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Abstract
Purpose of Review This review summarizes recent literature defining tissue-resident memory T cells (TRM) and discusses
implications for HIV pathogenesis, vaccines, and eradication efforts.
Recent Findings Investigations using animal models and human tissues have identified a TRM transcriptional profile and eluci-
dated signals within the tissue microenvironment leading to TRM development and maintenance. TRM are major contributors to
host response in infectious diseases and cancer; in addition, TRM contribute to pathogenic inflammation in a variety of settings.
Although TRM are daunting to study in HIV infection, recent work has helped define their molecular signatures and effector
functions and tested strategies for their mobilization.
Summary Exclusive reliance on blood sampling to gain an understanding of host immunity overlooks the contribution of TRM,
which differ in significant ways from their counterparts in circulation. It is hoped that greater understanding of these cells will
lead to novel approaches to prevent and/or eradicate HIV infection.

Keywords Tissue .Mucosa .Memory . Tcell . CTL

Introduction

T Cell Biology and the Challenge of “Immune
Geography”

In their quest to eliminate pathogens from the body, antigen-
specific lymphocytes face multiple challenges, not the least of
which is “immune geography”: when infection occurs, a small
number of T cells, programmed with TCR specificity for a rele-
vant antigen,must somehow encounter infected cell(s), wherever
in the body they might be located. Our contemporary under-
standing of immune responses is based on pioneering work

performed over several decades, which elucidated the trafficking
patterns of lymphocytes throughout the body and the critical
roles played by secondary lymphoid organs as sites of antigen
encounter and presentation (for detailed review, see [1]). In the
1950s and 1960s, investigators used radioactive tracers to follow
trafficking of lymph node cell suspensions following injection
into blood. This work gave rise to an awareness of the role of
lymph nodes in antigen presentation [2]. Some 40 years later,
Sallusto and Lanzavecchia advanced a model for T cell differen-
tiation based upon expression patterns of cell surface markers
CCR7 and CD45RA [3]. According to this model, CD4+ and
CD8+ T cells could be defined as antigen-inexperienced and
naive (CD45RA+/CCR7+) or as antigen-experienced memory
cells that were either highly proliferative (central memory cells
or TCM, CD45RA

neg/CCR7+) or optimized for rapid effector
function (effector memory cells or TEM, CD45RA

neg/CCR7neg)
[3]. This model, although widely accepted for many years, relied
exclusively on characterization of T cells isolated from blood,
which we now know to be significantly different from their
counterparts in tissues. T cells localized to nonlymphoid tissues,
such as the lung, gut, and reproductive tract, were believed to
correspond to TEM and were assumed to recirculate to some
extent as a means of performing immunosurveillance of these
important tissues. However, over the past 10 years, in an
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important paradigm shift, studies in rodents and humans have
revealed and confirmed the existence of “tissue-resident” cells,
or TRM, that patrol relatively limited areas within nonlymphoid
tissues for signs of infection, without recirculating throughout
the body [4–11].

How Are Tissue Resident T Cells Defined?

Key markers and pathways that characterize tissue resident
memory cells have been identified in murine experimental
models [1, 12–15] (Table 1). Briefly, TRM are thought to derive
from effector T cells, which develop distinctive transcriptional
programs and phenotypic characteristics following migration to
peripheral tissues. Once localized to these tissues, they are ex-
posed to locally produced cytokines, including transforming
growth factor beta (TGF-β), as well as IL-15, IL-33, and
TNF-α [28]. TGF-β promotes expression of αE(CD103)β7,
an integrin whose ligand, E-cadherin, is expressed by epithelial
cells in the skin, gut, and other tissues. Interaction between
CD103 and E-cadherin helps retain TRM in these tissues.
Intriguingly, at a much earlier stage, during homeostatic encoun-
ters that occur between resting naïve T cells and migratory den-
dritic cells within lymphoid tissues, TGF-β is believed to play a
role in “pre-conditioning” the naïve T cells that will eventually
become tissue residents [29•].

