and using chain rule.

Since Tr(u(x, t)) is an element of Mr for all t ≥ t0, it follows that (3.39) is an element of

Tu0Mr. Arguing on the optimality of the tangent space element (Tr)
′
u0
G(u(x, t0)) it is seen

that (3.43) is the same problem as dynamic approximation (3.6), i.e., (Tr)
′
u0

= Pu0 . Now

consider the scheme (3.35) and use a Taylor expansion of Tr around ur(x, tk) on the right

hand side

ur(x, tk+1) = ur(x, tk) + ∆t(Tr)
′Φ (G, ur(x, tk),∆t) +O(∆t2). (3.44)

Discarding higher order terms in ∆t yields

ur(x, tk+1) ≈ ur(x, tk) + ∆tPurΦ (G, ur(x, tk),∆t) . (3.45)

Moreover if the increment function Φ defines the Euler forward scheme

Φ(G, ur(x, tk),∆t) = G(ur(x, tk)), (3.46)
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then the scheme (3.45) is equivalent to the scheme in (3.6). Thus, we just proved the following

lemma.

Lemma 3.4.1. Step-truncation and dynamic approximation methods are consistent at least to

first-order in ∆t.

This Lemma applies to any first-order time integrator for dynamic approximation and step-

truncation, including the Lie-Trotter splitting integrator we discussed in section 3.2.1.

3.5 Rank-adaptive time integration

The solution to the initial/boundary value problem (1.1) is often not accurately repre-

sented on a tensor manifold with fixed rank, even for short integration times. In this section we

discuss effective methods to adaptively add and remove tensor modes from the solution based

on appropriate criteria.

In the context of step-truncation algorithms, if the solution rank naturally decreases

in time then the operator Tr in (3.35) is no longer well-defined. In this situation, replacing

the operator Tr with Ts for an appropriate8 s ≤ r allows for integration to continue. On the

other hand, if the solution rank increases in during integration then the operator Tr will still

be well-defined for small enough ∆t but the approximation on Mr will not retain accuracy.

Rank-adaptive integration for step-truncation integrators can be built by using tolerance based

truncation operators Tδ(·). With properly chosen truncation tolerances δ the can be made to

have a desired order of accuracy (see [92] for more details).
8Here ≤ denotes component-wise inequality of rank vectors, i.e., s < r if and only if si ≤ ri for all i =

0, 1, . . . , d.
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In the context of dynamic approximation integrators criteria for adding and removing

modes during rank-adaptive integration can be obtained by decomposing the velocity of the

PDE solution ∂u/∂t into a tangential component and a normal component relative to the tensor

manifold Mr. In the following subsection we present these rank-adaptive criteria and provide

some analysis on the order of the resulting rank-adaptive integration schemes. For the remainder

of this section let u(x, t) be the solution to (1.1) and ur(x, t) ∈ Mr an approximation of u(x, t)

obtained by either the solution of the dynamical approximation problem (3.6) or step-truncation

methods (see section 3.3).

3.5.1 Decreasing tensor rank

For decreasing tensor rank at time t, we are interested in determining if ur(x, t) ∈

Mr is close to an element us(x, t) ∈ Ms for s ≤ r. This can be achieved by simply per-

forming a FTT truncation on ur(x, t) with small threshold ϵdec. Since the splitting integrator

described in section 3.2.1 is robust to over approximation by tensor rank, it may not be strictly

necessary to decrease rank during integration. However, it is desirable to have solutions of the

lowest rank possible (while retaining accuracy) when solving high dimensional problems. For

these reasons it is advisable not perform a FTT truncation at each time step (as this would be

unnecessary and inefficient when using an operator splitting integrator) but only every once and

a while. One may choose a criterion for when to check for rank decrease based on the problem,

step size, current rank, and dimension. If one is using a step-truncation method with a tolerance

based FTT truncation algorithm such as the one described in section 2.3.1 then rank decrease is

already built into each time step.
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3.5.2 Increasing tensor rank

As a general heuristic one would like to increase rank at the time when the error

between the low-rank approximation ur(x, t) and the PDE solution u(x, t) will become large

after the subsequent time step. Such critical time instant for rank increase can be determined by

examining the normal component of the dynamics

Nur(G(ur)) = G(ur)− Pur(G(ur)). (3.47)

To describe this situation further, suppose we are integrating one time step forward from ti to

ti+1. The error at ti+1 is given by

E(ti, ti+1) = ur(x, ti+1)− u(x, ti+1)

= u(x, ti)

+

∫ ti+1

ti

G(u(x, τ))dτ −
(
Tr(u(x, ti)) +

∫ ti+1

ti

Pur(x,τ)G(ur(x, τ))dτ

)
.

(3.48)

If u(x, ti) ∈ Mr then

E(ti, ti+1) =

∫ ti+1

ti

[
G(u(x, τ))− Pur(x,τ)G(ur(x, τ))

]
dτ. (3.49)

For small ∆t the above integral can be approximated by the left endpoint

E(ti, ti+1) = ∆t
(
G(ur(x, ti))− Pur(x,ti)G(ur(x, ti))

)
+O(∆t2)

= ∆tNur(x,ti)(G(ur(x, ti))) +O(∆t2),

(3.50)

where Nur(x,τ) denotes the orthogonal projection onto the normal space of Mr at the point

ur(x, t). Hence, up to first-order in ∆t we have that

∥E(ti, ti+1)∥ ≃ ∆t∥Nur(x,ti)(G(ur(x, ti)))∥. (3.51)
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From this approximation we see that a reasonable criterion for increasing rank at time ti is when

the norm of the normal component ofG(ur(x, ti)) is larger than some threshold ϵinc (see Figure

3.1)

∥Nur(x,ti)(G(ur(x, ti)))∥ > ϵinc. (3.52)

To efficiently compute the normal component Nur(x,ti)(G(ur(x, ti))) at each time instant ti

we use the formula

Nur(x,ti)(G(ur(x, ti))) = G(ur(x, ti))− Pur(x,ti)(G(ur(x, ti))), (3.53)

where Nr(G(ur)) and Tur(G(ur)) represent the normal and tangential components of G(ur).

The tangential component can be approximated at a low computational cost via backward dif-

ferentiation formulas (BDF) as

P̃ (2)
ur
G(ur) =

ur(x, ti)− ur(x, ti−1)

∆t
+O(∆t2) (two-point formula),

(3.54)

P̃ (3)
ur
G(ur) =

3ur(x, ti)− 4ur(x, ti−1) + ur(x, ti−2)

2∆t
+O(∆t3) (three-point formula),

(3.55)

P̃ (p)
ur
G(ur) =BDp(∆t, ur(x, ti), . . . , ur(x, ti−p)) +O(∆tp) (p-point formula).

(3.56)

With a p-point backward difference approximation of the tangent space projection available at

ti we easily obtain an approximation of the normal component of G(ur) at ti

Nur(x,ti)(G(ur(x, ti))) = G(ur(x, ti))− P̃
(p)
ur(x,ti)

G(ur(x, ti)) +O(∆tp+1), (3.57)

which allows us to implement the criterion (3.52) for rank increase at time ti. Clearly, the p-

point formula (3.56), and the corresponding approximation of the normal component (3.57),
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are effectively of order p in ∆t if and only if the time snapshots ur(x, ti) are computed via a

temporal integrator of order p. We emphasize that this method of using a finite difference stencil

based on the temporal grid for approximating the tangential component of the dynamics (and

thus the normal component) creates a lower bound for the choice of normal vector threshold

ϵinc. In particular, we must have that K1(∆t)
p ≥ ϵinc for some constant K1 otherwise the

error incurred from our approximation of the normal component may trigger unnecessary mode

addition. This approximation of the normal component is cheap but only informs on whether or

not it is appropriate to add modes at time instant ti.

The subsequent question is which entries of the rank vector r need to be increased.

In order to make such a determination we expand the approximate solution at time t as

ur(x, t) = Ψ1(t) · · ·Ψd(t) + Γ1(t) · · ·Γd(t),

Ψi ∈Mri−1×ri(L
2
µi(Ωi)), Γi ∈Mfi−1×fi(L

2
µi(Ωi)),

(3.58)

where Γ1(t) · · ·Γd(t) = 0 for all t ∈ [0, T ]. Differentiating (3.58) with respect to time yields

∂ur(x, t)

∂t
=

∂

∂t
[Ψ1(t) · · ·Ψd(t)] +

∂

∂t
[Γ1(t) · · ·Γd(t)] . (3.59)

Subtracting off the tangential component ∂ [Ψ1(t) · · ·Ψd(t)] /∂t we have the normal compo-

nent at time t

Nur(x,t)

(
∂ur(x, t)

∂t

)
=

∂

∂t
[Γ1(t) · · ·Γd(t)] . (3.60)

Next, orthogonalize the partial product Γ≤i−1(t) from the left and the partial product Γ≥i(t)

from the right to obtain

Nur(x,t)

(
∂ur(x, t)

∂t

)
=

∂

∂t

[
Γ1(t) · · ·Γi−1(t)Ci(t)Γ

⊤
i (t) · · ·Γ⊤

d (t)
]
, (3.61)
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where Ci = 0ri−1×ri and
〈
Γ⊤
i Γi

〉
i
= I for all i = 1, 2, . . . , d. Expand (3.61) using a product

rule and evaluate at t = ti

[
Nur(x,t)

(
∂ur(x, t)

∂t

)]
t=ti

= Γ1(ti) · · ·Γj−1(ti)
∂Cj(t)

∂t

∣∣∣∣
t=ti

Γj(ti) · · ·Γd(ti). (3.62)

From the previous equation we see that the FTT autocorrelation matrices of the normal compo-

nent at time instant ti are the time derivatives of the zero energy modes in the current solution.

Thus, if the normal component has FTT rank n then the solution ur(x, t) at time ti should be

represented by an FTT tensor of rank r + n. Certainly, the solution will be over represented at

ti with rank r + n. However, after one step of the splitting integrator the additional ranks will

ensure that the low-rank solution ur+n(x, t) ∈ Mr+n retains its accuracy.

The main steps of the algorithm we propose to adaptively increase the tensor rank

are summarized in Algorithm 1. The operation “∗” appearing within the conditional statement

if/end denotes scalar times FTT tensor, and is meant to indicate that the multiplication is done

by scaling the first core of the tensor with the scalar 0 and leaving the remainder of the cores un-

changed [82]. As we will demonstrate in section 3.6, Algorithm 1 is robust and it yields accurate

results that do no require ad-hoc approximations such the matrix pseudo-inverse approximation

introduced in [6].

3.5.3 Order of the rank-adaptive scheme

Let us choose the threshold ϵinc in (3.52) to satisfy

ϵinc ≤ K2∆t, (3.63)
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Algorithm 1: One step integration with adaptive rank increase.

Input:

ur(x, ti), . . . , ur(x, ti−p) → time snapshots of the PDE solution with rank r,

G(ur(x, ti))→ velocity defined PDE (1.1) by at time ti,

∆t→ time step,

ϵinc → threshold for the norm of normal component Nur(x,ti)(G(ur(x, ti))).

Output:

ur+n(x, ti+1) → PDE solution with rank r + n at time ti+1

Initialization:

• Approximate the constant rank velocity vector via the BDF formula:

P̃
(p)
ur(x,ti)

G(ur(x, ti)) = BDp(ur(x, ti), ur(x, ti−1), . . . , ur(x, ti−p))

• Compute the normal component:

Nur(x,ti)G(ur(x, ti)) = G(ur(x, ti))− P̃
(p)
ur(x,ti)

G(ur(x, ti))

Runtime:

• if ∥Nur(x,ti)G(ur(x, ti))∥ > ϵinc then

Compute the FTT decomposition of normal component:

NTT(x, ti) = FTT(Nur(x,ti)G(ur(x, ti)))

Initialize additional tensor modes in ur(x, ti), as many as the rank of NTT (say n):

ur+n(x, ti) = ur(x, ti) + 0 ∗NTT(x, ti)

end

• Use one step of splitting integrator to map ur+n(x, ti) into ur+n(x, ti+1)

and assume that the condition

∥Nur(x,t)(G(ur(x, t)))∥ ≤ ϵinc (3.64)
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is satisfied for all t ∈ [0, T ]. Then we have the following bound for the local truncation error

∥E(ti, ti+1)∥ =

∥∥∥∥∫ ti+1

ti

Nur(x,τ)(G(ur(x, τ)))dτ

∥∥∥∥
≤
∫ ti+1

ti

∥Nur(x,τ)(G(ur(x, τ)))∥dτ

≤
∫ ti+1

ti

K2∆tdτ

= K2∆t
2.

(3.65)

In particular, we have that the continuous-time rank-adaptive scheme is order one consistent in

∆t if the normal vector threshold is set as in (3.63).

When implementing the adaptive scheme we usually discretize the time domain [0, T ]

into a mesh of time instants as in (3.29). Therefore, we do not necessarily have control over the

normal vector for all t ∈ [0, T ] but rather only at a finite number of time instants. However, an

analogous argument as we have made for order one consistency in the continuous time rank-

adaptive scheme holds for the discrete time rank-adaptive scheme by considering the first-order

approximation of the local truncation error given in (3.50). In particular by using the equality

in (3.50) and discrete time thresholding of the normal component

∥Nur(x,ti)(G(ur(x, ti)))∥ ≤ ϵinc, ∀i = 0, 1, . . . , N, (3.66)

we have that

∥E(ti, ti+1)∥ =
∥∥∆tNur(x,ti)(G(ur(x, ti))) +O(∆t2)

∥∥
≤
∥∥∆tNur(x,ti)(G(ur(x, ti)))

∥∥+ ∥O(∆t2)∥

= K2∆t
2 +O(∆t2)

= O(∆t2).

(3.67)
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This proves that the discrete time rank-adaptive scheme with normal threshold given by (3.66) is

consistent with order one in ∆t. Higher-order consistency results can be obtained with higher-

order time integration methods and higher-order estimators for the normal vector NurG(ur).
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Figure 3.2: Variable coefficient advection equation (3.68). Time snapshots of the rank-adaptive
FTT solution ur(x1, x2, t) obtained with threshold ϵinc = 10−2 (top), the semi-analytical solu-
tion uref(x1, x2, t) (middle), and the point-wise error between the two solutions (bottom).
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3.6 Numerical examples

In this section we demonstrate the rank-adaptive FTT tensor method on linear and

nonlinear PDEs. In all examples the rank-adaptive scheme relies on first-order Lie-Trotter op-

erator splitting time integration (3.32), and the thresholding criterion (3.52). For each PDE we

rigorously assess the accuracy of the proposed rank-adaptive tensor method by comparing it

with benchmark solutions computed with well-established numerical methods.

3.6.1 Two-dimensional advection equation

Let us begin with the two-dimensional variable coefficient advection problem
∂u(x1, x2, t)

∂t
= (sin(x1) + cos(x2))

∂u(x1, x2, t)

∂x1
+ cos(x2)

∂u(x1, x2, t)

∂x2
,

u(x1, x2, 0) = exp[sin(x1 + x2)],

(3.68)

on the torus Ω = T2. We have shown in previous work [29] that the tensor solution to the PDE

(3.68) increases in rank as time increases. As is well known, the PDE (3.68) can be reduced to

the trivial ODE du/dt = 0 along the flow generated by the dynamical system (see, e.g., [90])
dx1
dt

= sin(x1) + cos(x2),

dx2
dt

= cos(x2).

(3.69)

With the flow {x1(t, x01, x02), x1(t, x01, x02)} available, we can write the analytical solution

to (3.68) as

uref(x1, x2, t) = exp [sin(x01(x1, x2, t) + x02(x1, x2, t))] , (3.70)

where {x01(x1, x2, t), x02(x1, x2, t)} denotes the inverse flow generated by (3.69). We obtain

a semi-analytical solution to the PDE (3.68) by solving the characteristic system (3.69) numer-
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(a) (b) (c)

Figure 3.3: (a) Global L2(Ω) error of the FTT solution ur relative to the benchmark solution
uref ; (b) Norm of the two-point BDF approximation to the normal component NurG(ur(x, t))
(note the effect of thresholding); (c) Tensor rank versus time of the constant-rank FTT solution
and adaptive rank solutions with ϵinc = 10−1 and ϵinc = 10−2.

ically for different initial conditions and then evaluating (3.70). A few time snapshots of the

semi-analytical solution (3.70) are plotted in Figure 3.2 (middle row).

We also solve the PDE (3.68) using the proposed rank-adaptive tensor method with

first-order Lie-Trotter operator splitting and thresholding criterion (3.52) with ϵinc = 10−2.

The initial condition is approximated by an FTT tensor ur(x1, x2, 0) with multivariate rank

r =

[
1 15 1

]
ur(x1, x2, 0) = Ψ1(x1)

√
ΛΨ2(x2), (3.71)
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where

Ψ1(x1) =

[
ψ1(1;x1; 1) · · · ψ1(1;x1; 15)

]
,

√
Λ =


σ1

. . .

σ15

 ,

Ψ2(x2) =


ψ2(1;x2; 1)

...

ψ2(15;x2; 1)

 .
(3.72)

Each tensor mode ψi is discretized on a grid of 81 evenly-spaced points in the interval Ωi =

[0, 2π]. One-dimensional Fourier pseudo-spectral quadrature rules and differentiation matrices

[45] are used to compute inner products and derivatives when needed. We run three simulations

with the initial tensor decomposition (3.71) and time step ∆t = 10−4. In the first simulation

we do not use any rank adaptation, in the second simulation we set the normal vector threshold

to ϵinc = 10−1 and in the third simulation we set ϵinc = 10−2. At each time step the component

ofG(ur(x, ti)) normal to the tensor manifold is approximated with the two-point BDF formula

(section 3.5.2). In Figure 3.4 we plot a few time snapshots of the singular values of the rank-

adaptive FTT solution with ϵinc = 10−2. Figures 3.3(a)-(c) summarize the performance and

accuracy of the proposed rank-adaptive FTT solver. In particular, in Figure 3.3(a) we plot the

time-dependent L2(Ω) error between the rank-adaptive FTT solution and the reference solution

we obtained with method of characteristics. It is seen that decreasing the threshold ϵinc on the

norm of the component of G(ur) normal to the FTT tensor manifold (Figure 3.3(b)) yields

addition of more tensor cores to the FTT solution (Figure 3.3(c)). This, in turn, results in better

accuracy as demonstrated in Figure 3.3(a).
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t = 0.0 t = 0.5 t = 1.0

Figure 3.4: Time snapshots of the singular values of the rank-adaptive FTT solution with thresh-
old ϵinc = 10−2.

