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Abstract

Monitoring immune function using molecular imaging could significantly impact the diagnosis 

and treatment evaluation of immunological disorders and therapeutic immune responses. Positron 

Emission Tomography (PET) is a molecular imaging modality with applications in cancer and 

other diseases. PET studies of immune function have been limited by a lack of specialized probes. 

We identified [18F]FAC (1-(2′-deoxy-2′-[18F]fluoroarabinofuranosyl) cytosine) by differential 

screening as a new PET probe for the deoxyribonucleotide salvage pathway. [18F]FAC enabled 

visualization of lymphoid organs and was sensitive to localized immune activation in a mouse 

model of anti-tumor immunity. [18F]FAC microPET also detected early changes in lymphoid mass 

in systemic autoimmunity and allowed evaluation of immunosuppressive therapy. These data 

support the use of [18F]FAC PET for immune monitoring and suggest a wide range of clinical 

applications in immune disorders and in certain types of cancer.
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INTRODUCTION

Imaging the immune system in living subjects can define the spatiotemporal programming 

of innate and adaptive immunity. PET enables noninvasive, quantitative and tomographic 

assays of biological processes using molecular probes labeled with positron-emitting 

radioisotopes 1. Studies in mice showed that PET is useful to visualize immune responses. 

Anti-tumor T cell responses can be monitored by PET reporter gene imaging 2–6. Using a 

mouse model of autoimmune demyelination we showed that 18Fluorodeoxyglucose 

([18F]FDG)1 PET allows imaging of disease onset and of immunosuppressive therapy 7. 

However, [18F]FDG accumulation in tissues like heart, brain and liver suggests the need for 

new PET probes with distinct biodistribution patterns. To develop such probes, we focused 

on the salvage pathway for DNA synthesis in which deoxyribonucleosides are converted to 

nucleotides by phosphorylation catalyzed by deoxyribonucleoside kinases (reviewed in 8). 

While most tissues predominantly utilize the de novo pathway for DNA synthesis, lymphoid 

organs and rapidly proliferating tissues rely extensively on the salvage pathway 9. To 

identify novel probes for the salvage pathway we: (i), in vitro screened nucleoside analogs 

for differential retention in proliferating and quiescent T cells; (ii), identified FAC, a new 

PET probe candidate with increased accumulation in proliferating T cells; (iii), performed 

gene expression and biochemical analyses to investigate the mechanism(s) of elevated FAC 

retention; (iv), radiochemically synthesized [18F]FAC for in vivo biodistribution studies; (v), 

compared [18F]FAC with PET probes currently used to measure nucleoside metabolism and 

glycolysis; and (vi), evaluated [18F]FAC in mouse models of immune activation. Similar 

strategies are broadly applicable to the development of new PET probes with specificity for 

various biochemical pathways and/or immune cell lineages. Our findings provide the 

impetus for clinical evaluation of [18F]FAC PET imaging in immune disorders and other 

diseases.

RESULTS

Differential screening to identify potential PET probes sensitive to changes in nucleoside 
flux associated with T cell activation and proliferation

We measured the retention of [3H]-labeled deoxyribonucleoside analogs (NAs) in resting vs. 

proliferating primary CD8+T cells. Selection criteria for NAs accounted for the propensity 

of fluorine substitutions to change the biochemical properties of nucleosides (reviewed in 

10). Since fluorination at C-4′ is incompatible with 18F labeling and fluorination at C-5′ 

would prevent phosphorylation by nucleoside kinases, we tested only NAs containing ‘cold’ 

fluorine (19F) atom(s) substitutions at C-2′ or 3′ on the sugar moiety or at position 5 of the 

nucleobase (Supplementary Fig. 1 online). Fig. 1a shows a wide variation in NAs retention 

by quiescent and proliferating CD8+ T cells. While 2′,2′-difluorodeoxycytidine (dFdC) (Fig. 

1b) showed the best selectivity for proliferating cells, synthesis of 18F-labeled dFdC would 

be challenging. Precursors for [18F]dFdC are likely to be unstable because of the presence of 

the electronegative fluorine atom and an excellent leaving group at the C-2′ position. This 

and the need for large mass of precursor materials limit the specific activity of [18F]dFdC. 

