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Neural processing of itch

Tasuku Akiyama, Ph.D. and E. Carstens, Ph.D.
University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields
Avenue, Davis, California 95616

Abstract
While considerable effort has been made to investigate the neural mechanisms of pain, much less
effort has been devoted to itch, at least until recently. However, itch is now gaining increasing
recognition as a widespread and costly medical and socioeconomic issue. This is accompanied by
increasing interest in the underlying neural mechanisms of itch, which has become a vibrant and
rapidly-advancing field of research. The goal of the present forefront review is to describe the
recent progress that has been made in our understanding of itch mechanisms.

1. Introduction
Itch and pain are defined as “an unpleasant cutaneous sensation which provokes the desire to
scratch” (Rothman, 1941) and “unpleasant sensory and emotional experience associated
with actual or potential tissue damage” (McCracken et al., 2004), respectively. Itch and pain
are similar in that they signal the organism of potentially dangerous stimuli, and are
associated with protective motor responses. Itch and pain might share a common pathway,
based on following observations. 1) Both sensory qualities are transmitted via spinothalamic
tract. 2) Itch is absent in patients congenitally insensitive to pain. 3) Light touch surrounding
a region of itch or pain elicits a sensation of itch (alloknesis) or pain (allodynia),
respectively. 4) Many spinal neurons respond to both pruritic and algesic stimuli. 5) Brain
imaging studies have revealed considerable overlap in areas that are active during itch or
pain, such as prefrontal areas, supplementary motor areas (SMA), premotor cortex, anterior
insular cortex, anterior midcingulate cortex, primary (S1) and secondary (S2) somatosensory
cortices, thalamus, basal ganglia, and cerebellum (Pfab et al., 2012). However, itch and pain
differ on a number of points. Firstly, itch-inducing stimuli typically elicit scratching to
remove an irritant from the skin surface or to dig out parasites invading the skin, whereas
algogenic stimuli typically elicit withdrawal of the stimulated body area away from the
stimulus, and/or other integrated escape or aggressive motor responses. Secondly, pain is
attenuated by μ-opioids which can elicit or exacerbate itch (Staender and Schmelz, 2006).
Conversely, μ-opioid antagonists suppress itch (Heyer et al., 1997) while sometimes
inducing hyperalgesia (Levine et al., 1978; Gracely et al., 1983). Thirdly, painful
counterstimuli (scratch, cold, heat) inhibit itch. These differences have been used to
differentiate between itch and pain in animal models (Shimada & LaMotte, 2008; Akiyama
et al., 2010a; LaMotte et al., 2011) (see section 3). Fourthly, while pain occurs on the body
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surface as well as in deep tissues (e.g. muscle, joints, or inner organs), itch only occurs at the
body surface of the body including skin, cornea, and other mucosal surfaces.

Itch (pruritus) is distinguished as acute or chronic, with the latter defined as pruritus lasting
more than 6 weeks (Staender et al., 2007). Chronic pruritus is associated with inflammatory
skin diseases as well as systemic diseases and has been classified by several groups. An
early classification scheme was based on the origin of itch (Twycross et al., 2003). Later, in
2007, the International Forum for the Study of Itch (IFSI) proposed a clinically-oriented
classification scheme (Ständer et al., 2007) consisting of 6 categories: 1) Dermatological
(atopic dermatitis, psoriasis, etc.), 2) Systemic (kidney dialysis, liver cholestasis, etc.), 3)
Neurological (postherpetic neuralgia, etc.), 4) Psychogenic (e.g., delusional parasitosis), 5)
Mixed (overlapping and coexistence of several diseases) and 6) others (undetermined
origin). Epidemiological data for each classification of chronic pruritus have been reported
by various groups. Among patients with atopic dermatitis, 83–87% reported daily itch
(Yosipovitch et al., 2002, Chrostowska-Plak et al., 2009). The incidence of patients with
psoriasis reporting itch was 64–85% (Yosipovitch et al., 2000, Sampogna et al., 2004,
Prignano et al., 2009). Between 22–90% of haemodialysis patients suffered from uremic itch
(Feramisco et al., 2010). In a large epidemiological study of 18,801 hemodialysis patients,
moderate to extreme itch was experienced by 42% (Pisoni et al., 2006). The prevalence of
itch in primary biliary cirrhosis was variable, ranging from 25–70% (Rishe et al., 2008). Of
patients with hepatitis C, 24% reported having itch (Bonacini, 2000). The prevalence of
pruritus at 2 years following burn injury was 73% (Carrougher et al., 2013) while another
study reported that 87% of burn survivors experience itch on a daily basis (Laura et al.,
2012). The prevalence of shingles-associated itch is 17–58% (Oaklander et al., 2003).
Among psychiatric inpatients, 36–42% reported idiopathic itch (Kretzmer et al., 2008,
Mazeh et al., 2008). Overall, the incidence of chronic itch is high under a variety of different
conditions. A population-based cohort study revealed that one out of four people experience
chronic itch during their lifetime (Matterne et al., 2013). While the economic costs of
chronic pain have been estimated as $560–635 billion per year in the US (Institute of
Medicine of the National Academies, 2011), the exact economic costs of chronic itch have
not been estimated. NIAMS reported that direct costs of chronic itch (atopic dermatitis) may
exceed $3 billion per year (NIAMS, 2009). Considering the high incidence of chronic itch
under many different conditions, the economic costs of chronic itch are likely to be much
higher. Treatment is challenging, with no current universally accepted therapy for itch (Patel
and Yosipovitch, 2010). Although some topical and systemic antipruritic drugs are
available, the optimal therapy is not easy to classify due to a lack of knowledge about the
mechanisms underlying the various sub-types of itch (Steinhoff et al., 2011).

Pain pathways have been investigated extensively. The spinal cord plays a central role,
receiving ascending sensory input from peripheral afferents as well as descending input
from supraspinal modulatory curcuits that include the periaqueductal gray (PAG) and rostral
ventromedial medulla (RVM) (Basbaum et al., 2009, Heinricher et al., 2009, Dubin and
Patapoutian, 2010). In contrast to pain, there have been until recently few studies of the
spinal processing and modulation of itch, despite the fact that chronic itch is difficult to treat
and can significantly reduce the quality of life as much as chronic pain. Recent studies
indicate that itch appears to be transmitted by subsets of spinal nociceptive neurons (see
below). Thus, a better understanding of basic mechanisms of itch will not only lead to novel
mechanisms-based strategies to treat itch, but will also move forward our understanding of
pain signaling.

2 Pruritogens
A list of pruritogens is shown in table 1.

Akiyama and Carstens Page 2

Neuroscience. Author manuscript; available in PMC 2014 October 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.1. Amines
Histamine is one of the best-evaluated itch mediators. Histamine produces itch accompanied
by skin reactions (wheal and flare) in humans (Lewis, 1927; Weisshaar et al., 1997, Hosogi
et al., 2006). Intradermal injection of histamine elicits scratching in most strains of mice
(Inagaki et al., 1999, Han et al., 2006b). Histamine in the same dose range elicited little or
no scratching in Sprague-Dawley rats (Thomsen et al., 2001; Jinks & Carstens, 2002),
except at a high dose that elicited both hindlimb scratching and forelimb wiping following
cheek injection (Klein et al., 2011) that may reflect both itch and pain (see section 3).
Histamine type 1 and type 4 receptors are involved in histamine-evoked itch (Inagaki et al.,
1999, Rossbach et al., 2009). Phospholipase Cβ3, which is downstream of Gq/G11 coupled
with the histamine type1 receptor, is activated by histamine and contributes to itch (Han et
al., 2006b). 5-HT is another amine showing pruritogenic activity. When applied
iontophorecally in humans, 5-HT provokes itch accompanied by flare (Weisshaar et al.,
1997, Hosogi et al., 2006). Intradermal injection of 5-HT evokes scratching in rodents via
the 5-HT2 receptor (Yamaguchi et al., 1999, Thomsen et al., 2001; Jinks & Carstens, 2002;
Nojima and Carstens, 2003a).

