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Stabilizing potentials in bound state analytic continuation methods for
electronic resonances in polyatomic molecules

Alec F. White,1, 2 Martin Head-Gordon,1, 2, a) and C. William McCurdy2, 3, b)
1)Department of Chemistry, University of California, Berkeley, CA 94720 USA
2)Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,
CA 94720 USA
3)Department of Chemistry, University of California, Davis, CA 95616 USA

(Dated: 27 June 2017)

The computation of Siegert energies by analytic continuation of bound state energies has recently been
applied to shape resonances in polyatomic molecules by several authors. We critically evaluate a recently
proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic
continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing
potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are
applied to a model potential where the correct answer is known exactly and to the 2Πg shape resonance of N−

2

which has been studied extensively by other methods. Both the choice of stabilizing potential and method of
analytic continuation prove to be important to the accuracy of the results. We conclude that an attenuated
Coulomb potential is the most effective of the three for bound state analytic continuation methods. With
the proper potential, such methods show promise for algorithmic determination of the positions and widths
of molecular shape resonances.

PACS numbers: 34.80.Bm, 34.20.-b, 32.80.Zb 33.80.Eh

I. INTRODUCTION

Anions that lie energetically above the associated neu-
tral molecule can decay by autodetachment and are
therefore characterized by a finite lifetime. Such tem-
porary anions are resonances in the scattering sense and
are specified by their energy above that of the neutral
molecule, or position,(Er) and their inverse lifetime or
width (Γ).1–3 These parameters can be specified by a
complex Siegert energy

E = Er − i
Γ

2
(1)

which specifies the location of the S-matrix pole that is
associated with the resonance.1,4

Despite their importance in a variety of chemical pro-
cesses, reliable computation of resonance positions and
widths is still far from routine. The primary difficulty
arises from the need to consider the electronic contin-
uum. There exists a variety of methods for comput-
ing resonance parameters, though none have been suf-
ficiently developed so as to provide a reliable algorithm
that can be generally applied even to the low-lying reso-
nances of small molecules. Scattering methods5–10 treat
the continuum with explicit use of scattering boundary
conditions in order to compute observables like the cross-
section. Stabilization methods11,12 and associated ana-
lytic continuation methods,13–15 use continuum eigenval-
ues from bound state calculations to extract resonance

a)Electronic mail: mhg@cchem.berkeley.edu
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parameters. Complex coordinate methods4,16–21 com-
pute the Siegert energy as an eigenvalue of a transformed,
non-Hermitian, Hamiltonian operator. Bound state
extrapolation22,23 or analytic continuation24,25 methods
rely on the analytic continuation of bound-state energies
to find resonance parameters. The focus of this study is
this final class of methods; in particular, we focus on the
method of analytic continuation in the coupling constant
(ACCC) for shape resonances in molecules.

The ACCC method was first proposed within the nu-
clear physics community.24,26 A potential is added to
the Hamiltonian to make the resonance state bound and
then the bound state energies are analytically contin-
ued, as a function of the potential coupling, to deter-
mine the Seigert energy at zero coupling. Nestmann et
al.22,23 independently proposed an extrapolation method
for molecular resonances based on scaled nuclear charges.
Recently, these two methods have been combined and
applied to molecular shape resonances.25,27–30 In most of
these studies, a Coulomb potential is used to bind the
resonance as in the method of scaled nuclear charges.
The exception is the manifestly short-range Voronoi po-
tential suggested by Sommerfeld et al.28 Sommerfeld and
coworkers noted that the long-range Coulomb potential
is not formally applicable and obtained much more con-
sistent results with their Voronoi potential. Despite this
fact, methods employing a Coulomb potential have had
moderate success with shape resonances in polyatomic
molecules. However, these methods suffer from two well-
understood afflictions. The first is associated with the
difficulty in representing the analytic structure of the res-
onance trajectory which, for short-range potentials, has
a square root branch point in the complex momentum
plane.1,3 The second is that the analytic continuation it-
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self can easily become numerically unstable.31,32

Horáček and coworkers have made a recent attempt to
ameliorate these issues.29,30 Their method, which they
have termed regularized analytic continuation (RAC), re-
lies on the inverse variant of the ACCC method (IACCC)
and therefore avoids many of the difficulties associ-
ated with the analytic structure of the resonance in the
complex-momentum plane. Furthermore, they have in-
corporated the known features of the analytic structure
of the problem into low order Padé approximants which
are well-behaved numerically. Unfortunately, the func-
tional form of the RAC Padé approximants is formally
appropriate only for short-range potentials and not for
the Coulomb potentials with which it has been applied.

In this study we evaluate the RAC method of Horáček
and coworkers and compare their low order, type III Padé
approximants with a high-order, type II Padé approxi-
mant for the analytic continuation of the inverse prob-
lem. Both functional forms are used along with three
classes of potential: a Coulomb potential that is consis-
tent with previous work, a Gaussian potential, and an
attenuated Coulomb potential. The Gaussian and atten-
uated Coulomb potentials are short-range and therefore
compliant with the formal requirements of the ACCC
method. These methods are applied to two problems
where the answer is largely known: a model diatomic po-
tential which is numerically solvable, and the 2Πg shape
resonance in e−N−

2 scattering.

II. THEORY

The methods discussed in this paper are based on the
IACCC method. In the ACCC method, the Hamiltonian
is modified by the introduction of an attractive potential
and expressed as a function of a coupling constant λ:

H(λ) = H + λU. (2)

The energy of the desired state is then evaluated at sev-
eral values of λ that are large enough that the desired
state is bound. In other words, the energy of the anion
relative to the neutral molecule, E, is negative. Intro-
ducing a momentum-like variable, κ, such that E ≡ −κ2
we construct an analytic continuation κ(λ). Finally, κ is
evaluated at λ = 0 to obtain the complex Siegert energy
associated with the resonance.

Unfortunately, even in the case where U is short-range
(falling off at large distances faster than 1/r2), the an-
alytic structure of the momentum is such that it has a
square root branch point which must be properly rep-
resented as a function of λ. A simpler and numerically
better behaved method is the analytic continuation of
the inverse problem (IACCC).29,33 In this method the
procedure is the same except that starting from a set of
computed values of κ for corresponding values of λ, we
construct λ(κ) and find its zeros to determine the Siegert
energy.

λ(κ) is constructed using a Padé approximant.32 The
method of determining the fit from the input points is
important to the results, and finite order Padé approx-
imants are in usually constructed in one of three ways.
Type I Padé approximants are determined by matching
the coefficients of a power series about a single point.
This method is not applicable to the IACCC method as
applied here. Type II Padé approximants are required
to interpolate some set of input points. Type III Padé
approximants are determined by minimizing the χ2 error
in the fit.

