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PharmOmics: A species- and tissue-specific
drug signature database and gene-
network-based drug repositioning tool

Yen-Wei Chen,1,2,6 Graciel Diamante,1,2,6 Jessica Ding,1,3,6 Thien Xuan Nghiem,1 Jessica Yang,1 Sung-Min Ha,1

Peter Cohn,1 Douglas Arneson,1,4 Montgomery Blencowe,1,3 Jennifer Garcia,1 Nima Zaghari,1 Paul Patel,1

and Xia Yang1,2,3,4,5,7,*

SUMMARY

Drug development has been hampered by a high failure rate in clinical trials due to
our incomplete understanding of drug functions across organs and species. There-
fore, elucidating species- and tissue-specific drug functions can provide insights
into therapeutic efficacy, potential adverse effects, and interspecies differences
necessary for effective translational medicine. Here, we present PharmOmics, a
drug knowledgebase and analytical tool that is hosted on an interactive web
server. Using tissue- and species-specific transcriptome data from human, mouse,
and rat curated fromdifferent databases,we implemented agene-network-based
approach fordrug repositioning.Wedemonstrate thepotential of PharmOmics to
retrieve known therapeutic drugs and identify drugs with tissue toxicity using in
silico performance assessment.We further validated predicted drugs for nonalco-
holic fatty liver disease in mice. By combining tissue- and species-specific in vivo
drug signatures with gene networks, PharmOmics serves as a complementary
tool to support drug characterization and network-based medicine.

INTRODUCTION

Drug development has been challenging and costly over the past decades due to the high failure rate in

clinical trials (Morgan et al., 2011). Most drugs with excellent efficacy and safety profiles in preclinical

studies often encounter suboptimal efficacy or safety concerns in humans (Yu, 2016). This translational

gap is likely attributable to our incomplete understanding of the systems level activities of drugs in individ-

ual tissues and organ systems (Lin andWill, 2012) as well as the differences between humans and preclinical

model systems (Denayer et al., 2014).

Drug activities can be captured by gene expression patterns, commonly referred to as gene signatures. By

measuring how a pharmacological agent affects the gene signature of a tissue in a particular species, we

can infer the tissue-specific biological pathways involved in therapeutic processes or toxicological re-

sponses. This concept has prompted drug repositioning studies to repurpose approved drugs for new dis-

ease indications (Barabási et al., 2011; Corbett et al., 2012; Hall et al., 2014; Guney et al., 2016; Subramanian

et al., 2017; Cheng et al., 2018). Similarly, gene signatures can reveal mechanisms underlying adverse drug

reactions (ADRs) and be leveraged to predict ADRs as previously shown for liver and kidney toxicity (Low

et al., 2011; Godoy and Bolt, 2012; AbdulHameed et al., 2016).

A drug may affect different molecular processes between tissues, providing treatment effects in the

desired target tissue(s) but causing toxicity or ADRs in other tissues, which can be captured in tissue-spe-

cific drug signatures. In addition, rodent models have been commonly used in toxicology and preclinical

studies, yet species-specific effects of drugs have been observed (Toutain et al., 2010) and may underlie

the lack of efficacy or unexpected ADRs of drugs when used in humans (Wong et al., 2018). Therefore, un-

derstanding the species-specific molecular effects of drugs is of translational importance. A detailed spe-

cies- and tissue-specific drug genomic signature database will significantly improve our understanding of

the molecular networks affected by drugs at a systems level and facilitate network-based drug discovery

and ADR prediction for translational medicine.
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The potential of using gene signatures to facilitate target and toxicity identification has led to several major

efforts in characterizing genomic signatures related to drug treatment (Wang et al., 2016a, 2016b; Davis

et al., 2017; Subramanian et al., 2017). However, none of the existing platforms offer comprehensive

cross-tissue and cross-species in vivo assessments of drug activities to allow prediction of drug effects

on individual tissues and translational potential based on consistencies or discrepancies between species.

For instance, the Comparative Toxicogenomics Database (CTD), a literature-based resource curating

chemical-to-gene/protein associations as well as chemical-to-disease and gene/protein-to-disease con-

nections (Davis et al., 2017), lacks the cellular and tissue context of the curated interactions. More system-

atic, data-driven databases such as CMap (Subramanian et al., 2017) and LINC1000 (Wang et al., 2016b)

focus on characterizing and cataloging the genomic footprints of more than ten thousand chemicals using

in vitro cell lines (primarily cancer cell lines) to offer a global view of the molecular responses of individual

cellular systems to drugs. However, in vitro cell lines may not always capture in vivo tissue specificity of drug

activities. To move into in vivo systems, large toxicogenomics databases such as TG-GATEs (Igarashi et al.,

2015) and DrugMatrix from the National Toxicology Program of the National Institute of Environmental

Health Sciences (https://ntp.niehs.nih.gov/DrugMatrix/index.html) have become available to provide un-

biased transcriptome assessment for heart, muscle, liver, and kidney systems. However, information about

other organ systems is limited. Efforts to analyze publicly deposited transcriptomic datasets in GEO (Bar-

rett et al., 2013) and ArrayExpress (Kolesnikov et al., 2015), which have broader tissue coverage, for individ-

ual drugs have been described (Wang et al., 2016a), but systematic analyses of species- and tissue-specific

effects of drugs have not been achieved.

Here, we developed a bioinformatics pipeline (Figure 1) to curate a database that contains 13,530 rat,

human, and mouse transcriptomic datasets across >20 tissues covering 941 drugs. We then evaluated

the tissue- and species-specificity of drug signatures as well as the performance of these signatures in

gene-network-based drug repositioning, toxicity prediction, and comparisons of molecular activities be-

tween tissues and species. To benchmark the performance of drug repositioning methods, we conducted

in silico evaluation of the retrieval rate of known drugs for various diseases, testedmethod robustness using

simulated disease signatures with noise, compared across existing and new methods, and conducted

experimental validation of novel predictions. The drug signatures and network-based drug repositioning

tool are hosted on an interactive web server, PharmOmics, to enable public access to drug signatures, inte-

grative analyses, and visualization for drug repositioning (http://mergeomics.research.idre.ucla.edu/

runpharmomics.php).

RESULTS

Construction of the PharmOmics database containing dose-, tissue-, and species-stratified

drug signatures

As illustrated in Figure 1A, we compiled a list of clinically relevant drugs, including 766 approved drugs

from Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2017), the US Food and Drug

Administration (FDA), European Medical Agency, and Japanese Pharmaceuticals and Medical Devices

Agency, with an additional 175 chemicals from TG-GATEs (Igarashi et al., 2015) and DrugMatrix (https://

ntp.niehs.nih.gov/DrugMatrix/index.html). The compiled drug list was queried against GEO, ArrayExpress,

TG-GATEs, and DrugMatrix to identify transcriptomics datasets from human, mouse, and rat studies, which

were further annotated with species, tissue, dosage, and treatment time information (STAR Methods).

Numbers of datasets, platform information, and sample size distribution are detailed in STAR Methods.

Differentially expressed genes (DEGs) were obtained from individual datasets as ‘‘dose/time-segregated

signatures’’ and from meta-analysis of multiple datasets for each drug or each class of drugs across treat-

ment regimen for each tissue and each species as ‘‘meta-signatures’’ (STAR Methods). All DEGs are

compiled into a drug signature database, comprised of 18,710 gene signatures. Inspection of the database

indicated higher coverage for liver comparedwith other organs/tissues (Figures 1B and 1C), more rat signa-

ture sets compared with other species (Figures 1C and 1D), and more signatures from DrugMatrix

compared with other data sources (Figures 1B and 1D).

Implementation of the PharmOmics web server for drug signature query and drug

repositioning prediction

To allow easy data access and use of the PharmOmics database, we provide drug signature query, species

and tissue comparison, drug repositioning, and drug network visualization on an open access web server

Mergeomics 2.0 (Shu et al., 2016; Ding et al., 2021) (http://mergeomics.research.idre.ucla.edu; STAR
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Methods). The PharmOmics web server features three main functions (Figure 2A). First, species- and tissue-

stratified drug signatures and pathways for both the dose/time-segregated and meta signatures can be

queried, and comparative analysis to examine similarities and differences between tissues and species

for a given drug can be carried out. Second, it features a network drug repositioning tool that is based

on the connectivity in a given gene network between PharmOmics drug signatures and user input genes

such as a disease signature. Third, the web server offers a gene-overlap-based drug repositioning tool

that assesses direct overlap between drug gene signatures and user input genes. The gene-overlap-based

approach is similar to what has been previously implemented in other drug repositioning tools; however,

the network-based repositioning approach is unique to PharmOmics. An example of network-based repo-

sitioning using a sample liver network and a sample hyperlipidemia gene set as inputs along with the re-

sulting drug predictions and network visualization of a top drug, oxymetholone, are shown in Figures 2B

Figure 1. PharmOmics data processing pipeline and database summary

(A) FDA-approved drugs were searched against GEO, ArrayExpress, TG-GATEs, and DrugMatrix data repositories. Additional experimental drugs and

chemicals from TG-GATEs and DrugMatrix were also included. Datasets were first annotated with tissue and species information, followed by retrieval of

dose-/time-segregated signatures using LIMMA (Ritchie et al., 2015) or meta-analysis drug signatures using GeoDE (Clark et al., 2014) and Robust Rank

Aggregation (Kolde et al., 2012). These signatures were used to conduct drug repositioning analysis and hepatotoxicity prediction based on either direct

gene overlaps or a gene-network-based approach.