To circumvent this problem we synthesized 18F labeled monofluorinated analogs of dFdC 

(Supplementary Fig. 2 online). Relative to the stereochemical configurations of the C-2′ 
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fluorine atom (Fig. 1b), the F-ara (‘up’) analogs retain biological activity while the C-2′ ribo 

(‘down’) compounds are inactive (reviewed in 10). Indeed, similar amounts of the F-ara 

analog 1-(2- deoxy-2-fluoro-arabinofuranosyl)-cytosine (FAC) (Fig. 1b) and dFdC were 

retained in proliferating CD8+ T cells (Fig. 1c). FAC retention in dividing T cells could 

reflect any one or combination of several biochemical events: (i), upregulation of nucleoside 

transporters; (ii), elevated phosphorylation by deoxyribonucleoside kinases; and, (iii), 

increased incorporation into the DNA. To determine expression of nucleoside transporters 

and kinases potentially involved in FAC retention we performed microarray and qPCR 

analyses. 2′-deoxycytidine (dCyd) analogs are transported by members of the solute carrier 

(SLC) families SLC28 (reviewed in 11) and SLC29 (reviewed in 12). Slc29a1 expression 

was upregulated by ~4-fold in proliferating T cells vs. quiescent T cells while Slc28a1 and 

Slc28a3 11 were not expressed (data not shown). Intracellular FAC could be phosphorylated 

and trapped by deoxycytidine kinase (dCK, Kcat/Km for dCyd = 2 × 105) and by thymidine 

kinase 2 (TK2, Kcat/Km for dCyd = 3 x 104) (reviewed in 13). Following T cell activation, 

dCK mRNA levels increased by ~2-fold whereas TK2 expression decreased by ~5-fold (data 

not shown). Since SLC29A1 and dCK were previously involved in the metabolism of dFdC 

14,15, we further analyzed their role by overexpressing them in NIH3T3 fibroblasts. 

Thymidine kinase 1 (TK1, Kcat/Km for dCyd <1 × 102 13) was used as a negative control. 

[3H]FAC retention increased in both dCKHIGH and SLC29A1HIGH cells but not in TK1HIGH 

cells which only accumulated [3H]fluorothymidine (FLT) (Fig. 1d). To determine whether 

retention could also reflect DNA incorporation, T cells were activated for 72 hrs and then 

incubated for 1 to 8 hrs with [3H]FAC. The accumulation of [3H]FAC and [3H]dCyd 

(positive control) into DNA increased as a function of time (Fig. 1e).

[18F]FAC has greater specificity for lymphoid organs than PET probes for nucleoside 
metabolism and glycolysis

Radiochemical synthesis of [18F]FAC (Supplementary Fig. 2 online) reproducibly yielded a 

product with chemical and radiochemical purities greater than 99% and specific activity 

greater than 1 Ci/μmol. HPLC analysis of [18F]FAC up to 10 hrs post radiochemical 

synthesis did not detect products of radiolysis. Biodistribution, metabolism and clearance of 

[18F]FAC were studied in C57/BL6 mice. Tissue decay-corrected mean time-activity curves 

from dynamic [18F]FAC microPET/CT scans (Supplementary Fig. 3a online) suggested that 

[18F]FAC was predominantly cleared through kidney and liver (Supplementary Fig. 3a,b 

online). Imaging data were corroborated with radioactivity measurements in necropsy tissue 

samples (Supplementary Fig. 3c online) and with digital whole-body autoradiography 

(DWBA) (Fig. 2a). One hour after injection of [18F]FAC, accumulated radioactivity was 

detected in thymus, spleen, intestine, bone/bone-marrow and liver. Similar to other 

deoxycytidine analogs, FAC is susceptible to deamination in vivo 16 (Supplementary Fig. 4 

online). Two lines of evidence suggest that the tissue accumulation of [18F]FAC is primarily 

regulated by dCK-mediated phosphorylation rather than by deamination. First, [18F]FAC 

and its phosphorylated derivatives was detected by HPLC analyses of thymic extracts. 

Second, biodistribution data indicated preferential retention of [18F]FAC in tissues with high 

dCK mRNA expression 13. While further studies are required to precisely define 

biochemical mechanism(s) of retention, our data suggested that [18F]FAC enables 
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visualization of cells with high deoxyribonucleoside salvage 9 such as lymphocytes, bone-

marrow cells and enterocytes.