A. The type III (RAC) method

The regularized analytic continuation (RAC) method
of Horáček and coworkers specifically relies on low order,
type III Padé approximants to accomplish the analytic
continuation of λ(κ). The low order Padé approximants
recommended in Ref. 29 have functional forms given by

λ[2/1](κ) = λ0
κ2 + 2α2κ+ α4 + β2

α4 + β2 + 2α2κ
(3)

λ[3/1](κ) = λ0
(κ2 + 2α2κ+ α4 + β2)(1 + δ2κ)

α4 + β2 + κ[2α2 + δ2(α4 + β2)]
(4)

λ[4/2](κ) = λ0
(κ2 + 2α2κ+ α4 + β2)(κ2 + 2γ2κ+ γ4 + δ2)

(α4 + β2)(γ4 + δ2)(1 + µ2κ)(1 + µ2ε2κ)
(5)

where

µ2 =
2

ε2 + 1

[
α2

α4 + β2
+

γ2

γ4 + δ2

]
. (6)

These functional forms are specifically constructed to
conform to the known analytic structure of λ(κ) in that
the square root branch cut requires that λ(κ) ∼ λ0 + bκ2

as κ → 0. In Ref. 30 a slightly different [4/2] Padé
approximant is suggested, but we will not investigate
this alternate functional form in this study. The opti-
mal least-squares fit is obtained by solving the non-linear
optimization problem. In the present study, this prob-
lem is solved using Newton’s method with analytic first
derivatives and finite difference second derivatives. The
expressions for the first derivatives of these expressions
are given in Appendix A.

B. The type II method

We have also investigated the use of high order Padé
approximations for analytic continuation of λ(κ). While
the use of high order Padé approximants for analytic con-
tinuation has known numerical problems,31 we are un-
aware of applications of this particular method to the
inverse problem.
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We use the continued fraction representation given by
Schlessinger:34

λ(κ) =
λ(κ1)

1+

a1(κ− κ1)

1+
· · ·

an(κ− κn)

1
. (7)

For n input points, this yields a [N/M ] Padé approximant
where N +M = n and

M =

{
N ,n even

N − 1 , n odd
. (8)

This is sometimes called a type II, or Thiele-type, Padé
approximant. This representation has the advantages
that it exactly interpolates all of the input points and
does not require the solution a non-linear least squares
problem. However, due to the more complicated form,
the zeroes must be found numerically. We use Newton’s
method to solve the root search problem.

C. The added attractive potential

The precise form of the attractive potential U is flexi-
ble, though it must be short range: it must decay faster
than r−2 at large distances if the analytic structure of
κ(λ) is to be a square root branch point at the critical
value of λ where the resonance becomes bound. Despite
this restriction, many other authors have advocated us-
ing a Coulomb potential. This functional form has the
advantage that it requires little to no modification of ex-
isting quantum chemistry software, but it is not short-
range. The given justification is that in a finite basis,
the low-energy part of the spectrum can be effectively
ignored so that the long-range part of the Coulomb po-
tential is not important. While it may be effective in
practice, this argument lacks formal justification. We
will therefore consider two types of added potentials.

First, we consider a Coulomb potential of the form:

UC(r) = −λ
∑
A

ZA
|r−RA|

. (9)

This differs slightly from the potential used in Ref. 29 but
is identical to the potential used in other studies.22,23,28

Second we consider an attractive Gaussian potential of
the form

UG(r) = −λ
∑
A

ZAe
−α(r−RA)2 . (10)

This potential is chosen to transform as the totally sym-
metric representation of the molecular point group. The
proportionality to the nuclear charges is chosen in anal-
ogy with UC to provide a potential which will affect
molecular many-electron states in a balanced way. Note
that α is a free parameter that can be chosen arbitrar-
ily in theory, though it will turn out to be important in
practice. The appropriate integrals required for matrix
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FIG. 1. The model potential given in Equation 12 is plotted
along the line defined by the two nuclei. We take this line to
be the z-axis.

elements of such a potential are 3-center overlap inte-
grals and are easily computed by a variety of methods.
We briefly describe the computation of such integrals in
Appendix B.

Finally, we consider an attenuated-Coulomb potential
of the form:

UAC(r) = −λ
∑
A

ZAerfc (ω|r−RA|)
|r−RA|

. (11)

Unlike the Coulomb potential, this potential is short-
range. In contrast to the, also short-range, Voronoi
potential of Sommerfeld and Ehara,28 the molecular
integrals over this potential are similar to those re-
quired for certain attenuated electronic structure meth-
ods and are therefore available in many quantum chem-
istry programs.35,36 ω is likewise a free parameter.

III. RESULTS FOR A MODEL POTENTIAL

In order to test these methods on a problem where
the answer is known to high numerical accuracy, we can
construct a model 1-electron potential that approximates
an effective diatomic molecular potential from electron-
molecule scattering. We will use A and B to denote the
centers of the two “nuclei.” The model potential is of the
form

V (r) = −e−1.5rA

(
1

rA
+ 1

)
− e−1.5rB

(
1

rB
+ 1

)
(12)

where

rA = |r−A| rB = |r−B|. (13)

A plot of this potential along the line defined by the po-
sitions of the two nuclei is shown in Figure 1. There
is, to our knowledge, no analytical solution to this prob-
lem, but the problem has cylindrical symmetry and may
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be solved numerically in prolate-spheroidal coordinates
using grid methods. This potential supports a bound
σg-like state (m = 0, symmetric under inversion), and
a σu-like state (m = 0, anti-symmetric under inversion)
which is a bound state at large (> 4) internuclear dis-
tances and a resonance at short internuclear distances.
For the purpose of this investigation, we want the sec-
ond state to be a resonance, so we set the “internuclear”
distance to |A−B| = 3.

A. Numerical details

In order to perform the analytic continuation methods
described in the introduction we add either a Coulomb
potential of the form

UC(r) = −λ
(

1

rA
+

1

rB

)
, (14)

a Gaussian potential of the form

UG(r) = −λ
(
e−αr

2
A + e−αr

2
B

)
, (15)

or a screened Coulomb potential of the form

UGC(r) = −λe−α(rA+rB)2
(

1

rA
+

1

rB

)
. (16)

The Gaussian-attenuated Coulomb potential is similar
to the erfc-attenuated Coulomb potential that we have
used for molecular calculations. All three have cylin-
drical symmetry and are easily representable in prolate
spheroidal coordinates.