The markers CD69 and CD103 are most commonly used to
quantify TRM; however, neither marker is perfectly correlated
with tissue residency [1, 16, 17]. CD103 is primarily associ-
ated with CD8+, rather than CD4+ TRM. CD69 is transiently
expressed following TCR activation, including by
recirculating T cells, leading to potential confusion. TRM lack
expression of sphingosine-1-phosphate receptor S1PR1 (also
referred to as S1P1), which mediates tissue egress in response
to its ligand, sphingosine-1-phosphate (S1P). CD69 associates
with and inhibits the function of S1PR1, thereby blocking cell
egress [19]. In addition, expression of transcription factor
KLF2, which is required for S1PR1 expression, is downregu-
lated in TRM. Other transcription factors downregulated in
TRM cells are Eomesodermin and T-bet; their expression sup-
presses TRM differentiation [20]. In murine TRM, Hobit and
Blimp1 are proposed as central transcriptional regulators of
TRM tissue retention [21]. A core transcriptional signature for
human TRM has been reported and includes numerousmarkers
similar to those identified in mice [18••]. However, multiple
studies have failed to implicate Hobit in the core signature for
human TRM [18••, 21].

Phenotypically, TRM are somewhat heterogeneous, with
some described as resembling hematopoietic stem cells
(HSC) in their ability to efflux small molecules such as fluo-
rescent mitochondrial dyes [30•]. These “efflux(+)” TRM ex-
hibit reduced turnover and increased proliferative capacity

Table 1 Factors associated with TRM development and maintenance. Factors are listed by their order of appearance in the text

Factor Expression Function References

CD103 Expressed mainly on CD8+ TRM in certain
tissues (e.g., gut)

Interacts with E-cadherin, tethering CD8+ TRM to
epithelial cells

[1, 16, 17]

CD69 Expressed on most, but not all TRM Associates with and inhibits S1PR1, blocking tissue
egress

[1, 16, 17]

KLF2 Downregulated in TRM Transcription factor required for S1PR1 expression [1, 18••]

S1PR1 Downregulated in TRM Mediates tissue egress in response to its ligand, S1P [1, 19]

T-bet Downregulated in TRM Transcription factor that suppresses TRM differentiation [18••, 20]

Eomesodermin Downregulated in TRM Transcription factor that suppresses TRM differentiation [18••, 20]

Hobit Upregulated in mouse but apparently not
human TRM

Suppresses KLF2, central regulator of mouse TRM [18••, 21]

Blimp-1 Collaborates with Hobit in mouse TRM Central regulator of mouse TRM [18••, 21]

mTOR kinase Expression may be required for accumulation
of mouse TRM

Regulator of cell differentiation and survival [22, 23]

FABP4, FABP5 Required for long-term survival of TRM in
mouse skin

Fatty acid binding proteins, promote lipid uptake and
transport

[24•]

Runx3 Promotes mouse TRM differentiation and
maintenance

Transcription factor that regulates tissue-residency in
multiple cell types

[15, 25•]

P2RX7 Supports long-lived TRM Sensor for extracellular ATP; detects injury and
inflammation

[26•]

Bhlhe40 Required for development and
polyfunctionality of CD8+ TRM and TIL

Transcription factor; programs mitochondrial metabolism
and active chromatin state

[27•]

CD cluster of differentiation, KLF2 Krüppel-like Factor 2, S1PR1 sphingosine-1-phosphate receptor 1, T-bet T-box transcription factor expressed in T
cells,HobitHomolog of Blimp-1 in T cells, Blimp-1 B lymphocyte maturation promoting transcription factor-1,mTORmammalian target of rapamycin,
FABP fatty acid binding protein, Runx3 Runt-related transcription factor 3, P2RX7 purinergic receptor P2X7, Bhlhe40 Basic helix-loop-helix family
member E40
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relative to efflux-negative TRM. Upon stimulation, efflux(+)
TRM show increased production of IL-17 compared to ef-
flux(−) TRM, suggesting a potential role in IL-17-mediated
inflammatory diseases. In contrast, efflux(−) TRM produced
higher levels of TNF-α, IFN-γ, IL-2, and IL-4 in response
to stimulation [30•].