2.2. Proteases and tethered ligands
Protease-activated receptors (PARs) are activated by protease-induced cleavage of part of
the extracellular domain that acts as a tethered ligand. PARs have been identified in afferent
nerves (Steinhoff et al., 2000, Steinhoff et al., 2003) and their role in hyperalgesia and itch
has received considerable attention. Cowhage spicules from the bean plant, Mucuna
pruriens, have long been known to induce itch (Arthur & Shelley, 1955). The active
component is mucunain, a cysteine protease, which acts at PAR-2 and PAR-4 subtypes to
produce itch (Reddy et al., 2008). Cowhage spicules elicit histamine-independent itch with
little or no accompanying flare (Johanek et al., 2007, Sikand et al., 2009). Tryptase, a serine
protease, is stored in mast cell granules and activates PAR-2. Intradermal injection of
tryptase elicits scratching in mice (Ui et al., 2006). Tethered ligands, such as SLIGRL
(agonist of PAR-2) and AYPGKF (PAR-4 agonist) are also known to elicit scratching in
mice, but not rats (Klein et al., 2011). Interestingly, a recent study reported that SLIGRL
elicited scratching via Mas-related G-protein-coupled receptors C11 (MrgprC11) rather than
PAR-2 (Liu et al., 2011a). Moreover, cathepsin S cysteine protease cleaves PAR-2 and
PAR-4 as well as MrgprC11 to produce itch (Reddy et al., 2010 Reddy et al., 2013).

2.3. Neuropeptides
Substance P (SP) produces itch in humans as well as scratching in mice (Hagermark et al.,
1978, Andoh and Kuraishi, 1998a, Andoh et al., 2001, Andoh and Kuraishi, 2003). In
human skin, substance P liberates histamine through mast cell degranulation (Hagermark et
al., 1978). In mice, SP elicits scratching through a direct action on primary sensory neurons,
as well as by release of NO and leukotriene B4 (LTB4) from keratinocytes, rather than mast
cell degranulation (Andoh and Kuraishi, 1998a, Andoh et al., 2001, Andoh and Kuraishi,
2003). Intradermal injection of endothelin-1 (ET-1) elicits itch accompanied by a flare
response in humans (Ferreira et al., 1989, Katugampola et. al., 2000). ET-1 is produced by
mast cells, endothelial cells and keratinocytes in the skin and is a potent pruritogen which
can elicit scratching at low concentration (10–100 pmol/site), implying that ET-1 might act
as an endogenous pruritogen (McQueen et al., 2007, Gomes et al., 2012, Tsugunobu et al.,
2012). ET-1-evoked scratching is mediated by the ETA receptor, but not via TRPV1 or
TRPA1 (McQueen et al., 2007, Jiexian et al., 2011).
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2.4. Lipid mediators
Intradermal injection of platelet activating factor (PAF) induced histamine release through
degranulation of mast cells, contributing to itch accompanied by flare and wheal reactions
(Fjellner and Hagermark, 1985, Petersen et al., 1997, Thomsen et al., 2002). Intradermal
injection of PAF elicits scratching in rats (Thomsen et al., 2001). Lysophosphatidic acid
(LPA) elicits scratching through mast cell degranulation and/or a Rho/Rho-associated
protein kinase (ROCK)-mediated pathway (Hashimoto et al., 2004). LPA produced by
autotaxin may contribute to pruritus of cholestasis (Kremer et al., 2012).

Leukotriene B4 (LTB4), a 5-lipoxygenase metabolite, is increased in the skin in an atopic
dermatitis mouse model (Andoh et al., 2011a). Intradermal injection of LTB4 elicits
scratching in mice through the LTB4 receptor-1 (BLT1) receptor (Andoh and Kuraishi,
1998b, Andoh and Kuraishi, 2005), while 12-lipoxigenase metabolites elicit scratching via
the LTB4 receptor-2 (BLT2) receptor (Dae-Kwon et al., 2007, Kim et al., 2008a). LTB4 is a
downstream mediator of scratching evoked by SP as well as sphingosylphosphorylcholine
(SPC) (Andoh et al., 2009). SPC is increased in the stratum corneum of patients with atopic
dermatitis (Okamoto, 2002) and elicits scratching through a Rho/ROCK-mediated pathway
(Kim et al., 2008b). Thromboxane A2, a cyclooxygenase metabolite, is synthesized by
keratinocytes (Andoh et al., 2007). Intradermal injection of a stable analogue of
Thromboxane A2 elicits scratching through the thromboxane (TP) receptor expressed in
nerve fibers as well as keratinocytes (Andoh et al., 2007).

2.5. Cytokines
Intradermal injection of interleukin-2 (IL-2) elicits transient weak pruritus in healthy
humans as well as atopic dermatitis patients (Wahlgren et al., 1995, Darsow et al., 1997).
IL-31 is produced by T helper type 2 cells and is overexpressed in pruritic skin compared
with non-pruritic skin (Sonkoly et al., 2006). Thus, IL-31 is a promising endogenous
pruritogen in inflammatory skin diseases, in particular atopic dermatitis. Injection of IL-31
elicits scratching through a heterodimeric receptor composed of IL-31 receptor A (IL-31RA)
and oncostatin M receptor (OSMR) (Dillon et al., 2004).

2.6. Mrgpr agonists
Mrgprs consist of over 50 members, in which MrgprAs, MrgprB4-5, MrgprC11 and MrgprD
are restricted to small diameter dorsal root ganglion (DRG) neurons in mice (Dong et al.,
2001) and are involved in histamine-independent itch. Chloroquine, the bovine adrenal
medulla peptide 8-22 (BAM8-22), and β-alanine elicited itch-related scratching through
MrgprA3, MrgprC11, and MrgprD, respectively, in mice (Liu et al., 2009, Liu et al., 2012a),
and all compounds elicit itch in humans (Abila et al., 1994, Sikand et al., 2011, Liu et al.,
2012a). The precursor of BAM8-22, proenkephalin A, is expressed in fibroblasts and
keratinocytes (Slominski et al., 2011). This expression is increased under pathological
conditions, such as psoriasis, and may contribute to chronic itch.

2.7. Uncategorized
Compound 48/80 is known as a mast cell degranulating agent and elicits itch in humans as
well as rodents (Inagaki et al., 2002, Roman et al., 2002). Compound 48/80-evoked itch is
mediated through mast cell degranulation as well as a mast cell-independent pathway, such
as direct activation of capsaicin-sensitive primary sensory neurons (Eglezos et al., 1992,
Inagaki et al., 2002).

The pruritogenic activity of bile acids has been debated. A recent study reported that bile
acids selectively act at the G-protein-coupled bile acid receptor-1, also known as TGR5,
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expressed in small size sensory neurons, to elicit itch (Kirby et al., 1974, Alemi et al.,
2013a). This mechanism could contribute to itch in patients with cholestatic liver diseases.

Oxidative stress, which occurs during many pathophysiological conditions such as
inflammation, elicits pain as well as itch through TRPA1 (Andersson et al., 2008, Tong and
Ru-Rong, 2012).