Schrödinger’s equation was solved in prolate-
spheroidal discrete variable representation (DVR)
basis for m = 0. The DVR method is described in detail
in Refs. 37–39. We used 15 points in the η variable and
200 points on the interval (0, 100) in ξ. All eigenvalues
used for analytic continuation were converged to better
than 10 significant figures and 10 significant figures were
used in all analytic continuations.

The resonance energy was computed by complex scal-
ing the ξ variable as described in Ref. 37. At this inter-
nuclear distance (RAB = 3), the resonance has a position
of 0.02555645961 and a width of 0.02354423918 in units
natural to the problem. These values are similar to those
of the σu-shape resonance in e−-H2 scattering, in atomic
units, at a slightly stretched geometry.

B. Evaluation of analytic continuation methods

The analytic continuations were each accomplished
from 15 bound state energies bound by 0.01-0.3 units
of energy. This is roughly based on the recommen-
dations given in Ref. 29. The resonance position and
width were computed with type II ([8/7] in this case),
type III [2/1], and type III [4/2] methods. The three

classes of stabilizing potentials are Coulomb potentials
(Equation 14), Gaussian potentials (Equation 15), and
Gaussian-attenuated Coulomb potentials (Equation 16).
We furthermore tested Gaussian potentials with three
different exponents, α = 0.01, 0.1, 1.0, and Gaussian-
attenuated Coulomb potentials with exponents of α =
0.005, 0.025, 0.25.

The results are shown in Table I along with percent
error relative to the numerically exact answer. For this
model system, the type II method almost universally out-
performs the type III methods by a significant margin.
In particular, the widths computed by the type III meth-
ods are significantly smaller than the true widths. The
type II method is significantly more accurate, but still
has relative errors on the order of a couple of percent in
some cases which, while small compared to those of the
type III methods, are large compared with the accuracy
of the input values. We attribute the large errors in the
type III methods to be due to insufficient flexibility in
the functional form used to fit λ(κ). On the other hand,
the errors in the type II method could be partially due
to the inherent numerical instability of extrapolation us-
ing high order Padé approximations. This is supported
by the fact that the error in the type II calculations is
of indeterminate sign. For the type III calculations, the
width is always underestimated which suggests some sys-
tematic error. We shall see that in real molecular calcula-
tions, where the width is often significantly smaller than
the position, the type III method may not so drastically
underestimate the width.

The type III [4/2] Padé approximant improves very
slightly over the results obtained with a [2/1] Padé ap-
proximant, but at the cost of a much more difficult non-
linear optimization.

Across all analytic continuation schemes the Gaussian-
attenuated Coulomb potential produces the most accu-
rate results. The results with the Gaussian-attenuated
Coulomb potentials are slightly better than those ob-
tained with a Coulomb potential and significantly better
than those obtained with the various Gaussian poten-
tials. Note that the Gausian-attenuated Coulomb poten-
tial with the smallest attenuation parameter produces the
best results across all methods. This is not surprising,
since the theory should be ideal for short-range poten-
tials. However, it is surprising that the that long-range
Coulomb potential produces such accurate results com-
pared with the short-range Gaussian-potentials.

Since the attenuated Coulomb potential must ulti-
mately reproduce the results of the Coulomb potential
as α → 0, we expect the optimal value of α to be small
enough that the potential is minimally distorted in the
valence region, but large enough that the potential is still
effectively short-range. This “optimal α” will depend on
the basis set. For this model problem, our basis extends
to ξ = 100, and the results in Table I (c) indicate that
the optimal α is less than or equal to α = 0.005.
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Type II Type III [2/1] Type III [4/2]
Position Width Position Width Position Width

(a)

Coulomb 0.025644 0.023308 0.027575 0.009680 0.023961 0.012078
Gaussian (α = 0.01) 0.025839 0.022663 0.027013 0.001845 0.023024 0.004761
Gaussian (α = 0.1) 0.025681 0.024694 0.026386 0.003606 0.018890 0.017603
Gaussian (α = 1.0) 0.024454 0.021806 0.026375 0.002578 0.021244 0.006470
Gauss. Coul. (α = 0.005) 0.025561 0.023651 0.030915 0.016863 0.027157 0.019401
Gauss. Coul. (α = 0.025) 0.025448 0.023504 0.028691 0.010971 0.025458 0.013786
Gauss. Coul. (α = 0.25) 0.025731 0.023798 0.027957 0.009963 0.024448 0.012618

(b)

Coulomb 0.343 -1.005 7.898 -58.884 -6.244 -48.699
Gaussian (α = 0.01) 1.106 -3.745 5.701 -92.165 -9.908 -79.778
Gaussian (α = 0.1) 0.487 4.883 3.245 -84.685 -26.086 -25.233
Gaussian (α = 1.0) -4.314 -7.383 3.204 -89.049 -16.873 -72.520
Gauss. Coul. (α = 0.005) 0.017 0.453 20.968 -28.376 6.263 -17.599
Gauss. Coul. (α = 0.025) -0.426 -0.171 12.267 -53.403 -0.384 -41.445
Gauss. Coul. (α = 0.25) 0.682 1.077 9.394 -57.683 -4.337 -46.408

(c)

Coulomb 0.523 25.659 21.149
Gaussian (α = 0.01) 1.861 38.906 34.569
Gaussian (α = 0.1) 2.090 35.553 25.939
Gaussian (α = 1.0) 4.989 37.370 33.992
Gauss. Coul. (α = 0.005) 0.190 22.442 9.304
Gauss. Coul. (α = 0.025) 0.393 24.967 17.343
Gauss. Coul. (α = 0.25) 0.766 25.597 19.812

TABLE I. Positions and widths, percent relative error (signed) in positions and widths, and percent relative error of the
complex resonance energy are shown in panels a, b, and c respectively. All values are computed for the model problem using
the specified stabilizing potential with the given analytic continuation method. Compare with the numerically exact value–
Position: 0.02555645961, Width: 0.02354423918.

C. Analytic structure of the resonance trajectory

In order to further evaluate the analytic continua-
tion methods described in this study, we investigate the
behavior of the resonance pole under the influence of
an added Gaussian, Coulomb, or Gaussian-attenuated
Coulomb potential. The trajectory of the resonance as
it becomes bound under the influence of a Gaussian po-
tential (α = 0.1) is shown in Figure 2. This behavior is
well-understood,1 and it is therefore somewhat surpris-
ing that the type III method is not successful with this
potential since it precisely encodes the correct analytic
structure. However, though the type III methods have
the correct form of λ(κ) near κ = 0, it is possible that
the small number of free parameters are not sufficient to
adequately model the function away from κ = 0. Note
that in Figure 2, the behavior of the resonance far away
from κ = 0 is complicated and likely not well modeled by
the simple functional forms used in the type III method.