3.6.2 Two-dimensional Kuramoto-Sivashinsky equation

Next we demonstrate the rank-adaptive FTT integrator on the two-dimensional Kuramoto-

Sivashinsky equation [53]
∂

∂t
u(x1, x2, t) +

1

2
|∇νu(x1, x2, t)|2 +∆νu(x1, x2, t) + ν1∆

2
νu(x1, x2, t) = 0,

u(x1, x2, 0) = sin(x1 + x2) + sin(x1) + sin(x2),

(3.73)

where

∇ν =

(
∂

∂x1
, ν

∂

∂x2

)
, ∆ν =

∂2

∂x21
+ ν

∂2

∂x22
. (3.74)

Here, ν1, ν2 are bifurcation parameters and ν = ν2/ν1. For our demonstration we set ν1 = 0.25,

ν2 = 0.04 and solve (3.73) on the two-dimensional torus T2. The initial condition can be written

as rank r =

[
1 2 1

]
FTT tensor

u0(x1, x2) = ψ1(1;x1; 1)ψ2(1;x2; 1)
√
λ(1) + ψ1(1;x1; 2)ψ2(2;x2; 1)

√
λ(2), (3.75)

where

ψ1(1;x1; 1) =
sin(x1)√

π
, ψ1(1;x1; 2) =

cos(x1) + 1√
3π

,

ψ2(1;x2; 1) =
cos(x2) + 1√

3π
, ψ2(2;x2; 1) =

sin(x2)√
π

,

(3.76)
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Figure 3.5: Kuramoto-Sivashinsky equation (3.73). Time snapshots of the rank-adaptive FTT
solution ur(x1, x2, t) obtained with threshold ϵinc = 10−2 (top), the Fourier pseudo-spectral
solution uref(x1, x2, t) (middle), and their point-wise error between the two solutions (bottom).

and √
λ(1) =

√
λ(2) =

√
3π. (3.77)

We compute a benchmark solution by using a Fourier pseudo-spectral method [45] with 33

evenly-spaced grid points per spatial dimension (1089 total number of points). Derivatives and

integrals are approximated with well-known pseudo-spectral differentiation matrices and Gauss

quadrature rules. The resulting ODE system is integrated forward in time using an explicit
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fourth-order Runge-Kutta method with time step ∆t = 10−5.

As before, we performed multiple simulations using the proposed rank-adaptive FTT

algorithm with different thresholds for the component of G(ur) normal to the tensor manifold.

Specifically, we ran one simulation with no mode addition and three simulations with adaptive

mode addition based on Algorithm 1, and thresholds set to ϵinc = 10, ϵinc = 10−1, and ϵinc =

10−2. We used the two-point BDF formula (3.54) to approximate the component of the solution

normal to the tensor manifold at each time step and the Lie-Trotter operator splitting scheme

(3.32) with time step ∆t = 10−5 to integrate in time the rank-adaptive FTT solution. In Figure

3.5 we compare the time snapshots of the rank-adaptive FTT solution with ϵinc = 10−2 with the

benchmark solution obtained by the Fourier pseudo-spectral method. As before, Figures 3.6(a)-

(c) demonstrate that the rank-adaptive FTT algorithm is effective in controlling the L2(Ω) error

of the FTT solution. Interestingly, the solution to the PDE (3.73) has the property that any tensor

approximation with sufficient rank yields a normal component that does not grow in time. In

fact, as seen in Figure 3.6(b) the tensor rank becomes constant for each threshold ϵinc after

a transient of approximately 0.5 dimensionless time units. In Figure 3.6 we observe that the

error associated with the constant rank 2 FTT solution increases significantly during temporal

integration. This suggests that projecting the nonlinear Kuramoto-Sivashinsky equation (3.73)

onto a rank 2 FTT manifold yields a reduced-order PDE which does not accurately capture the

dynamics of the full system. A similar phenomenon occurs in other areas of reduced-order

modeling, e.g., when projecting nonlinear PDEs onto proper orthogonal decomposition (POD)

bases [103].
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(a) (b) (c)

Figure 3.6: (a) Global L2(Ω) error between the FTT solution ur to equation (3.73) and the
benchmark solution uref . (b) Norm of the approximation to Nur(G(ur)) = u̇r −G(ur) where
the tangent space projection is computed with a two-point BDF formula at each time. (c) Rank
versus time of the constant rank FTT solution and rank-adaptive FTT solutions with ϵinc =
10, 10−1, 10−2.

3.6.3 Four-dimensional Fokker-Planck equation

Finally, we demonstrate the proposed rank-adaptive FTT integrator on a four-dimensional

Fokker–Planck equation with non-constant drift and diffusion coefficients. As is well known

[91], the Fokker–Planck equation describes the evolution of the probability density function

(PDF) of the state vector solving the Itô stochastic differential equation (SDE)

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt. (3.78)

Here, Xt is the d-dimensional state vector, µ(Xt, t) is the d-dimensional drift, σ(Xt, t) is

an d × m matrix and Wt is an m-dimensional standard Wiener process. The Fokker–Planck

equation that corresponds to (3.78) has the form
∂p(x, t)

∂t
= L(x, t)p(x, t),

p(x, 0) = p0(x),

(3.79)
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where p0(x) is the PDF of the initial state X0, L is a second-order linear differential operator

defined as

L(x, t)p(x, t) = −
d∑

k=1

∂

∂xk
(µk(x, t)p(x, t)) +

d∑
k,j=1

∂2

∂xk∂xj
(Dij(x, t)p(x, t)) , (3.80)

and D(x, t) = σ(x, t)σ(x, t)⊤/2 is the diffusion tensor. For our numerical demonstration we

set

µ(x) = α



sin(x1)

sin(x3)

sin(x4)

sin(x1)


, σ(x) =

√
2β



g(x2) 0 0 0

0 g(x3) 0 0

0 0 g(x4) 0

0 0 0 g(x1)


, (3.81)

where g(x) =
√

1 + k sin(x). With the drift and diffusion matrices chosen in (3.81) the opera-

tor (3.80) takes the form

L =− α

(
cos(x1) + sin(x1)

∂

∂x1
+ sin(x3)

∂

∂x2
+ sin(x4)

∂

∂x3
+ sin(x1)

∂

∂x4

)
+ β

(
(1 + k sin(x2))

∂2

∂x21
+ (1 + k sin(x3))

∂2

∂x22

+ (1 + k sin(x4))
∂2

∂x23
+ (1 + k sin(x1))

∂2

∂x24

)
.

(3.82)

Clearly L is a linear, time-independent separable operator of rank 9, since it can be written as

L =

9∑
i=1

L
(1)
i ⊗ L

(2)
i ⊗ L

(3)
i ⊗ L

(4)
i , (3.83)

65



where each L(j)
i operates on xj only. Specifically, we have

L
(1)
1 = −α cos(x1), L

(1)
2 = −α sin(x1)

∂

∂x1
, L

(2)
3 = −α ∂

∂x2
, L

(3)
3 = sin(x3),

L
(3)
4 = −α ∂

∂x3
, L

(4)
4 = sin(x4), L

(1)
5 = −α sin(x1), L

(4)
5 =

∂

∂x4
,

L
(1)
6 = β

∂2

∂x21
, L

(2)
6 = 1 + k sin(x2), L

(2)
7 = β

∂2

∂x22
, L

(3)
7 = 1 + k sin(x3),

L
(3)
8 = β

∂2

∂x23
, L

(2)
8 = 1 + k sin(x4), L

(4)
9 = β

∂2

∂x24
, L

(1)
9 = 1 + k sin(x1),

(3.84)

and all other unspecified L(j)
i are identity operators. We set the parameters in (3.81) as α = 0.1,

β = 2.0, k = 1.0 and solve (3.79) on the four-dimensional torus T4. The initial PDF is set as

p0(x) =
sin(x1) sin(x2) sin(x3) sin(x4) + 1

16π4
. (3.85)

Note that (3.85) is a four-dimensional FTT tensor with multilinear rank r =

[
1 2 2 2 1

]
.

Upon normalizing the modes appropriately we obtain the left orthogonalized initial condition

required to begin integration

p0(x) = ψ1(1;x1; 1)ψ2(1;x2; 1)ψ3(1;x3; 1)ψ4(1;x4; 1)
√
λ(1)

+ ψ1(1;x1; 2)ψ2(2;x2; 2)ψ3(2;x3; 2)ψ4(2;x4; 1)
√
λ(2),

(3.86)

where

ψi(1;xi; 1) =
sin(xi)√

π
,

√
λ(1) =

1

16π2
. (3.87)

All other tensor modes are equal to 1/
√
2π, and

√
λ(2) = 1/(2π2). To obtain a benchmark

solution with which to compare the rank-adaptive FTT solution, we solve the PDE (3.79) using

a Fourier pseudo-spectral method on the torus T4 with 214 = 194481 evenly-spaced points.

As before, the operator L is represented in terms of pseudo-spectral differentiation matrices
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Figure 3.7: Time snapshots of marginal PDF pr(x1, x2, t) corresponding to the solution to
the Fokker-Planck equation (3.79). We plot marginals computed with the rank-adaptive FTT
integrator using ϵinc = 10−4 (top row) and with the full tensor product Fourier pseudo-spectral
method (middle row). We also plot the point-wise error between the two numerical solutions
(bottom row). The initial condition is the FTT tensor (3.85).

[45], and the resulting semi-discrete approximation (ODE system) is integrated with an ex-

plicit fourth-order Runge Kutta method using time step ∆t = 10−4. The numerical solution

we obtained in this way is denoted by pref(x, t). We also solve the Fokker-Planck using the

proposed rank-adaptive FTT method with first-order Lie-Trotter time integrator (section 3.2.1)

and normal vector thresholding (section 3.5.2). We run three simulations all with time step

∆t = 10−4: one with no rank adaption, and two with rank-adaptation and normal component
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(a) (b)

Figure 3.8: (a) The L2(Ω) error of the FTT solution pr(x, t) relative to the benchmark solution
pref(x, t) computed with a Fourier pseudo-spectral method on a tensor product grid. (b) Norm
of the component of Lpr normal to the tensor manifold (see Figure 3.1). Such component is
approximated a two-point BDF formula at each time step.

thresholds set to ϵinc = 10−3 and ϵinc = 10−4. In Figure 3.7 we plot three time snapshots of

the two-dimensional solution marginal

p(x1, x2, t) =

∫ 2π

0

∫ 2π

0
p(x1, x2, x3, x4, t)dx3dx4 (3.88)

computed with the rank-adaptive FTT integrator (ϵinc = 10−4) and the full tensor product

pseudo-spectral method (reference solution). In Figure 3.8(a) we compare the L2(Ω) errors of

the rank-adaptive method relative to the reference solution. It is seen that as we decrease the

threshold the solution becomes more accurate. In Figure 3.8(b) we plot the component of Lpr

normal to the tensor manifold, which is approximated using the two-point BDF formula (3.54).

Note that in the rank-adaptive FTT solution with thresholds ϵinc = 10−3 and ϵinc = 10−4 the

solver performs both mode addition as well as mode removal. This is documented in Figure

3.9. The abrupt change in rank observed in Figure 3.9(a)-(c) near time t = 0.4 corresponding

to the rank-adaptive solution with threshold ϵinc = 10−4 is due to the time step size ∆t being
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(a) (b) (c)

Figure 3.9: Tensor rank r = [1 r1 r2 r3 1] of adaptive FTT solution to the four dimensional
Fokker-Planck equation (3.79).

equal to ϵinc. This can be justified as follows. Recall that the solution is first order accurate

in ∆t and therefore the approximation of the component of Lpr normal to the tensor manifold

Mr is first-order accurate in ∆t. If we set ϵinc ≤ ∆t, then the rank-adaptive scheme may

overestimate the number of modes needed to achieve accuracy on the order of ∆t. This does not

affect the accuracy of the numerical solution due to the robustness of the Lie-Trotter integrator

to over-approximation [69]. Moreover we notice that the rank-adaptive scheme removes the

unnecessary modes ensure that the tensor rank is not unnecessarily large (see section 3.5.1). In

fact, the diffusive nature of the Fokker-Plank equation on the torus T4 yields relaxation to a

statistical equilibrium state that depends on the drift and diffusion coefficients in (3.79). Such

equilibrium state may be well-approximated by a low-rank FTT tensor.

Appendix 3.A Proof of Theorem 3.2.1

The functional A in (3.19) is convex and thus a critical point is necessarily a global

minimum. To find such a critical point set the first variation of A with respect to ∂ψj(ξj−1, ξj)/∂t
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in the direction ηj(ξj−1, ξj) (j = 1, 2, . . . , d, ξj = 1, 2, . . . , rj)

[
d

dϵ
A
(
∂ψj(ξj−1, ξj)

∂t
+ ϵηj(ξj−1, ξj)

)]
ϵ=0

(3.89)

equal to zero for all ηj(ξj−1, ξ) ∈ L2
µj (Ωj). Note that we have available the dynamic constraints

〈
∂ψj(·, αj)

∂t
, ψj(·, βj)

〉
L2
τ×µj

(N×Ωj)

= 0, ∀j = 1, . . . , d− 1, αj , βj = 1, . . . , rj ,

(3.90)

and the static constraints

⟨ψj(·, αj), ψj(·, βj)⟩L2
τ×µj

(N×Ωj)
= δαj ,βj , ∀j = 1, . . . , d− 1, αj , βj = 1, . . . , rj ,

(3.91)

which are implied by the dynamic constraints as long as the cores Ψ1(t), . . . ,Ψd−1(t) all have

identity auto-correlation matrices at some time (say at t = 0). For j = 1 we obtain[
δ ∂ψ1(ξ0,ξ1)

∂t

A
]
η1(ξ0, ξ1)

= 2

〈 ∂

∂t

 r0,r1∑
α0,α1=1

ψ1(α0, α1)ψ>1(α1)

−G(ur)

 η1(ξ0, ξ1)ψ>1(ξ1)

〉
≤d

+

rj∑
α1=1

λ
(1)
ξ1α1

〈
η1(ξ0, ξ1)ψ1(ξ0, α1)

〉
1

= 0,

(3.92)

whence the fundamental lemma of calculus of variations implies

2

〈 ∂

∂t

 r0,r1∑
α0,α1=1

ψ1(α0, α1)ψ>1(α1)

−G(ur)

ψ>1(ξ1)

〉
>1

+

rj∑
α1=1

λ
(1)
ξ1α1

ψ1(ξ0, α1)

= 0.

(3.93)
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Rearranging terms we obtain

r0,r1∑
α0,α1=1

(
∂ψ1(α0, α1)

∂t
⟨ψ>1(α1), ψ>1(ξ1)⟩2,...,d + ψ1(α0, α1)

〈
∂ψ>1(α1)

∂t
ψ>1(ξ1)

〉
>1

)

= ⟨G(ur)ψ>1(ξ1)⟩>1 −
1

2

rj∑
α1=1

λ
(1)
ξ1α1

ψ1(ξ0, α1).

(3.94)

Taking ⟨·, ψ1(α0, ξ
′
1)⟩L2

τ×µ1
(N×Ω1) of the previous equation and utilizing the dynamic and static

constraints, we solve for the Lagrange multiplier

λ
(1)
ξ1ξ′1

=

〈
G(ur)ψ1(1, ξ

′
1)ψ>1(ξ1)

〉
≤d

−
〈
∂ψ>1(ξ

′
1)

∂t
ψ>1(ξ1)

〉
>1

. (3.95)

Substituting (3.95) into (3.94) and rearranging terms we obtain

r1∑
α1=1

∂ψ1(1, α1)

∂t
⟨ψ>1(α1)ψ>1(ξ1)⟩>1

= ⟨G(ur)ψ>1(ξ1)⟩>1 −
r1∑

α1=1

ψ1(1, α1) ⟨G(ur)ψ1(1, α1)ψ>1(ξ1)⟩≤d

(3.96)

Using the matrix–vector notation for tensor cores and inverting the auto-correlation matrix on

the left hand side yields the equation for ∂Ψ1/∂t in (3.20). For j = 2, . . . , d− 1 we have that[
δ ∂ψj(ξj−1,ξj)

∂t

A
]
ηj(ξj−1, ξj)

= 2

〈 ∂

∂t

 r0,...,rj∑
α0,...,αj=1

ψ1(α0, α1) · · ·ψj(αj−1, αj)ψ>j(αj)

−G(ur)


r0,...,rj−2∑

α0,...,αj−2=1

ψ1(α0, α1) · · ·ψj−1(αj−2, ξj−1)ηj(ξj−1, ξj)ψ>j(ξj)

〉
≤d

+

rj∑
αj=1

λ
(j)
ξjαj

〈
ηj(ξj−1, ξj)ψj(ξj−1, αj)

〉
j

.

(3.97)
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Utilizing the fundamental lemma of calculus of variations and rearranging terms we obtain

〈 r0,...,rj∑
α0,...,αj=1

∂

∂t

[
ψ1(α0, α1) · · ·ψj(αj−1, αj)ψ>j(αj)

]
r0,...,rj−2∑

α0,...,αj−2=1

ψ1(α0, α1) · · ·ψj−1(αj−2, ξj−1)ψ>j(ξj)

〉
≤j−1,>j

=

〈
G(ur)

r0,...,rj−2∑
α0,...,αj−2=1

ψ1(α0, α1) · · ·ψj−1(αj−2, ξj−1)ψ>j(ξj)

〉
≤j−1,>j

− 1

2

∑
αj

λ
(j)
ξjαj

ψj(ξj−1, αj).