(B) Summary of available datasets based on data sources and tissues. Y axis indicates unique dataset counts, and X axis indicates tissue and data resources.

(C) Summary of available datasets based on tissues and species. Y axis indicates unique dataset counts, and X axis indicates tissue and species.

(D) Summary of available datasets based on data sources and species. Y axis indicates unique dataset counts, and X axis indicates data resources and

species.
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Figure 2. PharmOmics web server implementation

(A) PharmOmics web server outline. The web server hosts drug signature and pathway queries, between-tissue and

-species drug signature comparisons, and network-based and gene-overlap-based drug repositioning. Users can query,

download, and perform drug repositioning using all species- and tissue-specific meta and dose-/time-segregated

signatures. Interactive results tables and network visualizations are displayed on the website and available for download.

(B) User interface of network drug repositioning web tool using a sample hyperlipidemia gene set and a sample mouse

Bayesian gene regulatory network. Inputs to network drug repositioning includes (1) signature type to query (meta-
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and 2C. Lastly, network and gene overlap scores for hepatotoxicity and known ADR links from SIDER data-

base are given in both network- and overlap-based analysis results to predict potential ADRs of the input

signature.

Utility of PharmOmics drug signatures in retrieving known therapeutic drugs for various

diseases

Drug repositioning has mainly relied on analysis of direct overlaps between drug signatures and disease

genes (Wang et al., 2016a, 2018; Subramanian et al., 2017). Recently, protein-protein interaction networks

have also been used for network-based drug repositioning by assessing network connectivity between

disease genes and known drug targets (Cheng et al., 2018). However, it remains unclear whether tissue-

specific gene regulatory networks coupled with tissue-matched drug signatures are of value for drug repo-

sitioning. To this end, we evaluated the ability of PharmOmics drug signatures to identify drugs for diseases

based on network connectivity of gene signatures of diseases and drugs matched by tissue in addition to

the commonly used gene overlap approach. We hypothesized that if a drug is useful for treating a disease,

the drug and disease signatures likely target similar pathways and therefore would have direct gene over-

laps or connect extensively in gene networks. For network-based drug repositioning, we used a network

proximity measure between drug DEGs and disease genes as previously described for protein-network-

based analysis (Cheng et al., 2018) (STARMethods). Here, we used tissue-specific Bayesian gene regulatory

networks (BNs) and tested the mean shortest distance between drug DEGs and disease genes. For gene-

overlap-based drug repositioning, we calculate the Jaccard score, gene overlap fold enrichment, and

Fisher’s exact test p values as measures of direct gene overlap.

The performance of PharmOmics drug repositioning was first assessed using hyperlipidemia as the test

case because multiple known drugs are available as positive controls. Because hyperlipidemia is most

relevant to low-density lipoprotein cholesterol (LDL) and liver tissue, we retrieved LDL causal genes

and pathways in liver tissue based on genome-wide association studies (GWAS) of LDL in conjunction

with genetic regulation of liver gene expression using Mergeomics (STAR Methods) (Shu et al., 2016,

2017; Chella Krishnan et al., 2018). In addition to retrieving disease genes based on GWAS, a hyperlip-

idemia signature from CTD (Davis et al., 2017) was also used as an alternative disease signature source.

For each drug with different dose and treatment durations, the signature with the highest overlap with

the disease signature was used to represent the drug. Gene overlap- and network-based methods using

dose-/time-segregated signatures had similar overall performance as assessed by the area under

receiver operating characteristics (AUROC) curve (�90% AUROC; p < 0.001) in the identification of anti-

hyperlipidemic drugs (Figures 3A and 3B). The dose-/time-segregated signatures performed better than

the meta signatures when using network-based repositioning (Figures 3C and 3D). When compared to

other existing drug repositioning platforms, PharmOmics was able to retrieve higher prediction rankings

for the known antihyperlipidemia drugs (Table 1) than CMap (Mergeomics signature p = 0.0064, CTD

signature p = 0.0056) and L1000 (Mergeomics signature p = 0.03, CTD signature p < 0.001), while

showing comparable results to CREEDS (non-significant for both Mergeomics and CTD signatures)

based on Wilcoxon signed rank test. PharmOmics also reached better AUROC (Figures 3C and 3D)

than CMap and L1000, as well as higher balanced accuracy, defined as (sensitivity + specificity)/2 (Table

2), than CREEDS, CMap, and L1000. These results support the capacity of PharmOmics as a complemen-

tary drug repositioning tool to existing platforms.

Figure 2. Continued

analyzed, dose-/time-segregated with top 500 genes per signature, or dose-/time-segregated with all genes), (2)

network (custom upload or select a sample network), (3) species (relating to the species of the network being used),

and (4) genes. In the example case we choose dose-/time-segregated signatures using top 500 genes, a sample liver

network, mouse/rat species, and the sample hyperlipidemia gene set (loaded from ‘‘Add sample genes’’). If human

gene symbols are provided with the ‘‘Mouse/Rat’’ species selection, the genes will be converted to mouse/rat

symbols.

(C) After the job is complete, the results file is displayed on the website and available for download. Subnetworks of top

ranked drugs can be visualized using the ‘‘Display Network’’ button, which will load an interactive display of the

subnetwork topology for a select drug. For example, the oxymetholone drug signature in rat liver is a top hit, and the drug

network is shown on the right. Additional data in the downloadable results file include the genes that are both a drug

gene and an input gene in the network, drug genes that are directly connected (first neighbor) to input genes, and input

genes directly connected to drug genes.
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To provide molecular insights into the top drug predictions, we examined the disease network overlap pat-

terns of the top drugs, lovastatin, a known antihyperlipidemia drug (Figure 3E), and oxymetholone, a known

androgen drug with hyperlipidemia ADR (FDA box warning label) (Figure 3F). The network approach can

retrieve both therapeutic drugs and drugs with ADRs because network connectivity rather than direction

of change was the main consideration. Both drugs had DEGs connecting to genes related to cholesterol

metabolismandperoxisomeproliferator-activated receptor (PPAR) pathways in thehyperlipidemia network

(Figures 3E and 3F). However, lovastatin DEGs had direct overlap with cholesterol biosynthesis genes such

asHmgcr (target of statin drugs) and Sqle along with more DEGs that connected to disease genes, whereas

oxymetholone did not haveHmgcr and Sqle asDEGs and had smaller disease subnetwork overlap, suggest-

ing key differences between the two drugs. Notably, many drug DEGs did not directly overlap with disease

genes, which supports the utility of a network-based drug repositioning approach that does not require the

direct retrieval of a known drug target or direct overlap of drug DEGs with disease genes.

We further evaluated the performance of PharmOmics in retrieving known drugs for several other diseases

for which known therapeutic drugs are available and can serve as positive controls. Using CTD disease sig-

natures for hepatitis, network-based repositioning obtained 79% AUROC (p < 0.001, Figure 3G) in

retrieving both steroid and nonsteroid anti-inflammatory agents (prediction ranks in Table S1). We also

queried type 2 diabetes signatures and found PharmOmics was able to predict PPAR gamma agonist drugs

(79% AUROC, p = 0.04, Figure 3H), but not sulfonylurea drugs that act on the pancreatic islets to enhance

insulin release (prediction ranks in Table S2), due to a paucity of drug signatures in islets. Finally, we queried

hyperuricemia signatures and network-based repositioning obtained 90% AUROC (p = 0.009, Figure 3I,

prediction ranks in Table S3) for detecting antihyperuricemia drugs. The overall performance of PharmO-

mics for these various diseases is better or on par with other platforms (Figures 3G–3I).

We reasoned that network-based repositioning is likely more robust against missing genes in disease sig-

natures than traditional gene-overlap-based analysis. To test this, we masked part of the disease gene sig-

natures for hyperlipidemia and hepatitis as test cases. Results showed that network-based repositioning

maintained similar performance even when 50% of disease genes were masked, whereas gene-overlap-

based strategy showed a decrease in performance when 20% ormore genes were masked from the disease

signatures (Figure 3J).

Overall, these various test cases using known therapeutic drugs as positive controls support both the utility

and robustness of network-based drug repositioning for the diseases tested when drug signatures from the

appropriate tissues are available.

Utility of PharmOmics to predict known and novel drugs for nonalcoholic fatty liver disease

After establishing the performance of PharmOmics in drug repositioning using the aforementioned case

studies where positive controls are available, we applied PharmOmics to predict potential drugs for

Figure 3. Drug repositioning using PharmOmics for diseases with known therapeutics

(A and B) Area under the curve of receiver operating characteristics (AUROC) plots for network-based repositioning and gene-overlap-based repositioning

in identifying antihyperlipidemia drugs (total n = 369, target n = 13) using (A) Mergeomics hyperlipidemia signature or (B) CTD hyperlipidemia signature.