The trajectory of the resonance as it becomes bound
under the influence of a Coulomb potential is shown in
Figure 3. Note that the resonance crosses E = 0 with
a finite, negative imaginary part. This behavior, which
plays a role in theories of dissociative recombination,40

has been known for quite some time,41–43 and it was also
recognized in Ref. 44, where it was further shown that the
pole corresponding to the resonance is not analytically
connected to that of the bound state. It is evident from
Figure 3 and from Ref. 44 that the analytic structure that

is built into the RAC class of type III approximations is
not correct for a Coulomb potential: the resonance does
not even pass through the point E = −κ2 = 0 in the
energy plane.

However, in contrast to the case of a Gaussian poten-
tial, the behavior of the resonance far from κ = 0 is quite
simple: the large linear region in energy space gives rise
to a large square-root region in momentum space. In this
sense, the Coulomb potential appears to be ideal for the
type III methods except for near κ = 0.

The trajectory of the resonance as it becomes bound
under the influence of the Gaussian-attenuated Coulomb
potential (α = 0.025) is shown in Figure 4. The
Gaussian-attenuated coulomb potential is short-range,
and, as with the Gaussian potential, this fact is reflected
in the behavior at the origin. However, the behavior away
from the origin is more similar to that of the Coulomb
potential: there is a large linear region in energy space.
The Gaussian-attenuated Coulomb potential retains the
desirable features of the Coulomb potential while still be-
ing short-range.

IV. RESULTS FOR THE N−
2 SHAPE RESONANCE

All calculations were performed on N−
2 at its equilib-

rium geometry (N≡N = 1.094Å). A slightly modified ver-
sion of the Q-Chem 4 quantum chemistry package45 was
used for all computations. This problem has been very
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FIG. 2. The behavior of the resonance under the influence
of an attractive Gaussian (α = 0.1) potential is shown in (a)
with a detailed view near the origin in (b). The coupling
constant is increased in the range λ = 0.00, . . . , 0.038. At λ =
0 the resonance is at the lower right of (a). As the potential
increases, the resonance’s position and width decrease until it
becomes bound when passing through E = 0.

thoroughly studied, and some selected literature values
are shown in Table II. The experimental estimate given
in Ref. 52 is nearly unique in the electron-molecule scat-
tering literature in that it is an estimate of the position
and width of the pure electronic resonance and there-
fore directly comparable to the results of our computa-
tions. We will refer to this experimentally derived esti-
mate (Er = 2.32 eV, Γ = 0.41 eV) as the accepted value.

We compare results at the ∆SCF and ∆CCSD(T) lev-
els of theory. Further results at intermediate levels of
theory (∆MP2, ∆CCSD) are shown in the supporting
material and in selected cases. We use the correlation-
consistent basis sets of Dunning and coworkers.53,54 The
double and triple augmenting functions were obtained by
even-tempered extrapolation. For a given basis and an-
gular momentum, the even-tempered factor was taken to
be the ratio between the exponents of the most diffuse
valence basis function and the augmenting function as
specified in the appropriate aug-cc-pVXZ basis set.

In all cases a minimum of 20 (maximum of 23) different
coupling strengths corresponding to electron affinities in
the range 0 - 20 eV were used in the analytic continuation.
This corresponds to type II Padé approximants with a
minimum order of [10/10] and maximum order of [12/11].
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FIG. 3. The behavior of the resonance under the influence
of an attractive Coulomb potential is shown in (a) with a
detailed view near the origin in (b). The coupling constant
is increased in the range λ = 0.00, . . . , 0.038. At λ = 0 the
resonance is at the lower right of (a). As the potential in-
creases, the resonance’s position and width decrease, but it
does not pass through E = 0. The point λ = 0.032 is omitted
because the limits of complex scaling prevent us from easily
distinguishing the resonance.

A. Evaluation of the type III-Coulomb method

The results of the type III method using an attrac-
tive Coulomb potential for the N−

2 shape resonance are
shown in Table III. We will focus on the [2/1] Padé ap-
proximant. However, for completeness, we show some
results obtained with a [4/2] Padé approximant.

The [2/1] Padé approximation proved to be simple to
implement and we found the least squares problem to be
easily solved. Furthermore, the method appears to be nu-
merically stable and the computed resonance parameters
converge well with respect to basis set size. Comparing
with the literature values in Table II we see that positions
computed with the type III-Coulomb method agree mod-
estly with the large spread of different theoretical values.
But more importantly, the computed position seems to
converge well to the experimental estimate of the posi-
tion in a large basis set at the ∆CCSD(T) level of theory.
However, the width computed with the type III-Coulomb
method is consistently too large, and does not converge to
the correct limit with increasing basis set size and level
of theory. The performance of the type III method on
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method position width
Stieltjes imaging46 2.23 0.40
Schwinger variational + ADC(3) optical potential47 2.534 0.536
3rd order decouplings of dilated electron propogator48 2.11 0.18
EOM-EA-CCSD stabilization (aug-cc-pV5Z)49 2.49 0.5
CAP EOM-EA-CCSD (1st order, aug-cc-pVQZ + 3s3p3d)50 2.478 0.286
NH-ROHF with complex basis functions51 2.95 0.31
NH-UHF with complex basis functions51 2.83 0.22
Experimental estimate52 2.32 0.41

TABLE II. Selected literature values (in eV) for the resonances studied here from experiment and various levels of theory.
The experimental estimate given in the final line is an estimate of the purely electronic resonance parameters that has been
extracted from experiment.
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Im
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FIG. 4. The behavior of the resonance under the influ-
ence of an attractive Gaussian-attenuated Coulomb poten-
tial is shown in (a) with a detailed view near the origin
in (b). The coupling constant is increased in the range
λ = 0.00, . . . , 0.040. At λ = 0 the resonance is at the lower
right of (a). As the potential increases, the resonance’s posi-
tion and width decrease. The complex energy passes through
the origin at approximately λ ≈ 0.036.

this particular problem is better than might be expected
from the application to the model potential. This may
be because, unlike in the case of the model potential, the
width is almost an order of magnitude smaller than the
position. This could reduce the error due to behavior of
the resonance near κ = 0.