(3.98)

Utilizing the dynamic orthogonality condition (3.15) and the orthonormality for all t on the left

hand side of (3.98) we obtain

rj∑
αj=1

(
ψj(ξj−1, αj)

∂t

〈
ψ>j(αj)ψ>j(ξj)

〉
>j

+ ψj(ξj−1, αj)

〈
∂ψ>j(αj)

∂t
ψ>j(ξj)

〉
>j

)

=

〈
G(ur)

r0,...,rj−2∑
α0,...,αj−2=1

ψ1(α0, α1) · · ·ψj−1(αj−1, ξj−1)ψ>j(ξj)

〉
≤j−1,>j

− 1

2

rj∑
αj=1

λ
(j)
ξjαj

ψj(ξj−1, αj).

(3.99)

Taking ⟨·, ψj(αj−1, ξ
′
j)⟩L2

τ×µj
(N×Ωj)

of the previous equation and utilizing the constraints we

find

λ
(j)
ξjξ′j

= 2

[ r0,...,rj−1∑
α0,...,αj−1=1

〈
G(ur)ψ1(α0, α1) · · ·ψj−1(αj−2, ξj−1)ψj(αj−1, ξ

′
j)ψ>j(ξj)

〉
≤d

−
〈
∂ψ>j(ξ

′
j)

∂t
ψ>j(ξj)

〉
>j

]
(3.100)
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Plugging (3.100) into (3.99) and simplifying we obtain

rj∑
αj=1

∂ψj(ξj−1, αj)

∂t

〈
ψ>j(αj)ψ>j(ξj)

〉
>j

=

r0,...,rj−2∑
α0,...,αj−2=1

〈
G(ur)ψ1(α0, α1) · · ·ψj−1(αj−2, ξj−1)ψ>j(ξj)

〉
≤j−1,>j

−
r0,...,rj∑

α0,...,αj=1

ψj(ξj−1, αj)

〈
G(ur)ψ1(α0, α1) · · ·ψj−1(αj−2, ξj−1)ψj(αj−1, αj)ψ>j(ξj)

〉
≤d

.

(3.101)

Using the matrix vector notation for tensor cores and inverting the auto-correlation matrix on

the left hand side yields the equation for ∂Ψj/∂t in (3.20). For j = d we obtain[
δ ∂ψd(ξ0,ξ1)

∂t

A
]
ηd(ξd−1, ξd)

= 2

〈 ∂

∂t

 r∑
α0,...,αd=1

ψ1(α0, α1) · · ·ψd(αd−1, αd)

−G(ur)


r0,...,rd−1∑

α0,...,αd−2=1

ψ1(α0, α1) · · ·ψd−1(αd−2, ξd−1)ηd(ξd−1, ξd)

〉
≤d

,

(3.102)

whence the fundamental lemma of calculus of variations implies〈 ∂

∂t

 r∑
α0,...,αd=1

ψ1(α0, α1) · · ·ψd(αd−1, αd)

−G(ur)


r0,...,rd−1∑

α0,...,αd−2=1

ψ1(α0, α1) · · ·ψd−1(αd−2, ξd−1)

〉
≤d−1

= 0.

(3.103)

Rearranging terms we obtain〈
∂

∂t

 r∑
α0,...,αd=1

ψ1(α0, α1) · · ·ψd(αd−1, αd)


r0,...,rd−2∑

α0,...,αd−2=1

ψ1(α0, α1) · · ·ψd−1(αd−2, ξd−1)

〉
≤d−1

=

〈
G(ur)

r0,...,rd−2∑
α0,...,αd−2=1

ψ1(α0, α1) · · ·ψd−1(αd−2, ξd−1)

〉
≤d−1

.

(3.104)
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Using the dynamic and static orthogonality constraints we obtain

∂ψd(ξd−1, 1)

∂t
=

〈
G(ur)

r0,...,rd−2∑
α0,...,αd−2=1

ψ1(α0, α1) · · ·ψd−1(αd−2, ξd−1)

〉
≤d−1

. (3.105)

Writing this expression in matrix-vector notation the desired equation for ∂Ψd/∂t is obtained.
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Chapter 4

Rank reducing coordinate transformations

In this chapter we present an extension of low-rank tensor methods in which we

approximate a given multivariate function with a low-rank tensor together with a coordinate

transformation in order to obtain a more efficient low-rank representation. Given the funda-

mental importance of tensor rank in computations and its non-favorable scaling, rank reduction

based on coordinate transformations can greatly increase the efficiency of high-dimensional

tensor approximation algorithms. To describe the method, consider the scalar field u(x), where

x ∈ Ω ⊆ Rd, d > 1. The idea is very simple: determine an invertible coordinate transformation

H : Rd → Rd so that the function

v(x) = u(H(x)) (4.1)

has smaller tensor rank than u(x). The concept of representing a function on a transformed

coordinate system has proven to be a successful technique for a wide range of applications,

e.g., [71, 108, 54]. Related ideas have been used in quantum man-body problems in which the

discretization basis is rotated in order to reduce the rank of the solution representation [65].
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To illustrate the effects of coordinate transformations on tensor rank, in Figure 4.1 we show

that a simple two-dimensional rotation can increase the rank of fully separated (i.e., rank one)

Gaussian function significantly. Vice versa, the inverse rotation can transform a rotated Gaus-

sian with high tensor rank into a rank one function. Similar results hold of course in higher

dimensions.

Under mild assumptions on the function u(x), one may argue, e.g. using nonlinear

dynamics or the theory of optimal mass transport, that there always exists a transformation H

such that v(x) = u(H(x)) possesses the smallest possible multilinear rank among all tensors

in a given format1. However, developing a computationally tractable algorithm for obtaining

the transformation H given the function u(x) is not an easy task. In this chapter we present a

mathematical framework and computationally efficient algorithms for obtaining quasi-optimal

tensor rank-reducing coordinate transformations H . In particular, we restrict our analysis to

linear coordinate transformations. In this setting, H can be represented by a matrix A, which

allows us to write (4.1) in the simplified form

v(x) = u(Ax). (4.2)

The function v(x) is known as a generalized ridge function [85]. If u(x) is represented in a

tensor format, i.e., a series of products of one-dimensional functions ψ(xi) called tensor modes,

then v(x) inherits a similar series expansion. However, under the action of the linear map

Ax the tensor modes are no longer univariate. Instead, they take the form of ridge functions

ψ(ai · x), where ai is the i-th row of the matrix A. Since these ridge tensor modes are now
1If we allow for nonlinear coordinate flows [44], then we can of course map any multivariate probability density

function (PDF) into a target distribution that has rank-one. Similar results can be obtained via optimal mass transport,
e.g., by suitable approximations of the Knöthe-Rosenblatt rearrangement [95, 104].
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Figure 4.1: (a) Two-dimensional Gaussian stretched along the x2-axis; (b) Two-dimensional
rotated Gaussian (clockwise rotation by ϵ = π/4 radians); (c) Rank of the the rotated Gaussian
versus the clockwise rotation angle ϵ.

d-dimensional, the tensor compression which we had for u(x) may be lost. The theoretical

results we present for linear coordinate transformations provide a framework that be generalized

to larger classes of nonlinear transformations, and open new pathways for tensor rank reduction

that are complementary to classical rank reduction methods, e.g., based on hierarchical SVD

[39, 41].

The remainder of this Chapter is organized as follows. In section 4.1 we introduce

77



ridge tensor train and provide a simple example to illustrate the effects of coordinate flows on

tensor rank. In section 4.2 we formulate the tensor rank reduction problem as a Riemannian

optimization problem on the manifold of volume-preserving invertible coordinate maps. We

also provide an efficient algorithm for computing the numerical solution to such optimization

problem. In section 4.2.6 we demonstrate our proposed Riemannian gradient descent algorithm

for computing a quasi-optimal linear coordinate map on a three-dimensional Gaussian mix-

ture. In section 4.3 we apply the proposed rank reduction methods various linear and nonlinear

PDEs. We also include two appendices in which we describe the Riemannian manifold of co-

ordinate transformations, and provide theoretical results supporting the proposed mathematical

framework for ridge tensors.

4.1 Tensor ridge functions

We begin by introducing a class of functions, which we call tensor ridge functions,

that will be used in subsequent sections to build a tensor rank-reduction theory via linear coor-

dinate mappings. To this end, consider the following invertible linear coordinate transformation

y = Ax, A : Rd → Rd. (4.3)

If we evaluate a function u ∈ L2
µ(Ω) at y, we obtain the generalized ridge function u(Ax) (e.g.,

[85]). Although the coordinate transformation A is linear, the evaluation of u on Ax defines a

nonlinear map of functions

u(x) 7→ v(x) = u(Ax). (4.4)

78



The image of a FTT tensor (2.32) under such a map has the form

uTT(Ax) =

r0∑
α0=1

r1∑
α1=1

· · ·
rd∑

αd=1

√
λ(αd−1)ψ1(α0;a1 · x;α1)ψ2(α1;a2 · x;α2) · · ·ψd(αd−1;ad · x;αd),

(4.5)

which we call a tensor ridge function. In (4.5), ai denotes the i-th row of the matrix A and “·”

is the standard dot product on Rd, and r0 = rd = 1. When we consider uTT(Ax) = uTT(y)

in coordinates y, equation (4.5) is the FTT expansion for uTT(y). However, when we consider

v(x) = uTT(Ax) in coordinates x we have that each mode ψi(αi−1;ai · x;αi) in the tensor

ridge function (4.5) is no longer a univariate function of xi as in (2.32), but rather a d-variate

ridge function, which, has the property of being constant in all directions orthogonal to the

vector ai (e.g., [25, 85]). An important problem is determining the FTT expansion

vTT(x) =

s0∑
α0=1

s1∑
α1=1

· · ·
sd∑

αd=1

√
θ(αd−1)φ1(α0;x1;α1)φ2(α1;x2;α2) · · ·φd(αd−1;xd;αd)

(4.6)

given the FTT expansion (4.5) for uTT(Ax). A naive approach to solve this problem would be

to recompute the FTT expansion from scratch using the methods of section 2.3, i.e., treat vTT(x)

as a multivariate function and solve a sequence of hierarchical eigenvalue problems. This is not

practical even for a moderate number of dimensions d since the evaluation of v(x) requires

constructing a tensor product grid in d-dimensions, and each eigenvalue problem requires the

computation of d-dimensional integrals. Another approach is to use TT-cross approximation

[81], which provides an algorithm for interpolating d-dimensional black-box tensors in the ten-

sor train format with computationally complexity that scales linearly with the dimension d.

Hereafter, we develop a new approach to compute the FTT expansion (4.6) from (4.5) based on
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coordinate flows.

4.1.1 Computing tensor ridge functions via coordinate flows

Consider the non-autonomous linear dynamical system
dy(ϵ)

dϵ
= B(ϵ)y(ϵ),

y(0) = x,

(4.7)

where y(ϵ) ∈ Rd, and B(ϵ) is a given d × d matrix with real entries for all ϵ ≥ 0. It is

well-known that the solution to (4.7) can be written as

y(ϵ) = Φ(ϵ)x, (4.8)

where

Φ(ϵ) = eM(ϵ) (4.9)

is an invertible linear mapping on Rd for each ϵ ≥ 0. The matrix M(ϵ) can be represented by

the Magnus series (e.g., [14])

M(ϵ) =

∫ ϵ

0
B(ϵ1)dϵ1 −

1

2

∫ ϵ

0

{∫ ϵ1

0
B(ϵ2)dϵ2,B(ϵ1)

}
dϵ1 + · · · , (4.10)

where {·, ·} denotes the matrix commutator

{P ,Q} = PQ−QP . (4.11)

Now that we have introduced coordinate flows and their connection to linear coordinate trans-

formations, let us consider the problem of determining the FTT expansion of uTT(Ax) when A
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is generated by a coordinate flow, i.e., A = Φ(ϵ) for some Φ and some ϵ ≥ 0. Differentiating

v(x; ϵ) = uTT(Φ(ϵ)x) with respect to ϵ yields the hyperbolic PDE

∂v(x; ϵ)

∂ϵ
=
∂uTT(Φ(ϵ)x)

∂ϵ

= ∇uTT(Φ(ϵ)x) ·
(
∂Φ(ϵ)

∂ϵ
x

)
= ∇uTT(Φ(ϵ)x) · (B(ϵ)Φ(ϵ)x) ,

(4.12)

where in the second line we used the chain rule and in the third line we used equations (4.7) and

(4.8). Recalling Φ(0) = Id×d (identity matrix), we see that the initial state v(x; 0) = uTT(x)

is in FTT format. Thus, we have derived the following hyperbolic initial value problem for the

tensor ridge function v(x; ϵ)
∂v(x; ϵ)

∂ϵ
= ∇v(x; ϵ) · (B(ϵ)Φ(ϵ)x) ,

v(x; 0) = uTT(x),

(4.13)

with an initial condition that is given in an FTT format.

Integrating the PDE (4.13) forward in ϵ on a FTT tensor manifold, e.g. using rank-

adaptive step-truncation methods [93, 92, 60] or dynamic tensor approximation methods [30,

29, 28, 69, 62], results in a FTT approximation vTT(x; ϵ) of the function v(x; ϵ) for all ϵ ≥ 0.

The computational cost of this approach for computing the FTT expansion of a FTT ridge

function is precisely the same cost as solving the hyperbolic PDE (4.13) in the FTT format,

which in the case of step-truncation or dynamic approximation has computational complexity

that scales linearly with d. Note that the accuracy of vTT(x; ϵ) as an approximation of v(x; ϵ)

depends on the ϵ step-size and order of integration scheme used to solve the PDE (4.13).

Using coordinate flows, it is straightforward to compute the FTT expansion of a tensor
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ridge function uTT(Ax) when the matrix A admits a real matrix logarithm L. In this case,

setting B(ϵ) = L yields Φ(ϵ) = eϵL, and therefore A = Φ(1). This means that we need to

integrate (4.13) with B(ϵ) = L up to ϵ = 1 to obtain the FTT approximation of the tensor ridge

function uTT(Ax). Let us provide a simple example.

An example of application Consider the two-dimensional Gaussian function depicted in Fig-

ure 4.1(a), i.e.,

uTT(x) = e−x2
1−x2

2/10. (4.14)

Clearly, (4.14) is the product of two univariate functions and therefore the FTT tensor represen-

tation coincides with (4.14) and has rank equal to one. Next, consider a simple linear coordinate

transformation Φ(ϵ) which rotates the (x1, x2)-plane by an angle of ϵ radians. It is well-known

that

Φ(ϵ) = eϵL, (4.15)

where

L =

0 −1

1 0

 (4.16)

is the infinitesimal generator of the two-dimensional rotation. The dynamical system (4.7)

defining the coordinate flow y(ϵ) = Φ(ϵ)x can be written as

dy(ϵ)

dϵ
=


0 −1

1 0

y(ϵ),

y(0) = x.

(4.17)
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The tensor ridge function corresponding to the coordinate map Φ(ϵ) is given analytically by

v(x; ϵ) = uTT(Φ(ϵ)x)

= e−(Φ11(ϵ)x1+Φ12(ϵ)x2)2e−(Φ21(ϵ)x1+Φ22(ϵ)x2)2/10.

(4.18)

The hyperbolic PDE (4.13) for v(x; ϵ) in this case is given by
∂v(x; ϵ)

∂ϵ
= −x2

∂v(x; ϵ)

∂x1
+ x1

∂v(x; ϵ)

∂x2
,

v(x; 0) = uTT(x).

(4.19)

It is straightforward to verify that (4.18) satisfies (4.19). Note that v(x; ϵ) in (4.18) is not an FTT

tensor if ϵ ̸= πk/2 and k ∈ N. To compute the FTT representation of vTT(x; ϵ) we can solve

the PDE (4.19) on a tensor manifold using step-truncation or dynamic tensor approximation

methods [28, 30, 92, 94]. Given the low dimensionality of the spatial domain in this example

(d = 2), we can also evaluate (4.18) directly, and compute its FTT decomposition by solving an

eigenvalue problem. In Figure 4.1 (b) we provide a contour plot of v(x;π/4). To demonstrate

the effect of rotations on tensor rank, in Figure 4.1(c) we plot the rank of v(x; ϵ) versus ϵ for

all ϵ ∈ [0, π/4]. Of course such a plot can be mirrored to obtain the rank for ϵ ∈ [π/4, π/2],

[π/2, 3π/4], and [3π/4, π].

4.2 Tensor rank reduction via coordinate flows

The coordinate flows we introduced in the previous section can be used to morph a

given function into another one that has a faster decay rate of FTT singular values, i.e., a FTT

tensor with lower rank (after truncation). A simple example is the coordinate flow that rotates

the Gaussian function in Figure 4.1(b) back to the rank-one state depicted in Figure 4.1(a). This
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example and the examples documented in subsequent sections indicate that symmetry of the

function relative to the new coordinate system plays an important role in reducing the tensor

rank.

The problem of tensor rank reduction via linear coordinate flows can be formu-

lated as follows: how do we choose an invertible linear coordinate transformation A so that

vTT(x) ≈ uTT(Ax) has smaller rank than uTT(x) (eventually minimum rank)? The mathemati-

cal statement of this optimization problem is

A = argmin
A∈GLd(R)

rank [vTT(x)] , (4.20)

where GLd(R) denotes the set of d × d real invertible matrices, rank[·] is a metric related to

the FTT rank, and vTT(x) is a FTT approximation of uTT(Ax). In equation (4.20) we have

purposely left the cost function unspecified, as some care must be taken in its definition to

ensure that the optimization problem is both feasible and computationally effective in reducing

rank. One possibility is to define rank[vTT(x)] to return the sum of all d entries of the multilinear

rank vector r corresponding to the FTT tensor vTT(x). While such a cost function is effective

in measuring tensor rank it yields a NP-hard rank optimization problem [68].