A recent study of CD4+ TRM in skin explants from healthy
human donors revealed that CD4+CD69+CD103+ TRM are
able to downregulate CD69 and egress from skin tissue. In a
mouse xenograft model, these cells re-entered circulation and
migrated to secondary human skin xenografts, where they
again adopted a TRM phenotype [31]. These findings chal-
lenge the paradigm that TRM remain more or less permanently
tethered within non-lymphoid tissues and suggest that under
specific conditions, TRM are capable of migrating from one
tissue site to another.

What Pathways Promote TRM Development,
Accumulation, and Survival?

While the pathways that promote accumulation and long-term
survival of TRM have not been fully elucidated, accumulation
of TRM in the mouse small intestine and female reproductive
tract may require signaling from the mammalian target of
rapamycin (mTOR) kinase, a critical regulator of cell differ-
entiation and survival [22, 23]. Additionally, in a mouse mod-
el of cutaneous viral infection, long-term survival of CD8+

TRM required expression of molecules mediating lipid uptake
and transport, including fatty acid binding proteins 4 and 5
(FABP4 and 5) [24•]. Increased expression of these molecules
was observed in CD8+ T cells from normal and psoriatic hu-
man skin [24•]. In addition to the transcription factors men-
tioned in the previous section, recent work has shown that
transcription factor Runx3 is also important for TRM mainte-
nance and plays a role in their early differentiation [15, 25•].

The purinergic receptor P2RX7, a sensor for extracellular
ATP, serves as a detector of cell injury and inflammation.
Recent work in mouse models suggests that it also plays a role
in supporting generation of long-lived CD8+ TRM by promot-
ing mitochondrial homeostasis and metabolic function.
Accordingly, extracellular ATP that is produced through cell
activation and/or tissue damage may contribute to the devel-
opment of T cell memory [26•].

The transcription factor Bhlhe40 was shown to be required
for the development and polyfunctionality of both CD8+ TRM

and tumor-infiltrating lymphocytes (TILs), playing a role in
mitochondrial fitness and epigenetic programming [27•].
Bhlhe40 (also known as Dec1, Stra13, Sharp2, and Bhlhb2)
is expressed in T cells upon TCR stimulation, and mice lack-
ing this factor develop a late-onset lymphoproliferative dis-
ease that may be related to a role for Bhlhe40 in the mainte-
nance of regulatory T cells (Treg) during aging [32].

There appear to be tissue-specific requirements for TRM

formation and maintenance: cognate antigen is apparently re-
quired for TRM establishment in brain and lung, but not in
other tissues [33]. The role of TCR affinity in TRM formation
may also depend upon tissue and context. In mouse polyoma-
virus infection, TRM residing in the brain and kidney were
found to express TCRs with up to 20-fold higher affinity for
their ligands than those of splenic memory Tcells [34]. Higher
affinity TCRs could facilitate detection of low levels of anti-
gen in the early stages of infection or re-infection, allowing
early clearance [34]. Interestingly, in studies designed to de-
termine the impact of TCR signal strength on TRM formation
during influenza Avirus infection, lower-affinity ligands were
more likely than higher-affinity stimulations to induce TRM in
the mouse lung [35•]. Higher-affinity stimulations elicited a
larger clonal burst size, leading to an increased total number of
TRM. Overall, TCR affinity did not impact the cell surface
phenotype or long-term survival of lung TRM [35•].

