
Lawrence Berkeley National Laboratory
LBL Publications

Title
GANGA: a user-Grid interface for Atlas and LHCb

Permalink
https://escholarship.org/uc/item/65n0g5vd

Authors
Harrison, K
Lavrijsen, WTLP
Mato, P
et al.

Publication Date
2003-06-13
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/65n0g5vd
https://escholarship.org/uc/item/65n0g5vd#author
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:c

s/
03

06
08

5v
1 

 [
cs

.S
E

] 
 1

4 
Ju

n 
20

03
Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California 1

GANGA: a user-Grid interface for Atlas and LHCb
K. Harrison
Cavendish Laboratory, University of Cambridge, CB3 0HE, UK
W. T. L. P. Lavrijsen, C. E. Tull
LBNL, Berkeley, CA 94720, USA
P. Mato
CERN, CH-1211 Geneva 23, Switzerland
A. Soroko
Department of Physics, University of Oxford, OX1 3RH, UK
C. L. Tan
School of Physics and Astronomy, University of Birmingham, B15 2TT, UK
N. Brook
H.H. Wills Physics Laboratory, University of Bristol, BS8 1TL, UK
R. W. L. Jones
Department of Physics, University of Lancaster, LA1 4YB, UK

The Gaudi/Athena and Grid Alliance (ganga) is a front-end for the configuration, submission, monitoring,
bookkeeping, output collection, and reporting of computing jobs run on a local batch system or on the grid.
In particular, ganga handles jobs that use applications written for the gaudi software framework shared by
the Atlas and LHCb experiments. Ganga exploits the commonality of gaudi-based computing jobs, while
insulating against grid-, batch- and framework-specific technicalities, to maximize end-user productivity in
defining, configuring, and executing jobs. Designed for a python-based component architecture, ganga has a
modular underpinning and is therefore well placed for contributing to, and benefiting from, work in related
projects. Its functionality is accessible both from a scriptable command-line interface, for expert users and
automated tasks, and through a graphical interface, which simplifies the interaction with ganga for beginning
and casual users.
This paper presents the ganga design and implementation, the development of the underlying software bus
architecture, and the functionality of the first public ganga release.

1. INTRODUCTION

The Atlas [1] and LHCb [2] collaborations will
perform physics studies at the high-energy, high-
luminosity, Large Hadron Collider (LHC) [3], sched-
uled to start operation at CERN in 2007. The data
volumes produced by each experiment are in the
petabyte range, and will be processed with comput-
ing resources that are distributed over national cen-
ters, regional centers, and individual institutes. To
fully exploit these distributed facilities, and to allow
the participating physicists to share resources in a co-
ordinated manner, use will be made of grid services.

The gaudi/athena [4, 5] software framework1

used by LHCb and Atlas, is designed to support all
event-processing applications, including simulation,
reconstruction, and physics analysis. A joint project
has been set up to develop a front-end that will aid in
the handling of framework-based jobs, and performs
the tasks necessary to run these jobs either locally or
on the grid. This front-end is the Gaudi/Athena

and Grid Alliance, or ganga [6].
Ganga covers all phases of a job’s life cycle: cre-

ation, configuration, splitting and recollection, script

1From here on referred to as the “gaudi framework” or sim-
ply “gaudi.”

generation, file transfer to and from worker nodes,
submission, run-time setup, monitoring, and report-
ing. In the specific case of gaudi jobs, the job con-
figuration also includes selection of the algorithms to
be run, definition of algorithm properties, and speci-
fication of inputs and outputs. Ganga relies on mid-
dleware from other projects, such as Globus [7] and
EDG [8], to perform Grid-based operations, but makes
use of the middleware functionality transparent to the
ganga user.

In this paper, we present the ganga design and
the choices made for its implementation. We report
on the work done in developing the software bus that
is a key feature of the design, and we describe the
functionality of the current ganga release.

