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An Artificial Intelligence Approach
to Tonal Music Theory

James R. Meehan

ABSTRACT. There are virtually no computer models of tonal
music tlieory, largely due to a preoccupation with syntax
tliat comes from traditional linguistics, particularly from
transforrnatioiial grammar. Narmour's recent book, Beyond
Schenkerism [5], defines Schenker analysis as a
transformational system, refutes the central parts of that
theory, and suggests an alternative theory of analysis.
This paper draws a parallel between some of Narmour's ideas
and current v/ork iii natural language processing, Schank and
Abelson's Knowledge Structures [11]. The principal
correspoiiuence is between Narmour's "style forms" and the AI
notion of semantic priiaitives. It may now be possible for
music tiiuorists to share the philosophy and methodology of
AI researchers in producing programs to compose and analyze
tonal music.
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An Artificial Intelligence approach to tonal music theory

James R. Meehan

Introduction. Although computers are commonly used in

the coraposition and performance of contemporary music, there

is very little computer research on models of tonal music

theory, for either analysis or composition of music. This

seems surprising since tonal theory is in the standard music

curriculuva and shares many aspects of natural language, a

favorite target frofa tiie earliest days of computer science,

and since computer programs in Artificial Intelligence (AI)

are now commonly used as process models, particularly in

areas rich in symbol manipulation. There are programs that

use little or no standard theory to compose nursery

tunes [7], rounds [9], and even cowboy songs [9]. The early

literature shows a strong influence of information theory

and theories of composition based on Markov chains, weighted

probabilities of state_ transitions, generate-and-test

models, and so on. Few authors of such systems made claims

of generality or extensibility, and indeed, no such system

iias caught on. There are few analysis programs, good.

bad, or otiierwise, the principal exception being a 1968

paper by Terry vVinocjrad [15].

If there are such strong parallels between music and

natural language, what's missing?
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In a review of books on computers and music [14], Rarry

Vercoe of MIT said:

We seem to be without a sufficiently well-defined
"theory" of ..iusic that could provide that logically
consiscent set of relationsliips between the elements
which is necessary in order to program, and thus
specify, a meaningful substitute for our own
cognitive processes.

On that same point, Andy Moorer [4] wrote in 1972:

... any attempts to simulate the compositional
abilities of humans will probably not succeed until
in fact the musical models and plans that humans use
are described and modeled.

Schenker. The currently dominant theory of tonal music

is that of Heinrich Schenker {18'S0-1935) who defined a

transformational system for music analysis long before Noam

Chomsky did the same for linguistics [1]. Very briefly, the

tr ansfo rna tions reduce groups of notes on one level to

single notes on the next higher level, in a fashion not

unline common parsing techniques for context-free grammars.

The higiicr—level notes are said to be "prolonged" by the

lower-level notes; a C at one level, for instance, might be

prolonged by stepwise motion (C-D-E-F-G). These reduction

rules theoretically apply at all levels. Finally, one is

left with a two-voice structure known as the Ursatz, for

which there are three possibilities: the melodic part

(Urlinie) may descend a third (scale degrees 3-1), a fifth

(5-1), or an octave (3-1). The Ursatz itself is a

prolongation of the triad. Melodic (horizontal) motion is

thus viewed as a temporal expansion of harmonic (vertical)

structure. Of the many structural levels, three are



distiny uislied: the foreground, which is the surface

representation;* the middleground; and the background,

vvhich is the Ursatz.

The Schenker theory has greatly enhanced our

understanding of musical structure by relating the harmonic

and melodic aspects of music. Rut as v/idely as the theory

is accepted and taught, it remains incomplete, imprecise,

and a constant subject of debate by music theorists. Two

iiiajor works have appeared recently that discuss the Schenker

theory frora a "modern" point of viev/. The first is a paper

by Fred Lerdahl and Ray Jackendoff [3], who have attempted

to fonaalize music theory, improving on Schenker, from

V'/ithiii the paradigia of gerierative Transformational Grammar.

The second is book by Eugene Narmour, Beyond

Schenkerism [5], in v/hich the author discusses numerous weak

points in the Schenker theory in particular, and in

Transformational Grammar in general. He also proposes a new

way to look at music. Neither of the tv/o new approaches is

yet complete; both sets of authors promise upcoming books

in which all the details will he v;orked out. Yet the two

"revisions" of Schenker are utterly antithetical, a tribute,

if notiiing else, to Schenker's influence.