Compared with probes for nucleoside metabolism ([18F]FLT 17 and [18F]D-FMAU 18) and 

glycolysis ([18F]FDG), [18F]FAC had a distinct biodistribution pattern (Fig. 2c, Table 1, 

Supplementary Fig. 5 online). [18F]FLT and [18F]D-FMAU showed no detectable 

accumulation in thymus and spleen while myocardial retention of [18F]FDG interferes with 

the thymus signal. To examine the cell lineage specificity of [18F]FAC resident populations 

from thymus and spleen were sorted using flow cytometry. While rapidly dividing double 

negative thymocytes had the highest retention of radioactivity, [18F]FAC also labeled 

peripheral T and B lymphocytes as well as CD11b+ myeloid cells (Fig. 2d,e).

[18F]FAC microPET imaging of immune activation during a primary anti-tumor immune 
response

To determine whether [18F]FAC is sensitive to localized immune activation we used a onco-

retrovirus tumor model 19 characterized by T cell priming by strong xenoantigens encoded 

by the gag and env genes of the Moloney murine sarcoma and leukemia virus complex 

(MoMSV). As shown using conventional ex vivo approaches 20 and PET reporter gene 

imaging 3,6, non-metastatic MoMSV induced sarcomas are rejected in a T-cell dependent 

manner with reproducible kinetics. [18F]FAC scans at the peak of the anti-tumor immune 

response (Day 15) Fig. 3a,b, Supplementary Fig. 6 online) indicated increased accumulation 

in the spleen and tumor draining lymph nodes (DLNs) relative to Day -1 baseline scans. We 

then examined whether elevated retention of [18F]FAC at these sites reflects upregulated 

nucleoside salvage metabolism by activated CD8+ T cells. Splenic CD8+ T cells from mice 

injected with [18F]FAC were fractionated by flow cytometry into naïve (CD62LHIGH/

CD44LOW) and effector populations (CD62LLOW/CD44HIGH). Effector CD8+ T cells 

retained ~4-fold more [18F]FAC than naïve T cells (Fig. 3c).

To compare [18F]FAC with other probes MoMSV-challenged mice were scanned on 

consecutive days with [18F]FAC, [18F]FDG and [18F]FLT. On Day 13 post virus challenge, 

[18F]FDG accumulation was increased at the tumor site, tumor DLNs and spleen (Fig. 3d 

and Supplementary Fig. 6 online). Tumor lesions accumulated high amounts of [18F]FDG: 

8.2 ±4.2 percent injected dose of activity per gram of tissue (%ID/g) of tumor over 

background (defined as the contralateral muscle tissue). In contrast, [18F]FAC retention in 

the tumor was lower (1.9 ±0.3 %ID/g). Although additional studies are required to elucidate 

whether [18F]FAC retention in tumors is due to infiltrating immune cells, preferential 

accumulation in the tumor DLNs (4.14 ±1.5 %ID/g) vs. tumor (1.9 ±0.3 %ID/g) (Fig. 3a,d, 

Supplementary Fig. 6 online) suggested that [18F]FAC has good specificity for imaging 

immune rejection of virally-induced sarcomas. In contrast to [18F]FAC, [18F]FLT did not 

accumulate at sites of immune activation (Fig. 3e).

Disease and treatment evaluation using [18F]FAC PET in an animal model of systemic 
autoimmunity

To determine whether [18F]FAC could allow monitoring of autoimmune disorders we used 

mice carrying the Faslpr mutation. Deficient apoptosis of Faslpr lymphocytes leads to 
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lymphadenopathy, arthritis and immune complex-mediated glomerulonephrosis 21. We used 

B6.MRL-Faslpr/J mice which show slower disease progression than the MRL/Mp-lpr/lpr 

strain 22. PET/CT scans of 2-3 month old B6.MRL-Faslpr/J mice revealed increased 

numbers of [18F]FAC positive axillary and brachial lymph nodes (LNs) relative to age-

matched wild type (WT) C57BL/6J controls (Fig. 4, Supplementary Fig. 7a online). 