Of Mice and Men: Lessons from Rodent
Models and Challenges for Studying Human
TRM

The concept of tissue residency has been developed and re-
fined thanks to careful experimentation in rodent models, re-
cently reviewed in detail by others [1]. Briefly, four novel
approaches have been used to elucidate T cell trafficking and
residency in rodent tissues: parabiosis surgery, tissue trans-
plantation, in situ labeling, and in vivo intravascular staining
[1]. In parabiosis, mice carrying distinct genetic markers are
surgically joined for a prolonged period, allowing blood ves-
sels to interconnect or anastomose. Non-resident lymphocytes
circulate through both animals, while tissue residents patrol a
restricted area within a given tissue [36]. In transplantation, a
singlemouse receives a tissue or organ graft from a genetically
distinct animal (in some cases a xenograft), and lymphocyte
trafficking to and from the graft is examined. A third approach
involves labeling specific cell types in situ; for example, trans-
genic cells may be engineered to express fluorescent proteins,
and their migration (or retention) tracked. Fourth, dyes may be
injected intravascularly and used to track cell T cell trafficking
and recirculation patterns. Each of these approaches has ca-
veats, but collectively, their use has contributed enormous
insights to our understanding of lymphocyte biology and host
defense [1].

Experimental approaches for studying human TRM are nec-
essarily more limited. For logistical reasons, studies of human
TRM have relied on indirect methods, such as multidimension-
al phenotyping and/or transcriptional profiling of TRM obtain-
ed from clinical study participants and in some cases organ
donors [9, 11, 18••, 37•, 38•, 39••]. Important insights have
also been gained from immunotherapy studies: TRM subsets in
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human skin were characterized in patients with cutaneous T
cell lymphoma who received humanized anti-CD52 antibody
(alemtuzumab). This antibody depletes circulating CD52+ T
cells but does not affect TRM [40, 41]. Allograft models, in
which neonatal human foreskin samples are grafted ontomice,
have also been exploited to examine T cell trafficking and
residency [31, 41]. Another novel approach to sampling
recirculating T cell populations involves collection of paired
blood and thoracic duct lymph (TDL) samples from patients
with clinical indications for thoracic duct cannulation [39••].
This technique has been used to study recirculation patterns of
T follicular helper cells [42] and mucosa-associated invariant
T cells (MAIT) [43], as well as to establish trafficking and
residency patterns of TRM [39••].

An important cautionary note regarding methodology was
raised by a study comparing two approaches to TRM quantita-
tion: enzymatic digestion to isolate lymphocytes from the tis-
sue matrix, followed by flow cytometry, versus quantitative
immunofluorescence microscopy (QIM) of serial tissue sec-
tions [17]. Findings revealed that single-cell suspensions suc-
cessfully recovered only a minority of viable T cells, leading
to an underestimate of TRM and distorted estimates of their
distribution and phenotype. This report, coupled with an ear-
lier study utilizing human gastrointestinal biopsy tissues [44],
serves as a reminder that over-reliance on a single experimen-
tal approach may be misleading.

Roles for TRM in Host Defense Against Viral
Pathogens

Experiments in mice using the approaches described above
point to a key role for TRM in limiting viral dissemination
and tissue damage in several key models, notably herpes sim-
plex virus (HSV) and lymphocytic choriomeningitis virus
(LCMV) infections. Three critical functions appear to be char-
acteristic of TRM: rapid proliferation and expansion in situ [33,
45•, 46•], cytotoxicity [47••, 48•], and an innate-like “sense
and alarm” response [49, 50]. Notably, this sense and alarm
function is credited with amplifying the immune response by
activating both bystander TRM and other local immune cells
and may explain how infection can be controlled despite a
relatively low initial ratio of virus-specific TRM to infected
target cells [49, 50]. But what is the evidence that TRM play
a major role in containing or clearing human viral pathogens?
Published studies describe or imply a role for TRM in nearly 30
infectious diseases relevant to humans [51]. In HSV-2, repeat-
ed sampling of human genital mucosa, coupled with mathe-
matical modeling, has suggested a role for CD8+ TRM in lim-
iting the duration of viral replication episodes [36, 52, 53]. In
respiratory syncytial virus (RSV) infection, CD8+ TRM accu-
mulate to high frequencies in the lungs, where they may be
collected by bronchoalveolar lavage (BAL). In healthy adult

