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Nonrelativistic Short-Distance Completions of a Naturally Light Higgs

Kevin T. Grosvenora, Petr Hořavab,c, Christopher J. Mognib,c and Ziqi Yanb,c

aNiels Bohr Institute, Copenhagen University
Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

bBerkeley Center for Theoretical Physics and Department of Physics
University of California, Berkeley, California 94720-7300
cPhysics Division, Lawrence Berkeley National Laboratory

Berkeley, California 94720-8162

Nonrelativistic scalar field theories can exhibit a natural cascading hierarchy of scales, protected
by a hierarchy of polynomial shift symmetries. Using a simple model, we argue that a high-energy
cross-over to such nonrelativistic behavior naturally leads to light scalars, and thus represents a
useful ingredient for technically natural resolutions of scalar mass hierarchies, perhaps even the
Higgs mass hierarchy puzzle.

I. INTRODUCTION

Two of the most prominent puzzles of fundamental
physics – the cosmological constant problem and the
Higgs mass hierarchy problem – can be viewed as puzzles
of technical naturalness [1]. The 2012 discovery [2, 3] and
the observed properties of the Higgs boson suggest that
the Standard Model may be self-contained up to a very
high scale. This intriguing possibility brings the natural-
ness puzzles back into renewed focus (see e.g. [4, 5]), and
invites us to look for new ideas about naturalness.

There are two perspectives on naturalness: Technical
naturalness, formalized by ’t Hooft [1], states that a pa-
rameter may be naturally small if setting it to zero leads
to an enhanced symmetry. The stronger naturalness in
the sense of Dirac [6, 7] simply requires that there be no
“unexplained” small numbers in Nature. Our philoso-
phy in this paper is to search for mechanisms which pro-
duce technical naturalness: explaining the permissibility
of small numbers, but not necessarily their origin.

In the past few years, we have learned that the con-
cept of technical naturalness exhibits many surprises in
nonrelativistic settings (see [8] for a brief review). New
symmetries emerge [9], and they protect new hierarchies
of Nambu-Goldstone bosons with cascading scales of par-
tial symmetry breaking [10]. In this paper, we apply this
phenomenon to relativistic scalars such as the Higgs, and
investigate the possibility of a crossover to nonrelativis-
tic physics at high energy scales and its influence on the
naturalness of a small Higgs mass.

A. Nonrelativistic physics and the Standard Model

For gravity, nonrelativistic physics with possible fun-
damental anisotropies between space and time is benefi-
cial for improving the short-distance behavior, possibly
leading to a UV complete theory [11, 12]. In contrast,
there seem to be no similar benefits from viewing the
Standard Model (SM) as a low-energy effective descrip-
tion of an underlying fundamentally nonrelativistic the-

ory: The SM is already renormalizable and nearly UV
complete (assuming that one can remedy the growth of
the hypercharge coupling at high energies). However, an
embedding of the SM into a nonrelativistic theory may
be of interest, if it provides a way out of the Higgs mass
hierarchy problem without ruining the observed Lorentz
symmetry at accessible energies.

B. Lightning review of the naturalness puzzle for

the scalar masses

The essence of the naturalness problem of a light scalar
with nonderivative self-interactions (such as the Higgs)
can be succinctly illustrated by considering a single rela-
tivistic scalar Φ(xµ) in 3 + 1 dimensions with action

S =
1

2

∫
d4x

(
∂µΦ∂

µΦ−m2Φ2 − λ

12
Φ4

)
. (1)

Can m2 be small? Not independently of the value of λ:
both nonderivative terms in (1) break the same, constant
shift symmetry Φ → Φ + δΦ with δΦ = b, and therefore
must be of the same order of smallness (measured by
ε≪ 1) relative to the naturalness scale M :

m2 ∼ εM2, λ ∼ ε. (2)

This gives the following simple but important relation,

M ∼ m√
λ
, (3)

which then implies the naturalness problem: m cannot be
made arbitrarily smaller than M without λ being made
correspondingly small to assure that the naturalness con-
dition (3) hold. At typical values of λ not much smaller
than 1, m will be of the order of the naturalness scaleM ,
ruining the hierarchy. Note that this naturalness problem
is present already before gauging.
Finding new ways around relations (2) without putting

technical naturalness in jeopardy is the main goal of this
paper.