[18F]FAC positive LNs could be detected in 2 of 19 WT mice, whereas 9 of 13 Faslpr/J mice 

showed signals indicative of lymphadenopathy. Quantification of [18F]FAC accumulation in 

LNs from Faslpr/J mice showed an excellent correlation between retained radioactivity and 

T cell numbers (Supplementary Fig. 7b online). To determine whether [18F]FAC 

microPET/CT could monitor therapy, B6.MRL-Faslpr/J mice were given dexamethasone 

(DEX), a synthetic glucocorticoid with potent immunosuppressive effects 23. DEX had a 

profound effect on [18F]FAC retention in thymus and LNs presumably reflecting the 

cytotoxic effects of this drug towards lymphocytes (Fig. 4, Supplementary Fig. 7a online).

DISCUSSION

A new PET probe for imaging the immune system

[18F]FAC is a novel PET probe which allows visualization of thymus and spleen in mice 

and is sensitive to alterations in lymphoid mass and immune status. Current results and our 

previous [18F]FDG PET imaging study in Experimental Autoimmune Encephalomyelitis 

(EAE)7 indicate that [18F]FAC and [18F]FDG can be used to measure key metabolic 

pathways in immune cells. While these probes are not absolutely specific for immune cells, 

changes in their accumulation throughout the body could be indicative of “disease states” 

and could provide early biomarkers. Direct comparisons of [18F]FAC with [18F]FDG and 

[18F]FLT indicate that [18F]FAC has better selectivity for lymphoid organs such as thymus, 

spleen and lymph nodes. Potential disadvantages of [18F]FAC include its baseline retention 

in lymphoid organs which could hamper the detection of weak immune responses at these 

sites and relatively high retention in the small and large intestine.

[18F]FAC as a cancer imaging probe

Dysregulated nucleoside metabolism represents a hallmark of cancer and preliminary results 

indicate that [18F]FAC could be useful in oncology imaging. We evaluated [18F]FAC in 

several tumor models (Supplementary Fig. 8 online). Increased [18F]FAC retention in the 

spleen was observed in leukemia induced by transplantation of Bcr-Abl transformed Ba/F3 

cells or bone marrow cells. [18F]FAC PET visualized tumors induced by murine B16 cells 

(representative of malignant melanoma) and human U87 cells (representative of glioma 

tumors). Future studies are warranted to directly compare [18F]FAC with [18F]FDG and 

[18F]FLT for detection of various cancers. Furthermore, [18F]FAC PET could enable 

prediction of tumor responses to a class of anticancer agents represented by structurally 

related prodrugs cytarabine (Ara-C) and 2′-difluorodeoxycytidine (dFdC, Gemcitabine). 

Similar to FAC retention, the activation of these widely used prodrugs requires uptake via 

similar nucleoside transporters and dCK-mediated phosphorylation (reviewed in 13).

In conclusion, [18F]FAC PET imaging could offer new insights for diagnostics and 

treatment monitoring of a wide range of disorders. Studies are underway to translate 
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[18F]FAC PET imaging to the clinic and evaluate its potential for monitoring autoimmunity, 

inflammation and cancer.

METHODS

[3H]-labeled nucleosides (see also Supplementary Fig. 1)

The following tritium labeled nucleosides were purchased from Moravek Biochemicals 

(Brea, CA): 3′ Fluoro 3′ deoxythymidine (3′FLT); 2′ Fluoro 2′ deoxy-Thymidine (2′FLT); 

1-(2-Deoxy-2-Fluoro-B-D-arabino-furanosyl)-5-methyluracil (D-FMAU); 1-(2-Deoxy-2-

Fluoro-B-L-arabinofuranosyl) 5 methyluracil (L-FMAU); 2,3-dideoxy-3-fluorocytidine 

(3′FddC); (-)-β-2,3-Dideoxy-5-fluoro-3-thiacytidine (FTC); 5-Fluoro-2,3-dideoxycytidine 

(5FddC); 2′,2′-Difluorodeoxycytidine (dFdC); 5-Fluoro-2′-Deoxycytidine (5FdC); 5-

Fluoro-2-deoxyuridine (5FdURD); 2′-Fluoro-2-deoxyuridine (2FdUrd); 1-(2-deoxy-2-

fluoro-B-D-arabinofuranosyl)-uracil (FAU); 2′-Fluoro-2′-deoxy5-Fluorouracil-β-D—

arabino-furanoside (FFAU).