Toll-like receptors (TLRs) are important for innate immunity. One member, TLR7, is
expressed in small size sensory neurons and its agonist, imiquimod, elicits scratching
through the activation of TLR7 as well as the inhibition of background (K2P) and voltage-
gated (Kv1.1 and Kv1.2) potassium channels (Liu et al., 2010a, Kim et al., 2011, Lee et al.,
2012).

3. Animal models of itch
The close association between itch and scratching has led to the use of scratching behavior
as a readout of itch in most animal models. However, itch may also be associated with other
behaviors such as biting or licking the itchy area. These models are discussed, below.

3.1. Rostral back model
Intradermal injection of itch mediators into skin in the rostral back (nape of the neck) in
mice and rats elicits bouts of hindlimb scratches directed to the injection site (Kuraishi et al.,
1995). Scratch bouts consist of one or more rapid back-and-forth hindpaw motions with the
toe claws contacting the site of itch, at a rate of ~12 Hz in mice and ~8 Hz in rats, and
lasting approximately 0.5–2 sec (Cuellar et al., 2003, Nojima and Carstens, 2003b; Klein et
al., 2011). Scratching is typically quantified as the number or cumulative duration of scratch
bouts over time. Because of the constant within-bout scratch frequency, there have been
various attempts to automate counts of scratch bouts, based on cage vibration (Brash et al.,
2005), magnetic induction (Elliott et al., 2000; Inagaki et al., 2003; Marino et al., 2012),
high speed vision (Nie et al., 2009) or scratch sounds (Umeda et al., 2006) with fairly good
concordance between automated and direct visual assessments. Attempts have also been
made to automate the assessment of scratching in humans as an additional outcome measure
of chronic itch (e.g., (Talbot et al., 1991; Benjamin et al., 2004, Murray and Rees, 2011).

3.2. Cheek model
In the rodent rostral back model, hindlimb scratches are the only biomechanically available
motor response that can be directed toward the site of itch since the forepaws cannot access
this skin location. Thus, hindlimb scratching might reflect other sensations in addition to
itch. In contrast, animals can readily access the face with both hindpaws and forepaws.
Intradermal microinjection of histamine in the cheek of mice elicited hindlimb scratch bouts
directed toward injection site, whereas microinjection of capsaicin elicited singular forelimb
wiping motions directed caudo-rostrally across the cheek injection site (Shimada and
LaMotte, 2008; Akiyama et al., 2010c, a). Thus, this “cheek” model appears to distinguish
between chemical stimuli that elicit itch vs. pain in humans (LaMotte et al., 2011). The
parameters of hindlimb scratching were similar between the rostral back and cheek models
in mice and rats (Akiyama et al., 2010a; Klein et al., 2011). Forepaw wipes were singular
and of much shorter duration (Akiyama et al., 2010a, Klein et al., 2011). The μ-opioid
ligands are useful tools to distinguish between itch and pain. The μ-opioid agonist morphine
inhibited wiping but not scratching, while the μ-antagonists naltrexone or naloxone inhibited
scratching but not wiping, respectively (Akiyama et al., 2010a, Spradley et al., 2012a). This
is further evidence that the cheek model can discriminate between itch and pain. The cheek
model has the added advantage that behavior can be correlated with responses of trigeminal
subnucleus caudalis (Vc) neurons elicited by identical cheek stimuli (Akiyama et al., 2010c).
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There may be differences in sensory responses elicited by stimulation of facial skin vs. skin
of the lower body (Hunt and Mantyh, 2001, Dussor et al., 2008). The cheek appears to be
less sensitive to certain itch mediators compared to the rostral back (Bay et al., 2009), and
rats exhibited fewer scratch bouts when 5-HT was delivered to the cheek compared to rostral
back (Spradley et al., 2012c). Thus, caution is warranted in estimating the potency of
chemically-evoked behavioral responses between the cheek and rostral back models.

3.3. Hindpaw/calf models
Intradermal injection of 5-HT in the mouse hindpaw elicited biting behaviors directed to the
injection site, while formalin elicited almost exclusively licking behavior (Hagiwara et al.,
1999). Moreover, the 5-HT-evoked biting was suppressed by naloxone, suggesting that it
reflects itch. Mice exhibited enhanced biting of the hindpaw in a model of chronic dry skin
itch, with no change in pain sensitivity (Nojima et al., 2004; Akiyama et al., 2010d).
Spontaneous biting of dry skin-treated hindpaw skin was attenuated by naltrexone but not
morphine (Akiyama et al., 2010d). This suggests that biting is a surrogate for scratching to
relieve itch in the distal extremities of rodents. In this model, licking of the hindpaw was
observed in control mice suggesting that licking is a subtype of grooming behavior
(Akiyama et al., 2010d). It is cautioned that use of the plantar surface may not be ideal to
assess itch or pain due to weight-bearing and locomotion.

Intradermal injection of pruritogens or algogens into hairy skin on the calf of the lower leg
elicits respective biting or licking behaviors that appear to discriminate between itch and
pain (LaMotte et al., 2011). An additional advantage of the hindlimb models is that second-
order spinal cord neurons activated from the distal hindlimb are located in the lumbar spinal
cord and thus readily accessible. However, discrimination between biting and licking
requires high-definition video recording and careful visual analysis at slow playback speed.
Biting involves high-frequency low-amplitude jaw movements compared to the lower-
frequency high-amplitude licking motion of the tongue; these movement parameters may
prove useful in developing automated means to distinguish between these two behaviors.
Thus, we believe that the “calf” model holds great promise for investigating behavioral-
neural correlates of itch.

4. Primary sensory afferents
Itch is mediated by unmyelinated C-fiber afferents as well as thinly myelinated Aδ-fiber
afferents. In microneurographic recordings in humans, mechano-insensitive C-fibers
preferentially respond to histamine but not cowhage (Schmelz et al., 1997, Namer et al.,
2008). In contrast, mechano-sensitive, polymodal C-fibers readily respond to cowhage with
lesser or no responses to histamine in humans and primates (Johanek et al., 2008, Namer et
al., 2008). Thus, cowhage and histamine appear to activate largely separate populations of
C-fibers. While pruritogen-responsive polymodal C-fibers can respond to noxious
mechanical stimuli and thus are not pruritogen-specific, histamine-responsive mechano-
insensitive C-fibers may be pruritogen-specific although most of them additionally respond
to algogens such as capsaicin or bradykinin in humans (Schmelz et al., 2003b). Mechano-
sensitive A-fibers responded more vigorously to cowhage than to histamine, but some
exclusively responded to histamine in monkeys (Ringkamp et al., 2011). C-fibers and Aδ-
fibers may convey two distinct qualities of itch, a slow burning component and a faster
pricking component, respectively (Graham et al., 1951). Local anesthesia by procaine
abolished the slow component without affecting the fast component. Either local pressure-
evoked ischemia or anesthesia by cold produced an area where slow, but not fast, itch was
elicited. However, other studies are inconsistent with these observations. The local
anesthetic, chloroprocaine, enhanced itch following an intradermal injection of histamine
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(Atanassoff et al., 1999). Conduction block of myelinated fibers by nerve compression
reduced pricking as well as burning sensations (Ringkamp et al., 2011).