http://arxiv.org/abs/1608.06937v1
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II. A TOY MODEL

For simplicity, and to highlight the novelties associated
with nonrelativistic naturalness, let’s consider a simple
toy model first: The theory of a real scalar field φ(t,y)
in 3 + 1 dimensions, y = (yi, i = 1, . . . , 3), with Aris-
totelian spacetime symmetry. The terminology is that
of [13] (see [8]): The Aristotelian spacetime is defined
as R3+1 with the flat metric and the preferred foliation
by constant time slices; and the Aristotelian symmetries
contain spatial rotations and translations and time trans-
lations, but no boosts (neither Lorentzian nor Galilean).
Such spacetimes emerge naturally in the context of non-
relativistic gravity [11, 12], as the ground-state solutions
of the theory with zero cosmological constant.
Our model was introduced in [10] and studied further

in [14]. We start with the free theory controlled at short
distances by the Gaussian fixed point with dynamical ex-
ponent z = 3 (z is the measure of the anisotropy between
time and space). The action is

S2 =
1

2

∫
dt d3y

{
φ̇2 − ζ23∂i∂j∂kφ∂i∂j∂kφ

− ζ22∂i∂jφ∂i∂jφ− c2∂iφ∂iφ−m2φ2
}
.(4)

The first two terms define the Gaussian z = 3 fixed point,
and the remaining three terms are its relevant Gaussian
deformations. Classically, we can set ζ23 = 1 by a one-
time rescaling of space-time coordinates. We measure
the dimensions in the units of energy; with the scaling of
the z = 3 fixed point, we have: [t] = −1, [yi] = −1/3,
[∂i] = 1/3, and the field φ is dimensionless (i.e., at its
lower critical dimension). The dimensions of the relevant
Gaussian couplings are [ζ22 ] = 2/3, [c2] = 4/3 and [m2] =
2.
To this free action, we add interaction terms Sint whose

choice depends on the desired symmetries; in the simplest
model, we take

Sint = −λ3
2

∫
dt d3yO − λ0

4!

∫
dt d3y φ4, (5)

where

O = ∂iφ∂i∂jφ∂j∂kφ∂kφ+
1

3
∂iφ∂jφ∂kφ∂i∂j∂kφ. (6)

The four-point six-derivative self-coupling constant λ3 is
marginal ([λ3] = 0). With Higgs applications in mind,
we also added the nonderivative φ4 self-interaction. In
our microscopic theory, its coupling is relevant, [λ0] = 2.

A. Symmetries

Scalar field theories on the Aristotelian spacetimes can
exhibit polynomial shift symmetries [9, 15] of degree P ,
generated by

δφ(t,y) = b+ biy
i+ bijy

iyj + . . .+ bi1...iP y
i1 · · · yiP , (7)

with bi1... real constants. P can be any non-negative in-
teger, but we will only be interested in P ≤ 2. Our
theory with the interaction term given by (6) is power-
counting renormalizable, since at the z = 3 fixed point O
is the only marginal or relevant interaction term invari-
ant under the linear shift symmetry. (With the symme-
try reduced to the constant shifts, there would also be
one relevant and three additional marginal interaction
terms.)

B. Quantum properties and renormalization

The theory with the linear-shift invariant interaction
given by the λ3 term in (5) (and with λ0 = 0) exhibits
intriguing quantum properties [10, 14]. There is no wave-
function renormalization of φ, and both λ3 and c2 satisfy
a non-renormalization theorem to all orders in λ3. This
does not mean that the theory can be weakly coupled
at all scales: The coefficient ζ23 in (4) – which we set
equal to 1 in the classical limit – is logarithmically di-
vergent starting at two loops, and therefore ζ3 runs with
the renormalization-group (RG) scale. The effective cou-
pling in the two-on-two scattering amplitude is not λ3
but λ ≡ λ3/ζ