4.2.1 Non-convex relaxation for the rank minimization problem

A common relaxation for rank minimization problems is to replace the rank cost

function with the sum of the singular values. To describe this relaxation in the context of FTT

tensors we first recall that any FTT tensor uTT(x) can be orthogonalized in the i-th variable as
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(see Section 2.3.1)

uTT(x) = Q≤iΣiQ>i, (4.21)

where

Σi = diag(σi(1), σi(2), . . . , σi(ri)), (4.22)

is a diagonal matrix with real entries (singular values of uTT). The matrices Q≤i and Q>i are

defined as partial products

Q≤i = Q1Q2 · · ·Qi, Q>i = Qi+1Qi+2 · · ·Qd, (4.23)

and they satisfy the orthogonality conditions

〈
Q⊤

≤iQ≤i

〉
≤i

= Iri×ri ,
〈
Q>iQ

⊤
>i

〉
>i

= Iri×ri . (4.24)

Here, ⟨·⟩≤i and ⟨·⟩>i are the averaging operators

⟨W ⟩≤i (j, k) =

∫
Ω≤i

w(j;x; k)dµ≤i(x≤i), ⟨W ⟩>i (j, k) =

∫
Ω>i

w(j;x; k)dµ>i(x>i),

(4.25)

which map an arbitrary ri × ri matrix-valued function W (x) with entries w(j;x; k) into an-

other ri × ri matrix-valued function depending on a smaller number of variables. Using the

orthogonalization (4.21) for each i = 1, 2, . . . , d− 1, we define the functions

Si : L
2
µ(Ω) → R

uTT(x) 7→
ri∑

αi=1

σi(αi),

(4.26)
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which returns the sum of the singular values corresponding to the i-th component of the multi-

linear rank vector. Using these functions we define

S : L2
µ(Ω) → R

uTT(x) 7→
d−1∑
i=1

ri∑
αi=1

σi(αi),

(4.27)

which is a relaxation of the rank cost function appearing in (4.20). An analogous relaxation of

the rank cost function called the matrix nuclear norm has been studied extensively for matrix

rank minimization problems [88, 68]. The function (4.27) has also been used as a relaxation of

rank[·] in tensor completion [10]. Next, we proceed by selecting an appropriate search space

for the rank cost function. The largest search space we may choose is GLd(R) as we have

done in (4.20). This, however, is not a good choice since transformations in GLd(R) are not

volume-preserving and hence do not preserve L2 norm, i.e., ∥uTT(Ax)∥L2
µ

̸= ∥uTT(x)∥L2
µ

.

Transformations which do not preserve the norm of uTT(x) can reduce the rank cost function

while having no impact on the tensor rank relative to the tensor’s norm. Therefore we choose

SLd(R) ⊂ GLd(R) as the search space, i.e., the collection of invertible matrices with determi-

nant equal to one. These transformations are obviously volume-preserving, and therefore they

preserve2 the L2 norm of uTT.

Since the domain of S in (4.27) is L2
µ(Ω) and the cost function must be defined on

2It is straightforward to show with a simple change of variables that volume-preserving transformations preserve
many quantities that are defined via an integral. For example, for any uTT(x) ∈ L2

µ(Ω) and A ∈ SLd(R) we have

∥uTT(Ax)∥Lp
µ(A−1Ω) = ∥uTT(x)∥Lp

µ(Ω), p = 1, 2. (4.28)
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the search space SLd(R), we define an evaluation map E corresponding to uTT(x)

E : SLd(R) → L2
µ(Ω)

A 7→ uTT(Ax).

(4.29)

Composing E with S yields the following (non-convex) relaxation of the cost function rank[·]

in (4.20)

C = S ◦ E : SLd(R) → R. (4.30)

The function C(A) returns the sum of the singular values of the tensor ridge function uTT(Ax),

where A is an invertible matrix with determinant equal to one. The optimization problem

corresponding to the cost function and search space discussed above is

A = argmin
A∈SLd(R)

C(A). (4.31)

While (4.31) is simpler than (4.20), it is still a computationally challenging problem for a num-

ber of reasons: First, it is non-convex. Second, when considered as a subset of all d×dmatrices,

the search space SLd(R) is subject to a non-trivial set of constraints, e.g., det(A) = 1. Third,

we note that the set SLd(R) is unbounded (i.e. matrices with determinant 1 can have entries that

are arbitrarily large) and thus it is important to monitor the size of the entries of the matrix A

during optimization. Of course it is also possible to optimize over bounded subsets of SLd(R)

such as the set of rotation matrices with determinant 1. Hereafter we develop a new method for

obtaining a local minimum of (4.31). To handle the search space constraints, we give SLd(R) a

Riemannian manifold structure and perform gradient descent on this manifold [83]. To obtain

the gradient of C(A) efficiently we build its computation into the FTT truncation procedure at

a negligible additional computational cost.
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4.2.2 Riemannian gradient descent path

In Lemma B4 we show that if the FTT singular values of uTT(Ax) are simple (i.e.,

distinct) then the cost function C(A) defined in (4.30) is differentiable in A. With this suffi-

cient condition for the smoothness of the cost function established, we can use the machinery

of Riemannian geometry summarized in 4.A to construct a gradient descent path for the mini-

mization of (4.31) on the search space SLd(R). To this end, let us denote by Γ(ϵ) such gradient

descent path. To build Γ(ϵ), we start at the identity Γ(0) = I and consider the matrix ordinary

differential equation 
dΓ(ϵ)

dϵ
= −grad [C (Γ (ϵ))] ,

Γ(0) = I,

(4.32)

where grad [C (Γ (ϵ))] is the Riemannian gradient of the cost function C defined in (4.30).

By construction, the vector −grad [C(Γ(ϵ))] is tangent to the manifold SLd(R) at each point

Γ (ϵ), and thus Γ(ϵ) ∈ SLd(R) for all ϵ ≥ 0. Since −grad [C (Γ (ϵ))] points in the direction

of steepest descent of the cost function C at the point Γ(ϵ), the cost function is guaranteed

to decrease along the path Γ(ϵ) (or remain constant which implies we have obtained a local

minimum). In Figure 4.2 we provide an illustration of the Riemannian gradient descent path

Γ(ϵ). For computational efficiency, it is essential to have a fast method for computing the

Riemannian gradient of the cost function C at an arbitrary point A ∈ SLd(R). The following

Proposition provides an expression for such Riemannian gradient in terms of orthogonal FTT

cores which we will use to efficiently compute the descent direction. The proof is given in 4.B.

Proposition 4.2.1. The Riemannian gradient of the cost function (4.30) at the point A ∈
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(a) (b)

Figure 4.2: An illustration of a descent path Γ(ϵ) for the cost function C defined
in (4.30). At each point of the path Γ(ϵ) ∈ SLd(R) we assign the tangent vector
−grad [C(Γ(ϵ))] ∈ TΓ(ϵ)SLd(R) which points in the direction of steepest descent
−(dΓ(ϵ)C)grad [C(Γ(ϵ))] ∈ TC(Γ(ϵ))M of the function C at the point C(Γ(ϵ)) ∈ M.

SLd(R) is given by

grad [C (A)] = DA, (4.33)

where

D =

d−1∑
i=1

∫
Ω
Q≤iQ>i

(
∇v(x) (Ax)⊤ − ∇v(x)⊤Ax

d
Id×d

)
dµ(x), (4.34)

v(x) = uTT(Ax) and Q≤i,Q>i are tensor cores of the orthogonalized FTT

v(x) = Q≤iΣiQ>i. (4.35)

Using the gradient descent path defined by (4.32) we differentiate the coordinate transformation

y(ϵ) = Γ(ϵ)x (4.36)

with respect to ϵ and use (4.32)-(4.33) to obtain
dy(ϵ)

dϵ
= −D(ϵ)y(ϵ),

y(0) = x.

(4.37)
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Note that (4.37) has the same form as the ODE (4.7) we used to define coordinate flows. Hence,

by construction, the flow map generated by (4.37) is the descent path Γ(ϵ) on the manifold

SLd(R), which, converges to a local minimum of C as ϵ increases. By defining the function

v(x; ϵ) = uTT(Γ(ϵ)x) and differentiating it with respect to ϵ we obtain the hyperbolic PDE
∂v(x; ϵ)

∂ϵ
= −∇v(x; ϵ) · [D(ϵ)Γ(ϵ)x] ,

v(x; 0) = uTT(x).

(4.38)

Note that the evolution of y(ϵ) = Γ(ϵ)x at the right hand side of (4.38) is defined by (4.37).

Integrating (4.37)-(4.38) forward in ϵ yields a rank-reducing linear coordinate transformation

Γ(ϵ) and the reduced rank function v(x; ϵ) = uTT (Γ(ϵ)x).

4.2.3 Numerical integration of the gradient descent equations

It is convenient to use a step-truncation method [92, 94, 60] to integrate the initial

value problem (4.38) on a FTT tensor manifold. This is because applying the FTT trunca-

tion operation to v(x; ϵ) requires computing the orthogonalized tensor cores Q≤i(ϵ),Q>i(ϵ)

(i = 1, 2, . . . , d − 1) which can then be readily used to evaluate the matrix D(ϵ) defining the

Riemannian gradient (4.34). Moreover, the FTT truncation operation applied to v(x; ϵ) yields

an expansion of the form (4.6), which is the desired tensor format. To describe the integration

algorithm in more detail, let us discretize the interval [0, ϵf ] into N + 1 evenly-spaced points3

ϵi = i∆ϵ, ∆ϵ =
ϵf
N
, i = 0, 1, . . . , N, (4.39)

3The right end-point ϵf will ultimately be determined by the stopping criterion for gradient descent.
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and let vi,Γi,Di denote v(x; ϵi),Γ(ϵi),D(ϵi), respectively. Let

vi+1 = vi +∆ϵΦ (vi,Di,∆ϵ) , (4.40)

Γi+1 = Γi +∆ϵΦ̂ (Γi,Di,∆ϵ) (4.41)

be one-step explicit integration schemes approximating the solution to the initial value problem

(4.38) and the matrix ODE (4.32), respectively. In order to guarantee that the solution vi+1 is a

low-rank FTT tensor, we apply a truncation operator to the right hand side of (4.40). This yields

the step-truncation method [92]

vi+1 = Tδ (vi +∆ϵΦ (vi,Di,∆ϵ)) . (4.42)

Here, Tδ denotes the standard FTT truncation operator with relative accuracy δ proposed in [82]

modified to return the matrix Di+1. A detailed description of the modified tensor truncation

algorithm is provided in section 4.2.4.

At this point, a few remarks regarding the integration scheme (4.40)-(4.42) are in

order. First, we notice that at each step of the gradient descent algorithm we are computing

the gradient (4.33) at the identity matrix since the current tensor vi is the tensor ridge function

vi(x) = uTT(Γix). Second, the accuracy of the tensor vi approximating uTT(Γix) is determined

by the chosen integration scheme and its relevant parameters (i.e., the function Φ, the step

size ∆ϵ, and the accuracy of Tδ). In a standard gradient descent algorithm, convergence can

be expedited with a line-search routine that determines an appropriate step-size to take in the

descent direction. However, in the proposed integration scheme the step-size determines the

accuracy of the final tensor, thus we keep the step-size ∆ϵ fixed during gradient descent. We

set a stopping criterion for the integration of (4.40)-(4.42) based on the empirical observation
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that the cost function C does not decrease substantially along the descent path Γ(ϵ) when Γi is

close to a local minimum. Mathematically, this translates into the condition

dS(vi)

dϵ
> −η, (4.43)

where η is some predetermined tolerance. Since the solution history vi, vi−1, . . . is available

during gradient descent, a simple method for approximating dS(vi)/dϵ is a p-point backwards

difference stencil

dS(vi)

dϵ
≈ BD(p)(S(vi), S(vi−1), . . . , S(vi−p)). (4.44)

In addition to the stopping criterion (4.43), we also set a maximum number of iterations Miter

to ensure that the Riemannian gradient descent algorithm halts within a reasonable amount of

time. We summarize the proposed Riemannian gradient descent method to compute a local

minimum of (4.31) in Algorithm 2.

4.2.4 Modified tensor truncation algorithm

To speed up numerical integration of the gradient descent equations (4.41)-(4.42) it

is convenient to compute the matrix Di defined in (4.34) during FTT truncation. The reason

being that standard FTT truncation requires the computation of all orthogonal FTT cores Q≤j

and Q>j , which, can be readily used to compute Di. To describe the modified tensor truncation

algorithm, let vTT(x) = Ψ1 · · ·Ψd be an FTT tensor with non-optimized rank, e.g., vTT(x) is

the result of adding two FTT tensors together. Denote by Tδ the modified truncation operator,

where δ is the required relative accuracy, i.e.,

∥vTT(x)− Tδ(vTT(x))∥L2
µ(Ω) ≤ δ∥vTT(x)∥L2

µ(Ω). (4.45)
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Algorithm 2: Riemannian gradient descent for computing rank-reducing linear

coordinate transformations.

Input:

uTT → initial FTT tensor,

∆ϵ→ step-size for gradient descent,

η→ stopping tolerance,

Miter → maximum number of iterations.

Output:

Γ→ rank-reducing linear coordinate transformation,

vTT → reduced rank FTT tensor on transformed coordinates vTT(x) = uTT(Γx).

Runtime:

[v0, S(v0),D0] = Tδ(uTT),

Γ0 = I ,

Ṡ(v0) = −∞,

i = 0.

while Ṡ(vi) < −η and i ≤Miter

vi+1 = vi +∆ϵΦ(vi,Di,∆ϵ),

[vi+1, S(vi+1),Di+1] = Tδ(vi+1),

Γi+1 = Γi +∆ϵΦ̂(Γi,Di,∆ϵ),

Ṡ(vi+1) = BD(p)(S(vi+1), S(vi), . . . , S(vi+1−p)),

i = i+ 1,

Γ = Γi,

vTT = vi.

end
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Figure 4.3: A summary of the modified FTT truncation algorithm for computing the Rieman-
nian gradient (4.34).

We also define

δ̂ =
δ√
d− 1

∥vTT(x)∥L2
µ(Ω), (4.46)

which is the required accuracy for each SVD in the FTT truncation algorithm. As described

in section 2.3.1, we may perform a functional analogue of the QR decomposition on the FTT

tensor cores of vTT(x)

Ψi = QiRi, (4.47)

where Qi is a ri−1 × ri matrix with elements in L2
µi(Ωi) satisfying

〈
Q⊤

i Qi

〉
i
= Iri×ri , and

Ri is an upper triangular ri × ri matrix with real entries. Similarly, we can perform an LQ-

factorization

Ψi = LiQi, (4.48)

where Qi is a ri−1 × ri matrix with elements in L2
µi(Ωi) satisfying

〈
Q⊤

i Qi

〉
i
= Iri×ri , and

Li is a lower-triangular ri × ri matrix with real entries. The first procedure in the modified

truncation routine is a left-to-right orthogonalization sweep in which we first perform the QR
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decomposition

Ψ1 = Q1R1, (4.49)

and then update the core Ψ2

Ψ2 = R1Ψ2. (4.50)

This process is repeated recursively

Ψi = QiRi, Ψi+1 = RiΨi+1, i = 2, . . . , d− 1, (4.51)

resulting in the orthogonalization

vTT(x) = Q1Q2 · · ·Qd−1Ψd. (4.52)

Next, we perform a right-to-left sweep which compresses vTT(x) and simultaneously computes

each term appearing in the summation of D in equation (4.34). The first step of this procedure

is to compute a LQ decomposition of Ψd

Ψd = LdQd, (4.53)

and then perform a truncated singular value decomposition of Ld with threshold δ̂

Ld = UdΣdV
⊤
d . (4.54)

Substituting (4.53) and (4.54) into (4.52) yields

vTT(x) = Q1Q2 · · ·Qd−1ΣdQd, (4.55)

where we re-defined

Qd−1 = Qd−1Ud, Qd = V ⊤
d Qd. (4.56)
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At this point we have truncated the FTT tensor vTT(x) in the d-th variable. The expansion (4.56)

provides the FTT orthogonalization needed to compute the (d− 1)-th term in the sum (4.34)

D(d−1) =

∫
Ω
Q≤d−1Q>d

(
∇vTT(x)x

⊤
)
dµ(x), (4.57)

which, can be computed efficiently by applying one-dimensional differentiation matrices and

quadrature rules to the FTT cores. We proceed in a recursive manner (i = d − 1, . . . , 2) with

the same steps described above for Ψd. First compute the LQ decomposition

(QiΣi+1) = LiQi, (4.58)

and then perform a singular value decomposition with threshold δ̂

Li = UiΣiV
⊤
i . (4.59)

Then rewrite vTT(x) as

vTT(x) = Q1Q2 · · ·Qi−1ΣiQi · · ·Qd, (4.60)

where we re-defined

Qi−1 = Qi−1Ui, Qi = V ⊤
i Qi. (4.61)

The expansion (4.60) provides the FTT orthogonalization required to compute the (i − 1)-th

term in the sum (4.34)

D(i−1) =

∫
Ω
Q≤i−1Q>i

(
∇vTT(x)x

⊤
)
dµ(x), (4.62)

which, can be computed efficiently by applying one-dimensional differentiation matrices and

quadrature rules to the FTT cores. Finally with all of the terms in (4.34) computed we simply
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sum them to obtain the matrix

D =
d−1∑
i=1

D(i). (4.63)

We summarize the main steps of the modified tensor truncation in Figure 4.3 and in Algorithm

3. Clearly, the matrix D needs to be recomputed at each step ϵi, resulting in the matrix Di

appearing in the gradient descent equations (4.41)-(4.42).