The ling ui stic approach . In Tr ansformational Gramiaar,

one seeks a correspondence between deep structure and

surface structure of sentences, and the issue of

yrammaticalicy is paramount. Similarly, in Schenker
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analysis., on.e seeks a correspondence between the background

and the foregroand, already knov/ing what transformations are

possible. If we're interested in the phenomenon of

understanding, then from the fact that people often make

perfect sense of sentences that am ungrammatical, we can

conclude that grammar isn't very important. Likewise, not

even musicians are troubled by having failed to detect the

Ursatz when tiiey hear a Beethoven symphony.

Parallels drawn between music and language often center

around the issue of syntax, and linguistics seems to be a

natural choice for a discipline in which both music and

language might be studied. Computer science has formalized

the notion of syntax, and the problem of syntax-driven

translation of programming languages is now a technological

skill taught to undergraduates. The problems of natural

(human) language, however, are not solvable by such

syntactic rnetiiods, and the split betv/een the "computational

linguists" arid tiie traditional linguists has v;idened. In

couiputer science, tne area called Natural Language

Processing snares very little with tlie piiilosophy and

metnodology of Linguistics.

iviatural Language Processing (MLP) . ^^armour's theory,

called the implication-raalization model, is of special

interest to Artificial Intelligence researchers because it

bears a strong resemblance to recent models of natural

language processing, particularly the v;ork of Pchank,
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Kiesback, and Abelnon [10,11], In their vievv, the key to

processing language is to look beyond syntax and to

represent meaning via semantic primitives, relying on the

notion that, at the literal level at least, you can get most

people to agree on the meaning of simple sentences such as

"John gave Mary a book" and "John gave Mary a kiss"; while

the syntax of those two sentences is identical, the meanings

are not even close. Roger Schank developed a set of

"primitive acts" to describe everyday, physical actions.

The theory. Conceptual Dependency, has bean used in various

computer programs that understand nev/spapar stories, make

inferences, translate, paraphrase, suiiimarize, answer

questions, and write stories. Neitlier the text-analysis

prograais nor the text-generation prograins rely on grammars

of English syntax.

I-iigher-level semantic structures. Years of work with

computer systems modeling these semantic primitives led

Schank and Abelson to organize structures above the level of

individual actions, particularly those that deal v/i th

aspects of human problem-solving. Routine sequences of

actions, such as what one normally does in a restaurant, are

described as sc ripts. Above scripts (in the problem-solving

hierarchy) are plans, which involve more choices and

decisions. In theory, some scripts "evolve" from plans by

learning from repeated experience; while most people

understand tiie principle of shelviiig books in a library, for

exaiaple, anu could figure out v«/hat to do if confronted with
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such a task,, their initial behavior would likely differ from

that of skilled-library workers. Plans are driven by noals,

which can be permanent (e.g., staying healthy), temporary

(mowing the lawn), cyclic (sating food), and so on.

Finally, themes account for behavior associated with roles

(fireman), interpersonal relationships (spouse), and

lifestyle (jet sat). Understanding language, in this view,

requires an under stand ing of people; it has »nuch to do with

cognitive psyciiology and very little to do with grammar.

Expectation-based parsing. The programs that parse

English into these Knowledge Structures are based on

expectations of meaning. Tor example, suppose we've seen

"Mary took John ..." as the beginning of a sentence. The

Conceptual Dependency representation of that, so far, would

be (PTRANS (ACTOR MARY) (OBJECT JORM)) where "TRAVS is the

primitve act for physical motion and ACTOR and OBJECT are

conceptual case names. We can now make several kinds of

predictions, each expressed in the form "if X then Y."

Since we've just been parsing a noun phrase ("John"),

tliere's a pendiiig expectation for the v/ord "and": if the

next word is "and," then predict another noun phrase and

extend tiie OBJECT-f iller. Anotner prediction is that if we

see a noun phrase that has the property of being a physical

object ("iMary took John a book") , then make the current

OBJECT-filler the TO-filler and make the referent of the

noun phrase the OBJECT-f il ler: (PTRANS (ACTOR M»iRY) (TO

JOHN) (OBJECT BOOK)).