2. GANGA DESIGN

2.1. Overview

Ganga is being implemented in python [9], an in-
terpreted scripting language, using an object-oriented
approach, and following a component architecture.
The python programming language is simple to
use, supports object-oriented programming, and is
portable. By virtue of the possibilities it allows for
extending and embedding features, python is also ef-

TUCT002

http://arxiv.org/abs/cs/0306085v1


2 Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

User

GUI

CLI

Software
Bus

Job definition

Job registry

Script generation

Job submission

File transfer

Job monitoring

Gaudi/Athena
job definition

Gaudi/Athena
job options editor

Gaudi/Athena
job splitting

Gaudi/Athena
output collection

G
audiP

ython

P
yR

O
O

T

Figure 1: Schematic representation of the ganga design, which is based on components interacting via a software bus.
The user issues commands either via the graphical user interface (GUI) or via the command-line interface (CLI).
Ganga components of general applicability are shown on the right side of the software bus, whereas ganga

components dedicated to specific requirements of the gaudi framework are shown on the left. Components external to
ganga are shown at the bottom: gaudipython and pyroot are python interfaces to gaudi and root respectively.

fective as a software “glue.” A standard python instal-
lation comes with an interactive interpreter, an Inte-
grated Development Environment (IDE), and a large
set of ready-to-use modules. The implementation of
the component architecture underlying the ganga de-
sign benefits greatly from python’s support for modu-
lar software development. The components of ganga

interact with one another through, and are managed
by, a so-called “software bus” [10], of which a proto-
type implementation is described in Section 3. This
interplay is displayed graphically in Fig. 1.

As considered here, a component is a unit of soft-
ware that can be connected to, or detached from, the
overall system, and brings with it a discrete, well-
defined, and circumscribed functionality. In practi-
cal terms, it is a python module (either written in

python or embedded) that follows a few non-intrusive
conventions. The component-based approach has the
advantages that it allows two or more developers to
work in parallel on well-separated tasks, and that it
allows reuse of components from other systems that
have a similar architecture. The initial functionality of
the software bus is provided by the python interpreter
itself. In particular, the interpreter allows for the dy-
namic loading of modules, after which the bus can use
introspection to bind method calls dynamically, and to
manage components throughout their life cycle. The
functionality of the ganga components can be ac-
cessed through a Command-Line Interface (CLI), and
through a Graphical User Interface (GUI), built on
a common Application-Programmer Interface (API).
All actions performed by the user through the GUI

TUCT002



Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California 3

can be invoked through the CLI, allowing capture of
a GUI session in an editable CLI script.

The components can be divided among three cat-
egories: general, application specific, and external.
Further developments will add components as needed.
With reference to Fig. 1, they are discussed below.

2.2. Generally applicable components

Although the first priority is to deal with gaudi

jobs, ganga has a set of core components suitable
for job-handling tasks in a wide range of application
areas. These core components provide implementa-
tions for the job definition, the editing of job options,
the splitting of jobs based on user provided configura-
tion and job templates, and the output collection. In
Fig. 1, these components are shown on the right side
of the software bus.

The job definition characterizes a ganga job in
terms of the following:

• The name chosen as the job’s identifier.

• The workflow (see below) indicating the opera-
tions to be performed when the job is run.

• The computing resources required for the job to
run to completion.

• The job status (in preparation, submitted, run-
ning, completed).

A job workflow is represented as a sequence of el-
ements (executables, parameters, input/output files,
and so on), with the action to be performed by, and on,
each element implicitly defined. Resources required to
run a job, for example minimum CPU time or mini-
mum memory size, are specified as a list of attribute-
value pairs, using a syntax not tied to any particu-
lar computing system. The job-definition component
implements a job class, and classes corresponding to
various workflow elements.

Other ganga components of general applicability
performing operations on, for, or using job objects:

• A job-registry component allows for the storage
and recovery of information for job objects, and
allows for job objects to be serialized.

• A script-generation component translates a job’s
workflow into the set of (python) instructions to
be executed when the job is run.

• A job-submission component takes care of sub-
mitting the workflow script to a destination indi-
cated by the user, creating Job Description Lan-
guage (JDL) files where necessary, and trans-
lating the resource requests into the format ex-
pected by the target system (European Data-
Grid (EDG), GridPP grid, US-ATLAS testbed,
local PBS queue, and so on).