The use of a [4/2] Padé approximant (also see supple-
mentary material: Table II) does not significantly change

method basis Position Width

∆SCF [2/1]

aug-cc-pVDZ 2.74110 0.70651
d-aug-cc-pVDZ 2.73775 0.70488
t-aug-cc-pVDZ 2.73815 0.70516
aug-cc-pVTZ 2.76426 0.62306

d-aug-cc-pVTZ 2.76112 0.62566
t-aug-cc-pVTZ 2.76130 0.62669
aug-cc-pVQZ 2.76009 0.62897

d-aug-cc-pVQZ 2.75868 0.62994
t-aug-cc-pVQZ 2.75874 0.63018

∆CCSD(T) [2/1]

aug-cc-pVDZ 2.55676 0.76962
d-aug-cc-pVDZ 2.49716 0.77837
t-aug-cc-pVDZ 2.51582 0.77359
aug-cc-pVTZ 2.41758 0.61607

d-aug-cc-pVTZ 2.37994 0.62489
t-aug-cc-pVTZ 2.37848 0.62606
aug-cc-pVQZ 2.35872 0.60604

d-aug-cc-pVQZ 2.33451 0.61071
t-aug-cc-pVQZ 2.33383 0.61100

∆CCSD(T) [4/2] t-aug-cc-pVQZ 2.3658 0.5531

TABLE III. Positions and widths (in eV) of the 2Πg, N−
2 shape

resonance computed using the type III-Coulomb method.
Note the favorable convergence with respect to basis set size.

the computed positions and widths. However, we found
the least squares problem to be significantly more diffi-
cult to solve and in some cases complicated by multiple
solutions. It is possible that the [4/2] Padé approximant
suggested in Ref. 30 will give better results. We also used
a [3/1] Padé approximate, but, in comparison with the
[2/1] Padé approximant, we found the differences in both
the practical aspects and the results to be insignificant.

B. Evaluation of the type II-Coulomb method

The results for the type II-Coulomb method are shown
in Table IV. As expected, the width appears to be
slightly more accurate than that computed with the type
III-Coulomb method, but it is more difficult to converge
the results with respect to the basis set size. The type
II method proved to be simple to use, and in no case did
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method basis Position Width

∆SCF

aug-cc-pVDZ 2.8326 -0.0029
d-aug-cc-pVDZ 2.8096 0.2590
t-aug-cc-pVDZ 2.8462 0.1863
aug-cc-pVTZ 2.8003 0.0051

d-aug-cc-pVTZ 2.8324 0.1629
t-aug-cc-pVTZ 2.7967 0.1955
aug-cc-pVQZ 2.8124 0.1138

d-aug-cc-pVQZ 2.8175 0.2344
t-aug-cc-pVQZ 2.8206 0.2071

∆CCSD(T)

aug-cc-pVDZ 2.5401 0.0322
d-aug-cc-pVDZ 2.7727 0.0372
t-aug-cc-pVDZ 2.6694 0.6235
aug-cc-pVTZ 2.3678 0.3940

d-aug-cc-pVTZ 2.4952 0.5432
t-aug-cc-pVTZ 2.4940 0.4426
aug-cc-pVQZ 2.3284 0.4049

d-aug-cc-pVQZ 2.4343 0.5048
t-aug-cc-pVQZ 2.4564 0.4563

TABLE IV. Positions and widths (in eV) of the 2Πg, N−
2 shape

resonance computed using the type II-Coulomb method. Note
that the method does not have the stability of the type III-
Coulomb method, but it does provide a more accurate value
for the width.

we observe severe numerical problems.
Furthermore, we note that at the ∆SCF level of theory,

the results agree well with the complex basis function
results of Ref. 51 computed at the same level of theory
(see the “NH-UHF” row of Table II). This agreement
between different methods at the same approximate level
of theory is encouraging. The fact that the CCSD(T)
results do not reproduce the accepted value in the largest
basis set is not surprising, because even in this basis, the
numbers do not appear to be converged with respect to
basis set size. It is also possible that the results are not
fully converged with these treatments of correlation.

C. Evaluation of the type III-Gaussian method

The type III method with an added Gaussian poten-
tial is found to be critically dependent upon the form of
the added Gaussian potential. Some results for three dif-
ferent Gaussian exponents are shown in Table V. Note
that despite the apparently good basis set convergence
for a given value of α, the resonance parameters are very
dependent on the exponent of the Gaussian potential.
This suggests that the functional form used for the ana-
lytic continuation is not sufficiently flexible to accurately
model λ(κ) for all values of α. This is consistent with
the performance of the type III methods on the model
potential.

Using a higher level of theory and a higher order
Padé approximant improves the agreement between the
α = 0.01 and α = 0.1 cases, but does little to improve
the α = 1 case. This further suggests that the [2/1] Padé

approximant is not sufficiently flexible to accurately de-
scribe the complex energy as a function of the coupling
constant. Also, as noted in Section IV A, the [4/2] Padé
approximation is in practical terms much inferior to the
simpler [2/1] and [3/1] approximations. The non-linear,
least-square optimization is much more difficult to solve
and, unlike in the [2/1] case, there can be several nearby
minima.

Both the failure of the type III-Gaussian method, and
the moderate success of the type III-Coulomb method
can be explained by the model potential calculations
shown in Figures 2 and 3. These trajectories suggest that
the Gaussian potential gives rise to an analytic form that
is more complicated than that of the Coulomb potential
and is therefore more difficult to reproduce with the sim-
ple Padé approximants used in the type III method.

D. Evaluation of the type II-Gaussian method

The type II-Gaussian method uses a functional form
that is significantly more flexible than the low order Padé
approximations used in the type III family of methods
which should, to some extent, remedy the problem dis-
cussed in Section IV C. The results for different basis sets
at the ∆SCF and ∆CCSD(T) levels of theory are shown
in Table VI. Overall, the results are much more consis-
tent as the exponent of the added Gaussian potential is
varied. That being said, the numbers are not as stable
with respect to basis set size as in the type III method,
and there is still an undesirable α-dependence.

For the CCSD(T) results, there is again fairly good
agreement when the exponent of the added Gaussian po-
tential is changed over 2 orders of magnitude. There is
still disagreement for α = 1, but such a narrow Gaussian
affects the core orbitals so disproportionately relative to
the diffuse orbitals, that a basis set with core-valence
polarization functions and/or a higher-level treatment of
electron correlation may be necessary to achieve solid
agreement in this case.