(C and D) Comparison of drug repositioning performance between PharmOmics network-based approach with CREEDS (total n = 281, target n = 12), using

the ‘‘combined score’’ generated by the enrichment analysis tool implemented in Enrichr, L1000 (total n = 867, target n = 14), and CMap query system (total

n = 934, target n = 15) using (C) Mergeomics hyperlipidemia signature and (D) CTD hyperlipidemia signature to identify antihyperlipidemic drugs. For drugs

with multiple datasets with different doses and treatment times, only the best performing signature was used.

(E and F) Drug-hyperlipidemia subnetwork based on Mergeomics hyperlipidemia signature (red) and drug signature (blue) showing first neighbor (direct)

connections using (E) lovastatin and (F) oxymetholone signatures. Direct overlapping genes between disease and drug signatures are network nodes

colored with both red and blue.

(G–I) Comparison of drug repositioning performance between PharmOmics network-based approach with L1000, CREEDS, and CMap query system using

CTD signatures for hepatitis (G), type 2 diabetes (H), and hyperuricemia (I) to identify steroid and nonsteroidal anti-inflammatory drugs (n = 16 in

PharmOmics, n = 14 in CREEDS, n = 47 in CMap, n = 47 in L1000) (G), PPAR gamma agonists (n = 11 in PharmOmics, n = 9 in CREEDS, n = 13 in CMap, n = 13 in

L1000) (H), and antihyperuricemia drugs (n = 3 in PharmOmics, n = 4 in CMap, n = 3 in L1000) (I), respectively. Note that in (I), CREEDS was not included due to

lack of antihyperuricemic drugs.

(J) Boxplot showing AUROC performance with different proportion of original disease signatures used after masking disease genes. For each proportion, 20

random sampling of original disease signature was conducted to obtain AUROC in identifying disease-related drugs. Wilcoxon signed rank test was used to

calculate significance in difference between gene-overlap-based AUROC and network-based AUROC. *p < 0.05, **p < 0.01, and ***p < 0.001, repectively,

from Wilcoxon signed rank test.

See also Tables S1–S3.
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nonalcoholic fatty liver disease (NAFLD), for which there is currently no approved drugs. Using NAFLD

steatosis signatures from a published mouse study (Chella Krishnan et al., 2018) and the CTD NAFLD sig-

natures (Davis et al., 2017), we predicted PPAR alpha agonists (clofibrate, fenofibrate, bezafibrate, and

gemfibrozil), HMG-CoA reductase inhibitors (lovastatin, fluvastatin, and simvastatin), a PPAR gamma

agonist (rosiglitazone), and a nonsteroidal anti-inflammatory drug (aspirin) to be among the top 10%

of drug candidates based on the average ranking of drugs predicted using both the mouse steatosis

signature and CTD NAFLD signature (Table S4). PPAR agonists have been well supported as potential

drugs for NAFLD (Laurin et al., 1996; Hertz and Bar-Tana, 1998; Neuschwander-Tetri et al., 2003; Kawa-

guchi et al., 2004; Fernández-Miranda et al., 2008; Ratziu et al., 2008, 2010; Nan et al., 2009; Torres et al.,

2011; Zhang et al., 2015; Abd El-Haleim et al., 2016; Liss and Finck, 2017), whereas statins showed pos-

itive association yet less literature documentation (Pastori et al., 2015; Park et al., 2016; Sigler et al., 2018;

Bravo et al., 2019). Aspirin was recently reported to be associated with reducing liver fibrosis progression

in a cohort association study in humans (Simon et al., 2019), but here it was predicted for liver steatosis or

general NAFLD.

Next, we sought to validate the top predicted drugs in mitigating liver steatosis. We chose fluvastatin as a

positive control due to its high prediction rank across different platforms (top 5% in PharmOmics, CMap,

and L1000; top 20% in CREEDS; Table S4) and better efficacy compared with other statins in improving

metabolic phenotypes in a methionine- and choline-deficient diet mouse model used to study nonalco-

holic steatohepatitis (NASH) (Park et al., 2016). We also chose to test aspirin as a unique top prediction

by PharmOmics (top 5%). In comparison, aspirin had much lower ranks in CREEDS (30%) and CMap

(35%) and was not documented in L1000.

Table 1. Prediction percentile of FDA-approved antihyperlipidemic drugs based on hyperlipidemia signatures from Mergeomics (MO) pipeline and

CTD database across different platforms tested

Platform

PharmOmics

dose-/time-seg

network

PharmOmics

dose-/time-

seg Jaccard

PharmOmics

meta CREEDS CMap

CMap

HEPG2 L1000

L1000

HEPG2

Disease gene

signature MO CTD MO CTD MO CTD MO CTD MO CTD MO CTD MO CTD MO CTD

Atorvastatin 0.951 0.794 0.981 0.957 0.498 0.316 0.989 0.82 0.913 0.164 0.414 0.31 0.962 0.668 0.405 0.307

Bezafibrate 0.856 0.995 0.901 0.982 0.981 0.932 0.571 0.95 0.332 0.561 0.439 0.915 0.394 0.755 NA NA

Cerivastatin 0.989 0.848 0.995 0.962 0.798 0.719 0.986 0.836 0.879 0.516 NA NA 0.967 0.761 NA NA

Clofibrate 0.965 0.97 0.802 0.927 0.951 0.992 0.737 0.986 0.196 0.291 0.153 0.433 0.31 0.615 NA NA

Clofibric acid 0.93 0.58 0.949 0.892 NA NA NA NA NA NA NA NA NA NA NA NA

Fenofibrate 0.984 0.986 0.908 0.883 0.954 0.954 0.797 0.943 0.121 0.108 0.229 0.201 NA NA NA NA

Fluvastatin 1 0.997 1.000 0.924 0.97 0.985 1 0.815 0.905 0.963 0.807 0.118 0.958 0.514 0.513 0.327

Gemfibrozil 0.992 0.962 0.984 0.873 0.787 0.844 0.9 0.712 0.677 0.612 NA NA 0.363 0.591 NA NA

Lovastatin 0.995 0.984 0.986 0.986 0.905 0.43 0.993 0.632 0.972 0.084 0.528 0.346 0.992 0.979 0.415 0.765

Nafenopin 0.726 0.943 0.472 0.864 NA NA 0.431 0.712 NA NA NA NA NA NA NA NA

Niacin 0.192 0.873 0.821 0.309 0.137 0.711 0.719 0.343 0.671 0.171 0.606 0.069 0.107 0.307 NA NA

Pravastatin 0.894 0.339 0.911 0.862 NA NA 0.979 0.854 0.829 0.669 0.727 0.934 0.592 0.717 NA NA

Simvastatin 0.949 0.935 0.856 0.992 0.916 0.909 0.996 0.9 0.972 0.951 0.844 0.573 0.987 0.843 0.595 0.425

Ciprofibrate NA NA NA NA NA NA NA NA 0.685 0.998 0.84 0.288 0.292 0.272 NA NA

Ezetimibe NA NA NA NA NA NA NA NA 0.905 0.982 0.514 0.757 0.657 0.269 0.366 0.101

Probucol NA NA NA NA NA NA NA NA 0.552 0.115 0.021 0.696 0.018 0.529 NA NA

Rosuvastatin NA NA NA NA NA NA NA NA 0.913 0.056 0.855 0.238 0.905 0.464 NA NA

Median 0.951 0.943 0.911 0.924 0.911 0.876 0.94 0.828 0.829 0.516 0.528 0.346 0.624 0.603 0.415 0.327

Mean 0.879 0.862 0.890 0.878 0.79 0.779 0.841 0.792 0.701 0.483 0.537 0.452 0.607 0.592 0.459 0.385

Total number

of drugs

369 369 369 369 263 263 281 281 934 934 667 667 867 867 153 153

HEPG2 results from both L1000 and CMap were retrieved for tissue specificity comparison.
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Fluvastatin and aspirin were tested using a mouse steatosis model induced by a high-fat high-sucrose

(HFHS) Western diet, which has been previously used to study NAFLD (Hui et al., 2015; Chella Krishnan

et al., 2018, 2021; Norheim et al., 2021). Key genes identified in this diet-induced NAFLD model (Chella

Krishnan et al., 2018) were known NAFLD-associated genes (Chakravarthy et al., 2009; Wu et al., 2013)

and reproducible in independent human studies (Lee et al., 2017), supporting its utility as a model for

this disease. Comparison between the mice in HFHS group (NAFLD) and the chow group (Control)

confirmed that HFHS induced increases in hepatic triglycerides (TG), a measure of liver steatosis, without

significant differences in liver weight or other lipids (Figure S1). Comparison of the fluvastatin- and

aspirin-treated groups with the NAFLD group revealed significant treatment effects by both drugs on

mitigating body weight gain (fluvastatin: p < 0.0001, Figure 4A; aspirin: p < 0.0001, Figure 4B), reducing

adiposity (fluvastatin: p < 0.0001, Figure 4C; aspirin: p = 0.0008, Figure 4D), and decreasing hepatic tri-

glycerides (TG) (fluvastatin: p = 0.0044, Figure 4E; aspirin: p = 0.0023, Figure 4F). Drug treatments did not

significantly alter liver weight, total cholesterol (TC), and unesterified cholesterol (UC) (Figures 4E, 4F,

and S2).