The. predictions for prepositions and adverbs are very

diverse, and iTiany of them depend on the higher-level

semantic structures (contexts) described by the scripts,

plans, and goals. For example, if the context is wrestling,

then we can make a special prediction for the word "down" (a

specific wrestling maneuver), entirely different from the

more neutral ("default") prediction about accompaniment

("Mary took John down to the harbor'M . Likewise, one can

establish predictions to handle the following phrases: to

task, to Los Angeles, to the cleaners, to mean that ...,

into her house, into the firm, up on his offer, up the hill,

on, etc.

While these contexts are useful in parsing different

sentences, they also i.iake predictions about the different

interpretations of identical sentences. Compare the effects

of the reply "John has a cold" to the two questions "Where's

John?" and "Which of you tenors has suddenly turned

tone-deaf?" Music theory texts often make the same point

about pitches, chords, and sequences of chords:

interpretation depends on context.

Although these expectations deal primarily with the

parameter of meaning, as opposed to focus or, f'or that

matter, rhythm (e.g., dactyls in "^^ary took John to the home

of the president"), there is no reason in principle v/hy the

technique could not be applied to other parameters as v/ell.

AI has yet to tackle such other parameters in language in as
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well-oryanized a fashion, defining higher-level structures

and coordinating the expectations from different parameters.

Narmour's theory of music. Is it possible, then, to

define an expectation-based procedure for analyzing music?

Narmour seems to think so. (There is a difference in

terminology between Narmour and the Al researchers. To

Narmour, the term "expectation" means "prediction with

absolute certainty," which is not the AI sense. As I

understand it, his implications are possible consequences,

and realizations are actual consequences.)

In an example discussed at length in his book, Narmour

describes the following implications after the first three

chords of Gciiumann's "Soldier's rtarch" (figure 1).

ure 1.

The next soprano note may be an R (B-C-P-E). If so, the

next bass note may be a C (parallel inths). The soorano nay

eventually reach a rhythmically accented high C, (B-P-G

triad) . The next chord may be more stable than the current

15 (I -> IV), and so on. The musical "semantic primitives"

are what Narmour calls fo rms,

those parametric entities in the piece which achieve
enough closure [local explanation] to enable us to
understand tiieir intrinsic functional coherence
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without . reference to the functionally specific,
intraopus context from which they come. [5,p.l5<!]

They are patterns that "make sense" by themselves, and they

are associated with the parameters of music: melody,

harmony, rhythm, meter, etc. When we say that a certain

piece is more interesting harmonically than rhythmically,

for example, what v/e mean is that the rhythmic patterns are

simple, whereas the harmonic patterns are not. Bach

four-part chorales, for example, exhibit less variety in

rhythm than in harmony.

Recursive rules and high-level representation. A major

point of disagreement that I have with both the Narmour

system and the Lerdalil-Jackendoff system is something on

which they surprisingly agree. They each describe analysis

as a process that uses rules recursively, implying that

music analysis starts from notes and applies rules to

transform these into other notes, which are further

transformed by the same rules, on and on. The idea has a

certain mathematical appeal to it, but is unlike the

situation in NLP, where sentences are not "reduced" to other

sentences, but are represented in terms of an inter1ingua,

corresponding to no particular human language. Inferences,

for example, are not keyed by specif'ic English sentences but

rather by the representation of meaning. Otherv/ise, all

synonymous sentences would have to be listed explicitly,

which is not simply inefficient but also psychologically

dubious.



Only if. the language for high-level musical structures

IS the same as for the "foreground" will it be possible to

use the same rules ("recursively" in Marmour's usage) for

further analysis, although there is no particular evidence,

much less a guarantee, that this should be so. It is

precisely this characteristic that Schenker uses in order to

reach the tJrsatz. It predisposes you to reduce the number

of structures you transform into, although, as Narmour has

corrected me [6], it does not require that the analysis

terminate in any specific top-level set such as Schenker's

tnree Ursaetze.

To me, tne lower levels of Schenker analysis are the

inost convincing, the explanations of the local connections

between melody and harmony. By the same token, some of the

Lerdahl-Jackendoff theory seems usable, particularly their

preference rules. It is much more useful to know the

principles of metrical grouping, for example, than to see a

transformation that enforces conformity v/i th the data

structure of trees, which seems an exercise in notational

convenience, at best.