4.2.5 Computational cost

One step of a first-order step-truncation integrator of the form (4.42) (e.g. Euler

forward) without computing the left factor of the Riemannian gradient (4.34) requires one

multiplication between a scalar and a TT tensor (O(nr2) FLOPS), one addition between two

TT tensors, and one FTT truncation (O(dnr3) FLOPS) for a total computational complexity

O(dnr3). In the above estimate we assumed that each entry of the rank of the FTT tensor

vi+∆ϵΦ(vi,Di,∆ϵ) is bounded by r and vi is discretized on a grid with n points in each vari-

able. In addition to the cost of step-truncation, we must also compute the matrix Di defined in

(4.34) at each step. The orthogonal FTT cores Q≤j ,Q>j needed for the computation of Di are

readily available during the tensor truncation procedure. For the computation of Di we must

compute the gradient of ∇vi, which requires d matrix multiplications between a differentiation

matrix of size n × n and a FTT core Ψi of size n × rn for total complexity of O(dn3r). We

also need to compute the outer product (∇vi)x⊤ where each entry of ∇vi is in FTT format,

and, for each of the d2 entries in the matrix (∇vi)x⊤ compute an integral of FTT tensors re-

quiring O(dnr3) FLOPS. The final estimate for computing the matrix Di is O(d2n3r3), which

dominates the cost of performing one-step of (4.42). We point out that the computation of Di
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(a) (b)

Figure 4.4: (a) Volumetric plot of the three-dimensional Gaussian mixture (2.47). (b) Volumet-
ric plot of the corresponding reduced rank ridge tensor v(x; ϵf ).

may be incorporated into high performance computing algorithms for tensor train rounding,

e.g., [26, 102].

4.2.6 Application to a time-independent function

We now demonstrate the Riemannian gradient descent algorithm for generating rank-

reducing linear coordinate transformations. Consider the three-dimensional (d = 3) Gaussian

mixture (2.47) with parameters defined in (2.48)-(2.50). We discretize the Gaussian mixture

(2.47) on the computational domain [−12, 12]3 (which is large enough to enclose the numerical

support of (2.47)) using 200 evenly-spaced points in each variable. From the discretization of

(2.47) we compute the FTT decomposition uTT(x) using recursive SVDs. To integrate the PDE

(4.38) for the reduced rank ridge tensor v(x; ϵ), we use the explicit two-step Adams-Bashforth

step-truncation method with ∆ϵ = 10−3 and relative FTT truncation accuracy δ = 10−6. All

spatial derivatives and integrals are computed by applying one-dimensional pseudo-spectral

Fourier differentiation matrices and quadrature weights [45] to the tensor modes. We integrate
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(a) (b)

Figure 4.5: Rank reduction problem via coordinate flow for the three-dimensional Gaussian
mixture (2.47). (a) Cost function (4.31) evaluated along a steepest descent mapping Γ(ϵ) versus
ϵ. (b) Absolute value of the derivative of the cost function in (4.31) versus ϵ. The derivative is
computed with a second-order backwards finite difference stencil (4.44).

up to ϵf = 10 which is sufficient to demonstrate convergence of the gradient descent method. In

Figure 4.4 we provide volumetric plots of the of the function v(x; ϵ) for ϵ = 0 and ϵ = ϵf . We

observe that the reduced rank ridge tensor v(x; ϵf ) appears to be more symmetrical with respect

to the (x1, x2, x3)-axes than the higher rank function v(x; 0). In Figure 4.5(a) we plot the cost

function C(Γ(ϵ)) versus ϵ and in Figure 4.5(b) we plot the absolute value of the derivative

of the cost function versus ϵ. Observe in Figure 4.5 that Γ(ϵ) appears to be converging to

a local minimum of C, and, the majority of the decrease in the cost function occurs in the

interval ϵ ∈ [0, 2]. Correspondingly, we notice that in Figure (4.6)(c) the majority of rank

increase occurs in the interval ϵ ∈ [0, 2]. Finally, in Figure 4.6(a)-(b) we plot the multilinear

spectra of the function vTT(x; ϵ) for ϵ = 0 and ϵ = ϵf . The decay rate of the multilinear

spectra corresponding to v(x; ϵf ) is significantly faster than the decay rate of the multilinear

corresponding to the initial function v(x; 0), resulting in a multilinear rank of about half the one

in Cartesian coordinates. Thus, for any truncation tolerance δ, the FTT ridge tensor v(x; ϵf )

99



(a) (b)

(c)

Figure 4.6: Multilinear spectra of the 3-dimensional Gaussian mixture v(x; 0) defined in (2.47)
(Cartesian coordinates) and the corresponding reduced-rank ridge tensor v(x; ϵf ) (transformed
coordinates). (a) Spectra σ1 corresponding to multilinear rank r1. (b) Spectra σ2 corresponding
to multilinear rank r2. (c) 1-norm of the multilinear rank vector of vTT(x; ϵ) versus ϵ. It is seen
that the coordinate flow Γ(ϵ)x reduces the multilinear rank of the Gaussian mixture (2.47) from
about 63 (Cartesian coordinates) to 31 (transformed coordinates).

can be stored at a significantly lower cost than the original function. Intuitively, the savings that

can be obtained by the coordinate flow in higher-dimensions are even more pronounced, since

hierarchical SVDs with steeper spectra yield a much smaller number of tensor modes.
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4.3 Application to PDEs

We now apply the proposed rank tensor reduction method to initial-value problems of

the form (1.1). For a given PDE operator G(·,x) and linear coordinate transformation y = Γx,

it is always possible to write G in coordinates y resulting in a new operator GΓ. If G acts on

uTT(x, tk) thenGΓ acts on the transformed tensor uTT(y, tk) = vTT(x, tk). Such an operator can

be constructed using standard tools of differential geometry [2, 108], and usually has different

FTT-operator rank than G. For example, consider the variable coefficient advection operator

G(u(x, t),x) =
d∑

i=1

fi(x)
∂u

∂xi
. (4.64)

The scalar field u(x, tk) can be written in the new coordinate system y as

u(x, tk) = u(Γ−1y, tk) = U(y, tk) = U(Γx, tk) (4.65)

which implies that

∂u(x, t)

∂xj
=

d∑
k=1

Γkj
∂U(y, tk)

∂yk
. (4.66)

In this way, we can rewrite the operator (4.64) in coordinates y = Γx as

GΓ (U(y, t),y) =

d∑
i,j=1

Γijfj
(
Γ−1y

) ∂U(y, t)

∂yi

=

d∑
i=1

hi (y)
∂U(y, t)

∂yi
,

(4.67)

where

hi (y) =
d∑

j=1

Γijfj
(
Γ−1y

)
. (4.68)

Note that GΓ has a relatively simple form due to the linearity4 of the coordinate transformation.

In this case, the rank of the operatorsG andGΓ are determined by the FTT ranks of the variable
4For more general nonlinear coordinate transformations y = H(x), the operator GΓ includes the metric tensor

of the coordinate change, which can significantly complicate the form of GΓ (e.g., [2, 71]).
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coefficients fi(x) and hi(y) (i = 1, 2, . . . , d), respectively.

At any time step tk during temporal integration of (1.1) using the methods discussed

in Chapter 3 (e.g., the dynamical approximation (3.6) or step-truncation scheme (3.35)) we

may compute a rank-reducing coordinate transformation y = Γx and obtain a tensor ridge

representation of the solution at time tk. To integrate the initial boundary value problem (1.1)

using the tensor ridge representation of the solution at time tk, the operatorGTT may be rewritten

as a new (FTT) operator GTT,Γ acting in the transformed coordinate system. With the operator

GTT,Γ available, we can write the following PDE for U(y, t) corresponding to (1.1)
∂U(y, t)

∂t
= GTT,Γ(U(y, t)), t ≥ tk,

U(y, tk) = vTT(y, tk),

(4.69)

with initial condition given at time tk. Time integration can then proceed in the transformed

coordinate system using the PDE (4.69). It is well-known that the computational cost of the

low-rank tensor integrators presented in Chapter 3 scales linearly in the problem dimension d

and polynomially in the tensor rank of the solution and operator. However, in order to deter-

mine an optimal coordinate transformation for reducing the overall cost of temporal integration

it is necessary to have more precise estimates on the computational cost of one time step. Such

computational cost depends on many factors, e.g., the tensor integration scheme used, the sepa-

ration rank of the PDE operator GΓ, the operator splitting (3.2) used, the FTT rank of the PDE

solution U(y, tk) at time tk, the rank of the operator applied to the solution after truncation

Tδ (GΓ(U(y, tk))), etc. From this observation it is clear that in order to obtain an optimal co-

ordinate transformation for reducing the overall computational cost of temporal integration, the
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transformation must take into consideration both the solution rank and the operator rank. De-

termining a coordinate transformation Γ that controls the separation rank of a general operator

GTT,Γ is a non-trivial problem that we do not address in this dissertation.

4.3.1 Coordinate-adaptive time integration

Next we develop coordinate-adaptive time integration schemes for PDEs on FTT

manifolds that are designed to control the solution rank, the PDE operator rank, or the rank

of the right hand side of the PDE. The first coordinate-adaptive algorithm (Algorithm 4) is de-

signed to attempt a rank reducing coordinate transformation if the computational cost of time

integration in the current coordinate system exceeds a predetermined threshold. The computa-

tional cost of one time step may be measured in different ways, e.g., by the CPU-time it takes

to perform one time step, by the rank of the solution, or by the rank of the right hand side of

the PDE (operator applied to the solution). In the second to last line of Algorithm 4, “time”

denotes the computational time it takes to compute one time step and “rank” denotes either the

solution rank, the rank of the PDE right hand side, or the maximum of the two.

The second algorithm (Algorithm 5) we propose for coordinate-adaptive tensor inte-

gration of PDEs is based on computing a small correction of the coordinate system at every

time step. In practice, we compute one ϵ-step of (4.38) at every time step during temporal in-

tegration of the given PDE. This yields a PDE in which the operator (which depends on the

coordinate system) changes at every time step, i.e., a time-dependent operator induced by the

time-dependent coordinate change.
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Hereafter we apply these coordinate-adaptive algorithms to five different PDEs and

compare the results with conventional FTT integrators in fixed Cartesian coordinates. All nu-

merical simulations were run in Matlab 2022a on a 2021 MacBook Pro with M1 chip and

16GB RAM, spatial derivatives and integrals were approximated with one-dimensional Fourier

pseudo-spectral differentiation matrices and quadrature rules [45], and various explicit step-

truncation time integration schemes were used.

4.3.2 2D linear advection equations

First we apply coordinate-adaptive tensor integration to the 2D linear advection equa-

tion 
∂u(x, t)

∂t
= f1(x)

∂u(x, t)

∂x1
+ f2(x)

∂u(x, t)

∂x2
,

u(x, 0) = u0(x),

(4.70)

with two different sets of coefficients fi(x) specified hereafter. Each example is designed to

demonstrate different features of the proposed coordinate-adaptive algorithms (Algorithm 4 and

Algorithm 5).

In the first example, we generate the vector field f(x) = (f1(x), f2(x)) via the two-

dimensional stream function [110]

ψ(x1, x2) = Θ(x1)Θ(x2) (4.71)

with

Θ(x) =
cos(αx/L)

cos(α/2)
− cosh(αx/L)

cosh(α/2)
, (4.72)

L = 30 and α = 4.73. Such a stream function generates the divergence-free vector field (see
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(a) (b) (c)
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Figure 4.7: Solution to the linear advection equation (4.70) with coefficients (4.73) at time
t = 30. (a) Cartesian coordinates, (b) tensor ridge simulation 1 using on Algorithm 4 with
∆ϵ = 10−4, Miter = 2000, and η = 10−1, (c) tensor ridge simulation 2 using Algorithm 5 with
Miter = 1 and ∆ϵ = 10−3. In all simulations the truncation tolerance is set to δ = 10−6.

Figure 4.9(a))

f1(x) =
∂ψ

∂x2
, f2(x) = − ∂ψ

∂x1
. (4.73)

We set the initial condition

u0(x) =
1

m
exp

(
−4(x1 − 2)2

)
exp

(
−(x2 − 2)2

2

)
, (4.74)

where

m =

∥∥∥∥exp (−4(x1 − 2)2
)
exp

(
−(x2 − 2)2

2

)∥∥∥∥
L2(Ω)

(4.75)

is a normalization constant.

We first ran one FTT tensor simulation in fixed Cartesian coordinates. We then ran

two coordinate-adaptive simulations that use rank-reducing coordinate transformations dur-

ing time integration. In the first coordinate-adaptive simulation we use Algorithm 4 with

max rank = 15 and kr = 0 to initialize coordinate transformations during time integration.

For the Riemannian gradient descent algorithm that computes the rank reducing coordinate

transformation we set step-size ∆ϵ = 10−4, maximum number of iterations Miter = 2000 and
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stopping tolerance η = 10−1. In the second coordinate-adaptive simulation we use Algorithm

5 with Miter = 1 and ∆ϵ = 10−3, i.e., the integrator performs one step of time integration fol-

lowed by one step of the Riemannian gradient descent algorithm 2. In both coordinate-adaptive

simulations we set the truncation threshold δ = 10−6.

In Figure 4.7 we plot the solutions obtained from each of the three simulations at

time t = 30. In order to check the accuracy of integrating the PDE solution in the low-rank

coordinate system we mapped the transformed solution back to Cartesian coordinates using a

two-dimensional trigonometric interpolant and compared with the solution computed in Carte-

sian coordinates. In both coordinate-adaptive simulations we found that the global L∞ error is

bounded by 8 × 10−4, suggesting that the coordinate transformation does not affect accuracy

significantly. In Figure 4.8 we plot the solution rank and the rank of the of the right hand side of

the PDE (4.70) versus time for all three tensor simulations. We observe that in the coordinate-

adaptive tensor ridge simulations the ranks of both the solution and the PDE right hand side

are less than or equal to the corresponding ranks in Cartesian coordinates. We also observe

that the adaptive simulation based on Algorithm 5 (denoted by “tensor ridge 2” in Figure 4.8)

has significantly smaller rank than the adaptive simulation based on Algorithm 4 (denoted by

“tensor ridge 1” in Figure 4.8).

Next, we demonstrate that linear coordinate transformations can be used to reduce the

rank of a PDE operator and reduce the overall computational cost of temporal integration. To

this end, consider again the two-dimensional advection equation (4.70) this time with advection
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(a) (b)

Figure 4.8: Rank (number of singular values larger than δ = 10−6) of the PDE solution (a)
and velocity vector (b) (RHS of the PDE) for the advection problem (4.70) with coefficients
given by (4.73). Tensor ridge 1 was computed using the coordinate adaptive algorithm 4 using
a maximum solution rank threshold of 15 and tensor ridge 2 was computed using algorithm 5
which performs coordinate corrections at each time step.

coefficients

f1(x) = exp
(
−a1 (R1 · x)2

)
exp

(
−a2 (R2 · x)2

)
,

f2(x) = exp
(
−b1 (R1 · x)2

)
exp

(
−b2 (R2 · x)2

)
,

(4.76)

where Ri is the ith row of the matrix R,

R =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 . (4.77)

We set parameters θ = π/4,

a1 = 1/20, a2 = 1/10, b1 = 1/10, b2 = 1/20, (4.78)

and initial condition

u0(x) = exp
(
−x21/3

)
exp

(
−x22/3

)
. (4.79)

In Figure 4.9(b) we plot the vector field f(x) = (f1(x), f2(x)) defined by (4.76). Note that

the initial condition u0(x) is rank 1. The rank of the linear advection operator defined on
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(a) (b)

Figure 4.9: (a) Vector fields used as coefficients in the two-dimensional linear advection equa-
tion (4.70). The vector field defined in (4.73) is shown in (a) and the vector field defined in
(4.76) is shown in (b).

the right hand side of (4.70) depends on the FTT truncation tolerance used to compress the

multivariate functions f1(x) and f2(x). If we choose the coordinate transformation y = Γx,

where Γ = R−1, then the initial condition remains rank 1, but the rank of the advection operator

at the right hand side of (4.70) becomes 2, regardless of the FTT truncation tolerance used.

We ran two simulations of (4.70) with coefficients (4.76) using the step-truncation

FTT integrator (3.35) based on Adams-Bashforth 3 with step-size ∆t = 10−3, truncation tol-

erance δ = 10−6, and final integration time t = 5. In the first simulation we solved the PDE

with a step-truncation tensor method in fixed Cartesian coordinates. In the second simulation

we solved the PDE in coordinates y = R−1x, using the same step-truncation tensor method.

In order to verify the accuracy of our FTT simulations we also computed a benchmark solution

on a full tensor product grid in two dimensions. We then mapped the transformed solution back

to Cartesian coordinates at each time step and compared it with the benchmark solution. We

found that the global L∞ error of both low-rank simulations is bounded by 8× 10−4. In Figure
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4.10 we plot the FTT solution in Cartesian coordinates and the FTT-ridge solution in low-rank

coordinates at time t = 5. We observe that the PDE operator expressed in Cartesian coordinates

advects the solution at an angle relative to the underling coordinate system while the operator

expressed in coordinates y = R−1x advects the solution directly along a coordinate axis, hence

the low rank dynamics. In Figure 4.12(a) we plot the solution ranks versus time. Note that even

though the operator in Cartesian coordinates has significantly larger rank than the operator in

low-rank coordinates, the solution ranks follow the same trend during temporal integration with

the FTT-ridge rank only slightly smaller than the FTT rank.

Computational cost The CPU-time of integrating the advection equation (4.70) with coef-

ficients (4.76) from t = 0 to t = 5 is 72 seconds when computed with FTT in Cartesian

coordinates and 31 seconds when computed with FTT-ridge in low-rank coordinates. Note that

although the ranks of the low-rank solutions are similar at each time step (Figure 4.12(a)), the

computational speed-up of the FTT-ridge simulation is due to the operator rank, which is 2 for

FTT-ridge and 16 for FTT in Cartesian coordinates.

4.3.3 Allen-Cahn equation

Next we demonstrate coordinate-adaptive tensor integration on a simple nonlinear

PDE. The Allen-Cahn eqaution is a reaction-diffusion PDE, which, in its simplest form includes

a low-order polynomial non-linearity (reaction term) and a diffusion term [55]
∂u(x, t)

∂t
= α∆u(x, t) + u(x, t)− u(x, t)3,

u(x, 0) = u0(x).