We further investigated whether the effects of the drugs on NAFLD steatosis phenotypes were confounded

by food and water intake. No difference was observed in food and water intake in the fluvastatin treatment

group (Figures S2E and S2F), but in the aspirin treatment group there was a significant decrease in food

intake but no difference in water intake compared with the NAFLD group (Figures S2G and S2H). Adjusting

for food intake effects using linear regression showed that the effects of fluvastatin on body weight gain

(p = 0.0306), adiposity (p = 0.0022), and hepatic TG (p = 0.0190) remained significant. For aspirin, the

significant effects on hepatic TG (p = 0.0372) remained, but the effects on body weight gain and adiposity

(p = 0.0511) were no longer significant.

Our experimental validation experiments support the efficacy of both fluvastatin and aspirin in mitigating

liver TG levels independent of food and water intake. Agreeing with the PharmOmics prediction ranks, the

effects of fluvastatin were stronger than that of aspirin (Figures 4A–4F). Moreover, visualization of the

network overlaps between NAFLD signatures and drug signatures revealed more extensive disease

network connections for fluvastatin than for aspirin (Figures 4G and 4H), and the signatures of the two drugs

connected to pathways involved in NAFLD such as PPAR signaling pathways and fatty acid and steroid

biosynthesis.

Utility of PharmOmics drug signatures in predicting and understanding hepatotoxicity

We further explored the potential of coupling PharmOmics drug signatures and tissue gene networks to

predict liver toxicity, a major type of ADR for which both toxicity signatures and orthogonal ADR docu-

mentations from various independent databases are available for performance evaluation. We used the

Table 2. Comparison of drug repositioning performance between PharmOmics and other existing platforms for hyperlipidemia

Drug signature platform

Total FDA-

listed drugs

Significant

drugs (% total)

Known

hyperlipidemia

drugs

Significant

hyperlipidemia

drugs

(% known drugs)

Balanced

accuracy

(sensitivity +

specificity/2)

PharmOmics meta_liver 263 33 (12.5%) 10 6 (60%) 74.7%

PharmOmics dose/time segregated_liver - network 369 29 (7.9%) 13 9 (69.2%) 81.8%

PharmOmics dose/time segregated_liver - Jaccard 369 171 (46.3%) 13 12 (92.3%) 73.8%

CMap 934 264 (28.6%) 15 8 (53.3%) 62.7%

CMap_HEPG2 667 135 (20.3%) 13 1 (7.7%) 43.6%

L1000 867 428 (49.3%) 14 8 (57.1%) 54.1%

L1000_HEPG2 153 37 (24.2%) 5 0 (0%) 37.5%

CREEDS_liver 281 257 (91.4%) 12 12 (100%) 54.5%

Drug pool for each database was limited to FDA-approved drugs to match the drug selection criteria in PharmOmics to make results comparable. Significance

were defined at the recommended cutoffs for each platform: z-score <�2.33 in PharmOmics, overlap BH adjusted p < 0.05 in CREEDS, L1000, and PharmOmics

dose-/time-segregated Jaccard, and connection score >95 or <�95 in CMap query system. For CMap and L1000, drug signatures from all cell lines (CMap_all or

L1000_all) or from the hyperlipidemia relevant liver cell line HepG2 (CMap_HEPG2 or L1000_HEPG2) were used.
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A B

C D

E F

G H

Figure 4. In vivo validation of top predicted drugs fluvastatin and aspirin on preventing NAFLD phenotypes in a

diet-induced NAFLD mouse model

Mouse groups include C57BL/6J mice fed a high-fat high-sucrose (HFHS) diet to induced liver steatosis (NAFLD), HFHS

with fluvastatin (NAFLD + Flu), and HFHS with aspirin (NAFLD + Asp).

(A and B) Time course of body weight gain in NAFLD mice treated with fluvastatin (A) or aspirin (B) over 10 weeks.

(C and D) Time course of fat mass and muscle mass ratio (adiposity) in mice treated with fluvastatin (C) or aspirin (D) over

10 weeks. (A–D) Data are represented asmeanG SEM and were analyzed by two-way ANOVA followed by Sidak post-hoc
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chemical-induced liver injury signature containing 435 genes from CTD to predict the degree of hepa-

totoxicity of drugs based on the overlap and liver gene network connectivity between PharmOmics

drug signatures and the CTD liver injury signature. We then used both the liver histological severity

from TG-GATEs and the independent FDA drug-induced liver injury (DILI) categories (‘‘most’’, ‘‘less’’-

moderate/mild, and ‘‘no’’ DILI concern) as in silico independent validation of the predicted hepatotoxic

drugs.

We found that drug ranking of hepatotoxicity from both the network-based and gene overlap-based an-

alyses from PharmOmics increased with higher histological severity as defined by TG-GATEs (Figure 5A),

supporting a positive relationship between the predicted hepatotoxicity scores and experimental hepa-

totoxicity measures. Next, we tested the performance of PharmOmics in predicting hepatotoxic drugs

from the FDA DILI drug database. PharmOmics dose-/time-segregated signatures resulted in higher per-

formance (67% AUROC, p = 0.0014) compared with the meta signatures (63% AUROC, p = 0.029) and the

other platforms tested such as CREEDS, CMap, and L1000 (AUROC 48–53%; nonsignificant p > 0.05 for

CREEDS and L1000; CMap showed significantly higher scores in drugs with lower hepatotoxicity, Figures

5B and 5C).

Top drug predictions by PharmOmics based on the CTD hepatotoxicity signatures were wy-14643

(experimental drug with severe histological finding in TG-GATEs), dexamethasone (moderate DILI

concern category in FDA and moderate histological finding in TG-GATEs), phenobarbital (moderate

DILI concern), indomethacin (‘‘most’’ DILI concern), and fenofibrate (moderate DILI concern). The

network overlapping patterns of the top predicted drugs with the CTD liver injury genes (Figure 5D)

showed that the top predicted drugs exhibited consistent targeting of the hepatotoxicity gene

subnetworks.

Because CTD contains a large number (435) of curated hepatotoxicity genes, we hypothesized that this

large network could be divided into subnetworks indicative of different mechanisms toward liver toxicity,

which might improve toxicity prediction for drugs with different mechanisms. Therefore, we applied the

Louvain clustering method to divide the liver injury network defined by the CTD hepatotoxicity genes

into subnetworks and filtered out subnetworks with less than 10 genes. These subnetworks showed varying

abilities in identifying drugs with DILI concerns (Table S5). The best performing hepatotoxicity subnetwork

showed improved AUROC compared with the whole network (75 vs. 67%; Figure 5B). Further scrutinization

of the top performing subnetwork revealed that the antioxidant gene GSR, the phase 2 drug metabolizer

NAT2, and the inflammatory response gene IRAK1 showed the best predictability. These results suggest

that the network-based toxicity prediction approach may help prioritize predictive genes, pathways, and

subnetworks related to hepatotoxicity.

Utility of meta signatures to understand tissue and species specificity

To evaluate tissue and species specificity of drug signatures, we used the meta signatures, which reflect the

dose-/time-independent, consistent genes affected by drugs across studies in the same tissue or species.

We analyzed the overlap in gene signatures for each drug across different tissues and species and visual-

ized the results using UpSetR (Conway et al., 2017). As shown in Figure 6A, the overlap rate in the DEGs of

the same drug between tissues and organs is usually less than 5%, indicating a high variability in DEGs be-

tween tissues.

As an example, we examined atorvastatin, an HMGCR (b-Hydroxy b-methylglutaryl-CoA receptor) inhibi-

tor, which has well understood mechanisms and has been broadly tested in different tissues under the

Figure 4. Continued

analysis to examine treatment effects at individual time points. p <0.05 was considered significant and is denoted by

an asterisk (*).

(E and F) Quantification of lipids in the liver of mice on fluvastatin (E) or aspirin (F) treatment for 10 weeks. Triglyceride

(TG), total cholesterol (TC), unesterified cholesterol (UC), phospholipid (PL). Data are represented as mean G SEM and

were analyzed using two-sided t test. p <0.05 was considered significant and is denoted by an asterisk (*). (A-F) Sample

size n = 7–8/group.

(G) Gene network view of fluvastatin gene signatures overlapping with NAFLD disease signatures.

(H) Gene network view of aspirin gene signatures overlapping with NAFLD disease signatures.

See also Figures S1 and S2; Table S4.
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Figure 5. Utility of PharmOmics drug signatures in hepatotoxicity prediction

The analysis was based on matching between PharmOmics drug signatures and hepatotoxicity signatures of drug-induced liver injury (DILI) curated from

comparative toxicogenomics database (CTD).

(A) Boxplots of gene-overlap-based hepatotoxicity ranking (left) and network-based hepatoxicity ranking (right) by PharmOmics, across four categories of

liver injury histological severity defined by the independent TG-GATEs database (x axis) (all doses included, n = 205 in ‘‘minimal’’ category, n = 221 in ‘‘slight’’

category, n = 147 in ‘‘moderate’’ category, n = 37 in ‘‘severe’’ category).