3
3 , which runs due to the running of ζ3. The

two-loop β function reveals that λ increases with increas-
ing energy.
The theory exhibits interesting instabilities. First,

note that the contribution of the λ3 term in (5) to the
Hamiltonian is unbounded both below and above. As-
suming that the couplings in (4) have been chosen such
that the dispersion relation is positive definite, the the-
ory is perturbatively stable around 〈φ〉 = 0. However,
at nonzero λ3, this state is non-perturbatively unstable,
with the decay probability controlled by a bounce instan-
ton [16, 17]. The analytic form of the dominant instanton
is not known, but its contribution to the decay rate of
the vacuum will be Γvac ∝ exp(−C/λ), with C positive
and of order one (assuming at least one of the infrared-
regulating couplings m2, c2 or ζ22 is non-zero). If one so
desires, this vacuum instability can be cured by embed-
ding this model into a (more complex but stable) theory
with the symmetries reduced to constant shifts [14].
The φ quanta also exhibit an intriguing perturbative

instability in the Aristotelian spacetime: A single parti-
cle with a large enough momentum k with respect to the
rest frame acquires a non-zero decay width Γ. This is
the usual phenomenon of quasiparticle damping known
from condensed matter. The leading contribution to Γ
arises at two loops, and at large k goes as Γ ∼ ζ3λ

2|k|3.
The φ quantum is absolutely stable at k ≈ 0; at small |k|
above the threshold, we find a very sharp long-lived res-
onance. With increasing |k|, λ runs until it becomes ∼ 1
and the φ resonance becomes very wide. The scattering
of individual quanta with very high |k| makes no sense:
They decay rapidly into multiple soft quanta beforehand.
Thus, one cannot simply argue that the running of the
λ coupling to large values makes the theory UV incom-
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plete: These large values of λ cannot be measured by any
two-on-two scattering; only softer quanta are available to
scatter and the theory may self-complete in a mechanism
reminiscent of classicalization [18, 19]. In this paper, we
do not need any such completion and will use this model
only up to a very high naturalness scale where the cou-
pling will still be small.

III. NONRELATIVISTIC VS RELATIVISTIC

OBSERVERS AND NATURALNESS

While the theory is unambiguously defined by its mi-
croscopic behavior around the z = 3 fixed point, its phys-
ical properties will look somewhat different to different
observers.

A. Nonrelativistic observers and the microscopic

theory

Unlike in relativistic theories, there are at least two
natural classes of observers already at the microscopic
level. The Aristotelian observers fix the coordinates (t,y)
once and for all, find the non-renormalization of λ3 but
also the running of ζ23 , which lead to the running of the ef-
fective coupling λ. The Wilsonian observers, during the
process of integrating out a shell of modes, rescale the
system to restore the normalization condition ζ23 = 1.
This involves a rescaling of the spatial coordinates which
depends on the RG scale. Their effective coupling runs.
When they compare their notes with the Aristotelian
observers, both see the same physics but in a slightly
rescaled coordinate system.

B. Effective relativistic observers at low energies

At low energies, the lowest-derivative terms dominate.
The higher-derivative terms are suppressed, and the sys-
tem develops an accidental approximate Lorentz symme-
try, with small Lorentz-violating corrections. Observers
at those energies will find it natural to interpret the sys-
tem relativistically. We shall refer to such observers as
“low-energy relativistic observers.” While for the mi-
croscopic observers c2 is a relevant coupling, for the low-
energy relativistic observers c appears to be a constant of
nature, insofar as they cannot detect deviations from the
constancy of c due to the small Lorentz-violating terms.
Given their relativistic prejudice, their natural coordi-
nate frame is

x0 = t, xi = yi/c. (8)

Note that this gives the correct dimensions of a relativis-
tic coordinate system, [x0] = [xi] = −1. In these co-
ordinates, the low-energy relativistic observer finds the

action of our system to be

S =
1

2

∫
d4x

{
∇µΦ∇µΦ−m2Φ− 1

12
λhΦ

4

− ζ̃23 (∇i∇j∇kΦ)
2 − ζ̃22 (∇i∇jΦ)

2 − λ̃3Õ
}

(9)

where ∇µ ≡ ∂/∂xµ, Φ = c3/2φ is the scalar field prop-
erly rescaled to match the perspective of the relativistic

observer, and Õ is given by (6) with ∂ replaced by ∇ and
φ by Φ. The low-energy parameters are given in terms of
the microscopic parameters as follows. For the relativis-
tic observer, the mass m of Φ is equal to the gap param-
eter m of the microscopic theory, and its nonderivative
self-coupling is given by

λh = λ0/c
3. (10)

The remaining couplings in (9) are given in terms of the
microscopic parameters by

ζ̃23 = ζ23/c
6, ζ̃22 = ζ22/c

4, λ̃3 = λ3/c
9; (11)

from the low-energy perspective, they represent irrele-
vant terms which violate Lorentz invariance.