(4.80)
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Figure 4.10: Solution to the two-dimensional advection equation (4.70) with coefficients (4.76)
at time t = 5. (a) FTT solution computed in Cartesian coordinates. (b) FTT-ridge computed
low-rank coordinates.

In two spatial dimensions the Laplacian in coordinates y = Γx is given by

∆Γ =
(
Γ2
11 + Γ2

12

) ∂2
∂y21

+
(
Γ2
21 + Γ2

22

) ∂2
∂y22

+ 2 (Γ11Γ21 + Γ12Γ22)
∂2

∂y1∂y2
(4.81)

which allows us to write the nonlinear PDE (4.80) in the coordinate system y = Γx with only a

small increase in the rank of the Laplacian operator5. The FTT rank of the cubic term appearing

in the PDE operator of the Allen-Cahn equation (4.80) is determined by the rank of the FTT

solution. Standard algorithms for multiplying two FTT tensors uTT and vTT with ranks r1 and

r2 results in a FTT tensor with (non-optimal) rank equal to the Hadamard product of the two

ranks r1 ◦ r2. Hence, by reducing the solution rank with a coordinate transformation, we can

reduce the computational cost of computing the nonlinear term in (4.80). We set the diffusion

coefficient α = 0.2 and the initial condition u0(x) as the rotated Gaussian from equation (4.18)

with ϵ = π/3.
5In general a d-dimensional Laplacian ∆ is a rank-d operator and the corresponding operator ∆Γ in (linearly)

transformed coordinates is rank (d2 + d)/2.
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Figure 4.11: Solution to the two-dimensional Allen-Cahn equation (4.80) at time t = 5. (a) FTT
solution computed in Cartesian coordinates and (b) FTT-ridge solution computed in low-rank
coordinates.

We ran two FTT simulations of (4.80) for time t ∈ [0, 5]. The first simulation was

computed in fixed Cartesian coordinates. In the second simulation we used the coordinate

transformation Φ(π/3)−1 (which in this case we have available analytically) to transform the

initial condition into a rank 1 FTT-ridge function. We integrated the rank 1 FTT-ridge initial

condition forward in time using the corresponding transformed PDE, i.e., using the transformed

Laplacian (4.81). In order to verify the accuracy of our low-rank simulations we also computed a

benchmark solution on a full tensor product grid in two dimensions and mapped the transformed

solution back to Cartesian coordinates at each time step. We found that the global L∞ error of

both low-rank solutions is bounded 5 × 10−5. In Figure 4.11 we plot the FTT solution in

Cartesian coordinates and the FTT-ridge solution in low-rank coordinates at time t = 5. We

observe that the profile of Gaussian functions are preserved as the solution moves from the

unstable equilibrium at u = 0 to the stable equilibrium at u = 1. In Figure 4.12(b) we plot the

solution ranks versus time. We observe that the FTT solution rank is larger than the FTT-ridge
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solution rank at each time.

Computational cost The CPU-time of integrating the Allen-Cahn equation (4.80) from t = 0

to t = 5 is 279 seconds when computed using FTT in Cartesian coordinates and 72 seconds

when computed using FTT-ridge in low-rank coordinates. The optimal coordinate transforma-

tion at time t = 0 is known analytically so we do not need to compute it, thus these computa-

tional timings only include the temporal integration, and do not account for any computational

time of changing the coordinate system. A significant amount of computational time in com-

puting the FTT solutions comes from computing the cubic nonlinearity appearing in the Allen-

Cahn equation at each time step. The lower rank FTT-ridge solution allows for this term to be

computed significantly faster than the FTT solution in Cartesian coordinates.

4.3.4 3D and 5D linear advection equations

We also applied the rank-reducing coordinate-adaptive FTT integrators to the advec-

tion equation 
∂u(x, t)

∂t
= f(x) · ∇u(x, t),

u(x, 0) = u0(x),

(4.82)

in dimensions three and five with initial condition u0(x) defined as a Gaussian mixture

u0(x) =
1

m

Ng∑
i=1

exp

−
d∑

j=1

1

βij

(
R

(i)
j · x+ tij

)2 , (4.83)
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(a) (b)

Figure 4.12: (a) Rank versus time for the FTT and FTT-ridge solutions to the advection PDE
(4.70) with coefficients (4.76). (b) Rank versus time for the FTT and FTT-ridge solutions to the
Allen-Cahn equation (4.80).

where R
(i)
j is the j-th row of a d× d rotation matrix R(i), βi ≥ 0, tij are translations and m is

the normalization factor

m =

∥∥∥∥∥∥
Ng∑
i=1

exp

−
d∑

j=1

1

βij

(
R

(i)
j · x+ tij

)2∥∥∥∥∥∥
L1(Rd)

. (4.84)

4.3.4.1 Three-dimensional simulation results

First we consider three spatial dimensions (d = 3) and set the coefficients in (4.82) as

f(x) = −1

6


2 sin(x2)

3 cos(x3)

3x1

 , (4.85)

resulting in the linear operator

f(x) · ∇ =
sin(x2)

3

∂

∂x1
+

cos(x3)

2

∂

∂x2
+
x1
2

∂

∂x3
. (4.86)
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Figure 4.13: Volumetric plot of the FTT solutions to the 3D advection equation (4.82) at time
t = 0 (left column) in Cartesian coordinates (top) and low-rank coordinates (bottom), and at
time t = 1 (right column) in Cartesian coordinates (top) and low-rank coordinates (bottom).

In a previous work [29] we have demonstrated that variable coefficient advection problems with

operators of the form (4.86) can have solutions with multilinear rank that grows significantly

over time. We set the parameters in the initial condition (4.83) Ng = 1,

R(1) = exp


1

28


0 7π 4π

−7π 0 7π

−4π −7π 0



 , β =

[
3 1/10 3

]
, (4.87)

and tij = 0 for all i, j.

We ran three FTT simulations up to time t = 1. The first simulation is computed in
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(a) (b) (c)

Figure 4.14: 3D advection equation (4.82): Multilinear rank of the PDE solution (a) and PDE
right-hand-side (b) in Cartesian coordinates and transformed coordinates versus time. In (c) we
plot the L∞ error of the FTT solutions relative to a benchmark solution.

fixed Cartesian coordinates. We then tested the FTT integrator with rank-reducing coordinate

transformation in two different simulation settings. In the first one, we performed a coordi-

nate transformation only at time t = 0. Such a coordinate transformation is not done using

the Riemannian gradient descent algorithm, since, in this case we have the optimal coordinate

transformation available analytically and we can simply evaluate the FTT tensor on the low rank

coordinates. In the second simulation we also performed a coordinate transformation at time

t = 0 (once again the coordinate transformation at time t = 0 is not done using the Riemannian

gradient descent algorithm) and then used the coordinate-adaptive integration Algorithm 4 with

max rank = 15 and kr = 5. With these parameters the coordinate-adaptive algorithm triggers

three additional coordinate transformations at times t ∈ {0.25, 0.59, 0.9} that are computed

using the Riemannian gradient descent algorithm 2 with step size ∆ϵ = 10−4 and stopping

tolerance η = 10−1. In Figure 4.15(c) we plot the absolute value of the derivative of the cost

function C(Γ(ϵ)) versus ϵ for the instances of gradient descent at times t > 0. We observe

that the rate of change of the cost function becomes smaller as we iterate the gradient descent
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routine, i.e., the cost function is decreasing less per iteration after several iterations. This indi-

cates that the cost function is approaching a flatter region and our gradient descent method is

becoming less effective for reducing the cost function. In Figure 4.14(a) we plot the 1-norm of

the FTT solution rank vector versus time and in Figure 4.14(b) we plot the 1-norm of the FTT

solution velocity (i.e., the PDE right hand side) for each FTT simulation. We observe that the

FTT-ridge solutions and right hand side of the PDE have rank that is smaller than the corre-

sponding ranks of the FTT solution in Cartesian coordinates. We also observe that the adaptive

coordinate transformations performed at times t > 0 do not reduce the solution rank at the

time of application, but they do slow the rank increase as time integration proceeds. In Figure

4.15(a)-(b) we plot the singular values of the FTT solutions at final time and note that both

FTT-ridge solutions have singular values that decay significantly faster than the FTT solution

in Cartesian coordinates. Moreover, the additional coordinate transformations performed by

the coordinate-adaptive integrator causes the singular values of the FTT-ridge solution to decay

faster than the other FTT-ridge solution that used only one coordinate transformation at t = 0.

In Figure 4.13 we provide volumetric plots of the PDE solution in Cartesian coordinates and in

the transformed coordinate system computed with the coordinate-adaptive algorithm 4 at time

t = 1. We observe that the reduced rank tensor ridge solution appears to be more symmetrical

with respect to the underlying coordinate axes than the solution in Cartesian coordinates.

It is important to note that the operator G(·,x) = f(x) · ∇ in (3.82) is a separable

operator of rank g =

[
1 3 3 1

]
. For a general linear coordinate transformation Γ the

operator GΓ (see (4.67)) acting in the transformed coordinate system can be obtained using

trigonometric identities with (non-optimal) separation ranks. A more efficient representation
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(a) (b) (c)

Figure 4.15: (a)-(b) Multilinear spectra of the FTT solutions to the 3D advection equation (4.82)
at time t = 1 in Cartesian coordinates and in low-rank coordinates. (c) Absolute value of the
derivative of the cost function in (4.20) during gradient descent of the 3D advection equation
(4.82) solutions at times t > 0.

of GΓ can be obtained by FTT compression and then splitting GΓ (3.2) into a sum of three

operators

GΓ = G
(1)
Γ +G

(2)
Γ +G

(3)
Γ , (4.88)

where G(i)
Γ have ranks g(i)

Γ =

[
1 4 4 1

]
for each i = 1, 2, 3. Then we apply the operator

GΓ to the FTT-ridge solution at each time using the procedure summarized in (3.3). In this

case, since the PDE operator G in Cartesian coordinates is separable and low-rank, it is not

surprising that a linear coordinate transformation increases the PDE operator rank. However by

splitting the operator such as (4.88) and performing a FTT truncation operation after applying

each lower rank operator G(i)
Γ we can mitigate the computational cost.

In Figure 4.14(c) we plot the L∞ error of the transformed solutions and the FTT so-

lution in Cartesian coordinates relative to a benchmark solution. We observe that the L∞ error

of our coordinate-adaptive solution is very close to the L∞ error of the FTT solution computed

in Cartesian coordinates. This implies that the error incurred by transforming coordinates, in-
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tegrating the PDE in the new coordinate system, and then transforming coordinates back is not

significant.

Computational cost The CPU-time of integrating the three-dimensional advection equation

(3.79) from t = 0 to t = 1 is 413 seconds when computed using FTT in Cartesian coordi-

nates, 173 seconds when computed using FTT-ridge in low-rank coordinates with one coordi-

nate transformation at t = 0, and 299 seconds when computed using the coordinate-adaptive

FTT Algorithm 4. These timings do not include the coordinate transformations at time t = 0

since they were not performed using Riemannian gradient descent. The timings do include the

computation of the new coordinate systems at times t > 0.

4.3.4.2 Five-dimensional simulation results

Finally, we consider the advection equation (4.82) in dimension five (d = 5) with

coefficients

f(x) =



−x2

x3

x5

−x2

−x3


. (4.89)

This allows us to test our coordinate adaptive algorithm for a case in which we know the optimal

ridge matrix. In the initial condition (3.85) we set the following parameters: Ng = 2,
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Figure 4.16: Marginal PDFs of the solution to the 5D advection equation (4.82) computed in
Cartesian coordinates and low-rank adaptive coordinates at time t = 0 and time t = 1.

R(1) = R(2) = I5×5,

β =

1/2 2 1/2 3 1/2

1 1/3 2 1 1/2

 , (4.90)

and

t =

1 1 1 −1 1

0 0 3/2 −1/2 1/2

 , (4.91)

which results in an initial condition with FTT rank
[
1 2 2 2 2 1

]
. Due to the choice of

coefficients (4.89), the analytical solution to the PDE (3.79) can be written as a ridge function
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Figure 4.17: Multilinear spectra of the solution to the advection 5D PDE (4.82) in Cartesian
coordinates and transformed coordinates at time t = 1.

in terms of the PDE initial condition

u(x, t) = u0
(
etBx

)
, (4.92)

where

B =



0 −1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 −1 0 0 0

0 0 −1 0 0


. (4.93)
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Thus (4.92) is a tensor ridge solution to the 5D advection equation (4.82) with the same rank as

the initial condition, i.e., in this case there exists a tensor ridge solution at each time with FTT

rank equal to
[
1 2 2 2 2 1

]
.

We ran two simulations of the PDE (3.79) up to t = 1. The first simulation is com-

puted with a step-truncation method in fixed Cartesian coordinates. The second simulation is

computed with the coordinate-adaptive FTT-ridge tensor method that performs coordinate cor-

rections at each time step (Algorithm 5) with ∆ϵ = 5 × 10−4 and Miter = 1. In Figure 4.16

we plot marginal PDFs of the FTT solution and the FTT-ridge solution at initial time t = 0

and final time t = 1. We observe that the reduced rank FTT-ridge solution appears to be more

symmetrical with respect to the coordinate axes than the corresponding function on Cartesian

coordinates. In Figure 4.18(a) we plot the 1-norm of the FTT solution rank versus time and in

Figure 4.18(b) we plot the FTT rank of the PDE velocity vector (right hand side of the PDE) ver-

sus time for both FTT solutions. We observe that the FTT solution rank in Cartesian coordinates

grows quickly compared to the FTT-ridge solution in Cartesian coordinates. This is expected

due to the existence of a low-rank FTT-ridge solution (4.92). Note that the coordinate-adaptive

algorithm 5 produces a FTT-ridge solution with ridge matrix that is different than etB in (4.92).

The reason can be traced back to the cost function we are minimizing, i.e., the Schauder norm

(see section 4.2.1), and the fact that we do not fully determine the minimizer at each step, but

rather perform only one ϵ-step in the direction of the Riemannian gradient. Although the rank

of the FTT-ridge solution computed with algorithm 5 is larger than the rank of the analytical

solution (4.92), the algorithm still controls the FTT solution rank during time integration. In

Figure 4.17 we plot the multilinear spectra of the two FTT solutions at time t = 1. We observe
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(a) (b)

Figure 4.18: (a) 1-norm of the solution rank vectors versus time. (b) 1-norm of the solution
velocity (PDE right hand side) rank vectors versus time.

that the multilinear spectra of the FTT-ridge function decay significantly faster than the spectra

of the FTT solution in Cartesian coordinates.

For this problem it is not straightforward to compute a benchmark solution on a full

tensor product grid. If we were to use the same resolution as the FTT solutions, i.e., 200

points in each dimension, then each time snapshot of the benchmark solution would be an array

containing 2005 ≈ 3.2 × 1011 double precision floating point numbers. This requires 2.56

terabytes of memory storage per time snapshot. In lieu of comparing our FTT solutions with a

benchmark solution, we compared the two FTT solutions with each other. To do so we mapped

the FTT-ridge solution back to Cartesian coordinates every 250 time steps by solving a PDE

of the form (4.13) numerically. We compared the (x4, x5)-marginal PDFs of the two solutions

and found that the global L∞ norm of the difference of the two solution PDFs is bounded by

6× 10−4.
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Computational cost The CPU-time of integrating the five-dimensional advection equation

(4.82) from t = 0 to t = 1 is 2046 seconds when computed using FTT in Cartesian coordinates

and 2035 seconds when computed using FTT-ridge in low-rank coordinates with coordinate

corrections at each time step.

Appendix 4.A The Riemannian manifold of coordinate transfor-

mations

We endow the search space SLd(R) in (4.31) with a Riemannian manifold structure.

To this end, we first notice that SLd(R) is a matrix Lie group over R and in particular is a smooth

manifold. A point A ∈ SLd(R) corresponds to a linear coordinate transformation of Rd with

determinant equal to 1. A smooth path Θ(ϵ) on the manifold SLd(R) paramaterized by ϵ ∈

(−δ, δ) is a collection of smoothly varying linear coordinate transformations with determinant

equal to 1 for all ϵ ∈ (−δ, δ). Denote by C1 ((−δ, δ),SLd(R)) the collection of all continuously

differentiable paths Θ(ϵ) on the manifold SLd(R) parameterized by ϵ ∈ (−δ, δ). The tangent

space of SLd(R) at the point A ∈ GLd(R) is defined to be the collection of equivalence classes

of velocities associated to all possible curves on SLd(R) passing through the point A

TASLd(R) =
{
dΘ(ϵ)

dϵ

∣∣∣∣
ϵ=0

: Θ ∈ C1 ((−δ, δ), SLd(R)) , Θ(0) = A

}
. (4.94)

It is well-known (e.g., [101]) that the tangent space of SLd(R) at the point A is given by

TASLd(R) = sld(R)A = {NA : N ∈ sld(R)}, (4.95)
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where sld(R) denotes the collection of all d × d real matrices with vanishing trace. We can

easily verify that if Θ(ϵ) is a smooth collection of matrices parameterized by ϵ ∈ (−δ, δ) with

Θ(0) ∈ SLd(R) = sld(R) and dΘ(ϵ)/dϵ ∈ TΘ(ϵ)SLd(R) for all ϵ, then det(Θ(ϵ)) = 1 for

all ϵ, i.e., Θ(ϵ) ∈ SLd(R) for all ϵ. The proof of this result is a direct application of Jacobi’s

formula [73] which states

d

dϵ
det (Θ(ϵ)) = det (Θ(ϵ)) trace

(
dΘ(ϵ)

dϵ
Θ−1(ϵ)

)
= det (Θ(ϵ)) trace

(
NΘ(ϵ)Θ−1(ϵ)

)
= det (Θ(ϵ)) trace (N)

= 0,

(4.96)

since N ∈ sld(R). Thus the determinant of Θ(ϵ) is constant and since det(Θ(0)) = 1 it follows

that det(Θ(ϵ)) = 1 for all ϵ ∈ (−δ, δ). In the language of abstract differential equations, sld(R)

is referred to as the Lie algebra associated with the Lie group SLd(R). In Figure 4.19(a) we

provide an illustration of a path Θ(ϵ) on the manifold SLd(R) passing through the point A

and the tangent space TASLd(R) of SLd(R) at A. Also depicted in Figure 4.19 is a smooth

function f from SLd(R) to another smooth manifold M. The image of the path Θ(ϵ) on SLd(R)

under f is a path f(Θ(ϵ)) on M. Under this mapping of curves, we can associate the tangent

vector dΘ(ϵ)/dϵ|ϵ=0 in TASLd(R) with a tangent vector df(Θ(ϵ))/dϵ|ϵ=0 in Tf(A)M. This

association gives rise to the notion of the directional derivative of a function f : SLd(R) → M

which we now define.