• A file-transfer component handles transfers be-
tween sites of job input and output files, this
usually involving the addition of appropriate
commands to the workflow script at the time
of job submission.

• A job monitoring component keeps track of job
status, and allows for user-initiated and sched-
uled status queries.

2.3. User group specific components

Ganga can be optimized for a given user group,
through the addition of application-specific compo-
nents. For the current user groups, Atlas and LHCb,
specialized components exist that incorporate knowl-
edge of the gaudi framework:

• A component for gaudi job definition adds
classes for workflow elements not dealt with
by the general-purpose job definition compo-
nent. For example, applications based on gaudi

are packaged using a configuration management
tool (cmt) [11], which requires its own work-
flow elements. Also, this component provides
workflow templates covering a variety of com-
mon tasks, such as simulating events and run-
ning an analysis on some dataset.

• A component for gaudi job-options editing al-
lows selection of the algorithms to be run and
modification of algorithm properties.

• A component for gaudi job splitting allows for
large jobs to be broken down into smaller sub-
jobs, for example by examining the list of input
data files and creating jobs for subsets of these
files.

• A component for gaudi output collection
merges outputs from sub-jobs where this is pos-
sible, for example when the output files contain
data sets like histograms and/or ntuples.

Specialized components for other application areas
are readily added. The subdivision into general and
specialized components, and the grouping together
of specialized components dedicated to a particular
problem domain, allows new user groups to identify
quickly the components that match their needs, and
will improve ganga stability.

2.4. External components

The functionality of the components developed
specifically for ganga is supplemented by the func-
tionality of external components. These include all

TUCT002



4 Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

modules of the python standard library, and also non-
python components for which an appropriate inter-
face has been written. Two components of note in
the latter category, both interfaced using boost [12],
allow access to the services of the gaudi framework it-
self, and to the full functionality of the root analysis
framework [13].

3. PYTHON SOFTWARE BUS

3.1. Functionality

To first order, the software bus functionality re-
quired by ganga is provided by the python inter-
preter itself. The main features not offered by the
interpreter, but nevertheless desirable are:

• Symbolic component names

Python modules are loaded on the basis of
their names, which are mapped one-to-one onto
names in the file system, sometimes including
(part of) the directory structure. Components
should, instead, be loaded on the basis of the
functionality that they promise.

• Replacing a connected component

This is different from the standard reload func-
tionality, which loads a new version of a current
module and doesn’t rebind any outstanding ref-
erences. A component, however, may need to
be completely replaced by another component,
meaning that the latter must be reloaded deep,
and references into the old component must be
replaced by equivalent references into the new
component, wherever possible.

• Disconnecting components

A standard python module does not get un-
loaded until all outstanding references disap-
pear. This is common behavior in many off-
the-shelf component architectures. However, it
should be possible to propagate the unloading
of a component through the whole system, al-
lowing for more natural interactive use.

• Configuration and dependencies

Since python modules simply execute python
code, their configuration and dependencies are
usually resolved locally. Components should
be able to advertise their configurable param-
eters and their dependencies, such that it is also
possible to manage the configuration externally
and/or globally.

The software bus should also support a User Inter-
face Presentation Layer (UIPL), through which the
configuration, input and output parameters, and func-
tionality of components can be connected to user in-
terface elements. The bus inspects the component for

presentable elements, including (if applicable) their
type, range, name, and documentation. It subse-
quently requests the user interface to supply elements
that are capable of providing a display of and/or in-
teraction with each of the parameters, based on their
type, range, etc. Both the interface element and the
component should then be hooked through the UIPL.

For example, assume that a configuration param-
eter of a component is of a boolean type. This pa-
rameter can then map onto e.g. a checkbox in a GUI.
The bus requests the GUI to provide a display of the
boolean value, gets a checkbox in return, and it sub-
scribes the checkbox to a value holder in the UIPL. It
also subscribes itself to the value holder. Changes by
the checkbox, changes the value in the value holder,
which in turn causes a notification to the bus, which
sets the value in the component.