Pi f ferences. Since even the siraplest music has aspects

of melody and harmony, it is more complex than the natural

language that can currently be processed by machine. There

are good AI models of what one might describe as

environments rich in problem-solving behavior. That is, NLP

efforts have concentrated first (and necessarily so) on
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meaning, and. they work well on ordinary prose such as

newspaper stories. What will they do with literature,

either prose or poetry? They cannot yet recognize

literature because there's no representation of those

domains that define literature as soraething beyond simple

i^rose. Tnat's not a criticism of the Scnank-Abelson work;

they never set out to process art. For that matter, nor has

anyone else in AI. Of course, just as there are programs

that compose "nursery tunes," there are programs that

produce "poetry," too, but they're on equally weak

foundations. It's hard enough to model the "literal

meaning" domains, and logically, that must precede the

modeling of other parameters or knowledge domains. The

richness of the real world, even in simple texts, makes that

problem very hard indeed.

Simple tonal music, in contrast, would seem to have

iaore domains but less complexity within each domain.

Musical "scripts" abound (e.g., cadences). The few, common

laeters provide "solutions" that make rhythmic expectations

very simple. (Of course, just as in language, one aspect of

what it means to be interesting is to avoid the easy

solutions, which may explain why so much of the popular

music of the 1950's, v/ith endless repetitions of I-vi-IV-V7,

is mind-numbing.) Integration of domains is a more obvious

problem in music than in language, but I believe that the

similarities exist. Marmour, among others, points out the

differences between music and the 1ingui sts' view of
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language, an.d I certainly agree with him. It is not at such

a low level as syntax that the two are similar, and I find

Smoliar's comparison of the language of computer programs

and the language of music [12] inappropriate.

Another difference in theories of music and language is

the synchronic/diachronic contrast. In any system, it is

tempting to seek a set of factors that, with one set of

values, describes one historical point or style, with

another set of values, a different point, and so on. You

can then invent a theory about the nature of the changes

from one set to the next, and you claim you have a

diachronic model, an epistemological philosopher's stone.

Narraour hopes to do the same with compositional styles;

what distinguishes Beethoven's Fifth from the Sixth? In

natural language processing, this is viewed as part of the

problem of learning. It's hard enough, right now, to model

how people use knowledge structures, for instance; modeling

hov/ they acquire them is a higher-level problem, requiring a

synthesis of all the experience gained from building many

individual models. In other words, it's too soon to expect

any significant answers about The Big Problem, the

"universals" of music. One seriously doubts Lerdahl and

Jackendoff's claim:

Preliminary investigation has indicated that the
theory can be modified to produce structural
desct ii.>tions of pieces in styles as diverse as
i'lacedoniau folk music. North Indian music, and
14-century French music, by changing various
specifics of rhythmic and pitch structure.
[ 3,p.1G6]
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Composi.tion. A language parser is not also a language

generator, even though the two nay share a theory of

meaning. Current generators start with a representation of

the meaning of what is to be said, as provided by a

paraphrase program, an inference mechanism, an event

simulator, or a question-answerer, for example. That is,

they don't start from scratch. In fact, they make the need

for higher-level structures (e.g., problem solvers) even

more apparent.

There are musical composition "tasks" that provide some

direction, such as the harmonization of a given melody. As

any music student knows, musical knowledge is as easily

tested by composition as by analysis, and the same holds

true, certainly, in VLP.

Conclusion, where does an AI person start, then? With

a music theory textbook, perhaps, but reading it with the

task in mind of representing the information there in a

computer program. To what end? A theory of music should

cercainiy explain aspects of the undeniably tonal music with

which we are daily bombarded, such as the Bee Gees or Barry

Manilow. Even the 5-nota theme from Close Encounters of the

'fhird Kind is (alarmingly) tonal. But my own preference is

to concentrate on harmony and melody — it is difficult to

model even the simplest tonal music without them — and, to

a lesser extent, rhythm, with an initial goal of v;riting

chorales. This is the type of experiment in choosing
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sernatitic primitives, forms of representation, and control

structure for -which there is ample precedent in AI. What

music theory lacks is not the concept of expectations or

semantic primitives, but rather the organization and

detailed specification of such concepts, which would lead to

higher-level information structures and reasonable process

models for analysis and composition. If our analogy v/ith

research in natural language processing is valid, such a

knowledge-based system will provide better results than

previous attempts.
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