(B) ROC curves comparing PharmOmics with other tools in predicting hepatotoxic drugs from the FDA DILI drug database. For PharmOmics, three sets of

tests were performed, where dose/time-segregated drug signatures, meta signatures, or a hepatotoxicity subnetwork was used. Significance were

calculated by comparing ‘‘no DILI-concern’’ category (n = 30 in PharmOmics dose/time segregated signatures, n = 19 in PharmOmics meta, signatures, n =

94 in CMap, n = 88 in L1000, n = 18 in CREEDS) versus ‘‘less DILI-concern’’ plus ‘‘most DILI-concern’’ categories (n = 185 in PharmOmics dose/time

segregated signatures, n = 156 in PharmOmics meta signatures, n = 276 in CMap, n = 251 in L1000, n = 142 in CREEDS).

(C) Hepatotoxicity signature matching scores from various drug repositioning platforms across three different DILI drug categories. For drugs with multiple

dose and time points, only the best score was used. PharmOmics scores are derived from network-based matching; CMap scores were derived from the

CMap online query plarform; L1000 scores are from Jaccard scores from the L1000 plarform; CREEDS scores are from the combined scores derived from the

enrichr platform. Boxplots in A and C show IQR (IQR) and median values (line inside the box). IQR was defined as between 25th (Q1) and 75th (Q3) percentile.

The upper and lower bars indicate the points within Q3 + 1.5*IQR and Q1 – 1.5*IQR, respectively.

(D) Liver hepatotoxicity network based on CTD hepatotoxicity genes and its overlap with drug signatures of four of the top five predicted drugs by

PharmOmics that had >50 drug signature genes. Phenobarbital was among the top five drugs but was not included in the figure due to its small DEG size.
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human species label. We found that two DEGs, TSC22D3 and THBS1, involved in extracellular matrix and

inflammation, respectively, were shared across tissues (Figure 6B). At the pathway level, immune-related

pathways were shared between blood and liver cells but not in the urogenital system (Figure 6C; Table

S6). Unique liver pathways include steroid synthesis and drug metabolism, which is expected as the known

target of statin drugs is HMGCR, the rate limiting enzyme in cholesterol biosynthesis in liver. Blood mono-

cyte DEGs indicated changes in inflammation-related pathways, whereas G-protein-coupled receptor

(GPCR) ligand binding proteins were altered in prostate cancer cells. The tissue specificity of drug meta

signatures supports tissue-specific therapeutic responses and emphasizes the need for comprehensive in-

clusion of drug signatures from different tissue systems.

We also found evidence for high species specificity. As shown in Figure 6D, the pairwise overlaps in DEGs

between species for the same drug is generally lower than 5%. Here we chose PPAR gamma receptor

agonist rosiglitazone as an example because this drug has datasets across human, rat, and mouse in Phar-

mOmics, and its mode of action is well studied. As shown in Figures 6E and 6F, nine genes (CPT1C,

AKR1B1, VNN1, ACSM3, CD36, CPT1A, PDK4, ZNF669, ADH1C) and several pathways (PPAR signaling

and fatty acid, triacylglycerol, and ketone body metabolism) were consistently identified from liver DEGs

across species (Table S7), reflecting the major species-independent pharmacological effects of rosiglita-

zone. Bile-acid related genes were altered in rat datasets, whereas retinol metabolism and adipocytokine

pathways were altered in human datasets. The species differences identified highlight the importance of

investigating the physiological differences among model systems to facilitate drug design with better

translational potential. Our cross-species comparative analysis also revealed that only 21% of the unique

drug-tissue pairs (236 out of 1,144) have data from two or more species, thus highlighting the need for sys-

tematic data generation across species to better understand between-species similarities and differences

in drug actions.

DISCUSSION

Wepresent PharmOmics, an open-access drug signature database alongwith a web interface for accessing

and utilizing the signatures for various applications. PharmOmics utilizes publicly available drug-related

transcriptomic datasets across multiple data repositories and provides unique tissue-, species-, and

dose-/time-stratified gene signatures that are more reflective of in vivo activities of drugs. We also devel-

oped a unique framework for drug repositioning based on tissue-specific gene network models. We exam-

ined the potential applications of PharmOmics for various utilities including drug repurposing, toxicity

prediction, and comparison of molecular activities between tissues and species. We also carried out in sil-

ico performance assessments across drug signature databases and in vivo mouse experiments to validate

select drugs from network-based predictions for liver steatosis.

Compared with the well-established CMap and LINC1000 platforms, PharmOmics focuses more on in vivo

settings and likely captures physiologically relevant drug signatures to improve drug repositioning perfor-

mance. Compared with a previous crowdsourcing effort that also utilizes publicly available drug datasets

(Wang et al., 2016a), the PharmOmics platform includes more curated databases (TG-GATEs, DrugMatrix

Affymetrix, DrugMatrix Codelink datasets) and has a systematic tissue, species, and treatment regimen

stratification to facilitate drug repositioning. Comparison across platforms revealed statistically significant

gene signature overlaps, but the degree of overlap is low (Figure S3), supporting that these are comple-

mentary platforms. PharmOmics is also the only tool utilizing a gene network framework rather than a direct

gene overlap approach. We believe that the increased coverage of in vivo datasets; consideration of tissue-

, species-, and dose specificity; and the use of a network approach all contribute to the improved

performance of PharmOmics. However, in cases where tissues, networks, and doses are not available in

PharmOmics, existing platforms have advantages.

The use of tissue annotation with BRENDA Tissue Ontology helps normalize organ labels and improves

comparability of datasets. The tissue- and species-specific analyses implemented in PharmOmics allows

Figure 5. Continued

Colors of the network nodes denote the different drugs targeting the genes. The top three predictive subnetworks are labeled in red. Kruskal-Wallis test

followed by post-hoc pairwise Wilcoxon signed rank test was used for statistics in A and C, and Wilcoxon signed rank test was used to calculate

significance for B *p < 0.05, **p < 0.01, and ***p < 0.001, respectively.

See also Table S5.
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for comprehensive molecular insight into the actions of drug molecules in individual tissues and species.

Our results support that different species have unique drug responses in addition to shared features.

Therefore, drug responses obtained in animal models require caution when translating to humans.

This notion agrees with the long-observed high failure rate of drug development that has primarily relied

on preclinical animal models and argues for greater consideration and understanding of inter-species

differences in drug actions.

In addition to tissue and species stratification, we also provide detailed dose-/time-segregated drug

signatures, which can help better understand the dose- and time-dependent effects of drugs

through gene signature and pathway comparisons offered through our web server. By contrast, the

meta-analysis signatures capture the consistent genes and pathways across treatment regimens,

which likely represent core, dose-/time-independent mechanisms, and can help address the

sample size issue of individual datasets, as most drug treatment datasets carried out to date are of

small sample size. Repositioning with meta signatures also significantly shortens the computing

time in network-based repositioning applications. For instance, computation using 1,251 human meta

A

B

C

D

E

F

Figure 6. Cross-tissue and cross-species comparisons of drug signatures in PharmOmics

(A) Distribution of drug signature overlap percentages between tissue pairs in matching species from PharmOmics meta

signature database. Arrow points to the pairs of tissues for drugs with high overlap in gene signatures.

(B) Upset plot of cross-tissue comparison for atorvastatin signatures genes. Y axis indicates number of genes.

(C) Upset plot of cross-tissue comparison for pathways enriched in atorvastatin signatures. Y axis indicates number of

pathways.

(D) Distribution of drug signature overlap percentages between species pairs for matching tissues from PharmOmics

meta signature database. Arrow points to the species pair with high gene signature overlap for a matching drug.

(E) Upset plot of cross-species comparison for rosiglitazone liver gene signatures. Y axis indicates number of genes.

(F) Upset plot of cross-species comparison for pathways enriched in rosiglitazone liver signatures. Y axis indicates

number of pathways. Pairs of tissues or species with shared drug signature genes or pathways are connected with black

vertical lines in the bottom portion of the Upset plots in B, C, E and F.

See also Tables S6 and S7.
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signatures can be completed in 40 min, whereas using �14,000 dose-/time-segregated signatures can

take 4 h.

Previous drug repositioning studies support the utility of a protein-network-based approach for drug repo-

sitioning. Here we show that combining the drug transcriptomic signatures in PharmOmics with tissue-spe-

cific gene regulatory networks and gene signatures of diseases can predict potential therapeutic avenues

and tissue toxicity. Compared with other platforms, the use of tissue- and species-specific drug signatures

along with network biology is a unique feature of PharmOmics, which enables drug prioritization based on

network proximity rather than direct gene overlaps. We demonstrate in various applications that network-

based analysis had more robust performance to that of gene overlap-based analysis. Moreover, network-

based repositioning offers molecular andmechanistic insights into the therapeutic or toxic effects of drugs.

For instance, different NAFLD network overlapping patterns were observed between fluvastatin and

aspirin, which reflect different drug mechanisms for the same disease phenotype that can be explored

further.