Mapping through an UIPL has the advantages that
simple user interfaces can be created automatically,
and more sophisticated user interfaces can be rela-
tively easily peeled off and replaced, since they never
access the actual underlying component directly.

3.2. The PyBus prototype

A prototype of a software bus (pybus) has been
written to explore the possibilities for implementing
the above features in a user-level python module,
rather than in a framework. That is, pybus is a client
of the python interpreter and does not have any priv-
ileges over other modules. This means that compo-
nents written for pybus will act as components when
used in conjunction with the bus, or as python mod-
ules when used without. Conversely, python modules
that were not written as pybus components can still
be loaded and managed by the software bus, assum-
ing that they adhere to standard python conventions
concerning privacy and dependencies.

When a user connects a component to pybus in or-
der to make it available to the system, he or she can
load it using the logical, functional, or actual name.
Components that are available to pybus must be reg-
istered under logical names, optionally advertising un-
der functional names the public contracts that they
fulfill (their “interfaces,” but note that python does
not explicitly support interfaces in the sense of Java
or C++). If a component is not registered, it can only
be connected using its actual name, which is the name
that would be used in the standard way of identifying
a python module. Unlike the actual name, which has
to be unique, the logical name and functional names
may be claimed by more than one component. Py-

bus will choose among the available components on
the basis of its own configuration, a priority scheme,
or a direct action from the user.

In the process of connecting a module, pybus will
look for any conventional parameters (starting with

TUCT002



Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California 5

“PyBus ”) in the dictionary of the module that con-
tains the component. These parameters may describe
dependencies, new components to be registered, post-
connect or pre-disconnect configuration, and so on. It
is purely optional for a module to provide any of these
parameters and pybus will use some heuristics if they
are absent. For example, all public identifiers are con-
sidered part of the interface, so that any module can
be connected as if it were a component. The user can
decide the name under which the module should be
connected, which can be any alias that stands in for
the name to be used in the user code, following the
‘as’ option for standard python imports. If no alias is
provided, the logical name is used. Pybus keeps track
of these aliases.

Pybus allows components to be replaced. In or-
der to do this, it uses the garbage collection and
reference-counting information of the python inter-
preter to track down any outstanding references, and
acts accordingly. Some references, for example those
to variables or instances, are rebound, whereas oth-
ers, for example object instances, are destroyed. Dis-
connecting a component is rather similar to replacing
it, with the only exception that no references are re-
bound: all are destroyed.

Python allows user modules to intercept the import-
ing of other modules, by replacing the import hook.
This mechanism allows the pybus implementation to
bookmark those modules that are imported during the
process of connecting a component, and thus manage
component dependencies. When disconnecting a com-
ponent, the modules that it loaded are not automati-
cally removed, since the interpreter itself holds on to
a reference to them, even after all user-level modules
are unloaded. There is no real reason to force the
unloading of standard modules, but if the modules
are components that are connected to pybus, their
unloading is mandatory. When a new component is
loaded, which in turn loads other components, then
pybus needs to resolve the lookup of those compo-
nents anew: these dependent components may have
changed, or different components may be chosen this
time around, for a variety of reasons.

The implementation of the prototype of a software
bus has been mostly successful. The are a few issues
left for embedded components, but for pure python
components it has been shown that it is possible to
implement the component architecture features miss-
ing in the python interpreter with a user-level python
module.

4. THE FIRST RELEASE

4.1. Overview of functionality

The ganga design, including possibilities for cre-
ating, saving, modifying, submitting and monitoring

jobs, has been partly implemented and released. The
tools implemented should be suitable for a wide range
of tasks, but we have initially focused on running one
type of job for Atlas and one type of job for LHCb, fo-
cusing on the atlfast [14] fast simulation in the case
of the former, and the davinci [15] analysis in the
case of the latter. Optimization for other types of ap-
plications essentially means creating more templates,
which is a straightforward procedure. The current
release allows jobs to be submitted to the European
DataGrid, and to local PBS and LSF queues. Com-
munication between components in the prototype is
via the python interpreter, with the sophistication of
pybus to be added later.