T cell activation and radioactive tracer uptake assay

T lymphocytes from pmel-1 T cell receptor (TCR) transgenic mice 24 were stimulated ex 

vivo using their cognate antigen (1 μM hgp10025–33) and cultured for 72 hrs. For radioactive 

tracer uptake assays, 1 μCi of [3H]FAC or [3H]dFdC were added to wells containing 5x104 

cells in a 96-well tissue culture plate and incubated for 1 hr at 37oC and 5% CO2. The plate 

was washed five times with media containing 5% fetal calf serum using the Millipore 

Vacuum Manifold (Billerica, MA). The amount of incorporated probe was measured by 

scintillation counting using the PerkinElmer Microbeta (Waltham, MA). DNA incorporation 

assays using [3H]-labeled nucleosides were performed as previously described 25.

Radiochemical synthesis of 18F-labeled PET probes

The radiochemical synthesis of [18F]FAC is described in Supplementary Fig. 2 online. The 

radiochemical synthesis of [18F]FDG 26, [18F]FLT 17, and [18F]D-FMAU 27 was 

performed as previously described.

MicroPET/CT imaging

Mice were kept warm under gas anesthesia (2% isoflurane) and injected with 200 μCi of 

various PET probes i.v. and allowed 1 hr uptake. Mice were then positioned using an 

imaging chamber. Data were acquired using Siemens Preclinical Solutions (Knoxville, TN) 

microPET Focus 220 and MicroCAT II CT systems. MicroPET data were acquired for 10 

minutes and reconstructed using a statistical maximum a posteriori probability algorithm 

(MAP) 28 into multiple frames. The spatial resolution of PET is ~1.5 mm, 0.4 mm voxel 

size. CT images are a low dose 400 μm resolution acquisition with 200 μm voxel size. 

MicroPET and CT images were co-registered as previously described 29. Quantification was 

performed by drawing 3D regions of interest (ROI) using the AMIDE software 30. Color 

scale is proportional to tissue concentration with red being the highest and lower values in 

yellow, green & blue.
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Animal models for immune activation

Mice used in these studies were bred and maintained according to the guidelines of the 

Department of Laboratory Animal Medicine (DLAM) at the University of California, Los 

Angeles. The MoMSV sarcoma model was described previously 3. B6.MRL-Faslpr/J mice 

used for systemic autoimmunity studies were purchased from The Jackson Laboratory (stock 

number: 000482). Dexamethasone (DEX, 10 mg/kg) was administered by intraperitoneal 

injections in 100 μL PBS at 24 hr intervals for 2-7 days. Mice were scanned by 

microPET/CT 24 hr after the last injection.

Digital whole-body autoradiography

Mice were anesthetized with 2% isoflurane and were injected i.v. with 1mCi [18F]FAC. The 

DWBA was performed by using previously described methods 7. Frozen coronal whole 

body mouse sections (45 μm thick) were exposed overnight and were developed using a Fuji 

BAS 5000 Imager at 100 μm spatial resolution.

Data presentation and statistical analysis

Graphs were constructed using GraphPad Prism software, version 4.02. P values were 

calculated using Student’s t test. P values of <0.05 were considered significant. Data are 

presented as means ± standard errors of the mean (SEM).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

PET positron emission tomography

CT computed tomography

NAs nucleoside analogs

[18F]FAC 1-(2-deoxy-2-[18F]fluoroarabinofuranosyl) cytosine

dFdC 2′,2′-Difluorodeoxycytidine
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[18F]FLT 3′-deoxy-3′-[18F]fluorothymidine

[18F]FDG 2-[18F] fluoro-2-deoxy-D-glucose

[18F]D-FMAU 2′-[18F]fluoro-5 Methylarabinosyluracil

dCK deoxycytidine kinase

SLC solute carrier gene transporter

ROI region of interest

%ID/g percent injected dose per gram of tissue

DEX dexamethasone
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Figure 1. Identification of fluorinated deoxycytidine analogs retained in activated vs. naïve T 
cells
(a) Primary CD8+ T cells were stimulated ex vivo for 72 hrs and then were incubated for 1 

hr with [3H]-labeled NAs; following successive washes, intracellular radioactivity was 

measured by scintillation counting. (b) FAC is a dFdC analog amenable to 18F labeling. (c) 
Similar retention of [3H]dFdC and [3H]FAC by activated mouse CD8+ T cells; the retention 

of [3H]FAC in naïve CD8+ T cells was 18+/−4.5 fmoles/105 cells (d) Increased uptake of 