C. Microscopic naturalness

In accord with the principles of causality, we require
that technical naturalness hold at the level of the micro-
scopic, nonrelativistic theory. Technically natural hier-
archies with varying degrees of complexity are possible
[10]. In the simplest, one ε controls the breaking of the
linear shift symmetry to no shift symmetry at all, and
all couplings are of order ε in units of the naturalness
momentum scale µ. However, this crude pattern may be
naturally refined: λ3 and ζ

2
2 preserve linear shifts and can

be controlled by their own smallness parameter: λ3 ∼ ε2
and ζ22 ∼ ε2µ

2. At this stage, quantum corrections to
c2 will not be generated (due to the nonrenormalization
theorem), and can be kept of order ε1 ≪ ε2. Finally,
the nonderivative terms break constant shift symmetry,
and can be of order ε0 ≪ ε1. We thus obtain a techni-
cally natural cascading hierarchy of scales. This cascade
is associated with a natural hierarchy of crossover scales:
At very high scales (around µ), the system is dominated
by the z = 3 scaling, then it crosses at lower scales to a
z = 2 regime, followed by another crossover to the z = 1
regime, until it finally reaches the lowest scales set by
the gap m. Next we need to examine how this cascading
hierarchy appears from the viewpoint of the low-energy
relativistic observer.

D. Naturalness for relativistic low-energy observers

We begin at the microscopic level, with the following,
technically natural hierarchy of couplings,

ζ23 ∼ 1, λ3 ∼ ε2, ζ22 ∼ ε2µ
2,
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c2 ∼ ε1µ
4, m2 ∼ λ0 ∼ ε0µ

6, (12)

and

ε0 ≪ ε1 ≪ ε2 ≪ 1. (13)

What are the sizes of the couplings that the low-energy
relativistic observer will see? Plugging (12) into (10) and
(11), and introducing the naturalness energy scale M ≡
µ3, we obtain

m2 ∼ ε0M
2, λh ∼ ε0/ε

3/2
1 (14)

for the scalar mass and self-coupling, and

ζ̃23 ∼ ε20
ε31

1

m4
, ζ̃22 ∼ ε0ε2

ε21

1

m2
, λ̃3 ∼ ε30ε2

ε
9/2
1

1

m6
(15)

for the irrelevant nonrelativistic corrections.
This is the central result of this paper: In contrast

to the standard relativistic relations (2), we now have a
new small parameter ε1 which controls c2, modifies the
relations to (14), and makes a technically natural large
hierarchy of scales with sizable values of the coupling
λh ∼ 1 possible.

IV. TOWARDS THE HIGGS AND THE

STANDARD MODEL

Now we would like to couple this naturally light scalar
to the rest of the SM. We will assume the Higgs-less part
of SM to be exactly relativistic until the coupling to the
Higgs; the coupling will induce violations of Lorentz in-
variance that we wish to keep naturally small in order to
conform to the stringent experimental bounds on Lorentz
violations [20], and without spoiling the mass hierarchy.
For simplicity, we will continue working within the log-

ical structure of our toy model, but the results are more
universal, robust and model-independent. First, as noted
in [14], our toy model can be extended to a unique the-
ory with global SO(N) symmetry with φ in the N . The
case of N = 4 will correspond to the candidate Higgs;
with the flip of the m2 sign, φ will develop a condensate
〈φ〉 = m/

√
λ0 ∼ 1.

A. Hierarchy between MEW and MX

Phenomenologically, we would like m ∼ MEW of the
order of the electroweak scale, while M ∼ MX of the
order of some high scale MX , such as the Planck scale
or a GUT scale. To illustrate our mechanism, we will
try to go the whole hog and realize a hierarchy across 15
orders of magnitude, between the electroweak scale and
the Planck scale. For numerical simplicity, we takem ∼ 1
TeV and M ∼ 1018 GeV. At the same time, we want the
Higgs self-coupling λh not too much smaller than ∼ 1.