Murine C fibers have been divided into peptidergic and nonpeptidergic subsets mainly on
the basis of neurochemical criteria, although there is some overlap (Han et al., 2012, McCoy
et al., 2013). The peptidergic neurons typically contain SP and calcotonin gene-related
peptide (CGRP), while nonpeptidergic neurons commonly express the purinergic P2X3
receptor and the plant lectin isolectin B4 (IB4) (Hunt and Mantyh, 2001, Dussor et al.,
2008). Peptidergic and nonpeptidergic neurons exhibit anatomically distinct distribution
patterns in the dorsal horn of the spinal cord as well as in skin. A large subset of
nonpeptidergic neurons expresses MrgprD whose central projections terminate mainly in
inner lamina II (IIi), while peptidergic neurons mainly terminate in lamina I and outer
lamina II (IIo) (Zylka et al., 2005). Within the skin, MrgprD-expressing neurons innervate
the most superficial layer of epidermis, the stratum granulosum, while peptidergic neurons
innervate the underlying stratum spinosum (Zylka et al., 2005). The sensory function of
these two subsets of neurons has been examined and is apparently different. Ablation of
MrgprD-expressing neurons selectively reduced mechanical but not thermal nociception,
even though they respond to noxious thermal and mechanical stimuli and innervate diverse
types of spinal neurons (Cavanaugh et al., 2009, Rau et al., 2009, Wang and Zylka, 2009).
Conversely, a large subset of peptidergic neurons expresses TRPV1 and removal of TRPV1-
expressing neurons results in a reduction in thermal nociception but not mechanical
nociception (Cavanaugh et al., 2009, Rau et al., 2009). Consistent with these observations,
genetic ablation of CGRPα-expressing neurons impaired thermal but not mechanical
nociception (McCoy et al., 2013). Itch is likely to be transmitted by both a unique
population of peptidergic neurons expressing MrgprA3, as well as a small subset of
nonpeptidergic neurons expressing MrgprD. Genetic ablation of CGRPα-expressing neurons
reduced MrgprA3 expression by 70%, and impaired scratching evoked by chloroquine
(MrgprA3 agonist) and histamine (McCoy et al., 2013). Impaired scratching in these animals
is likely attributed to the reduction in MrgprA3-expressing neurons. Genetic ablation of
MrgprA3-expressing neurons attenuated scratch responses to chloroquine, BAM8-22
(MrgprC11 agonist) and histamine without affecting pain behaviors (Han et al., 2012).
MrgprA3-expressing neurons represent a unique population of DRG neurons, with 63% co-
expressing CGRP and IB4 (Han et al., 2012). MrgprA3-expressing sensory neurons are
polymodal nociceptors responding to noxious mechanical and chemical stimuli (Han et al.,
2012). The involvement of nonpeptidergic neurons in itch was reported by Dong et al (Liu et
al., 2012a). The MrgprD agonist, β-alanine, elicited itch in humans and scratching in mice;
the latter was abolished in MrgprD knockout mice. All MrgprD-expressing neurons
exhibited responses to noxious mechanical stimuli. Within this population, about 40%
exhibited responses to β-alanine as well as noxious heat stimuli, while the remainder
responded to neither stimulus. Genetic ablation of neither MrgprA3- nor CGRPα-expressing
neurons affected β-alanine-evoked scratching, implicating the involvement of an additional
supopulation of sensory neurons in β-alanine-elicited itch (Han et al., 2012, McCoy et al.,
2013).

MrgprA3- and MrgprD-expressing neurons that respond to pruritogens are also sensitive to
noxious stimuli. This indicates that most primary afferent pruriceptors are not specifically
responsive only to pruritogens, but additionally respond to noxious stimuli. Consistent with
this, pruriceptors apparently share some of the same signal transduction molecules with
nociceptors. TRPV1 and TRPA1 are responsible for mediating burning pain elicited by
capsaicin and AITC, respectively. TRPV1 knockout mice show deficits in histamine-evoked
scratching (Han et al., 2006a, Imamachi et al., 2009). In contrast, TRPA1 is expressed by a
subset of TRPV1-expressing neurons, and TRPA1 knockout mice exhibited a reduced
scratching responses to chloroquine and BAM8-22 in a histamine-independent manner (Liu
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et al., 2009, Wilson et al., 2011). Thus, histaminergic and non-histaminergic itch pathway
utilize distinct channels, namely TRPV1 and TRPA1, respectively. However, cellular and
molecular mechanisms underlying chloroquine-evoked itch might be more complicated than
previously reported (Than et al., 2013). Phospholipase C (PLC) plays a key role in
intracellular signaling by G-protein-coupled receptors (GPCRs). PLCβ3 contributes to
certain types of itch as well as inflammatory and neuropathic, but not thermal, pain (Xie et
al., 1999, Han et al., 2006a, Joseph et al., 2007, Shi et al., 2008, Imamachi et al., 2009). A
membrane protein expressed in nociceptors, phosphoinositide interacting regulator of TRP
(Pirt)(Kim et al., 2008), binds to phosphatidylinositol (4,5)-bisphosphate (PIP2), TRPV1,
and other ion channels and plays a role in thermal nociception through regulation of TRPV1.
Pirt knockout mice exhibited significant reductions in scratch responses elicited by a variety
of pruritogens (Patel et al., 2011).

5. Spinal Neurotransmitters
5.1. Gastrin releasing peptide (GRP), substance P (SP) and glutamate

The neurotransmitters involved in spinal or trigeminal transmission of itch have recently
come under investigation, with particular emphasis on GRP, SP, and glutamate. Neurotoxic
ablation of neurokinin-1 (NK-1) receptor-expressing neurons in the superficial dorsal horn
of rats attenuated 5-HT-evoked scratching (Carstens et al., 2010), and selective NK-1
antagonists reduced scratching elicited by chloroquine, but not histamine, in mice, implying
a role for SP in non-histaminergic itch (Akiyama et al., 2012c). Neurotoxic ablation of GRP
receptor-expressing neurons in mice attenuated scratching elicited by a variety of
pruritogens without affecting pain-related behaviors (Sun et al., 2009). The GRP receptor is
extensively colocalized with MOR1D in the superficial spinal cord, and antagonism of the
GRP receptor abolished morphine-induced scratching (Liu et al., 2011b), implicating the
GRP receptor in opioid-induced itch. Selective GRP receptor antagonists and knock out of
the GRP receptor partially reduced scratching evoked by chloroquine, but not histamine,
implying a partial role for GRP in non-histaminergic itch (Sun and Chen, 2007, Akiyama et
al., 2012c). Although GRP is expressed in DRG neurons (Sun and Chen, 2007, Liu et al.,
2009, Lagerstrom et al., 2010, Liu et al., 2010b, Akiyama et al., 2012c, Alemi et al., 2013b),
it is still debatable whether GRP is released from central terminals of primary sensory
neurons. MrgprA3-expressing sensory neurons expressed GRP, and their central terminals
made synaptic contact with GRPR-expressing spinal neurons (Liu et al., 2009, Han et al.,
2012). However, recent in vitro studies have shown that GRP-sensitive spinal neurons
utilize glutamate rather than GRP as a neurotransmitter (Koga et al., 2011). GRP staining of
the rhizotomized spinal cord revealed that the majority of GRP is synthesized locally within
the spinal cord (Fleming et al., 2012). Additionally, recent in vitro studies using segments of
spinal cord with attached dorsal roots have shown that pruritogen-evoked release of GRP
was not blocked by pretreatment of capsaicin, which causes depletion of neuropeptides such
as CGRP in the central terminals (Alemi et al., 2013b). Thus, the source of GRP acting to
promote itch transmission within the spinal cord may be from local spinal neuronal circuits,
rather than (or in addition to) release from the intraspinal terminals of non-histaminergic
primary afferent pruriceptors. GRP was reported to be expressed in peripheral nerve
terminals of primary sensory neurons (Tominaga et al., 2009, Kagami et al., 2013,
Nattkemper et al., 2013). Peripheral intradermal injection of GRP elicited scratching through
mast cell degranulation (Andoh et al., 2011b). Serum GRP levels in atopic dermatitis
patients positively correlated with the itch score (Kagami et al., 2013). Thus, expression of
GRP in DRG neurons may reflect a peripheral role of GRP in itch. Moreover, the GRP
receptor (GRPR) is expressed in immune cells, such as macrophages, T-cells and
neutrophils, and contributes to development of inflammatory diseases (Zhou et al., 2011,
Czepielewski et al., 2012). GRP might play a key role in transmission of itch signaling as
well as modulating neuroimmune interactions. Glutamate acting at the AMPA/kainate
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receptor is also a likely candidate for spinal itch transmission (Koga et al., 2011). Synaptic
input to neurons that responded to application of GRP could be blocked with AMPA/kainate
receptor antagonists, suggesting that the prominent primary afferent input to these GRP-
responsive neurons is glutamatergic. Thus, SP, GRP, and glutamate are good targets for
developing novel treatments for itch.

