Title
NUCLEAR SPIN OF SAMARIUM-153

Permalink
https://escholarship.org/uc/item/65p0b08b

Authors
Cabezas, Amado
Lipworth, Edgar
Marrus, Richard
et al.

Publication Date
1959-08-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
NUCLEAR SPIN OF SAMARIIUM-153

Amado Cabezas, Edgar Lipworth
Richard Marrus, and Joseph Winocur

August 1959

Printed for the U. S. Atomic Energy Commission
NUCLEAR SPIN OF SAMARIUM-153
Amado Cabezas, Edgar Lipworth
Richard Marrus, and Joseph Winocur

Department of Physics and Lawrence Radiation Laboratory
University of California, Berkeley, California

August 1959

ABSTRACT

The atomic-beam magnetic-resonance method has been used to measure the nuclear angular momentum of 47-hour Sm$^{153}$. It is found that $I = 3/2$. 
NUCLEAR SPIN OF SAMARIIUM-153*

Amado Cabezbas, Edgar Lipworth
Richard Marrus, and Joseph Winocur

Department of Physics and Lawrence Radiation Laboratory
University of California, Berkeley, California

August 1959

INTRODUCTION

This paper presents the results of measurements performed to determine the nuclear spin of Sm$^{153}$. These measurements are part of a program to determine the properties of the nuclear ground states and of the low-lying electronic states of the radioactive rare earth isotopes.

BEAM PRODUCTION

Samarium-153 is produced by neutron irradiation of 50 mg of stable Sm$^{152}$ at a flux of $2 \times 10^{13}$ neutrons/cm$^2$ sec for 16 hours. The irradiated material is placed directly into the tantalum oven which contains a small inner crucible with a sharp lip designed to control creep (Fig. 1). The oven is then heated in the atomic beam apparatus to about 1300°C at which temperature an adequate samarium beam is found. This procedure was successful on the first attempt and no subsequent difficulties were experienced.

* Work done under the auspices of the U. S. Atomic Energy Commission and the Office of Naval Research.
EXPERIMENTAL TECHNIQUE AND OBSERVATIONS

The apparatus used in this experiment has been described elsewhere, and employs the flop-in type of magnet arrangement first proposed by Zacharias. Radioactive detection of the samarium beam is used. Platinum foils in the detector position are exposed to the samarium beam at a particular frequency setting of the rf oscillator used to power the hairpin. After a 5-minute exposure the foil is placed in a gas-flow proportional β counter (background about 2 to 5 cpm), and its counting rate is measured. Typical resonance counting rates are about 15 cpm.

Optical spectroscopic measurements on samarium had established the ground-state configuration of this element to be \((4f)^6 (6s)^2\), coupling to the ground-state term \(^7F\). In this experiment, measurements were made on the states \(J = 1\) and \(J = 2\) that arise from this term. That these states are both present in the beam in sufficient quantities to enable measurements to be made is consistent with the optically measured fine structure. Three resonances were observed in a low-field search at 1.0 gauss. These were ascribed to the multiple-quantum transitions

\[
\begin{align*}
I = 3/2, \quad J = 1; \quad F = 5/2 & \quad m_f = 5/2 \\
& \quad m_f = 3/2 \\
& \quad m_f = 1/2 \\
& \quad m_f = -1/2
\end{align*}
\]
I = 3/2, J = 2; F = 7/2  \[ m_f = 7/2 \]
\[ m_f = 5/2 \]
\[ m_f = 3/2 \]
\[ m_f = 1/2 \]
\[ m_f = -1/2 \]
\[ F = 7/2, m_f = -7/2 \]
\[ F = 7/2, m_f = -5/2, \]

and

I = 3/2, J = 2; F = 5/2  \[ m_f = 5/2 \]
\[ m_f = 3/2 \]
\[ m_f = 1/2 \]
\[ F = 5/2, m_f = -3/2. \]

All the transitions corresponding to a given I, J, and F occur at the same frequency in the Zeeman region and contribute to the resonance intensity.

Each of these sets of transitions was observed at three fields, and resonance curves were traced out (Fig. 2). These resonance are characterized by three \( g_F \) values tabulated with the observations in Table I.
Table I

<table>
<thead>
<tr>
<th>( \frac{\mu_0}{h} ) (Mc)</th>
<th>( J = 1, F = 5/2 )</th>
<th>( J = 2, F = 7/2 )</th>
<th>( J = 2, F = 5/2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>0.61 ± .05</td>
<td>0.91 ± .05</td>
<td>1.01 ± .05</td>
</tr>
<tr>
<td>1.985</td>
<td>0.60 ± .03</td>
<td>0.86 ± .02</td>
<td>0.94 ± .02</td>
</tr>
<tr>
<td>3.945</td>
<td>0.598 ± .010</td>
<td>0.855 ± .011</td>
<td>0.941 ± .013</td>
</tr>
<tr>
<td>Mean ( g_F )</td>
<td>0.598 ± .010</td>
<td>0.856 ± .011</td>
<td>0.941 ± .010</td>
</tr>
<tr>
<td>Predicted ( g_F ) (I = 3/2; ( g_J = 1.5 ))</td>
<td>0.600</td>
<td>0.857</td>
<td>0.943</td>
</tr>
</tbody>
</table>
INTERPRETATION AND CONCLUSIONS

In the Zeeman region, the $g_F$ value is given by

$$g_F = g_J \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)},$$

where $g_J$ is the electronic $g$ value. A term of the order of the nuclear moment has been neglected.

The observed $g_F$ values are fitted to well within the experimental error on the assumption that $I = 3/2$, that the states $J = 1$ and $J = 2$ are both present in the beam, and that the $g_J$ value of both $J$ states is 1.5, the value obtained from pure L-S coupling among the six 4f electrons. It is of interest to note that the $g_J$ value of the $J = 1$ state in plutonium, the transuranic homolog of samarium, is $1.4975 \pm .0010$. This is very nearly identical to the samarium value and implies that similar considerations hold for the coupling of electrons in the ground-state multiplets of these elements.

The observed spin of 3/2 is consistent with the beta decay from the ground state of Sm$^{153}$. Interpretation of spin 3/2 is difficult on the shell model. However, by use of the energy-level diagram of Nilsson, $I = 3/2$ can be explained by assuming large deformations and that the state of the 91st neutron is either $3/2 - [521]$ or $3/2 + [651]$, where the notation is that of Mottelson.
ACKNOWLEDGMENTS

The authors are indebted to Fred Schon and the crew of the reactor at Livermore for carrying out the irradiations. One of the authors (RM) would like to thank Professor B. R. Mottelson for a stimulating conversation concerning collective effects in the rare earth region.
LEGENDS

Fig. 1. Cutaway view of oven used to produce samarium beams.

Fig. 2. Resonances observed in the $J = 1$ and $J = 2$ states of Sm$^{153}$. The direct beam is the beam reaching the detector with the magnetic fields switched on and the stopwire removed.
Fig. 1
Fig. 2
REFERENCES