[3H]FAC in NIH3T3 fibroblasts engineered to overexpress nucleoside kinases (dCK, TK1) 

and the nucleoside transporter SLC29A1. [3H]FLT was used as a positive control for TK1 

expressing cells. (e) [3H]FAC and the parental nucleoside 2′ deoxycytidine ([3H]dCyd, used 

as a positive control) are incorporated in the DNA of proliferating CD8+ T cells as a 

function of time (see text for details). * P values of <0.05. Results are representative of two 

independent experiments.
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Figure 2. [18F]FAC has better selectivity for lymphoid organs compared with other PET probes 
for nucleoside metabolism and glycolysis
(a) [18F]FAC DWBA shown along with the corresponding tissue sections. (b,c) C57/BL6 

mice were scanned by microPET/CT using [18F]FAC, [18F]FLT, [18F]D-FMAU and 

[18F]FDG. Mice were imaged 60 min after i.v. injection of probes. The orientation of 

saggital, coronal and transverse sections is depicted in the 3D microCT image in panel b. 

Images are 1 mm thick sagittal, coronal and transverse slices. Percent ID/g, percent injected 

dose per gram of tissue; B, Bone; BL, Bladder; BR, Brain; GB, Gall Bladder; GI, 

Gastrointestinal tract; H, heart; K, Kidney; L, Liver; LU, Lung; SP, Spleen; Thy, thymus; 

Radu et al. Page 11

Nat Med. Author manuscript; available in PMC 2009 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BM, bone marrow; ST, stomach. (d) [18F]FAC retention/cell number in thymocytes and 

splenocytes. (d) Proportion of [18F]FAC retention/cell lineage per lymphoid organ (see text 

for details).
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Figure 3. Increased [18F]FAC retention in spleen and lymph nodes at the peak of the primary 
anti-tumor immune response
Images are 1 mm coronal sections from microPET/CT scans using [18F]FAC (Day -1 and 

Day 15, panel a), [18F]FDG (Day 13, panel d) and [18F]FLT (Day 14, panel e). B, Bone; 

BL, Bladder; GI, Gastrointestinal tract; H, heart; SP, Spleen; TU, tumor; Thy, thymus; LN, 

lymph node. (b) Quantification of [18F]FAC retention in spleen and lymph nodes on Day -1 

and Day 15; Number of mice =3. (c) Increased in vivo accumulation of [18F]FAC in effector 

CD8+ T cells vs. naïve CD8+ T cells. Mice were challenged with the MoMSV onco-

retrovirus and 14 days later were injected with 1 mCi [18F]FAC. Following 1 hr in vivo 
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uptake, mice were sacrificed to isolate splenocytes which were fractionated by flow 

cytometry into naïve CD8+ T cells (CD44LOW/CD62LHIGH) and effector CD8+ T cells 

(CD44HIGH/CD62LLOW). Radioactivity accumulated by these cells was measured using a 

well counter. Results are representative of two independent experiments.
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Figure 4. [18F]FAC microPET/CT allows visualization of increased lymphoid mass in systemic 
autoimmunity and can be used to monitor immunosuppressive therapeutic interventions
Images are 60 minutes after i.v. injection of [18F]FAC and show three 1 mm thick coronal 

slices from (a) wild-type (C57BL/6J) and B6.MRL-Faslpr/J (b) before and (c) after 

treatment with DEX. [18F]FAC positive LNs were scored blindly. Thy, thymus; LN, lymph 

nodes; BM, bone-marrow. Results are representative of two independent experiments.

Radu et al. Page 15

Nat Med. Author manuscript; available in PMC 2009 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Radu et al. Page 16

Table 1

Amongst existing PET probes for nucleoside metabolic pathways and glycolysis, [18F]FAC shows better 

selectivity for thymus and spleen (values are %ID/g per organ normalized to %ID/g muscle). Retention of 

[18F]FDG in the thymus could not be measured because of signal spillover from the heart. Number of mice = 

3.

[18F]FAC [18F]FLT [18F]FMAU [18F]FDG

Spleen 2.16+/− 0.48 1.02+/− 0.21 1.08+/− 0.27 1.69+/− 0.16

Thymus 3.29+/− 0.48 1.22+/− 0.23 1.33+/− 0.24 N.D.
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