5.2. Nautriuretic polypeptide b (Nppb)
A very recent, striking finding was reported by Mishra and Hoon (2013). Nppb, previously
known to be released upon stretching of cardiomyocytes in the heart, was found to be
expressed in a subset of small diameter sensory neurons that co-express TRPV1, PLCβ3,
and MrgprA3 (Mishra and Hoon, 2013). Nppb knockout mice exhibited lack of scratching
responses to histamine, chloroquine, ET-1, 5-HT, SLIGRL-NH2, and compound48/80, but
exhibited normal pain behaviors. Moreover, intrathecal injection of Nppb elicited scratching
behaviors. Mice in which the natriuretic peptide receptor A (Npra) was ablated, exhibited
impaired scratching responses to histamine as well as Nppb. Npra was expressed primarily
in lamina I. Collectively, these data suggest that Nppb plays a major role in spinal itch
transmission. The authors proposed that Nppb is released from primary afferent pruriceptors
to excite second-order Npra-expressing spinal neurons and ultimately excite downstream
GRPR-expressing spinal neurons that are required for the transmission of itch signals to
higher centers. The exact neurocircuitry and relative roles of glutamate, Nppb, SP and
GRPR-expressing neurons in itch are important questions that remain to be answered in the
exciting and rapidly-advancing field of itch mechanisms research.

5.3. Neurokinins and neuromedins
Neurokinin B encoded by the tachykinin 2 gene is a member of the tachykinin peptides
along with SP, and is a possible candidate as a neuropeptide transmitter in spinal itch
transmission. However, a recent study revealed that tachykinin 2 null mice exhibited normal
scratch responses to compound 48/80, chloroquine, SLIGRL-NH2 and α-methyl-5-HT as
well as normal responses to noxious heat and mechanical stimuli, implying that neurokinin
B does not appear to be essential for the spinal transmission of itch or pain signaling (Mar et
al., 2012). Neuromedin B is a member of the mammalian bombesin family of peptides along
with GRP, and is another candidate as a neuropeptide transmitter in spinal itch transmission.
Intrathecal or intracerebroventricular administration of neuromedin B elicited marked
scratching (Van Wimersma Greidanus and Maigret, 1991, Cridland and Henry, 1992, Su and
Ko, 2011), while intrathecal administration of neuromedin B produced a transient decrease
followed by a delayed increase to above baseline in tail flick latency (Cridland and Henry,
1992). Neurotoxic ablation of neuromedin B receptor-expressing neurons in the superficial
dorsal horn did not affect histamine H1 receptor agonist-evoked scratching, but reduced
noxious heat-evoked behavioral responses (Mishra et al., 2012), implying a role for
neuromedin B in thermal pain. It would be interesting to test whether neuromedin B is
involved in the spinal transmission of non-histaminergic itch. CGRP may contribute to the
spinal transmission of pain as well as itch. CGRPα was expressed by 61–73% of pruritogen-
responsive DRG neurons, and 27–83% of algogen-responsive DRG neurons (McCoy et al.,
2012). Overall, pathways for itch and pain signaling appear to use the same
neurotransmitters. Moreover, it may be expected that nociceptive primary afferents activate
pruritogen-responsive spinal neurons as discussed in the next section.

6. Pruritogen-responsive spinal neurons
The dorsal horn is the major site processing information from primary sensory afferents.
Superficial dorsal horn neurons (laminae I–II) receive direct input from most nociceptive
Aδ- and C-fibers, while deep dorsal horn neurons (laminae III–V) receive direct input from
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Aβ-fibers (Todd, 2002). Recent molecular studies have further categorized the central
projections of nociceptive C-fibers and low-threshold mechanoreceptors (LTMRs) in the
spinal cord (Basbaum et al., 2009, Li et al., 2011). Spinal cord neurons in lamina I-IIo, IIm,
IIi, III, or III-V receive projections from peptidergic C-fibers, nonpeptidergic C-fibers, C-
low-threshold mechanorecptors (LTMRs), Aδ-LTMRs, or Aβ-LTMRs, respectively.

A schematic diagram of excitatory spinal circuits mediating itch is shown in Fig. 1.
Approximately 80% of ascending projection neurons express the NK-1 receptor in rat spinal
cord, with those located in lamina I receiving input mostly both SP- and CGRP-containing
afferents and a few SP-containing afferents lacking CGRP (Todd et al., 2002). Since 5-HT-
evoked scratching was reduced in rats following ablation of NK-1-expressing superficial
dorsal horn neurons, the latter plausibly play the role in ascending transmission of itch as
well as pain signals (Carstens et al., 2010). A later study reported that lamina I projection
neurons are innervated by CGRP- as well as IB4-labeled afferents (with a small population
expressing both), consistent with the unique characteristics of MgrprA3-expressing neurons
(Han et al., 2012, Saeed and Ribeiro-da-Silva, 2012). Since MrgprA3-expressing neurons
synapse with GRPR-expressing spinal neurons, some of the latter may be ascending
projection neurons. Alternatively, GRPR-expressing spinal neurons might be excitatory
interneurons which receive GRP released from Npra-expressing spinal neurons (Mishra and
Hoon, 2013). Genetic ablation of testicular orphan nuclear receptor 4 (TR4) resulted in the
loss of neurons expressing SP, the vesicular glutamate transporter-2 (VGLUT2), and GRPR,
without loss of ascending projection neurons, suggesting that neurons expressing SP,
VGLUT2 and GRPR are mainly excitatory interneurons (Todd et al., 2003, Maxwell et al.,
2007, Wang et al., 2013). TR4 knockout mice exhibited impaired scratch responses,
implying that those excitatory interneurons play a role in spinal excitatory circuits for itch
(Wang et al., 2013).

Dorsal horn neurons can be classified into four general categories according to their
responses to mechanical stimuli: mechano-insensitive (MI) neurons that respond to neither
noxious nor innocuous mechanical stimuli, low-threshold (LT) neurons that do not respond
to noxious mechanical stimuli, wide dynamic range (WDR) neurons that respond at higher
firing rate to noxious than to innocuous mechanical stimuli, and nociceptive specific (NS) or
high-threshold (HT) neurons that respond to noxious but not innocuous mechanical stimuli.
WDR and NS neurons are located in both superficial and deep dorsal horn (Price et al.,
1978, Chudler et al., 1991, Dado et al., 1994). LT neurons are located mainly in the deep
dorsal horn (laminae III-IV) (Price et al., 1978, Chudler et al., 1991).