In conclusion, we have established a new drug signature database, PharmOmics, across different

dosage, species, and tissues, which captures the systems level in vivo activities of drug molecules.

In addition, we demonstrate the possible means to integrate these signatures with network biology

to address drug repositioning needs for disease treatment and to predict and characterize

toxicity. Finally, our study tested the concept of tissue-matched drug repositioning and supports

consideration of the tissue context of disease and drugs in the improvement of drug repositioning

performance, and repositioning efforts will be further expanded when more tissue-specific disease

and drug signatures are available. PharmOmics has the potential to complement other available

drug signature databases to accelerate drug development and toxicology research. It should be

noted that we aim to position PharmOmics as a data-driven tool for hypothesis generation. Integration

with known drug characteristics to select drug candidates and conducting follow-up experiments are still

essential.

Limitations of the study

There are several limitations in this study. First, our computational pipeline may not be able to identify all

drug datasets from GEO and ArrayExpress database and currently does not accommodate RNA

sequencing datasets (�10% of retrieved drug datasets). Variations in annotations of drug names, sample

size, definition of treatment versus control groups, and tissue/cell line labeling across datasets make it

challenging to design a fully automated pipeline to curate drug datasets. Another issue is that deposited

RNA sequencing datasets are in nonstandardized formats, with some as raw counts and others as

normalized counts such as FPKM and RPKM, making a streamlined and standardized analysis of these

datasets difficult. We are currently processing RNA sequencing datasets and will add these to PharmO-

mics in the future. It is therefore crucial for public data repositories to offer clear definitions and instruc-

tions for metadata generation in order to standardize terms and data processing procedures across

datasets to facilitate future data reuse. Secondly, the coverage of tissue, species, and treatment regi-

mens across drugs is unbalanced, preventing a thorough comparison across tissues, species, dosages,

and treatment windows. We will continue to update our PharmOmics database periodically to include

more datasets as they become available to increase the coverage of datasets and drug signatures.

Thirdly, the sample sizes for drug treatment studies tend to be small (majority with n = 3/group or

less). This is an intrinsic limitation of existing drug studies and is a common challenge to existing drug

databases including TG-GATEs, DrugMatrix, CMap, L1000, and CREEDS. This fact highlights the need

for systematic efforts to increase sample sizes in drug genomic studies. To mitigate the sample size

concern and reduce the reliance on individual studies, we implemented a meta-analysis strategy to

aggregate drug signatures across studies to derive meta signatures. However, this strategy removes

dosage- and time-dependent effects. We offer both options in our database to mitigate sample size con-

cerns through meta-analysis while retaining dose and time regimen information through the dose/time-

segregated analysis. Fourth, our network-based applications are currently limited in the coverage of

high-quality tissue specific regulatory networks and computing power. We will continue to expand

and improve the tissue networks and computing environment in our web server. Lastly, systematic vali-

dation efforts are needed to substantiate the value of drug repositioning tools such as PharmOmics.

Thus far, we utilized both in silico performance assessments and in vivo experiments to validate our pre-

dictions in limited settings. As with the other existing platforms such as CMap and L1000, future
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application studies and community-based validation efforts are necessary to further assess the value of

PharmOmics.
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A., Gil, M., Barberá, A., Salcedo, M.T., Augustin,
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Aspirin Cayman Chemicals Cat# 70260

Fluvastatin (sodium salt) Cayman Chemicals Cat# 10010337

High fat high sucrose Diet (Purified

Rodent Diet to Match Condensed Milk Diet)

Research diets D12266B

Triton X-100 Sigma-Aldrich Cat# T8532-500ML

Chow diet (Lab Rodent Diet 5053) Lab Diet (From the UCLA

animal husbandry)

Critical commercial assays

Triglyceride assay (analyzed by the UCLA GTM

Mouse Transfer Core)

Sigma-Aldrich Cat# TR0100-1KT

Cholesterol assay (analyzed by the UCLA GTM

Mouse Transfer Core)

UCLA GTM Mouse

Transfer Core

NA

Phospholipids C kit assay (analyzed by the UCLA

GTM Mouse Transfer Core)

Wako Diagnostics Cat# 997-01801

Deposited data

Code for drug repositioning This paper https://github.com/XiaYangLabOrg/

pharmomics

Meta-analysis based and dose/time segregated

Drug signatures

This paper http://mergeomics.research.idre.ucla.edu/

runpharmomics.php

Experimental models: Organisms/strains

C57BL/6J, male, 7 weeks old The Jackson Laboratory #000664

Software and algorithms

R 4.0.2 R Core Team https://www.r-project.org/

Graphpad Prism v8 https://www.graphpad.com/scientific-

software/prism/

ggplot2 3.3.5 (Wickham et al., 2020) https://cran.r-project.org/web/packages/

ggplot2/index.html

ROntoTools 2.16.0 (Voichita et al., 2020) https://bioconductor.org/packages/3.11/

bioc/html/ROntoTools.html

ROCR 1.0-11 (Sing et al., 2005) https://cran.r-project.org/web/packages/

ROCR/index.html

GeoDE 1.0 (Clark et al., 2014) https://cran.rstudio.com/web/packages/

GeoDE/index.html

Limma 3.44.3 (Ritchie et al., 2015) https://bioconductor.org/packages/3.11/

bioc/html/limma.html

RobustRankAggreg 1.1 (Kolde et al., 2012) https://cran.r-project.org/web/packages/

RobustRankAggreg/index.html

enrichR 3.0 (Kuleshov et al., 2016) https://cran.r-project.org/web/packages/

enrichR/index.html

Other

Nuclear Magnetic Resonance (NMR) Bruker minispec

series mq10 machine

Bruker BioSpin
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Xia Yang (xyang123@ucla.edu).

Materials availability

This study did not generate new reagents.

Data and code availability

d All data, including indexed dataset catalog, pre-computed drug signatures and pre-computed pathway

enrichments for individual drugs are deposited to and accessible through the PharmOmics web server

(http://mergeomics.research.idre.ucla.edu/runpharmomics.php). We also implemented functions for

same-tissue between-species comparison and same-species between-tissue comparison and compari-

son result download. In addition, network-based drug repositioning analysis and gene overlap-based

drug repositioning analysis using all drug signatures are available at http://mergeomics.research.idre.

ucla.edu/runpharmomics.php.

d Code for PharmOmics repositioning is available at https://github.com/XiaYangLabOrg/pharmomics.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

Since drug repositioning was done using steatosis gene signatures, we validated the predicted drugs using

a diet-induced steatosis mouse model which has been previously (Hui et al., 2015; Chella Krishnan et al.,

2018, 2021; Norheim et al., 2021) used to study NAFLD. Briefly, seven-week old C57BL/6J male mice

were purchased from the Jackson Laboratory (Bar Harbor, ME). Mice were maintained on a 12-hour

light/dark cycle environment at UCLA and were given ad libitum access to food and water. After a one

week acclimation period mice were randomly assigned to four experimental groups (n=7-9/group) on

different diets/treatments: regular chow diet (Control) (Lab Rodent Diet 5053, St. Louis, MO), high-fat

high-sucrose (HFHS) diet (Research Diets-D12266B, New Brunswick, NJ) to induce hepatic steatosis, a

key NAFLD phenotype, HFHS diet with Fluvastatin treatment (NAFLD + Flu), and HFHS diet with aspirin

treatment (NAFLD + Asp). All animal experiments were done under the protocol approved by the UCLA

institutional animal care and use committee (IACUC).

METHOD DETAILS

Curation of tissue- and species-specific drug transcriptomic datasets

A total of 941 drugs, including 766 FDA approved drugs from KEGG, FDA, European Medical Agency,

and Japanese Pharmaceuticals and Medical Devices Agency, and 175 chemicals from TG-GATEs and

DrugMatrix were queried against GEO, ArrayExpress, TG-GATEs, and DrugMatrix to identify datasets.

Duplicated datasets between data repositories were removed. We developed a semi-automated pipe-

line combining automated search with manual checking to identify relevant datasets for drug treatment.

The automated process first extracts datasets containing drug generic names or abbreviations and then

inspects the potential datasets for availability of both drug treatment and control labels in the constitu-

ent samples. Labels identified by the automated process were also manually checked to validate the la-

bels and remove potential false detections. Only datasets with n>=3/group in both drug treatment and

control groups were included in our downstream analyses. Although a larger sample size is desired, the

majority (77.7%) of drug transcriptome datasets for the dose/time segregated signature database have

n=3/group, 21.9% datasets have n=2/group, and <1% datasets have n>3/group (Figure S4A). It should

be noted that this sample size is used in all major drug/chemical signature databases, including CMap,

L1000, TG-GATEs and DrugMatrix, in order to cover different chemicals and time and dose regimens.

GEO/ArrayExpress datasets showed larger sample size variation compared to dedicated toxicogenomics

databases (Figure S4B). Currently our gene signatures were obtained from microarray datasets since

RNA-seq datasets were not standardized in the GEO/ArrayExpress platform and different normalization

methods will require a different downstream processing pipeline. The 1460 microarray datasets for 342
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drugs from GEO/ArrayExpress were from Affymetrix (55%), Illumina (25%) and Agilent (20%) platforms;

the 5370 DrugMatrix datasets for 655 drugs and chemicals contained Affymetrix and Codelink microar-

rays; the 6700 datasets for 169 drugs and chemicals from TG-GATEs mainly used Affymetrix microarrays.