Definition A1. Let f be a smooth function from the Riemaniann manifold SLd(R) to a smooth

manifold M. The directional derivative of f at the point A ∈ SLd(R) in the direction V ∈
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Figure 4.19: An illustration of the directional derivative of the function f : SLd(R) → M. The
curve Θ(ϵ) on SLd(R) is mapped to the curve f(Θ(ϵ)) on M and the directional derivative of
f at A ∈ SLd(R) in the direction V ∈ TASLd(R) is the velocity of the curve f(Θ(ϵ)) at f(A).

TASLd(R) is defined as

(dAf)V =
∂f(Θ(ϵ))

∂ϵ

∣∣∣∣
ϵ=0

, (4.97)

where Θ(ϵ) is a smooth curve on SLd(R) passing through the point A at ϵ = 0 with velocity

V .

It is a standard exercise of differential geometry to verify that the directional derivative (4.97)

is independent of the choice of curve Θ(ϵ). The map dAf appearing in (4.97) is a linear map

from TASLd(R) to Tf(A)M known as the differential of f .

In Figure 4.19 we provide an illustration of the mapping f and its differential. The

differential and directional derivative allow us to understand the change in f when moving from

the point A ∈ SLd(R) in the direction of the tangent vector V ∈ TASLd(R). Next, we compute

the Riemannian gradient of f , i.e., a specific tangent vector on SLd(R) that points in a direction

which makes the function f vary the most.
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For functions defined on Euclidean space, the connection between directional deriva-

tive and gradient is understood by using the standard inner product defined for Euclidean spaces.

A generalization of the Euclidean inner product for an abstract manifold such as SLd(R) is the

Riemannian metric (·, ·)A, which is a collection of smoothly varying inner products on each

tangent space TASLd(R). In particular, we define

(V ,W )A = trace
[(
V A−1

) (
WA−1

)⊤]
, ∀A ∈ SLd(R), ∀V ,W ∈ TASLd(R)

(4.98)

on SLd(R). With this Riemannian metric, we can define the Riemannian gradient.

Definition A2. Let f be a smooth function from SLd(R) to a smooth manifold M. The Rieman-

nian gradient of f at the point A ∈ SLd(R) is the unique vector field gradf(A) satisfying

(dAf)V = (gradf(A),V )A, ∀V ∈ TASLd(R). (4.99)

Analogous to the Euclidean case, the Riemannian gradient points in the direction which f in-

creases the most, and, the negative gradient points the the direction which f decreases most.

With this Riemannian geometric structure, we proceed by constructing a path on SLd(R),

known as a descent path, which converges to a local minimum of the cost function S ◦ E in

(4.31).

Appendix 4.B Theorems and Proofs

First, we show that the tensor rank is invariant under translation of functions with compact

126



support. This allows us to disregard translations when looking for rank reducing coordinate

flows.

Proposition B1. Let uTT ∈ L2
µ(Ω) (Ω ⊆ Rd) be a rank-r FTT with supp(uTT) ⊆ Ω and

Ct : Rd → Rd a coordinate translation, i.e.,

Ct(x) = x+ t, (4.100)

where t ∈ Rd, such that supp(uTT) ⊆ Ct(Ω). Then uTT(Ct(x)) is also a rank-r FTT tensor.

Proof. Let

uTT(x) = Q≤i(x≤i)ΣiQ>i(x>i) (4.101)

be an orthogonalized expansion of the the rank-r FTT uTT as in (4.21). Then by a simple

change of variables in the integrals it is easy to verify that the translated cores Q⊤
≤i(x≤i +

t≤i),Q>i(x>i + t>i) also satisfy the orthogonality conditions

〈
Q⊤

≤i(x≤i + t≤i)Q≤i(x≤i + t≤i)
〉
≤i

= Iri×ri ,〈
Q>i(x>i + t>i)Q

⊤
>i(x>i + t>i)

〉
>i

= Iri×ri ,

(4.102)

and thus

uTT(Ct(x)) = Q≤i(x≤i + t≤i)ΣiQ>i(x>i + t>i) (4.103)

is an orthogonalized FTT tensor. Hence, uTT ◦ Ct has the same multilinear rank r as uTT.

Next, we provide a proof of Proposition 4.2.1. To do so we first provide the differentials of the

maps E, S and C = S ◦ E in the following lemmas.
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Lemma B1. The differential of the evaluation map E corresponding to uTT (see eqn. (4.29)) at

the point A ∈ GLd(R) in the direction V ∈ TAGLd(R) is

(dAE)V = ∇v(x) · (V x). (4.104)

Proof. This result is proven directly from the definitions. Let Θ(ϵ) be a smooth curve on

GLd(R) passing through A with velocity V at ϵ = 0. Then

(dAE)V =
∂

∂ϵ
E(Θ(ϵ))

∣∣∣∣
ϵ=0

=
∂

∂ϵ
uTT(Θ(ϵ)x)

∣∣∣∣
ϵ=0

= ∇uTT(Ax) · (V x)

= ∇v(x) · (V x) .

(4.105)

Lemma B2. The differential of S (see (4.27)) at the point v ∈ L2
µ(Ω) in the direction w ∈

TvL
2
µ(Ω) is

(dvS)w =
d−1∑
i=1

∫
Ω
Q≤iQ>iw(x)dµ(x) (4.106)

where Q≤i,Q>i are FTT cores of v as in eqn. (4.21) satisfying the orthogonality conditions

(4.24).

Proof. Let γ(ϵ) be a smooth curve on L2
µ(Ω) passing through v at ϵ = 0 with velocity w. At

each ϵ the function γ(ϵ) admits orthogonalizations of the form

γ(ϵ) = Q≤i(ϵ)Σi(ϵ)Q>i(ϵ) (4.107)

for each i = 1, 2, . . . , d− 1. Differentiating (4.107) with respect to ϵ we obtain

∂γ

∂ϵ
=
∂Q≤i

∂ϵ
ΣiQ>i +Q≤i

∂Σi

∂ϵ
Q>i +Q≤iΣi

∂Q>i

∂ϵ
. (4.108)
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Multiplying on the left by Q⊤
≤i and on the right by Q⊤

>i, applying the operator ⟨·⟩≤i,>i, and

evaluating at ϵ = 0 we obtain

∂Σi

∂ϵ
=
〈
Q⊤

≤iw(x)Q
⊤
>i

〉
≤i,>i

−
〈
Q⊤

≤i

∂Q≤i

∂ϵ

〉
≤i

Σi −Σi

〈
∂Q>i

∂ϵ
Q⊤

>i

〉
>i

, (4.109)

where we used orthogonality of the FTT cores Q≤i and Q>i. Differentiating the orthogonality

constraints (4.24) with respect to ϵ we obtain〈
∂Q⊤

≤i

∂ϵ
Q≤i

〉
≤i

= −
〈
Q⊤

≤i

∂Q≤i

∂ϵ

〉
≤i

,

〈
∂Q>i

∂ϵ
Q⊤

>i

〉
>i

= −

〈
Q>i

∂Q⊤
>i

∂ϵ

〉
>i

, ∀ϵ,

(4.110)

which implies that the second two terms on the right hand side of (4.109) side are skew-

symmetric and thus have zeros on the diagonal. Hence the diagonal entries of
∂Σi

∂ϵ
are the

diagonal entries of the matrix
〈
Q⊤

≤iw(x)Q
⊤
>i

〉
≤i,>i

or written element-wise

∂Si(αi)

∂ϵ
=

∫
q≤i(αi)w(x)q>i(αi)dµ(x). (4.111)

Finally summing (4.111) over i = 1, 2, . . . , d−1 and αi = 1, 2, . . . , ri and using matrix product

notation for the latter summation we obtain

d−1∑
i=1

ri∑
αi=1

∂Si(αi)

∂ϵ
=

∫
Ω
Q≤iQ>iw(x)dµ(x), (4.112)

proving the result.

Combining the results of Lemma B1 and Lemma B2 with a simple application of the chain rule

for differentials we prove the following Lemma.
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Lemma B3. The differential of the function C = S ◦ E at the point A ∈ GLd(R) in the

direction V ∈ TAGLd(R) is

dA(S ◦ E)V =

d−1∑
i=1

∫
Ω
Q≤iQ>i∇v(x) · (V x) dµ(x), (4.113)

where Q≤i,Q>i are orthogonal FTT cores of v(x).

Next we provide the Riemannian gradient of C = S ◦E when its domain is GLd(R).

Proposition B2. The Riemannian gradient of (S◦E) : GLd(R) → R at the point A ∈ GLd(R)

is given by

grad(S ◦ E)(A) = D̂A, (4.114)

where

D̂ =

d−1∑
i=1

∫
Q≤iQ>i∇v(x) (Ax)⊤ dµ(x) (4.115)

Proof. To prove this result we check directly using the definition of Riemannian gradient. For

any A ∈ GLd(R) and V ∈ TAGLd(R) we have

(
D̂A,V

)
A
=

([
d−1∑
i=1

∫
Q≤iQ>i∇v(x) (Ax)⊤ dµ(x)

]
A,V

)
A

= trace

(
d−1∑
i=1

∫
Q≤iQ>i∇v(x)x⊤A⊤dµ(x)A−⊤V ⊤

)

=
d−1∑
i=1

∫
Q≤iQ>itrace

(
∇v(x)x⊤V ⊤

)
dµ(x)

=

d−1∑
i=1

∫
Q≤iQ>i∇v(x) · (V x) dµ(x),

(4.116)

where in the last equality we used the fact that trace(vw⊤) = v · w for any column vectors

v,w ∈ Rd.
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In general, the trace of D̂ is not equal to zero and thus D̂A is not an element of the tangent

space TASLd(R) (see eqn. (4.95)). In order to obtain the Riemannian gradient DA of S ◦ E :

SLd(R) → R, we modify the diagonal entries of D̂ to ensure that DA satisfies the properties

of Riemannian gradient and also belongs to the tangent space TASLd(R).

Proof.[Proposition 4.2.1] First we prove that DA with D defined in (4.34) is an element of

TASLd(R), i.e., we prove that trace(D) = 0 :

trace(D) =

d−1∑
i=1

∫
Q≤iQ>itrace

(
∇v(x) (Ax)⊤ − ∇v(x)⊤Ax

d
Id×d

)
dµ(x)

=

d−1∑
i=1

∫
Q≤iQ>i

[
trace

(
∇v(x) (Ax)⊤

)
− trace

(
∇v(x)⊤Ax

d
Id×d

)]
dµ(x).

(4.117)

It is easy to verify that trace
(
∇v(x) (Ax)⊤

)
= trace

(
∇v(x)⊤Ax

d
Id×d

)
and hence trace(D) =

0. Next we show that (DA,V )A = dA(S ◦ E)V for all A ∈ SLd(R) and V ∈ TASLd(R).

Indeed, for any A ∈ SLd(R) and V ∈ TASLd(R) we have

(DA,V )A =
d−1∑
i=1

∫
Q≤iQ>itrace

[(
∇v(x) (Ax)⊤ − ∇v(x)⊤Ax

d
Id×d

)(
V A−1

)⊤]
dµ(x)

=
d−1∑
i=1

∫
Q≤iQ>i

[
trace

(
∇v(x) (Ax)⊤

(
V A−1

)⊤)
− ∇v(x)⊤Ax

d
trace

((
V A−1

)⊤)]
dµ(x).

(4.118)

Since V ∈ TASLd(R) we have that V = WA for some real matrix W with trace(W ) = 0.
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Using this in the preceding equation we have

(D(A)A,V )A =
d−1∑
i=1

∫
Q≤iQ>i

[
trace

(
∇v(x)x⊤A⊤A−⊤V ⊤

)
− ∇v(x)⊤Ax

d
trace

(
W⊤

)]
dµ(x)

=
d−1∑
i=1

∫
Q≤iQ>itrace

(
∇v(x)x⊤V ⊤

)
dµ(x)

=
d−1∑
i=1

∫
Q≤iQ>i∇v(x) · (V x) dµ(x)

= dA(S ◦ E)V ,

(4.119)

completing the proof.

Lemma B4. Let σi(αi) (i = 1, 2, . . . , d, αi = 1, 2, . . . , ri) be the multilinear spectrum of the

FTT vTT(x) ≈ uTT(Ax) and assume that for each i = 1, 2, . . . , d the real numbers σi(αi) are

distinct for all αi = 1, 2, . . . , ri. Then the cost function (S ◦ E) is a differentiable at the point

A.

Proof. Let Θ(ϵ) ∈ C1 ((−δ, δ),SLd(R)) with Θ(0) = A. The ϵ-dependent multilinear spec-

trum σi(αi; ϵ) (i = 1, 2, . . . , d, αi = 1, 2, . . . , ri) of uTT(Θ(ϵ)x) are given by the eigenvalues

of an ϵ-dependent self-adjoint compact Hermitian operator. In a neighborhood of ϵ = 0 the

eigenvalue σi(αi; ϵ) admits a series expansion [56, p. xx]

σi(αi; ϵ) = σi(αi; 0) + ϵσ̂i(αi), (4.120)

and thus σi(αi; ϵ) is differentiable with respect to ϵ at ϵ = 0. Hence the sum of all eigenvalues

d−1∑
i=1

ri∑
αi=1

σi(αi; ϵ)
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is differentiable at ϵ = 0 and thus the cost function C is differentiable at A ∈ SLd(R).
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Algorithm 3: Modified FTT truncation algorithm.

Input:

v→ FTT tensor with cores Ψ1,Ψ2, . . . ,Ψd,

δ → desired accuracy.

Output:

vTT → truncated FTT tensor satisfying ∥v − vTT∥L2
µ(Ω) ≤ δ∥v∥L2

µ(Ω),

S (vTT) → sum of all multilinear singular values of vTT,

D → left factor of the Riemannian gradient (4.33).

Runtime:

δ̂ =
δ√
d− 1

∥v∥L2 (Set truncation parameter)

S(v) = 0 (Initialize S(v))

for i = 1 to d− 1 (Left-to-right orthogonalization)

[Qi,Ri] = QR(Ψi)

Ψi+1 = RiΨi+1

end

for i = d to 2 (Right-to-left truncation and gradient computation)

[Li,Qi] = LQ(Ψi)

[Ui,Σi,Vi] = SVDδ̂(Li)

Qi = V ⊤
i Qi

Qi−1 = Qi−1Ui,

S(v) = S(v) + sum (Σi),

D(i−1) =
∫
Q≤i−1Q>i−1

(
∇v(x)x⊤) dµ(x)

end

D =
d−1∑
i=1

D(i)

vTT = Q1Σ2Q2 . . .Qd
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Algorithm 4: PDE integrator with adaptive rank-reducing coordinate flows.

Input:

u0 → initial condition in FTT tensor format,

∆t→ temporal step size,

Nt → total number of time steps,

max rank→ maximum rank during FTT integration before attempting rank reduction,

max time → maximum CPU-time for one time step before attempting rank reduction,

kr → increase for maximum rank after performing coordinate transformation,

kt → increase for maximum time after performing coordinate transformation,

∆ϵ→ gradient descent step-size,

η→ tolerance for coordinate gradient descent,

Miter → maximum number of iterations for gradient descent routine.

Output:

Γ→ rank-reducing linear coordinate transformation for PDE solution,

vTT(x, tf ) = uTT(Γx, tf ) → FTT-ridge solution tensor at time tf .

Runtime:

Γ = I ,

v0 = uTT,

for k = 0 to Nt

if time > max time or rank > max rank

[vk,Γnew] = gradient descent(vk,∆ϵ, η,Miter)

Γ = ΓnewΓ

max rank = max rank + kr

max time = max time + kt

end

[vk+1, time, rank] = Tδ (vk +∆tΦ(vk, GTT,Γ,∆t))

end
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Algorithm 5: PDE integrator with coordinate corrections at each time step.

Input:

u0 → initial condition in FTT tensor format,

∆t→ temporal step size,

Nt → total number of time steps,

∆ϵ→ gradient descent step-size,

η→ tolerance for coordinate gradient descent,

Miter → maximum number of iterations for gradient descent routine.

Output:

Γ→ rank-reducing linear coordinate transformation for PDE solution,

vTT(x, tf ) = uTT(Γx, tf ) → FTT-ridge solution at time tf .

Runtime:

Γ = I ,

v0 = uTT,

for k = 0 to Nt

[vk,Γnew] = gradient descent(vk,∆ϵ, η,Miter)

Γ = ΓnewΓ

vk+1 = Tδ (vk +∆tΦ(vk, GTT,Γ,∆t))

end
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Chapter 5

Conclusion

We presented methods for computing the solution to high-dimensional nonlinear PDEs

with low-rank tensors at a storage and computational cost that grows linearly with the problem

dimension. In Chapter 2 we introduced low-rank tensor expansions, their associated geometric

features, and provided a numerical application to a prototype three-dimensional function. In

Chapter 3 we developed numerical methods for computing the solution to high-dimensional

PDEs using low-rank tensor expansions. These methods are based on deriving equations of

motion for PDEs on a low-rank tensor manifold and then constructing an approximate PDE so-

lution as a path on the tensor manifold. Two schemes for computing approximate PDE solutions

on tensor manifolds were presented. The first is based on dynamic approximation in which the

PDE velocity vector is projected onto the tensor manifold tangent space and the second is based

on step-truncation in which the solution is projected onto the tensor manifold at each time step.