The first release does not yet fulfill all requirements,
but it already helps the user to perform a number of
tasks that otherwise would have to be done manually.
For example, the creation of JDL files necessary for job
submission to the EDG Testbed, and the generation
of scripts to submit jobs to other batch systems, has
been automated.

Most parameters relevant for gaudi-based jobs
have reasonable default values, so that a user only
has to supply minimal information to create and con-
figure a new job. Existing jobs can easily be copied,
renamed, and deleted. When a job is created, it is pre-
sented as a template that can be edited by the user.
After making the proper modifications, the user can
submit the job for execution with a single command.
If the generated scripts and job-options files need to
be verified before submission, the user can perform the
job set up with the configure command. Job splitting
is achieved through loading and executing a splitter
script, with support for both default and user scripts.

When a job is submitted, ganga starts to monitor
the job state by periodically querying the appropriate
computing system. This process can be stopped or
started manually at any time.

When a job is running, it can be killed, if so de-
sired. On job completion, the output is automatically
transferred to a dedicated output directory or to any
other location described in the job output files.

Below, we give details of the ganga’s current job-
handling capabilities and the main graphics features:
the GUI and the job-options editor.

4.2. Core, application and job handlers

The job registry (described in 2.2) keeps records,
in the form of metadata, about all user jobs. It also
allows operations on jobs, such as job creation, con-
figuration, submission, termination, and provides the
job monitoring service. For job serialization, the reg-
istry uses a job catalogue, which in turn maintains the
information about all saved jobs etc.

Each user job is represented by an instance, which
contains information about the job state, and refer-

TUCT002



6 Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

Figure 2: Screenshot showing the general layout of the ganga GUI.

ences to the requirements, application and handler
objects. The specific steps required for job configu-
ration, submission, and monitoring, which differ for
each computing system, are delegated to a job han-
dler.

In order to complete a step, the handler uses the
requirements, which are common by design, and it
adds its own attributes that are relevant for the par-
ticular computing system. Examples of common re-
quirements are minimal size of physical memory or
minimal size of available disk space, examples of spe-
cific attributes are queue time limits and bookkeeping
accounts. For job monitoring, the handler provides
information about the job state that is system depen-
dent. ganga currently has components containing
job handlers to work with the local computer, a local
PBS or LSF batch system, or the EDG.

In the ganga design, a distinction is made between
“jobs” and “applications,” in order to have the possi-
bility to run the same application on different comput-
ing systems. An application in ganga terminology
represents a computer program that the user wants
to execute (the executable), together with any nec-
essary configuration parameters, required input, and
expected output files. The executable is specified by
image location, name, and version. Application pa-
rameters, which may be files, include a type descrip-
tion with the actual value. The input and output files

are described by their name and (desired) locations.
Methods are available to get them from their stor-
age location, and to transfer files to and from worker
nodes, tailored to each of the supported computing
systems. In ganga there is currently support for
the local system copy command, the gridftp transfer
protocol, and the EDG sandboxes mechanism. The
transfer method is set up automatically by the job
handler during the configuration of a job. An inter-
face to the EDG Replica Catalogue to translate logical
file names is also implemented, and future ganga re-
leases will contain more advanced data management
tools to work with the grid.

Like jobs, applications plug into the appropriate ap-
plication handlers based on the type of application.
Currently, ganga offers a generic application handler,
which can be used with types of application, but with
the disadvantage that it provides little help with con-
figuration; a gaudi handler, for use with general ap-
plications written for the gaudi framework; and two
handlers specific to davinci and atlfast.

4.3. Graphical user interface

The GUI, like the rest of Ganga, is implemented
in python, and makes use of wxPython, the exten-
sion module that embeds the wxWindows platform

TUCT002



Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California 7

Figure 3: Screenshot of ganga, showing one of the windows presented by the job options editor. The example window
is for defining sequences.

independent application framework. wxWindows is
implemented in C++, and is a layer on top of the na-
tive operating and windowing system. The design of
the GUI is based on a mapping of major ganga core
classes – jobs, applications, files, and so on – onto the
corresponding GUI classes. These classes (GUI han-
dlers) add the hooks necessary to provide interaction
with the graphical elements of the interface, on the
top of the functionality of the underlying core classes.
The GUI component also includes some ganga spe-
cific extensions of standard wxWindows widgets (di-
alogues, panels, list and tree controls).