E. Evaluation of the type III-attenuated Coulomb method

The results of the type III-attenuated Coulomb
method applied to the 2Πg shape resonance in N2 are
shown in Table VII at the ∆SCF and ∆CCSD(T) lev-
els of theory. For a small attenuation parameter, there
is negligible difference between these results and the re-
sults obtained with the Coulomb potential. Despite ap-
parent basis-set convergence, the numbers have an ω-
dependence that is nonetheless not as severe as the α-
dependence in the case of the Gaussian potential. More
distressing is that the widths do not appear to converge
to the accepted value of the width. However the posi-
tion of the resonance seems to be computed accurately
and has very little ω-dependence at the CCSD(T) level
of theory.
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method basis α = 0.01 α = 0.1 α = 1.00
Position Width Position Width Position Width

∆SCF [2/1]

aug-cc-pVDZ 2.8433 0.0513 2.9523 0.4598 2.5565 2.9050
d-aug-cc-pVDZ 2.8029 0.0784 2.9448 0.4599 2.6556 2.9297
t-aug-cc-pVDZ 2.8006 0.0802 2.9449 0.4604 2.5456 2.8870
aug-cc-pVTZ 2.8215 0.0590 2.9291 0.4606 2.6216 2.7584

d-aug-cc-pVTZ 2.7972 0.0757 2.9264 0.4662 2.7144 2.7894
t-aug-cc-pVTZ 2.7970 0.0766 2.9265 0.4679 2.6209 2.7557
aug-cc-pVQZ 2.6237 0.0608 2.9250 0.4686 2.6996 2.7860

d-aug-cc-pVQZ 2.7977 0.0761 2.9248 0.4701 2.6024 2.7506
t-aug-cc-pVQZ 2.7976 0.0761 2.9251 0.4705 2.5600 2.7328

∆CCSD(T) [2/1] t-aug-cc-pVQZ 2.2089 0.1707 2.5551 0.5163 2.4757 2.9159
∆CCSD(T), [4/2] t-aug-cc-pVQZ 2.4018 0.6343 2.5317 0.5752 2.5608 2.4871

TABLE V. Positions and widths (in eV) of the 2Πg, N−
2 shape resonance computed using the type III-Gaussian method at the

∆SCF and ∆CCSD(T) levels of theory. Note the strong dependence on the exponent of the added Gaussian potential (α).

method basis α = 0.01 α = 0.1 α = 1.00
Position Width Position Width Position Width

∆SCF

aug-cc-pVDZ 2.8423 -0.0008 2.8394 0.0415 2.8129 0.4298
d-aug-cc-pVDZ 2.8875 0.0871 2.8515 0.1599 2.8006 0.4190
t-aug-cc-pVDZ 2.8327 0.2327 2.8491 0.1721 2.8307 0.2376
aug-cc-pVTZ 2.8064 0.0015 2.7958 0.0671 2.8533 0.3916

d-aug-cc-pVTZ 2.8512 0.1279 2.8377 0.1553 2.8081 0.4032
t-aug-cc-pVTZ 2.8358 0.2158 2.8415 0.1673 2.7915 0.3429
aug-cc-pVQZ 2.5834 0.0034 2.8039 0.1559 2.7885 0.3914

d-aug-cc-pVQZ 2.8326 0.2005 2.8380 0.1742 2.8452 0.4210
t-aug-cc-pVQZ 2.8299 0.2154 2.8412 0.1718 2.7963 0.4007

∆CCSD(T) t-aug-cc-pVQZ 2.4419 0.5908 2.4820 0.5360 2.4510 0.7185

TABLE VI. Positions and widths (in eV) of the 2Πg, N−
2 shape resonance computed using the type II-Gaussian method. Note

that there is significantly reduced dependence on the exponent of the added Gaussian potential (α).

method basis ω = 0.001 ω = 0.01 ω = 0.1
Position Width Position Width Position Width

∆SCF [2/1]

aug-cc-pVDZ 2.74217 0.70854 2.75251 0.72708 2.68530 1.05547
d-aug-cc-pVDZ 2.73879 0.70692 2.74905 0.72543 2.75149 1.02148
t-aug-cc-pVDZ 2.73920 0.70719 2.74781 0.72579 2.75192 1.02192
aug-cc-pVTZ 2.76522 0.62485 2.77457 0.64119 2.72995 0.93501

d-aug-cc-pVTZ 2.76209 0.62746 2.77149 0.64389 2.73919 0.92092
t-aug-cc-pVTZ 2.76227 0.62849 2.77171 0.64494 2.73911 0.92266
aug-cc-pVQZ 2.76087 0.63085 2.77034 0.64736 2.72381 0.94495

d-aug-cc-pVQZ 2.75966 0.63175 2.76914 0.64830 2.73459 0.92812
t-aug-cc-pVQZ 2.75972 0.63200 2.76921 0.64855 2.73479 0.92839

∆CCSD(T) [2/1]

aug-cc-pVDZ 2.55822 0.77198 2.57251 0.79356 2.56588 1.14238
d-aug-cc-pVDZ 2.49861 0.78082 2.50061 0.80643 2.54943 1.13871
t-aug-cc-pVDZ 2.51745 0.77596 2.49981 0.80661 2.54894 1.13888
aug-cc-pVTZ 2.41852 0.61804 2.42736 0.63629 2.47546 0.89812

d-aug-cc-pVTZ 2.38092 0.62691 2.38958 0.64573 2.45552 0.90377
t-aug-cc-pVTZ 2.37963 0.62805 2.38836 0.64690 2.45512 0.90525
aug-cc-pVQZ 2.35958 0.60802 2.36776 0.62623 2.37978 0.89098

d-aug-cc-pVQZ 2.33540 0.61272 2.34348 0.63124 2.37299 0.89164
t-aug-cc-pVQZ 2.33466 0.61301 2.34256 0.63159 2.39789 0.88717

TABLE VII. Positions and widths (in eV) of the 2Πg, N−
2 shape resonance computed using the type III-attenuated Coulomb

method with a [2/1] Padé approximant at various levels of theory. Note the dependence on the attenuation parameter (ω).
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Position Width
∆SCF 2.76921 0.64855
∆MP2 2.54952 0.68410

∆CCSD 2.34915 0.61525
∆CCSD(T) 2.34256 0.63159

TABLE VIII. Positions and widths (in eV) of the 2Πg,
N−

2 shape resonance computed using the type III-attenuated
Coulomb method using a [2/1] Padé approximant at various
levels of theory. The basis set is the t-aug-cc-pVQZ basis set
and ω = 0.01.

For completeness, the results in the largest basis set
using a [4/2] Padé approximant are given in the sup-
plementary material (Table VII). Only for ω = 0.1 was
the [4/2] fit different than the [2/1] at the ∆SCF level
of theory. Despite this very slight improvement in the
ω-dependence, the results are not significantly different,
and again fitting the the [4/2] Padé approximant proved
to be a more difficult optimization problem.

Some results for different treatments of correlation in
the largest basis set are shown in Table VIII. As we
might expect, MP2 theory recovers a significant, but still
incomplete, portion of the correlation contribution. The
effect of the triples correction is negligible in this case.
The width does not change significantly as the treatment
or correlation is changed, and it does not converge to the
accepted value.