volunteers experimentally inoculated with RSV, the frequency
of RSV-specific CD8+ T cells in BAL at baseline did not
correlate with susceptibility to infection [54]. However, higher
frequencies were associated with lower cumulative symptom
scores and viral loads, suggesting that CD8+ TRM play a role
in limiting and/or clearing RSV infection when present near
the sites of viral replication [54]. The RSV model is potential-
ly informative for other mucosal infections, because it repre-
sents a disease in which antibody, in this case locally produced
mucosal IgA, forms an initial barrier to infection, but does not
limit disease severity once that barrier has been crossed [54,
55]. In this context, CD8+ TRM form a second line of defense
that helps reduce viral load and disease severity.

Human TRM and HIV Infection

TRM are primarily conceptualized as residing in non-lymphoid
tissues (NLT) such as the lung, liver, gut, and skin; in addition,
some TRM are present in lymphoid tissues (LT), such as the
lymph nodes and spleen [17, 39••]. Many of these tissues are
difficult or impossible to access and study in human volun-
teers; accordingly, studies of TRM in HIV-infected persons to
date have been relatively limited. However, a large amount of
information on human TRM has been generated from a series
of comprehensive studies performed on tissues accessed from
organ donors [9–11, 56, 57]. This work addressed the distri-
bution patterns and phenotypes of human CD4+ and CD8+

memory T cells from the blood, spleen, lung, and gastrointes-
tinal mucosa as well as mesenteric, inguinal, and lung lymph
nodes [9–11, 56, 57]. Numerous memory cells (> 80%) in
lymph nodes and spleen expressed CD69, unlike circulating
memory Tcells in blood [9]. CD103 expression, however, was
primarily limited to memory cells in mucosal tissues, particu-
larly the gut [9]. Interestingly, mouse memory T cells in the
spleen and LN are reportedly CD69low, pointing to another
potential difference in TRM between species [5].

In a comprehensive study comparing HIV-specific CD8+ T
cells from blood, thoracic duct lymph (TDL), and lymph
nodes (LN), Buggert and colleagues tested whether HIV-
specific CD8+ T cells with transcriptional and epigenetic sig-
natures typical of TRM were present in HIV-infected LN
[39••]. They found that HIV-specific, CD69+ memory CD8+

T cells were significantly expanded in LN of HIV-positive
individuals. These cells were mainly Ki67neg and therefore
not actively proliferating, but bore epigenetic and transcrip-
tional signatures of TRM. Comparatively high frequencies of
HIV-specific TRM were present in LN of elite controllers.
Single-cell RNAseq revealed that HIV-specific, CD69+ TRM

from LN were enriched for effector-related genes relative to
HIV-specific, CD69neg non-TRM from LN of the same indi-
viduals [39••]. This finding was particularly intriguing given
that earlier work from the same group demonstrated more
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limited cytotoxic capacity of CD8+ T cells from lymph node
(i.e., not separated based on 69 expression) compared with
those from blood [47••].

Kiniry and colleagues identified CD8+ T cells with a T-
betLow/EomesNeg phenotype in colorectal mucosa of HIV-
positive individuals [48•]. Perforin expression and ex vivo
cytolytic capacity were significantly reduced in these cells
compared to their counterparts in blood, regardless of HIV
clinical status. Although these T-betLow/EomesNeg CD8+ T
cells were abundant in colorectal mucosa of HIV controllers,
neither perforin expression nor cytolytic capacity was elevated
in controllers compared to other participant groups; however,
these cells did express multiple cytokines/chemokines in re-
sponse to TCR stimulation [48•]. This T-betLow/EomesNeg

phenotype was similar to that described for CD8+ memory T
cells in LN, which were also described as weakly cytolytic
compared to blood CD8+ T cells [47••]. In subsequent work,
Kiniry and colleagues identified HIV-specific CD8+ T cells
with both TRM and resident effector (rTEFF) phenotypes
[38•]. Both populations included polyfunctional cells that
degranulated and produced MIP-1β, IFN-γ, and in some
cases TNF-α in response to TCR stimulation [38•]. Taken
together, and in view of other earlier work [58–60], these
studies suggest that regulatory programs favoring cytokine/
chemokine expression, rather than maximizing cytolytic ca-
pacity, may be favored in the tissue microenvironments where
TRM reside [38•, 47••, 48•].