It was shown that these two schemes are consistent with each other as the temporal step-size is

sent to zero. We also presented a rank-adaptive algorithm to adaptively add and remove tensor
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modes from the PDE solution during time integration. The adaptive algorithm is based on a

thresholding criterion that limits the component of the PDE velocity vector normal to the tensor

manifold. We demonstrated the rank-adaptive tensor integrator on a two-dimensional advec-

tion equation, a two-dimensional Kuramoto-Sivashinsky equation, and on a four-dimensional

Fokker-Planck equation.

Building upon these low-rank tensor integration schemes, in Chapter 4 we presented

a tensor rank reduction method based on coordinate transformations that can greatly increase

the efficiency of high-dimensional tensor approximation algorithms. The idea is to determine

a coordinate transformation of a given functions domain so that the function in the new coor-

dinate system has smaller tensor rank. A theoretical framework based on coordinate flows was

described for linear transformations giving rise to a class of functions referred to as tensor ridge

functions. We developed an algorithm based on coordinate flows and Riemannian optimization

on matrix manifolds for computing rank reducing linear coordinate transformations. The ef-

fectiveness of the proposed rank reduction algorithm was demonstrated on a three-dimensional

prototype function. We also described methods for integrating nonlinear PDEs in low-rank

coordinate systems based on step-truncation tensor integrators. Two coordinate-adaptive time

integration schemes were proposed in order to control the solution rank and computational

cost during temporal integration. We provided a demonstration and comparison of the two

coordinate-adaptive algorithms by applying them to various PDEs in dimensions two, three,

and five. Specifically we studied linear advection equations and a nonlinear reaction-diffusion

equation.

In this dissertation we have demonstrated that low-rank tensor methods are a promis-

138



ing tool for the numerical treatment of high-dimensional problems. At the present time there

are many limitations of tensor methods and opportunities to improve their efficiency which pro-

vide interesting directions for future research. First, currently tensor methods are limited to

relatively simple domains. Some recent work has been done to use tensor methods more com-

plicated geometries (e.g., [106]), more research in this direction is expected. Second, using a

coordinate transformation to reduce the rank of a tensor is an idea that we recently introduced

[31] which opens a new line of research for tensor compression. More exploration in this di-

rection is warranted in the following ways. Rank reduction via coordinate transformations can

potentially be generalized to larger classes of nonlinear coordinate transformations. Also, the

use of coordinate transformations to control the rank of an operator between Hilbert spaces

G : H → H should be addressed in order to find coordinate transformations that reduce the

overall computational cost of solving PDEs with tensors. In addition, alternative algorithms for

computing rank reducing coordinate transformations and for changing the coordinate system of

a tensor should be explored in future research. Finally high-performance implementations of

the methods presented in this dissertation, e.g., based on parallel arithmetic for tensors [26] or

parallel in time integration schemes [38], should developed.
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A. K. Saibaba. Randomized algorithms for rounding in the tensor-train format. SIAM

Journal on Scientific Computing, 45(1):A74–A95, 2023.

[28] A. Dektor, A. Rodgers, and D. Venturi. Rank-adaptive tensor methods for high-

dimensional nonlinear PDEs. J. Sci. Comput., 88(36):1–27, 2021.

[29] A. Dektor and D. Venturi. Dynamically orthogonal tensor methods for high-dimensional

nonlinear PDEs. J. Comput. Phys., 404:109125, 2020.

[30] A. Dektor and D. Venturi. Dynamic tensor approximation of high-dimensional nonlinear

PDEs. J. Comput. Phys., 437:110295, 2021.

[31] A. Dektor and D. Venturi. Tensor rank reduction via coordinate flows. arXiv:2207.11955,

pages 1–33, 2023.

[32] J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: the quasi-Monte Carlo

way. Acta Numer., 22:133–288, 2013.

[33] G. Dimarco and L. Pareschi. Numerical methods for kinetic equations. Acta Numerica,

23:369–520, 2014.

143



[34] A. Falcó, W. Hackbusch, and A. Nouy. Geometric structures in tensor representations.

arXiv:1505.03027, pages 1–50, 2015.

[35] F. Feppon and P. F. J. Lermusiaux. A geometric approach to dynamical model order

reduction. SIAM J. Matrix Anal. Appl., 39(1):510–538, 2018.

[36] F. Feppon and P. F. J. Lermusiaux. The extrinsic geometry of dynamical systems tracking

nonlinear matrix projections. SIAM J. Matrix Anal. Appl., 40(2):814–844, 2019.

[37] J. Foo and G. E. Karniadakis. Multi-element probabilistic collocation method in high

dimensions. J. Comput. Phys., 229:1536–1557, 2010.

[38] J. Kusch G. Ceruti and C. Lubich. A parallel rank-adaptive integrator for dynamical

low-rank approximation. arXiv:2304.05660, pages 1–22, 2023.

[39] L Grasedyck. Hierarchical singular value decomposition of tensors. SIAM J. Matrix

Anal. Appl., 31(4):2029–2054, 2009/10.

[40] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor approx-

imation techniques. GAMM-Mitt., 36(1):53–78, 2013.

[41] L. Grasedyck and C. Löbbert. Distributed hierarchical SVD in the hierarchical Tucker

format. Numer. Linear Algebra Appl., 25(6):e2174, 2018.

[42] M. Griebel and G. Li. On the decay rate of the singular values of bivariate functions.

SIAM J. Numer. Anal., 56(2):974–993, 2019.

[43] W. Hackbusch. Tensor spaces and numerical tensor calculus. Springer, 2012.

144



[44] J. Heng, A. Doucet, and Y. Pokern. Gibbs flow for approximate transport with applica-

tions to Bayesian computation. J. R. Stat. Soc. Series B, 83:156–187, 2021.

[45] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral methods for time-dependent prob-

lems, volume 21 of Cambridge Monographs on Applied and Computational Mathemat-

ics. Cambridge University Press, Cambridge, 2007.

[46] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral methods for time-dependent prob-

lems, volume 21 of Cambridge Monographs on Applied and Computational Mathemat-

ics. Cambridge University Press, Cambridge, 2007.

[47] S. Holtz, T. Rohwedder, and R. Schneider. On manifolds of tensors of fixed TT-rank.

Numer. Math., 120(4):701–731, 2012.

[48] E. Hopf. Statistical hydromechanics and functional calculus. J. Rat. Mech. Anal.,

1(1):87–123, 1952.

[49] E. Hopf and E. W. Titt. On certain special solutions of the ϕ-equation of statistical

hydrodynamics. J. Rat. Mech. Anal., 2(3):587–592, 1953.

[50] C. Itzykson and J. B. Zuber. Quantum field theory. Dover, 2005. Republication of the

work originally published by McGraw-Hill, Inc., NY, 1980.

[51] R. V. Jensen. Functional integral approach to classical statistical dynamics. J. Stat. Phys.,

25(2):183–210, 1981.

[52] B. Jouvet and R. Phythian. Quantum aspects of classical and statistical fields. Phys. Rev.

A, 19:1350–1355, 1979.

145



[53] A. Kalogirou, E. E. Keaveny, and D.T. Papageorgiou. An in-depth numerical study of

the two-dimensional Kuramoto-Sivashinsky equation. Proc. A., 471(2179):20140932,

20, 2015.

[54] G. E. Karniadakis and S. Sherwin. Spectral/hp element methods for computational fluid

dynamics. Oxford University Press, second edition, 2005.

[55] A.-K Kassam and L. N. Trefethen. Fourth-order time-stepping for stiff pdes. SIAM

Journal on Scientific Computing, 26(4):1214–1233, 2005.

[56] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-

Verlag, Berlin, 1995. Reprint of the 1980 edition.

[57] B. N. Khoromskij. Tensor numerical methods for multidimensional PDEs: theoreti-

cal analysis and initial applications. In CEMRACS 2013—modelling and simulation of

complex systems: stochastic and deterministic approaches, volume 48 of ESAIM Proc.

Surveys, pages 1–28.

[58] B. N. Khoromskij. Tensor numerical methods for multidimensional PDEs: theoreti-

cal analysis and initial applications. In CEMRACS 2013—modelling and simulation of

complex systems: stochastic and deterministic approaches, volume 48 of ESAIM Proc.

Surveys, pages 1–28.

[59] E. Kieri, C. Lubich, and H. Walach. Discretized dynamical low-rank approximation in

the presence of small singular values. SIAM J. Numer. Anal., 54(2):1020–1038, 2016.

146



[60] E. Kieri and B. Vandereycken. Projection methods for dynamical low-rank approxima-

tion of high-dimensional problems. Comput. Methods Appl. Math., 19(1):73–92, 2019.

[61] O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM J. Matrix Anal.

Appl., 29(2):434–454, 2007.

[62] O. Koch and C. Lubich. Dynamical tensor approximation. SIAM J. Matrix Anal. Appl.,

31(5):2360–2375, 2010.

[63] O. Koch, C. Neuhauser, and M. Thalhammer. Error analysis of high-order splitting meth-

ods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF

equations in electron dynamics. ESAIM Math. Model. Numer. Anal., 47(5):1265–1286,

2013.

[64] T. Kolda and B. W. Bader. Tensor decompositions and applications. SIREV, 51:455–500,

2009.

[65] C. Krumnow, L. Veis, Ö. Legeza, and J. Eisert. Fermionic orbital optimization in tensor

network states. Phys. Rev. Lett., 117:210402, 2016.

[66] L.D. Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decompo-

sition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[67] G. Li and H. Rabitz. Regularized random-sampling high dimensional model representa-

tion (RS-HDMR). Journal of Mathematical Chemistry, 43(3):1207–1232, 2008.

[68] C. Lu, J. Tang, S. Yan, and Z. Lin. Nonconvex nonsmooth low rank minimization via

iteratively reweighted nuclear norm. IEEE Trans. Image Process., 25(2):829–839, 2016.

147



[69] C. Lubich, I. V. Oseledets, and B. Vandereycken. Time integration of tensor trains. SIAM

J. Numer. Anal., 53(2):917–941, 2015.

[70] C. Lubich, B. Vandereycken, and H. Walach. Time integration of rank-constrained

Tucker tensors. SIAM J. Numer. Anal., 56(3):1273–1290, 2018.

[71] H. Luo and T. R. Bewley. On the contravariant form of the Navier-Stokes equations in

time-dependent curvilinear coordinate systems. J. Comput. Phys., 199:355–375, 2004.

[72] T. Y. Hou M. Cheng and Z. Zhang. A dynamically bi-orthogonal method for time-

dependent stochastic partial differential equations I: derivation and algorithms. J. Com-

put. Phys., 242:843–868, 2013.

[73] J. R. Magnus and H. Neudecker. Matrix differential calculus with applications in statis-

tics and econometrics. John Wiley & Sons, 2019.

[74] P. C. Martin, E. D. Siggia, and H. A. Rose. Statistical dynamics of classical systems.

Phys. Rev. A, 8:423–437, 1973.

[75] C. Hubig I. P. McCulloch and U. Schollwöck. Generic construction of efficient matrix

product operators. Phys. Rev. B, 95:035129, 2017.

[76] A. S. Monin and A. M. Yaglom. Statistical Fluid Mechanics, Volume II: Mechanics of

Turbulence. Dover, 2007.

[77] E. Musharbash and F. Nobile. Dual dynamically orthogonal approximation of incom-

pressible Navier Stokes equations with random boundary conditions. J. Comput. Phys.,

354:135–162, 2018.

148



[78] E. Musharbash, F. Nobile, and T. Zhou. Error analysis of the dynamically orthogonal

approximation of time dependent random PDEs. SIAM J. Sci. Comput., 37(2):A776–

A810, 2015.

[79] A. Narayan and J. Jakeman. Adaptive Leja sparse grid constructions for stochastic collo-

cation and high-dimensional approximation. SIAM J. Sci. Comput., 36(6):A2952–A2983,

2014.

[80] M. Z. Nashed. Differentiability and related properties of nonlinear operators: Some as-

pects of the role of differentials in nonlinear functional analysis. In Nonlinear Functional

Anal. and Appl. (Proc. Advanced Sem., Math. Res. Center, Univ. of Wisconsin, Madison,

Wis., 1970), pages 103–309. Academic Press, New York, 1971.

[81] I. Oseledets and E. Tyrtyshnikov. TT-cross approximation for multidimensional arrays.

Linear Algebra Appl., 432(1):70–88, 2010.

[82] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33(5):2295–2317,

2011.

[83] R. Mahony P.-A. Absil and R. Sepulchre. Optimization algorithms on matrix manifolds.

Princeton University Press, Princeton, NJ, 2008.

[84] R. Phythian. The functional formalism of classical statistical dynamics. J. Phys A: Math.

Gen., 10(5):777–788, 1977.

[85] A. Pinkus. Ridge Functions. Cambridge University Press, 2015.

149



[86] M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learning of nonlinear

partial differential equations. J. Comput. Phys., 357:125–141, 2018.

[87] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A

deep learning framework for solving forward and inverse problems involving nonlinear

partial differential equations. J. Comput. Phys., 378:606–707, 2019.

[88] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear

matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

[89] M. Reed and B. Simon. Methods of modern mathematical physics. I. Academic Press,

Inc. [Harcourt Brace Jovanovich, Publishers], New York, second edition, 1980. Func-

tional analysis.

[90] H.-K. Rhee, R. Aris, and N. R. Amundson. First-order partial differential equations,

volume 1: theory and applications of single equations. Dover, 2001.

[91] H. Risken. The Fokker-Planck equation: methods of solution and applications. Springer-

Verlag, second edition, 1989. Mathematics in science and engineering, vol. 60.

[92] A. Rodgers, A. Dektor, and D. Venturi. Adaptive integration of nonlinear evolution

equations on tensor manifolds. J. Sci. Comput., 92(39), 2022.

[93] A. Rodgers and D. Venturi. Stability analysis of hierarchical tensor methods for time-

dependent pdes. J. Comput. Phys., 409:109341, 2020.

[94] A. Rodgers and D. Venturi. Implicit step-truncation integration of nonlinear PDEs on

low-rank tensor manifolds. arXiv:2207.01962, pages 1–30, 2022.

150



[95] M. Rosenblatt. Remarks on a multivariate transformation. Ann. Math. Stat., 23:470–472,

1952.

[96] G. Rudolph and M. Schmidt. Differential geometry and mathematical physics. Part II.

Fibre bundles, topology and gauge fields. Springer, 2017.

[97] D. Salas and L. Thibault. On characterizations of submanifolds via smoothness of the

distance function in Hilbert spaces. J. Optim. Theory Appl., 182(1):189–210, 2019.

[98] F. Santambrogio. Optimal transport for applied mathematicians, volume 87 of Progress

in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham,

2015. Calculus of variations, PDEs, and modeling.

[99] T. P. Sapsis and P. F. Lermusiaux. Dynamically orthogonal field equations for continuous

stochastic dynamical systems. Phys. D, 238(23-24):2347–2360, 2009.

[100] R. Schneider and A. Uschmajew. Approximation rates for the hierarchical tensor format

in periodic Sobolev spaces. J. Complexity, 30(2):56–71, 2014.

[101] T. Schulte-Herbrüggen, S. J. Glaser, G. Dirr, and U. Helmke. Gradient flows for opti-

mization in quantum information and quantum dynamics: foundations and applications.

Rev. Math. Phys., 22(6):597–667, 2010.

[102] T. Shi, M. Ruth, and A. Townsend. Parallel algorithms for computing the tensor-train

decomposition. arXiv:2111.10448, pages 1–23, 2021.

[103] S. Sirisup and G.E. Karniadakis. A spectral viscosity method for correcting the long-term

behavior of pod models. Journal of Computational Physics, 194(1):92–116, 2004.

151



[104] A. Spantini, D. Bigoni, and Y. Marzouk. Inference via low-dimensional couplings. J.

Mach. Learn. Res., 19:1–71, 2018.

[105] A. Uschmajew and B. Vandereycken. The geometry of algorithms using hierarchical

tensors. Linear Algebra Appl., 439(1):133–166, 2013.

[106] A. Uschmajew and A. Zeiser. Dynamical low-rank approximation of the vlasov-poisson

equation with piecewise linear spatial boundary. arXiv:2303.01856, pages 1–19, 2023.

[107] D. Venturi. A fully symmetric nonlinear biorthogonal decomposition theory for random

fields. Phys. D, 240(4-5):415–425, 2011.

[108] D. Venturi. Conjugate flow action functionals. J. Math. Phys., (54):113502(1–19), 2013.

[109] D. Venturi. The numerical approximation of nonlinear functionals and functional differ-

ential equations. Physics Reports, 732:1–102, 2018.

[110] D. Venturi, M. Choi, and G.E. Karniadakis. Supercritical quasi-conduction states in

stochastic rayleigh–bénard convection. International Journal of Heat and Mass Transfer,

55(13):3732–3743, 2012.

[111] D. Venturi and A. Dektor. Spectral methods for nonlinear functionals and functional

differential equations. Res. Math. Sci., 8(27):1–39, 2021.

[112] D. Venturi, T. P. Sapsis, H. Cho, and G. E. Karniadakis. A computable evolution equa-

tion for the joint response-excitation probability density function of stochastic dynamical

systems. Proc. R. Soc. A, 468(2139):759–783, 2012.

152



[113] M. Lindsey E.M. Stoudenmire Y. Khoo YH. Hur, J. G. Hoskins. Generative modeling

via tensor train sketching. arXiv e-prints, page arXiv:2202.11788v5, March 2023.

[114] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris. Physics-constrained deep

learning for high-dimensional surrogate modeling and uncertainty quantification without

labeled data. J. Comput. Phys., 394:56–81, 2019.

[115] J. Zinn-Justin. Quantum field theory and critical phenomena. Oxford Univ. Press, fourth

edition, 2002.

153