F. Evaluation of the type II-attenuated Coulomb method

The type II-attenuated Coulomb method performs well
when applied to the 2Πg, N−

2 shape-resonance. The
results at the ∆SCF and ∆CCSD(T) levels of the-
ory are shown in Table IX. Despite slow convergence
with respect to the diffuse part of the basis set, the
type II-attenuated Coulomb method has negligible ω-
dependence. In the largest basis, the results do not quite
converge to the accepted value, but it is apparent the
the numbers are not entirely converged with respect to
the basis set. At the ∆SCF level of theory, the results
agree remarkably well with the complex basis function,
non-Hermitian UHF results of Ref. 51. Finally, notice
that the dependence on ω is small compared to prob-
able error due to the incomplete basis and incomplete
description of electron correlation. The primary draw-
back of this method that it requires a large, diffuse basis
set to achieve consistent results.

Results for different treatments of electron correlation
are shown in Table X. Both the position and the width
are significantly affected by the level of correlation in a
manner which is consistent with other methods. The
results at the CCSD level of theory agree fairly well
with the EOM-EA-CCSD stabilization results presented
in Ref. 49. The small differences are easily attributed
to the slightly different level of theory and the different

basis set.

V. CONCLUSIONS AND FUTURE WORK

The performance of two different analytic continuation
schemes for 3 classes of stabilizing potentials has been
critically evaluated. Results for a model problem suggest
that the accuracy of the type III methods is limited by the
simple functional form. Furthermore, the results for both
analytic continuation schemes depend on the functional
form of the stabilizing potential. While the Gaussian po-
tential is short-range, better results are obtained with
the Coulomb potential. An attenuated Coulomb poten-
tial retains the best features of the Coulomb potential
without the long range tail. It is with the attenuated
Coulomb potential that the best results are obtained.

The performance of the type III method on the 2Πg

state of N−
2 is surprisingly good. There is systematic er-

ror in the width, but the position agrees well with the
accepted value. The type III-Gaussian method does not
perform well; this is probably due to a lack of flexibility in
the functional form used in the analytic continuation. We
do not recommend the use of a Gaussian potential. The
type III-attenuated Coulomb method is somewhat sensi-
tive to the attenuation parameter, ω, but retains many of
the nice features of the type III-Coulomb method while
being formally justifiable. We recommend an ω-value ly-
ing in the range that we have investigated (0.001-0.1).
This broad range of ω, corresponding to characteristic
lengths in the range 10 to 1000 Bohr, is likely appropri-
ate for most low energy shape resonances which share
physical characteristics with the N−

2 shape resonance.
The type II method performs decently well for all three

potentials, though both the accuracy and basis-set con-
vergence properties are best when combined with the
attenuated Coulomb potential. Despite slow basis set
convergence and some sensitivity to the precision of the
inputs, in no case did we observe multiple nearby solu-
tions or other pathological numerical problems. Further-
more, analytic continuation with type II Padé approxi-
mants provided more accurate widths, significantly less
ω-dependence, and agreed better with other theoretical
methods. We therefore suggest that the use of such high
order Padè approximants in the analytic continuation of
the inverse problem should not be discounted, especially
if high precision input data is available. The type III-
Coulomb or type III-attenuated Coulomb method may
be used in cases where precise computations in large ba-
sis sets are not feasible, but with the caveat that there
will likely be systematic error in the computed widths.

To summarize, for the IACCC method:

• We suggest an attenuated Coulomb potential as a
formally justifiable, simple to implement alterna-
tive to a Coulomb potential.

• The type II method is most accurate and should
be used if high precision calculations in large basis
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basis ω = 0.001 ω = 0.01 ω = 0.1
Position Width Position Width Position Width

SCF

aug-cc-pVDZ 2.83173 -0.00320 2.83333 0.00155 2.82576 0.01793
d-aug-cc-pVDZ 2.84264 0.16154 2.84648 0.16814 2.84740 0.16000
t-aug-cc-pVDZ 2.85043 0.17558 2.84711 0.17931 2.84503 0.18047
aug-cc-pVTZ 2.79090 0.00204 2.74397 0.10855 2.77907 0.07895

d-aug-cc-pVTZ 2.83293 0.16192 2.83551 0.15931 2.83411 0.16129
t-aug-cc-pVTZ 2.79914 0.20080 2.79953 0.17272 2.83240 0.18002
aug-cc-pVQZ 2.78391 0.22003 2.81807 0.06469 2.77191 0.20154

d-aug-cc-pVQZ 2.83282 0.18578 2.82263 0.10278 2.83902 0.17423
t-aug-cc-pVQZ 2.80872 0.20374 2.81202 0.19265 2.83933 0.17521

CCSD(T)

aug-cc-pVDZ 2.72974 0.04936 2.61625 0.01137 2.69380 -0.12249
d-aug-cc-pVDZ 2.58293 0.58125 2.51936 0.53558 2.68915 0.60403
t-aug-cc-pVDZ 2.60820 0.54588 2.70268 0.51919 2.66480 0.57979
aug-cc-pVTZ 2.55929 0.28910 2.38274 -0.16756 2.27533 -0.24968

d-aug-cc-pVTZ 2.38438 0.02248 2.58832 0.28094 2.50422 0.48415
t-aug-cc-pVTZ 2.52261 0.52226 2.57618 0.53210 2.50365 0.49965
aug-cc-pVQZ 2.30677 0.35992 2.45588 0.43936 2.37634 0.49320

d-aug-cc-pVQZ 2.48175 0.47893 2.48287 0.29264 2.45698 0.46146
t-aug-cc-pVQZ 2.47390 0.48362 2.46018 0.48523 2.45495 0.46199

TABLE IX. Positions and widths (in eV) of the 2Πg, N−
2 shape resonance computed using the type II-attenuated Coulomb

method at various levels of theory.

method Position Width
∆SCF 2.81202 0.19265
∆MP2 2.58212 0.47505

∆CCSD 2.47772 0.41312
∆CCSD(T) 2.46018 0.48523

TABLE X. Positions and widths (in eV) of the 2Πg, N−
2 shape

resonance computed using the type II-attenuated Coulomb
method at various levels of theory. The basis set is the t-aug-
cc-pVQZ basis set and ω = 0.01.

sets are feasible.

• The type III method can be used in cases where the
use of large basis sets is not feasible, but there will
likely be systematic error in the computed widths.