Itch-signaling spinal neurons should respond to cutaneous application of a pruritogen over a
time course matching that of itch sensation. Some studies have taken a non-biased approach
to identify ascending projection neurons by antidromic stimulation, and then test if they
respond to pruritogens (e.g., Andrew & Craig, 2001; Simone et al., 2004; Davidson et al.,
2007, 2012). Other studies have used intradermal injection of a pruritogen as a search
stimulus to identify spinal neurons (Carstens, 1997; Jinks & Carstens, 2002; Akiyama et al.,
2009a,b). By either approach, pruritogen-responsive neurons were mostly either NS or
WDR, with fewer of them being MI (Andrew and Craig, 2001, Jinks and Carstens, 2002,
Davidson et al., 2007, Akiyama et al., 2009a, Akiyama et al., 2009b, Akiyama et al., 2010c,
Davidson et al., 2012). Andrew and Craig recorded from 190 identified spinothalamic tract
(STT) neurons in lamina I of cats; 18 were mechanically- and thermally-insensitive.
Interestingly, 10 of the latter responded to iontophoretically applied histamine and 2 of 4
histamine-responsive STT neurons tested did not respond to the algogen, AITC (capsaicin
was not tested in this study). Davidson et al. (2012) recorded from 111 STT neurons in adult
macaques; 32 responded to either histamine or cowhage and 2 responded to both. All of the
histamine- and cowhage-responsive STT neurons were either WDR or NS. Overall,
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approximately 30% of nociceptive STT neurons were pruritogen-responsive as well. An
important implication of these latter studies (Davidson et al., 2007; 2012) is that itch elicited
by histamine vs. cowhage may be mediated via largely separate subpopulations of ascending
spinothalamic tract neurons.

Using a pruritogen search stimulus, Jinks & Carstens (2002) identified 21 5-HT-responsive
neurons in the superficial dorsal horn of rats, of which 15 were classified as WDR, 5 as NS
and 1 as MI. The MI unit responded to noxious chemical and heat stimuli. Using a
pruritogen search strategy in mice, we have collectively recorded from 17 histamine-, 7 5-
HT-, 58 SLIGRL-NH2-, and 10 chloroquine-responsive lumber spinal neurons; 5 histamine-
and 3 SLIGRL-NH2-responsive neurons were MI and the remainder were WDR or NS
(Akiyama et al., 2009a, Akiyama et al., 2009b). Overall, the vast majority of pruritogen-
responsive spinal neurons, including WDR, NS and MI (but not LT) subtypes, additionally
responded to noxious mechanical, thermal, and/or chemical stimuli and thus appears to be a
subset of nociceptive spinal neurons.

7. Trigeminal processing of itch
Using calcium imaging of trigeminal ganglion (TG) cells, 15.4% and 5.8% responded to
histamine and SLIGRL-NH2, respectively (Akiyama et al., 2010c). Of these, more than 70%
additionally responded to capsaicin or AITC. We also recorded from 58 neurons in
trigeminal subnucleus caudalis (Vc) with afferent input from the cheek (Akiyama et al.,
2010c). Out of 32 pruritogen-responsive Vc neurons, 4 were MI and responded to either
capsaicin or AITC. In this study, a subpopulation of nociceptive neurons was isolated using
an algogen (AITC) search stimulus and subsequently tested with several pruritogens. Only a
minority of these nociceptive neurons (13–41%) additionally responded to the pruritogens
histamine, SLIGRL-NH2, or 5-HT. Overall, the vast majority of pruritogen-responsive
medullary dorsal horn neurons additionally responds to noxious mechanical, thermal, and/or
chemical stimuli and thus appears to be a subset of nociceptive spinal neurons, similar to
pruritogen-responsive spinal neurons. There appears to be a larger population of nociceptive
neurons, such as those isolated using an AITC search stimulus, the majority or which does
not respond to pruritogens. This is consistent with our population-coding model in which
itch is proposed to be signaled by pruritogen-sensitive nociceptive neurons, while pain is
signaled by the larger population of puritogen-insensitive nociceptive neurons (Fig. 1).

A recent study identified two populations of antidromically identified trigeminothalamic
tract neurons in rats (Moser and Giesler, 2013). Pruritogen-responsive neurons were
activated by intrathecal application of morphine, while nociceptive neurons which did not
respond to pruritogen were inhibited by morphine (Moser and Giesler, 2013). Morphine thus
appears to be a convenient tool to identify pruritogen-responsive medullary dorsal horn
neurons (see also below).

8. Inhibitory interneurons
Inhibitory interneurons in laminae I–III consist of four distinct neurochemical populations
containing neuropeptide Y (NPY), galanin, parvalbumin and neuronal nitric oxide synthase
(nNOS) (Tiong et al., 2011). The transcription factor Bhlhb5 is transiently expressed in the
dorsal horn of the developing spinal cord to regulate a unique population of inhibitory
interneurons that inhibit itch (Ross et al., 2010). Approximately 65% of inhibitory
interneurons are innervated by Aδ-fibers and/or C-fibers (Daniele and MacDermott, 2009).
This implies that noxious (and possibly pruritic) stimuli activate inhibitory interneurons,
which are capable of modulating the spinal transmission of various somatosensory
submodalities. Itch can be inhibited by various types of noxious thermal, mechanical,
chemical or electrical counterstimuli (Ward et al., 1996; Nillson et al., 1997). Scratching
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relieves itch, and recent studies support a spinal site of action by which scratching inhibits
pruritogen-responsive neurons. Monkey STT neurons are modulated in a state-dependent
manner by cutaneous scratching; scratching inhibited responses elicited by the pruritogen
histamine but did not inhibit responses of the same neurons to the algogen capsaicin
(Davidson et al., 2009). Consistent with this, pruritogen-responsive mouse spinal neurons
are modulated in a state- and also site-dependent manner by cutaneous scratching (Akiyama
et al., 2012b). Pruritogen- but not algogen-evoked neuronal responses were inhibited
following scratching delivered to the stimulus site (state-dependency), and also during
scratching at a distance away (site dependency). Spinal application of glycine and GABA-A
and GABA-B receptor antagonists attenuated or abolished scratch-evoked inhibition of
spontaneous activity in dorsal horn neurons with input from dry skin (Akiyama et al.,
2011b), suggesting that GABA and glycine mediate inhibition of itch-signaling spinal
neurons.

Conceivably, spinal inhibitory interneurons are tonically active, based on recent studies
showing that decreased activity in, or deletion of, inhibitory spinal interneurons is associated
with enhanced itch. Loss of a population of inhibitory interneurons in the superficial dorsal
horn of knockout mice lacking the transcription factor Bhlhb5 (Ross et al., 2010), as well as
knockout of the glutamate transporter VGLUT2 in certain types of nociceptors (Lagerstrom
et al., 2010, Liu et al., 2010c), both resulted in excessive scratching behavior. These findings
suggest that a reduction in nociceptive input decreases spinal inhibition, resulting in
disinhibition of itch transmission. This is further supported by a recent study (Roberson et
al., 2013). When TRPV1- or TRPA1-expressing nociceptors were electrically silenced by
entry of a local anesthetic through the open ion channel, cheek application of capsaicin or
AITC, which normally elicit forelimb wiping behavior, instead elicited hindlimb scratching.
This implies that TRPV1- and TRPA1-expressing nociceptor afferents exert a tonic
inhibitory effect on trigeminal itch transmission, and that removal of this tonic inhibition by
electrical silencing disinhibited itch-transmitting Vc neurons to result in scratching behavior.
A schematic diagram of spinal itch-inhibitory circuits is presented in Fig. 2. In this scenario,
decreased input from nociceptors expressing TRPV1 and/or TRPA1 reduced the excitation
of Bhlhb5 inhibitory interneurons, thus disinhibiting itch-signaling neurons. Such neurons
may be excited via capsaicin or AITC activation of H1R and/or MrgprA3-expressing
pruriceptors to elicit scratching (Fig. 1).