The basic display of the ganga GUI is shown in
Fig. 2. The layout of the window consists of three
main parts: there is a tree control on the left that dis-
plays job folders, which themselves may be folders, in
their respective states. There is a multi-purpose panel
on the right, which facilitates many displays (see also
Fig. 3), and which in Fig. 2 consists of a list control.
Finally, there is an embedded python shell (pycrust,
itself designed for use with wxPython).

With the advanced (expert) view option on, the job
folders, in the tree of job states, display a hierarchy
of all job-related values and parameters. The most
important values are brought to the top of the tree,
less important ones are hidden in the branches. The
normal (user) view stops at the level of jobs and gives

access to the most important parameters only. The
user can also choose to hide the tree control com-
pletely. The list control displays the content of the
selected folder in the job tree. With a double mouse
click it is possible to edit most of the values shown
in this control list. The lower part of the frame is
reserved for the python shell, which doubles as a log
window. The shell does not only allow the execution
of any python command, but it also permits access to,
and modification of, any GUI widget. The shell, too,
can be hidden if desired.

Actions on jobs can be performed through a menu,
using a toolbar, or via pop-up menus called by a right
click in various locations.

When the monitoring service is switched on, jobs
move automatically from one folder to another as their
states evolve. To avoid delays in the program response
to the user input, the monitoring service runs on its
own thread. It posts customized events whenever the
state of a job changes and the display is to be up-
dated. For GUI updates not related to job monitoring,
ganga handles the standard update events posted by
the wxWindows framework.

TUCT002



8 Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4.4. Job-options editor

The job-options editor (joe) has been developed
in the context of the work on atlfast, and allows
the user to customize atlfast jobs from within the
ganga environment.

The main features of joe are summarized as follows:

• Joe, through its GUI (Fig. 3), assists the user
in customizing atlfast job options from within
ganga. This helps to eliminate human errors
arising from incorrectly spelt options/values and
incorrect syntax.

The user can define sequences/lists (e.g.
TopSequence, Generator.Members, Applica-
tionMgr.DLLs, etc.) by enabling/disabling en-
tries and arranging them in any desired se-
quence. Currently, there are no restrictions
placed on these user-defined sequences for them
to be meaningful.

Joe incorporates an option-type aware user
interface presentation selector that essentially
chooses the correct presentation format at run-
time (e.g. drop-down menus for discrete choice
options, arbitrary value entry for simple choice
options, value appending for list-type options,
etc.) for individual job options based on their
attributes/characteristics.

• Job option settings for commonly performed
jobs may be saved and reused. This saves the
user the work of re-entering option values for
subsequent jobs, especially if only minor mod-
ifications are needed. With default values for
options built-in, the user is able to revert to the
default settings when required.

• Once all the options have been set, the preview
function allows the user to check that the cre-
ated script is as required.

• In accordance with the basic ganga require-
ments, all functionality of the editor is available
on the python command line without the GUI
(not without a certain degree of visual incon-
venience of course). Users and developers alike
can make use of this API.

Since the current version of joe is very basic, im-
provements are in the pipeline:

• The editor is to be decoupled from the atl-

fast application handler and made available to
be used in a generic gaudi environment. A
generic editor can be used to perform job-option
customization of full simulation, reconstruction
and analysis jobs. To make this possible, the
editor’s dependence on hard-coded python data
structures must be removed and replaced with
a database that can be queried.

• Option attributes that enable joe to dynam-
ically choose appropriate presentation formats
for individual job options are currently hard-
coded into the data structure referred to above.
Future versions will attempt to make deductions
about job option attributes at run-time.

• With the foreseen decline in the use of text-
based options files, the editor will support the
creation of python scripts instead.

• Editable previews of options files, to allow the
user to make last minute changes.

• The move from atlfast to full simulation and
reconstruction will see at least a tenfold increase
in the number of configurable job options. It
will not be useful to display all options indis-
criminately; some form of information hiding is
required.