Affymetrix and Illumina microarrays provided similar transcriptome coverages while Codelink platform is

an older design which only covered around 6000 genes. Agilent microarrays are two-color compared to

the other three platforms which used single-color arrays.

Obtaining drug treatment signatures stratified by species and tissues

Species and tissue labels were retrieved based on the metadata of each dataset. Tissue names were stan-

dardized based on the BRENDA Tissue Ontology (Gremse et al., 2011). We implemented a search proced-

ure to climb the ontology tree structure to determine the suitable tissue annotations. This was done by first

building a priority list of widely used tissues/organs in toxicological research using the BRENDA Tissue

Ontology tree system. Tissue/organ priority order was set to ‘‘kidney’’, ‘‘liver’’, ‘‘pancreas’’, ‘‘breast’’,

‘‘ovary’’, ‘‘adipose tissue’’, ‘‘cardiovascular system’’, ‘‘nervous system’’, ‘‘respiratory system’’, ‘‘urogenital

system’’, ‘‘immune system’’, ‘‘hematopoietic system’’, ‘‘skeletal system’’, ‘‘integument’’ (endothelial and

skin tissue), ‘‘connective tissue’’, ‘‘muscular system’’, ‘‘gland’’, ‘‘gastrointestinal system’’, and ‘‘viscus’’ (other

non-classified tissue). Tissue terms relevant to each of these tissues or organs were curated from the

ontology tree into a tissue/organ ontology table. Next, we looked up terms from our tissue/organ ontology

table in the Cell/Organ/Tissue column of the metadata in each transcriptomic dataset. If a tissue/organ

term was not found, we searched the title and summary columns of the metadata as well to retrieve addi-

tional information. When the search returnedmultiple tissue terms (for example, breast cancer cell line may

be categorized as both epithelial and breast organ), we used the termwith the highest priority as described

above. We prioritized the tissue terms based on the relevance to toxicology to make tissue assignments

unique for each dataset to reduce ambiguity. Manual checking was conducted to confirm the tissue anno-

tation for each dataset.

For each gene expression dataset from GEO and ArrayExpress, normalized data were retrieved, and

quantile distribution of the values was assessed. When a dataset was not normally distributed, log2-trans-

formation using GEO2R (Barrett et al., 2013) was applied. For gene expression datasets from Codelink mi-

croarrays (DrugMatrix), quantile normalization was conducted. For Affymetrix microarrays (DrugMatrix and

TG-GATEs), GCRMA (Wu et al., 2004) normalization was conducted. To identify differentially expressed

genes (DEGs) representing drug signatures, two different strategies were used. First, the widely used

DEG analysis method LIMMA (Ritchie et al., 2015) was applied to obtain dose and time segregated signa-

tures under false discovery rate (FDR) < 0.05. To overcome the low sample size issue and obtain ‘‘consensus’’

drug signatures for a drug/chemical, LIMMA was also applied to datasets where multiple doses and treat-

ment durations were tested, and treatment effects were derived by combining dose/time experiments for

the same drug/chemical in each study. Second, we leveraged different studies for the same drugs or chem-

icals in the same tissue and species to derive meta-analysis signatures. To address heterogeneity in study

design, platforms, sample size, and normalization methods across different data repositories, we applied

the characteristic direction method from the GeoDE package to derive consistent DEGs for each drug

across different data sources. GeoDE was designed to accommodate heterogenous datasets that have

differing parameters and outputs between treatment and control groups. It uses a ‘‘characteristic direction’’

measure to identify biologically relevant genes and pathways. The normalized characteristic directions for

all genes were then transformed into a non-parametric rank representation. Subsequently, gene ranks of a

particular drug from the same tissue/organ systemand the sameorganismwere aggregated across datasets

using the Robust Rank Aggregation method (Kolde et al., 2012), a statistically controlled process to identify

drug DEGs within each tissue for each species. Robust Rank Aggregation provides a non-parametric meta-

analysis across different ranked lists to obtain commonly shared genes across datasets, which avoids statis-

tical issues associated with heterogeneous datasets. It computes a null distribution based on randomized

gene ranks and then compares the null distribution with the empirical gene ranks to obtain a p-value for

each gene. The robust rank aggregation process was done for the upregulated and downregulated genes

separately to obtain DEGs for both directions under Bonferroni-adjusted p-value < 0.01, a cutoff imple-

mented in the Robust Rank Aggregation algorithm. To obtain species-level signatures for each drug, we

further aggregated DEGs across different organs tested for each drug within each species.

Pathway analysis of individual drug signatures was conducted using Enrichr (Kuleshov et al., 2016) by in-

tersecting each signature with pathways or gene sets from KEGG (Kanehisa et al., 2017) and gene
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ontology biological process (GOBP) terms (The Gene Ontology Consortium, 2017). Gene signatures were

defined as FDR < 0.05 for dose/time segregated signatures and Bonferroni-adjusted p-value < 0.01 for

meta-analysis signatures. In addition, pathway enrichment analysis based on network topology analysis

(Draghici et al., 2007) was conducted using Bioconductor package ROntoTools (Voichita et al., 2020).

Pathways at FDR < 0.05 were considered significant in both methods.

We curated 14,366 drug signatures segregated by treatment dosage and duration, tissue, and species,

covering 719 drugs and chemicals, among which 554 are FDA approved. In addition, our meta signatures

is a consensus of 4,344 signatures covering 551 drugs across treatment regimens. In total, the entire data-

base is based on 13,530 rat, human, and mouse transcriptomic datasets across >20 tissue or organ systems

across 941 drugs and chemicals from GEO, ArrayExpress, DrugMatrix, and TG-GATEs to derive drug sig-

natures. The toxicogenomics databases TG-GATEs and DrugMatrix mainly contain liver and kidney data-

sets from rats, while public data repositories GEO and ArrayExpress contain datasets with broader tissue

and species coverage (Figure 1B). Overall, the rat datasets are mainly from liver and kidney whereas human

and mouse datasets also contained signatures from other tissues and organs such as breast and the ner-

vous system (Figure 1C). There is also a species bias between the data repositories; GEO covered more

mouse and human datasets, TG-GATEs mainly has human and rat datasets, and DrugMatrix curated

more rat datasets (Figure 1D).

Curation of gene networks

We used tissue-specific networks, for example Bayesian gene regulatory networks (BNs) of mouse liver con-

structed using a previously establishedmethod (Zhu et al., 2007, 2008) based on transcriptomic and genetic

data from different mouse liver transcriptomic datasets (Yang et al., 2006; Wang et al., 2007; Derry et al.,

2010; Zhong et al., 2010; Tu et al., 2012). For each dataset, 1,000 BNs with different random seeds were re-

constructed using Monte Carlo Markov Chain simulation and the model with the best fit for each network

was determined. In the resulting set of 1,000 networks, edges appearing in over 30% of the networks were

included in a consensus network. This practice has been found to produce experimentally supported reg-

ulatory relations between genes (Zhu et al., 2007, 2008). The union of nodes and edges fromBNs of multiple

mouse or human studies were used as tissue-specific networks.

Curation of drug signatures from CMap, LINC1000, and CREEDS for comparison with

PharmOmics

TocomparePharmOmicswithotherestablisheddrugsignatureplatforms fordrug repurposing,wedownloaded

signatures from L1000FWD (Clark et al., 2014) (http://amp.pharm.mssm.edu/l1000fwd/download_page) which

were well annotated to match drug signatures for comparison. For CREEDS (Wang et al., 2016a) (http://amp.

pharm.mssm.edu/CREEDS/) repositioning, the web-based Enrichr (Kuleshov et al., 2016) tool was used to query

disease signatures to their DrugMatrix library, and outputs based on ‘‘combined score’’ implemented by Enrichr

were used. Finally, CMap repositioning test were completed through query from the website directly (https://

clue.io/) and rank based CMap scoring was used. For CMap and L1000 results which are based on in vitro cell

lines, results from all cell lines were summarized to represent common usage of in vitro studies. For CREEDS re-

sults where in vivo studies were available, only the corresponding tissues were included for comparability with

PharmOmics. We compared PharmOmics with the CREEDS, CMap and L1000 at the regimens that showed

the best performance in drug repurposing analysis in each platform.

Curation of disease gene signatures for drug repositioning

To test the potential of PharmOmics drug signatures for drug repositioning, we curated disease gene sig-

natures for hyperlipidemia and NAFLD. Hyperlipidemia was chosen as a test disease because numerous

positive control drugs are available to assess the performance of PharmOmics in retrieving known drugs

compared to other existing drug repositioning tools. NAFLD was chosen as another test case since no

effective drugs are currently available for this condition and our predictions may help guide future drug

development.