9. Opioid modulation of itch
As noted earlier, morphine inhibits pain but can induce or enhance itch, whereas μ-opiate
antagonists suppress itch but not pain. One possible explanation for morphine-induced itch
is that opioid peptide-expressing inhibitory interneurons in the spinal cord might synapse
onto the Bhlhb5 interneurons; activity in the opioid interneurons (or exogenous application
of μ-agonists) would inhibit the Bhlhb5 interneurons to disinhbit itch-signaling neurons
(Handwerker, 2010). An alternative explanation is that the morphine binds to the μ-opioid
receptor isoform MOR1D which heterodimerizes with GRPR co-expressed in itch-signaling
spinal neurons (Liu et al., 2011b). In either case, exogenous spinal application of morphine
was recently reported to excite pruritogen-responsive trigeminothalamic projection neurons
in rats, while inhibiting nociceptive trigeminothalamic neurons (Moser & Giesler, 2013),
providing a functional explanation for how systemic morphine induces itch.

The κ-agonist TRK-820 (Nalfurafine) inhibited pruritogen-evoked scratching in mice
(Togashi et al., 2002) and morphine-induced scratching in primates (Ko et al., 2003),
indicating a role for the κ-opioid receptor in the modulation of itch that is worthy of further
investigation. This κ-agonist has proven effective in relieving intractable itch in kidney
dialysis patients (Kumagi et al., 2012).
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10. Descending modulation of itch
Scratch-evoked inhibition of spinal itch-signaling neurons involves both segmental and
supraspinal circuits. Cold-block or complete transection of the upper cervical spinal cord
reduced scratch-evoked inhibition of spontaneous activity in dorsal horn neurons with input
from dry skin by 30% and 50%, respectively. This implies that scratch-evoked inhibition is
mediated partially via activation of supraspinal neurons that, in turn, engage descending
pathways to result in spinal release of glycine and GABA (Fig. 2). The supraspinal circuit is
unknown but may involve the same descending pathways that modulate pain. In a human
brain imaging study, the midbrain periaqueductal gray (PAG) was activated during the
inhibition of histamine-evoked itch by a noxious cold stimulus (Mochizuki et al., 2003),
suggesting that the PAG, a well-known center for descending modulation of pain, may also
be involved in modulating itch. The locus coeruleus is a major source of descending
noradrenergic projections (Ossipov et al., 2010). Neurotoxic destruction of
catecholaminergic neurons in the spinal cord enhanced itch-related behaviors, implying that
descending noradrenergic neurons inhibit spinal itch signaling (Gotoh et al., 2011).
Moreover, swim stress-induced analgesia, which is thought to be mediated by descending
antinociceptive pathways, attenuated 5-HT-evoked scratching behavior in rats (Spradley et
al., 2012b). The otherwise scant information regarding supraspinal modulation of spinal and
trigeminal itch transmission makes this a fruitful area for future research.

11. Sensitization of itch-signaling pathways
Peripheral and central sensitization play important roles in the establishment of chronic pain,
and the same processes may contribute to various types of chronic itch. Chronic pain is often
associated with ongoing spontaneous pain, hyperalgesia, and allodynia (touch-evoked pain).
These conditions can also be experimentally reproduced in human skin by intradermal
injection of capsaicin. In primates, capsaicin enhanced the responses of monkey STT
neurons to touch and noxious heat, as well as electrical nerve stimulation, suggesting
sensitization of the STT neurons (Simone et al., 1991). Chronic itch has parallels with
chronic pain (Yosipovitch et al., 2007). Chronic itch can be associated with spontaneous
itch, hyperknesis (enhanced itch to a normally itchy stimulus), and alloknesis (itch elicited
by an innocuous touch stimulus). Three general mechanisms possibly contributing to
chronic itch are shown in Fig. 3, as discussed further below.

11.1. Peripheral Sensitization
Few studies have addressed whether primary afferent pruriceptors are sensitized under
chronic itch conditions. Pruritogen-sensitive C-fibers recorded in atopic dermatitis patients
exhibited high levels of spontaneous firing (Schmelz et al., 2003a). Using the dry skin model
of chronic itch, mice exhibited significantly greater scratching (hyperknesis) following
intradermal injections of 5-HT and SLIGRL, but not histamine, within the treatment area
(Akiyama et al., 2010b). DRG cells taken from the dry skin-treated mice exhibited
significantly greater responses to 5-HT and SLIGRL, but not histamine, consistent with the
behavioral results (Akiyama et al., 2010b). A potential mediator of peripheral sensitization is
nerve growth factor (NGF), which is elevated in dry skin and might contribute to peripheral
sensitization of pruriceptors (Tominaga et al., 2007). Intradermally administered NGF
enhanced itch induced by cowhage but not histamine in humans (Rukwied et al., 2013). A
possible role for PAR-2 in peripheral sensitization comes from our study showing that
SLIGRL, but not BAM8-22, enhanced the response of DRG neurons to subsequently-
applied chloroquine and BAM8-22 (Akiyama et al., 2012c).
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11.2. Central Sensitization
To investigate if chronic dry skin itch sensitizes spinal neurons, we recorded from
superficial dorsal horn neurons receiving afferent input from a dry skin-treated hindpaw
(Akiyama et al., 2011a). These neurons exhibited heightened spontaneous activity and
enhanced responses to SLIGRL, but not histamine, compared to units recorded in control
animals. However, mechanically-evoked responses were not enhanced, suggesting that the
enhanced response to SLIGRL was due to peripheral sensitization of pruriceptors in the dry
skin area and consistent with our results noted in the previous section.

A possible central mechanism of enhanced itch transmission is long-term potentiation
(LTP). Knockout mice lacking toll-like receptor 3 (TLR3) exhibited significantly reduced
scratching to histamine and variety of other pruritogens, as well as impaired LTP in spinal
neurons (Liu et al., 2012b), supporting a role for TLR3 in central sensitization of spinal itch-
transmitting neurons. In addition, TLR3 knockout mice with experimental dry skin exhibited
almost no spontaneous scratching behavior compared to the robust scratching observed in
wildtype mice (Liu et al., 2012b). Interestingly, the dry skin-treated wild type mice showed
a 25-fold increase in TLR3 expression in the skin, suggesting that TLR3 may also be
involved in peripheral sensitization of dry skin itch (Liu et al., 2012b).

Alloknesis is a common and often distressing symptom of many chronic itch patients.
Alloknesis has been suggested to be mediated by mechanoreceptor afferent input to
sensitized itch-signaling spinal neurons, but there is currently no evidence for this. We
recently developed a novel animal model of alloknesis involving innocuous mechanical
stimulation of rostral back skin in the C57BL/6 mouse (Akiyama et al., 2012a). C57BL/6
mice do not normally respond to this low-threshold mechanical stimulus. However,
following intradermal injection of histamine and certain other pruritogens, lightly touching
skin surrounding the injection site reliably elicited discrete hindlimb scratch bouts directed
to the stimulus. The touch-evoked scratching developed more slowly and lasted longer
compared to the scratching that began shortly after the pruritogen injection and usually
ceased within 30 min. Touch-evoked scratching was observed following histamine, 5-HT, a
PAR-4 agonist, and BAM8-22, but not SLIGRL or chloroquine. We also observed touch-
evoked scratching in dry skin-treated animals, suggesting that dry skin itch is associated
with alloknesis. In recordings from primate STT neurons, innocuous mechanical stimuli
elicited greater responses after vs. before intradermal histamine injection (Davidson et al.,
2012). In contrast, cowhage did not affect mechanically-evoked responses. Innocuous
mechanical stimuli elicited greater responses in pruritogen-responsive rat trigeminothalamic
tract neurons after compared to before the intrathecal application of morphine (Moser and
Giesler, 2013). The enhancement of mechanically-evoked responses of ascending sensory
neurons may thus represent a mechanism by which certain pruritogens induce alloknesis.