Resident Memory T Cells Are an HIV Reservoir
in the Female Reproductive Tract

Although many studies have focused on tissue reservoirs for
HIV/SIV infection, notably in lymphoid tissues and the gas-
trointestinal tract ( [61•, 62] and references therein), there have
been limited studies focused on the female reproductive tract
(FRT) as an HIV reservoir. From previous work, the cell sur-
face phenotype and activation status of CD4+ T cells through-
out the FRT suggested high susceptibility to HIV infection, as
did in vitro infection studies [63•]. Studying paired blood and
cervical samples from 8 HIV-infected women who had been
cART-suppressed for at least 1 year, Centero-Perez and col-
leagues found that cervical T cells contained up to > 200-fold
more HIV proviral DNA per cell compared to blood T cells
[63•]. Within cervical CD4+/− T cells, > 80% were defined as
TRM based on CD69 expression, and this population contrib-
uted > 95% of the HIV DNA-positive cells in cervix [63•].
Cervical TRM also contained transcriptionally active HIV;
however, due to cell number limitations, quantitative viral
growth assays could not be performed. This study identifies
cervical CD4+ TRM as a potential target for HIV eradication
efforts.

A Novel Approach to HIV Reservoir
Eradication

Despite the success of combination antiretroviral therapy
(cART), complete eradication of virus from tissue sanctuaries
remains a daunting and elusive technical challenge. A large
body of work has demonstrated that HIV-infected CD4+ follic-
ular helper T cells (Tfh) localized within LN B cell follicles
constitute a major viral reservoir in both viremic and cART-
treated individuals [64, 65]. CD8+ Tcells are typically excluded
from B cell follicles, since most lack expression of CXCR5,
which directs germinal center homing. Fingolimod (FTY720),
a drug approved by the US Food and Drug Administration
(FDA) for treatment of multiple sclerosis, blocks T cell egress
from LN by preventing interaction of sphingosine-1-phosphate
(S1P) with four of its receptors (S1PR1, 3, 4, and 5), essentially
depriving the T cells of lymph node “exit visas” [66]. As men-
tioned previously, transcriptional downregulation of S1PR1 is
required for establishment of CD8+ TRM [67]. In a recent study,
FTY720 was administered to rhesus macaques infected with
simian immunodeficiency virus (SIVmac) with viral suppres-
sion following cART [61•]. FTY720 treatment reduced circu-
lating CD4+ and CD8+ T cells in a dose-dependent manner,
increasing the number of potentially cytolytic T cells in LN
and leading to decreased SIV DNA in blood and LN of most
treated animals. Although the effects of this treatment on TRM
in nonlymphoid tissues were not addressed, this work demon-
strates the feasibility of modulating T cell trafficking through
interference with S1P/S1PR interactions, potentially helping
eradicate formerly intractable HIV reservoirs.

Vaccine Induction of TRM in HIV Models

Although recent HIV vaccine development efforts have fo-
cused largely on eliciting neutralizing antibodies, anything
less than completely “sterilizing” immunological protection
will necessitate one or more mechanisms of clearing foci of
infection at or near the site of exposure. For this reason, vac-
cines that stimulate multiple immune effector mechanisms,
particularly within mucosal tissues, may have a greater likeli-
hood of success than those focused solely on antibodies.
Several authors have argued persuasively for development
of HIV vaccines capable of eliciting CD8+ T cell immunity
[68–70]. Multiple lines of evidence support this reasoning,
including the following: (i) strong correlations between HIV-
specific CD8+ T cell function and elite controller status [71];
(ii) success of therapeutic Ad26/MVA vaccination combined
with TLR7 stimulation in targeting SIV reservoirs in rhesus
macaques [72]; (iii) promising results in vaccine trials using
vectors based on cytomegalovirus (CMV) [73, 74], adenovi-
ruses, and Modified Virus Ankara (MVA) that elicit T cell
responses. However, to date, few vaccine studies in humans
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have included the type of mucosal sampling that would allow
quantification of antigen-specific tissue resident T cells near
the sites of potential HIV exposure. Furthermore, when such
sampling has occurred, TRM markers have generally not been
assessed, although this is anticipated to change as the TRM