The hyperlipidemia signatures were derived from two resources: i) genes and pathways identified by the

Mergeomics pipeline (Shu et al., 2016) based on low-density lipoprotein cholesterol (LDL) genome-wide

association study (GWAS) summary statistics data (Willer et al., 2013), and ii) genes based on mechanistic

and therapeutic evidence collected by the Comparative Toxicogenomics Database (CTD) (Davis et al.,

2017) under Mesh ID D006949. These two different resources represent disease gene signatures derived
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from either GWAS inference or a literature-based system. NAFLD gene signatures were retrieved from i)

studies of NAFLD mouse model (Chella Krishnan et al., 2018) from a large systems genetics cohort

comprised of hundreds of mice from �100 genetically diverse strains, and ii) CTD gene signature under

Mesh ID D065626.

As additional test cases, we also retrieved gene signatures for chemical induced liver injury under CTD

Mesh ID D056486, for hepatitis under CTD Mesh ID D006527, for hyperuricemia under CTD Mesh ID

D033461, and for type 2 diabetes under CTD Mesh ID D003924.

Measurement of similarity between signatures of drugs, ADRs, and diseases

We used two different methods to determine similarities between two signatures (e.g., a drug signature vs.

a disease or ADR signature, or a drug signature vs. signature of another drug). The first method is based on

signature overlaps and uses a signed Jaccard score based on upregulated genes from the first signature set

(a1), upregulated genes from the second signature set (b1), downregulated genes from the first signature

set (a2) and downregulated genes from the second signature set (b2). The Jaccard score was defined in the

following formula:

JðA;BÞ = jAXBj
jAWBj

signed Jaccard score = Jða1; b1Þ + J ða2; b2Þ � Jða1; b2Þ � Jða2; b1Þ
If there is no direction from the disease signature (a), Jaccard score was determined based on a simple

overlap between disease signature (a) and drug signatures (b) without considering direction (b1, b2).

The second method to determine similarities between two signatures is based on a distance measure

derived from the mean of shortest path lengths between network key drivers of a drug gene signature

(A) and a disease signature (B) in a given Bayesian gene regulatory network (BN) based on a key driver

analysis (see below for details). This distance measure is adapted from a previous study using protein inter-

action networks (Cheng et al., 2018).

distanceðB; AÞ =
1

kAk
X

a˛A

min b ˛ B distance ðb; aÞ

To reduce variation, only signatures with more than 10 genes were included in the analysis. To obtain a null

distribution for shortest path lengths, we permuted genes with the same degree as the drug/disease/ADR

genes in each network 1,000 times and calculated a z-score based on the mean and standard error of the

null distribution.

Comparison of gene signatures from different species used gene symbol conversion based on ortholog

information from HGNC consortium (Tweedie et al., 2021). The ROCR package (Sing et al., 2005) was

used to assessed the performance of the gene overlap based or network based methods in drug reposi-

tioning or ADR prediction.

Comparison of PharmOmics with existing drug signature platforms

To assess the degree of agreement in drug signatures between the PharmOmics database and existing

platforms, we compared PharmOmics with the CREEDS (Wang et al., 2016a) and L1000FWD (Wang

et al., 2018) databases, for which drug signatures are accessible. As shown in Figure S3, both the PharmO-

mics dose/time-segregated signatures and the meta signatures showed better concordance with the two

existing platforms than the agreement between CREEDS and L1000FWD, as reflected by higher overlap

fold enrichment score and lower statistical p values. These platforms have differences in the datasets

and analytical strategies and therefore are complementary. Due to the lack of full access to CMap signa-

tures, we were not able to systematically compare PharmOmics against CMap.

PharmOmics web server implementation

To allow easy data access and use of PharmOmics, we have created a freely accessible web tool deployed

on the same Apache server used to host Mergeomics (Shu et al., 2016), a computational pipeline for inte-

grative analysis of multi-omics datasets to derive disease-associated pathways, networks, and network reg-

ulators (http://mergeomics.research.idre.ucla.edu).
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The PharmOmics web server features three functions (Figure 2A). First, it allows queries for species- and tissue-

stratified drug signatures and pathways for both the dose/time-segregated and meta signatures. Details of

statistical methods (e.g., LIMMA vs. characteristic direction), signature type (dose/time-segregated vs. meta),

and datasets used are annotated. The drug query also includes a function for DEG and pathway signature com-

parisonsbetweenuser-selectedspeciesand tissueswhichcanbevisualizedanddownloaded.Second, it features

a network drug repositioning tool that is based on the connectivity of drug signatures in PharmOmics to user

input genes such as a disease signature. This tool requires a list of genes and a gene network that can be chosen

fromourpreloadedgene regulatorynetworks if relevantoracustomupload (seeApplicationsbelow fordetails in

implementation). In order to keep reasonable computation time and memory requirement of network reposi-

tioning ondose/time segregated signatures, we implemented on theweb server the option to run repositioning

with amaximumof 500 genes for eachdrug signature,whichweredefinedby their FDR value regardless of direc-

tionality. In theoutput, Z-scoreandp-value resultsofnetwork repositioningaredisplayedandavailable fordown-

load. In addition, we list the overlapping genes between drug signatures in the given network and the input

genes, the drug genes with direct connections to input genes through one-edge extension, and input genes

with one-edge connections to drug genes in the downloadable results file. The output page also provides

network visualization which details the genes affected by a drug and their overlap with and direct connections

to user input genes using Cytoscape.js. The network nodes and edges files are also available for download

and can be used on Cytoscape Desktop. An example of the web interface of the input submission form and re-

sultsdisplayof thenetwork repositioning tool usinga sample liver network anda samplehyperlipidemiageneset

is shown in Figures 2B and 2C. Lastly, the web server offers a gene overlap-based drug repositioning tool that

assesses direct overlap between drug gene signatures and user input genes. Gene overlap-based drug reposi-

tioning requires a single list of genes or separate lists of upregulated and downregulatedgenes and outputs the

Jaccard score, odds ratio, Fisher’s exact test p-value, within-species rank, and gene overlaps for drugs showing

matching genes with the input genes. This gene overlap-based approach is similar to what was implemented in

other drug repositioning tools, but the network-based repositioning approach is unique to PharmOmics.

Experimental methods for NAFLD drug validation

Eight week old mice underwent dietary treatment with fluvastatin and aspirin purchased from Cayman

Chemicals (Ann Arbor, MI). The target intake concentrations of fluvastatin and aspirin were 15 mg/kg

and 80 mg/kg, respectively, which were chosen based on doses used in previous studies that did not

show toxicity (Park et al., 2016; Zhu et al., 2017). These experimental diets were then administered for

10 weeks. The average fluvastatin intake was 14.98 mg/kg/day, and the average aspirin intake was

79.67 mg/kg/day. During drug treatment, metabolic phenotypes such as body weight, body fat and lean

mass composition were monitored weekly. Fat and lean mass were measured with Nuclear Magnetic Reso-

nance (NMR) Bruker minispec series mq10 machine (Bruker BioSpin, Freemont, CA). At the end of treat-

ment, mice were sacrificed after a 4 hour fasting period and livers from all groups were weighed, flash

frozen, and stored at�80�C until lipid analysis. For metabolic phenotypesmeasured at multiple time points

(body weight gain and adiposity), differences between groups were analyzed using a 2-way ANOVA fol-

lowed by Sidak’s multiple comparisons test.

Hepatic lipid quantification

Hepatic lipids were extracted using the Folch method (Folch etal., 1957). Briefly, frozen liver tissues were

homogenized in methanol, and then chloroform was added to each sample to obtain a 2:1 mixture of chlo-

roform and methanol. Samples were then incubated overnight at 4C. Following incubation, samples were

filtered and magnesium chloride was added to the filtrate and centrifuged. The resulting aqueous phase

and soluble proteins were aspirated, and the remaining organic phase was evaporated using nitrogen

gas. The dried lipids were dissolved in a Triton X-100 solution. The samples were stored in �80�C prior

to analysis. The lipid extracts were analyzed by the UCLA GTM Mouse Transfer Core for triglyceride

(TG), total cholesterol (TC), unesterified cholesterol (UC), and phospholipids (PL) levels by colorimetric as-

says (Warnick, 1986; Hedrick et al., 1993). Depending on data normality, the groups were analyzed using

either a two-sided t-test or Mann-Whitney test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data representation, dispersion and precision measures can be viewed in the figure legends. For in vivo

experimental data comparisons using two-way ANOVA (with Sidak post-hoc analysis), t-test and Mann-

Whitney test, Prism v8 was used for analysis. Significance level p < 0.05 is noted using an asterisk *. For
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repositioning score two group comparison was performed by Wilcoxon signed rank test in R 4.0.2. Signif-

icance levels p < 0.05, p < 0.01 and p < 0.001 are noted using asterisks *, **, and ***, respectively. Multiple

group comparison was performed by Kruskal-Wallis test followed by post-hoc pairwise Wilcoxon signed

rank test in R 4.0.2. Significance levels p < 0.05, p < 0.01 and p < 0.001 are noted using asterisks *, **,

and ***, respectively). Figures were generated by Prism v8 for in vivo experimental data, R default plot

for ROC curves and histograms, and R ggplot2 (Wickham et al., 2020) for boxplots. Sample sizes can be

viewed in the figure legends. The statistics used in the bioinformatics analysis was described in the individ-

ual method sections above.
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