11.3. Dysfunction of Inhibitory Interneurons
As noted above, loss of Bhlhb5 inhibitory interneurons resulted in spontaneous scratching
(Ross et al., 2010), consistent with disinhibition of itch-signaling spinal neurons. Future
studies are needed to determine if the number of Bhlhb5 inhibitory interneurons is reduced
under conditions of chronic itch.

As more animal models of chronic itch conditions become available, it will be important to
determine if the animals exhibit ongoing spontaneous scratching, hyperknesis and
alloknesis, if peripheral and/or central itch-signaling neurons exhibit sensitization, and if
there are functional changes in spinal inhibitory interneruons. The identification of the
molecular players involved in these various processes will provide important targets for the
future development of treatments for chronic itch.
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12. Theories of itch
It has been debated for over a century whether itch and pain are mediated via distinct
pathways, a concept known as specificity theory or labeled-line coding, or if itch is a low-
level form of pain on the same sensory continuum, a concept known as the intensity (or
frequency) theory (von Frey, 1922). Intensity theory holds that a common population of
sensory neurons responds to both pruritic and noxious stimuli, with itch being signaled by a
low firing rate and pain by a higher firing rate in these neurons. Indeed, many spinal neurons
in our studies exhibited relatively lower firing rates to pruritogens and higher-frequency
responses to algogens. However, the concept of intensity coding is not supported by
observations that electrical stimulation at certain points on the skin surface elicits a distinct
sensation of itch that increases in intensity, but does change to pain, with increasing stimulus
frequency (Tuckett, 1982). Instead, it is the authors’ opinion that current evidence supports
the concept of specificity or labeled-line coding for distinct sensations of itch and pain.
However, it must be recognized that most pruritogen-sensitive primary afferents and second-
order spinal and trigeminal neurons also respond to noxious stimuli, rather than being
pruritogen-specific, thereby introducing complications for a simple labeled-line theory of
neural coding. The interested reader is directed to additional references describing
alternative theories for itch and pain coding (McMahon & Koltzenburg, 1992; Handwerker,
2010; Namer & Reeh, 2013).

The concept of labeled-line coding for itch is supported by studies implicating GRPR-
expressing dorsal horn neurons in selectively mediating itch but not pain (Sun et al., 2009),
as noted above. Further support comes from recent observations of human mechano-
insensitive C-fibers that responded to histamine over a time course matching that of
concomitant itch sensation (Schmelz et al., 1996), and mechano-insensitive lamina I STT
neurons in cats that similarly responded to histamine (Andrew and Craig, 2001). A recent
striking observation supports labeled-line coding. In knockout mice lacking TRPV1
globally, TRPV1 was selectively re-expressed in MrgprA3-expressing sensory neurons. In
these mice, cheek injection of capsaicin, which normally evokes pain-related wiping, instead
elicited itch-related scratching behavior (Han et al., 2012). This implies that MrgprA3-
expressing pruriceptors are linked to a labeled line for itch sensation, even though they can
be excited by other types of stimuli including capsaicin and noxious pinch (Han et al.,
2012). Consistent with this, application of capsaicin-impregnated cowhage spicules within
the superficial epidermis (Sikand et al., 2009), where MrgprA3-expressing primary afferent
terminals are located, or topical application of capsaicin (Green, 1990; Green & Shaffer,
1993), elicited a dominant sensation of itch in humans. However, intradermal injection of
capsaicin elicits burning pain (LaMotte et al., 1991), and it remains a challenge to explain
how the nervous system discriminates between capsaicin-evoked itch and pain sensations, as
discussed further, below.

Nevertheless, many of the available molecular-genetic, behavioral and electrophysiological
studies suggest that pruriceptors are a subset of nociceptors that respond to noxious
mechanical, chemical, and/or thermal stimuli. This raises the question as to how noxious
stimuli elicit pain without simultaneously eliciting itch. One possibility is that noxious
stimuli activate inhibitory interneurons that suppress itch transmission. Although noxious
stimuli can inhibit responses of spinal neurons to pruritogens, this inhibition is state-
dependent (Davidson et al., 2009, Akiyama et al., 2011b). Most pruritogen-sensitive spinal
neurons are also excited by capsaicin, so that scratching becomes an excitatory rather than
inhibitory stimulus to further excite the neuron. If such neurons are dedicated to only signal
itch, then it remains difficult to explain how a noxious stimulus only elicits pain. Another
possibility is that noxious stimuli do elicit both itch and pain simultaneously, whereby the
sensation of itch is masked or occluded by the larger pain signal in order to discriminate

Akiyama and Carstens Page 15

Neuroscience. Author manuscript; available in PMC 2014 October 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



between the two sensory qualities. An additional related concept is population coding
(Akiyama et al., 2009a,b; Ma, 2010). Itch is postulated to be signaled by the activation of a
subset of spinal neurons that responds to both pruritogens and noxious stimuli. Noxious
stimulation activates a larger population of nociceptive spinal neurons, including those
responsive to pruritogens, to signal pain. The CNS decodes activity in the former and latter
neuronal populations as itch and pain, respectively. According to this idea, MrgprA3-
expressing sensory neurons would be expected to project to a subset of GRPR-expressing
spinal neurons that respond to both pruritogens and noxious stimuli. MrgprA3-expressing
sensory neurons do respond to noxious mechanical and chemical stimuli, and their central
spinal terminals make synaptic contact with GRPR-expressing spinal neurons (Han et al.,
2012). Since ablation of neither MrgprA3-expressing neurons nor GRPR-expressing spinal
neurons has any effect on nociception (Sun et al., 2009, Han et al., 2012), the CNS may
decode activity in a larger population of nociceptive spinal neurons as pain regardless of
activity in a smaller subset of spinal neurons responsive to both pruritogens and noxious
stimuli.
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NGF nerve growth factor
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NO nitric oxide
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TLR3 toll-like receptor 3

TLR7 toll-like receptor 7

TP thromboxane receptor

TR4 testicular orphan nuclear receptor-4

TRPA1 transient receptor potential ankyrin 1

TRPV1 transient receptor potential vanilloid 1
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VGLUT2 vesicular glutamate transporter-2
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Highlights

There are histamine-dependent and –independent types of itch

Molecular detectors of pruritogens include Mrgprs, PARs, and many others

Spinal transmitters include gastrin releasing peptide and natriuretic polypeptide B

Pruritogen-sensitive sensory neurons usually also respond to pain-producing stimuli

Pruritogen-responsive sensory neurons connect to an itch-specific central pathway
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Fig. 1.
Schematic diagram of excitatory circuits for itch. Dashed line is cross-section of spinal cord
dorsal horn. Upper right shows cross-section through skin. + denotes excitatory synapse.
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Fig. 2.
Schematic diagram of inhibitory spinal circuits for itch. +, − denote excitatory and inhibitory
synapses, respectively.
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Fig. 3.
Schematic diagram of mechanisms underlying itch sensitization. 1. Peripheral sensitization
may occur through PAR-2. 2. Central sensitization may occur through TLR3. 3. Dysfunction
of itch inhibitory circuits may contribute to itch sensitization. See text for details.
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