literature expands.
Heterologous viral vectors may be combined to elicit par-

ticular combinations of T cell and antibody responses.
Recently, Petitdemange and colleagues tested the hypothesis
that vaccine preparations capable of eliciting both high-
magnitude CD8+ Tcell responses and antibodies would confer
enhanced protection to rhesus macaques against low-dose
intravaginal challenge with heterologous SHIV [75•].
Female macaques were immunized with one of three regi-
mens, designed to elicit either strong T cell responses (group
1), antibodies (group 2), or both (group 3). Examination of
tissues revealed impressive numbers and frequencies of SIV-
specific, MHC class I tetramer-binding CD8+ Tcells in blood,
iliac lymph nodes, and reproductive tissues post-vaccination.
Although long-term protection was not observed after 10 chal-
lenges, near-significant protection was detected after 5 chal-
lenges in groups 2 and 3 and correlated with magnitude of
serum and vaginal Env-specific antibody titers on the day of
challenge [75•]. Intriguingly, despite similar antibody titers,
enhanced protection was observed in younger animals (<
8 years) that received immunogens eliciting both T cell and
antibody responses (i.e., group 3). Thus, although protection
was modest, this model argues for vaccines capable of stimu-
lating both humoral and cell-mediated immunity.

Conclusions

The literature cited in this review indicates an increasing focus
on the role of tissue-based immune responses in the host re-
sponse to infectious disease. In the past, prior to the discovery
of TRM, there was an implicit assumption of a direct relation-
ship between immune responses measured in peripheral blood
and those present in tissues throughout the body. However, as
illustrated by the studies cited in this review, blood sampling
can underestimate, and at times fundamentally misrepresent,
T cell responses at the site of infection. TRM differ from their
counterparts in blood not only in quantity and cell surface
phenotype but also in transcriptional programming and func-
tionality, such that attempts to predict or extrapolate TRM re-
sponses from blood samples alone ignore critical information.

In addition to their obvious relevance to HIV and other
infectious diseases, TRM appear to play a role in the pathogen-
esis of certain inflammatory and autoimmune conditions.
Among the best studied to date are skin conditions including
allergic contact dermatitis, psoriasis, and fixed drug eruption,
as well as vitiligo and Sézary syndrome (for review, see [76]).
In addition, there may be a role for TRM in the pathogenesis of

gastrointestinal diseases such as Crohn’s disease and/or ulcer-
ative colitis and in joint diseases such as ankylosing spondy-
litis and rheumatoid arthritis [76]. In human cancer, tumor-
infiltrating lymphocytes (TIL) are speculated to be a form of
TRM, and their ability to infiltrate solid tumors has been de-
scribed as a favorable prognostic indicator in certain bladder,
breast, cervical, endometrial, lung, and ovarian cancers [77].
Expression of adhesion molecules such as CD103 may help
facilitate TRM lodgment within solid tumors [77]. TRM also
have a metabolic advantage that could favor their persistence
in a low-glucose tumor microenvironment: TRM preferentially
take up and catabolize free fatty acids due to their expression
of transporters FABP4 and 5. However, this advantage is lim-
ited by the requirement of fatty acid catabolism for oxygen-
dependent respiration [77].

In conclusion, recent literature has implicated TRM as crit-
ical tissue defenders in multiple contexts including HIV, other
infectious diseases, and cancer. These studies provide exciting
avenues for future development of more effective vaccines
and immunotherapeutics.
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