SUPPLEMENTARY MATERIAL

See supplementary material for the full set of results
for all basis sets and methods
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Appendix A: Derivatives of type III RAC Padé approximants

In order to solve the non-linear least-squares problem,
we minimize

χ2 =
1

N

N∑
i=1

∣∣∣λ̃(κi)− λi
∣∣∣ (A1)

where λ̃(κ) is one of either λ[2/1](κ;α, β, λ0),
λ[3/1](κ;α, β, δ, λ0), or λ[4/2](κ;α, β, γ, δ, ε, λ0). The
non-linear optimization can be easily accomplished
using a some variant of Newton’s method with analytic
derivatives of χ2 from which finite difference second
derivatives can be computed. Specifically, we require
derivatives with respect to the fitting parameters α, β,
etc. Since all of these Padé approximants have the form

λ[N/M ] = λ0g
[N/M ], (A2)

the derivative of χ2 with respect to λ0 is trivial, and we
further require only the derivatives of g[M/N ] with respect
to the remaining parameters.
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For the [2/1] Padé approximant, we get

∂g[2/1]

∂α
=

4ακ+ 4α3

α4 + β2 + 2α2κ
− κ2 + 2α2κ+ α4 + β2

(α4 + β2 + 2α2κ)2
(4ακ+ 4α3) (A3)

∂g[2/1]

∂β
=

2β

α4 + β2 + 2α2κ
− κ2 + 2α2κ+ α4 + β2

(α4 + β2 + 2α2κ)2
(2β) (A4)

For the [3/1] Padé approximant, we get

∂g[3/1]

∂α
=

(4ακ+ 4α3)(1 + δ2κ)

α4 + β2 + κ[2α2 + δ2(α4 + β2)]
− (κ2 + 2α2κ+ α4 + β2)(1 + δ2κ)

{α4 + β2 + κ[2α2 + δ2(α4 + β2)]}2
(4α3 + 4ακ+ 4δ2α3κ) (A5)

∂g[3/1]

∂β
=

2β(1 + δ2κ)

α4 + β2 + κ[2α2 + δ2(α4 + β2)]
− (κ2 + 2α2κ+ α4 + β2)(1 + δ2κ)

{α4 + β2 + κ[2α2 + δ2(α4 + β2)]}2
(2β + 2δ2βκ) (A6)

∂g[3/1]

∂δ
=

(κ2 + 2α2κ+ α4 + β2)2δκ

α4 + β2 + κ[2α2 + δ2(α4 + β2)]
− (κ2 + 2α2κ+ α4 + β2)(1 + δ2κ)

{α4 + β2 + κ[2α2 + δ2(α4 + β2)]}2
2δ(α4 + β2)κ (A7)

For the [4/2] Padé approximate, we define the numerator and denominator as

N ≡ (κ2 + 2α2κ+ α4 + β2)(κ2 + 2γ2κ+ γ4 + δ2) D ≡ (α4 + β2)(γ4 + δ2)(1 + µ2κ)(1 + µ2ε2κ), (A8)

as well as the derivatives of µ2:

µ2
α ≡

∂µ2

∂α
=

2

ε2 + 1

[
2α

α4 + β2
− 4α5

(α4 + β2)2

]
µ2
β ≡

∂µ2

∂β
= − 4α2β

(ε2 + 1)(α4 + β2)
(A9)

µ2
γ ≡

∂µ2

∂γ
=

2

ε2 + 1

[
2γ

γ4 + δ2
− 4γ5

(γ4 + δ2)2

]
µ2
δ ≡

∂µ2

∂δ
= − 4γ2δ

(ε2 + 1)(γ4 + δ2)
(A10)

µ2
ε ≡

∂µ2

∂ε
= − 4ε

(ε2 + 1)2

[
α2

α4 + β2
+

γ2

γ4 + δ2

]
. (A11)

In terms of these quantities, the derivatives are given by

∂g[4/2]

∂α
=

4(ακ+ α3)(κ2 + 2γ2κ+ γ4 + δ2)

D
− 4Nα3

(α4 + β2)D
− Nµ2

ακ

(1 + µ2κ)D
− Nε2µ2

ακ

(1 + µ2ε2κ)D
(A12)

∂g[4/2]

∂β
=

(2β)(κ2 + 2γ2κ+ γ4 + δ2)

D
− 2Nβ

(α4 + β2)D
−

Nµ2
βκ

(1 + µ2κ)D
−

Nε2µ2
βκ

(1 + µ2ε2κ)D
(A13)

∂g[4/2]

∂γ
=

(κ2 + 2α2κ+ α4 + β2)4(γκ+ γ3)

D
− 4Nγ3

(γ4 + δ2)D
−

Nµ2
γκ

(1 + µ2κ)D
−

Nε2µ2
γκ

(1 + µ2ε2κ)D
(A14)

∂g[4/2]

∂δ
=

(κ2 + 2α2κ+ α4 + β2)(2δ)

D
− 2Nδ

(γ4 + δ2)D
− Nµ2

δκ

(1 + µ2κ)D
− Nε2µ2

δκ

(1 + µ2ε2κ)D
(A15)

∂g[4/2]

∂ε
= −N

[
µ2
εκ

(1 + µ2κ)D
+
µε2ε

2κ+ 2εµ2κ

(1 + µ2ε2κ)D

]
(A16)

Appendix B: Molecular Gaussian attraction integrals

The analytic continuation methods involving an added
Gaussian potential require integrals of the form

〈φµ|UG|φν〉 = −
P∑
k=1

AkV
(k)
µν (B1)

where

V (k)
µν ≡

∫
d3rφµ(r)e−α(r−Ck)

2

φν(r). (B2)

The sum over k is over Gaussian potentials centered at
Ck and φµ, φν are primitive Gaussian type orbitals. In
order to derive an explicit formula for these integrals, we
first use Gaussian product theorem (GPT) twice to com-
bine the three Gaussian factors into a single Gaussian:

NµNνGABGPCP (x, y, z) exp [−η(r−Q)] . (B3)

The polynomial, P (x, y, z) is just a product of polyno-
mial factors from the two basis functions, Nµ and Nν are
normalization factors, and the other quantities are given
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by

GPC = exp

[
− γα

γ + α
(P−C)2

]
η = γ + α

Q =
γP + αC

γ + α
(B4)

where P and γ are the GPT center and exponent asso-
ciated with the product of basis functions. The explicit
formula is now easily derived in analogy to the case of
simple overlap integrals given in Ref. 55. This allows
for direct reuse of the explicit formulas that are used to
compute overlaps, the only difference is that P→ Q and
γ → η. We compute the integrals using this method.
However it is also possible to compute the integrals us-
ing a special case of the recurrence relation for 3-center
overlaps given by Obara and Saika:56

(a + 1i|0|b) =
ai
2η

(a− 1i|0|b) +
bi
2η

(a|0|b− 1i)

+ (Qi −Ai)(a|0|b). (B5)

The extension of either method to contracted Gaussian
basis functions is trivial.
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