The “Favorite-options first” feature will further
speed up the user’s task of job-options modi-
fications by placing frequently used options at
the top of the list and perhaps hide the not so
frequently used ones.

• Although rudimentary option-value checks are
performed, the more important range checking
is not yet available. This feature requires per-
mitted ranges (i.e. sensible values) of individual
options to be attributes of individual options.

Joe showcases the extensibility of the ganga user
interface. Future extensions can be developed and
incorporated in the same way.

5. OUTLOOK

The first release of the ganga package has been
made available, and user feedback is being collected
from both Atlas and LHCb collaborators. The de-
velopment schedule laid out for the remainder of cal-
endar year 2003 is targeted at providing a product
to satisfy requirements for the Atlas and LHCb data
challenges. Cooperation and integration with existing
projects (ask [16], atcom [17], dirac [18], dial [19])
is foreseen in order to meet in time these requirements.
The ganga project will then continue to keep pace
with and adapt to the ever-evolving grid middleware
services.

Acknowledgments

This work was partly supported by the Office of
Science. High Energy Physics, U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.

TUCT002



Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California 9

References

[1] Atlas Collaboration, “Atlas - Technical Pro-
posal”, CERN/LHCC94-43, CERN, December
1994.

[2] LHCb Collaboration, “LHCb - Technical Pro-
posal”, CERN/LHCC98-4, CERN, February
1998.

[3] LHC Study Group, “The LHC conceptual de-
sign report”, CERN/AC/95-05, CERN, October
1995.

[4] P. Mato, “GAUDI - Architecture design docu-
ment”, LCHb-98-064, CERN, November 1998;
http://cern.ch/lhcb-comp/Frameworks

/Gaudi
[5] http://atlas.web.cern.ch/Atlas/GROUPS

/SOFTWARE/OO/architecture/General
[6] http://ganga.web.cern.ch/ganga
[7] http://www.globus.org
[8] http://cern.ch/eu-datagrid
[9] G. van Rossum and F. L. Drake, Jr. (eds.),

“Python Reference Manual”, Release 2.2.2,
PythonLabs, October 2002;
http://www.python.org

[10] P. Mato et al., “SEAL: Common core libraries

and services for LHC applications”, these pro-
ceedings.

[11] http://www.cmtsite.org
[12] http://www.boost.org
[13] R. Brun, F. Rademakers, and S. Panacek,

“ROOT, an object-oriented data analysis frame-
work”, CERN/2000-013, CERN, 2000;
http://root.cern.ch

[14] E. Richter-Was, D. Froidevaux, and L. Poggioli,
“ATLFAST 2.0 a fast simulation package for AT-
LAS”, ATL-PHYS-98-132, CERN, 1998;
http://www.hep.ucl.ac.uk/atlas/atlfast/

[15] http://cern.ch/lhcb-comp/Analysis/
[16] W. T. L. P. Lavrijsen, “The Athena Startup Kit”,

these proceedings.
[17] V. Berten, L. Goossens, C. L. Tan, “ATLAS

Commander: an ATLAS production tool”, these
proceedings.

[18] A. Tsaregorodtsev et al., “DIRAC - Distributed
Implementation with Remote agent Control”,
these proceedings.

[19] D. Adams et al., “DIAL - Distributed Interactive
Analysis of Large datasets”, these proceedings.

TUCT002

http://cern.ch/lhcb-comp/Frameworks
http://atlas.web.cern.ch/Atlas/GROUPS
http://ganga.web.cern.ch/ganga
http://www.globus.org
http://cern.ch/eu-datagrid
http://www.python.org
http://www.cmtsite.org
http://www.boost.org
http://root.cern.ch
http://www.hep.ucl.ac.uk/atlas/atlfast/
http://cern.ch/lhcb-comp/Analysis/


This figure "GangaScreen1.png" is available in "png"
 format from:

http://arxiv.org/ps/cs/0306085v1

http://arxiv.org/ps/cs/0306085v1


This figure "GangaScreen2.png" is available in "png"
 format from:

http://arxiv.org/ps/cs/0306085v1

http://arxiv.org/ps/cs/0306085v1