As a very simple and concrete example, take the fol-
lowing “10-20-30” model:

ε2 ∼ 10−10, ε1 ∼ 10−20, ε0 ∼ 10−30. (16)

From (14), we obtain

m/M ∼ 10−15, λh ∼ 1, (17)

precisely as desired! (Smaller λh, say ∼ 0.1, are easily
arranged by small changes of (16).) Moreover, the irrel-
evant Lorentz-violating couplings (15) are pushed above
the TeV scale:

ζ̃23 ∼ 1

m4
, ζ̃22 ∼ 1

m2
, λ̃3 ∼ 10−10 1

m6
. (18)

The ζ̃2 couplings yield small nonrelativistic modifications
of the Higgs dispersion relation ω2 = m2 + k2 by higher
power terms |k|4 and |k|6, representing the first observ-
able signatures of the “new physics” that cures the hi-
erarchy problem: the Higgs sector exhibits a crossover
towards z > 1 at scales of order m ∼ 1 TeV. Push-
ing the nonrelativistic corrections to higher scales should
be possible in slightly more sophisticated versions of our
simplest 10-20-30 scenario; for example, making λh < 1

further suppresses the size of ζ̃23 , since ζ̃
2
3 ∼ λ2h/m

4; and

ζ̃22 can be suppressed by simply choosing a smaller ε2.

B. Fermions and Yukawa couplings

We can couple the scalar φ to several species of rel-
ativistic fermions Ψf (t,y), whose two chiralities we as-
sume to be in distinct representations to prevent bare
masses (as in the SM). In the microscopic theory, their
dimension is [Ψf ] = 1/2. Their relativistic kinetic term
written in nonrelativistic coordinates is

∑

f

∫
dt d3y (Ψ†

f Ψ̇f + cfΨfγ
i∂iΨf ). (19)

Before coupling to φ, all fermions see the same limiting
speed, which we set equal to cf = c. When we couple the
fermions to φ, their dispersion relation acquires nonrel-
ativistic corrections from Higgs loops; we need these to
be small, without spoiling the Higgs mass hierarchy. The
most relevant coupling of Ψf to φ is the Yukawa term

∑

f

Yf

∫
dt d3yΨfφΨf . (20)

When non-zero, the Yukawa couplings Yf break the con-
stant shift symmetry of φ, and one may expect them all
to be bounded from above by the parameter ε0 which
controls all the other terms breaking the constant shift
symmetry in the Higgs sector. (This is in the units of
µ3, since [Yf ] = 1.) However, there is some wiggling
room: Detailed estimates of the Higgs loop corrections
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show that we can increase the range of the Yukawas to
include the window from ε0 to

√
ε0, without spoiling the

smallness of m2 and λ0. This requires that we also in-
clude the nonrelativistic terms ζ3fΨγ

i∂i∂
2Ψ with ζ3f <∼ 1

to the action (which will be generated by the Higgs loops
anyway). This increase in the range of the Yukawas works
because the corrections to m2 and λ0 due to fermionic
loops are at least quadratic in Yf ’s. Thus, the window of
naturalness for the non-zero Yukawas has been extended
to include ε0µ

3 <∼ Yf <∼
√
ε0µ

3, self-consistently requiring
that ζ3f ∼ Y 2

f /m
2 for each fermion.

The low-energy relativistic observer rewrites the theory
in terms of the naturally normalized fermions ψf (x

µ) =

c3/2Ψf (t,y), and sees the Yukawa terms as

∑

f

yf

∫
d4xΦψfψf , (21)

with yf = Yf/c
3/2. The naturalness window for the

Yukawas as seen by the relativistic observer extends to

yf <∼ ε
1/2
0 /ε

3/4
1 . (22)

This extension past the naive bound yf <∼ ε0/ε
3/4
1 is

crucial: In our 10-20-30 scenario, the naive bound would
require yf <∼ 10−15, excluding all fermions. The extended
bound (22) requires yf <∼ 1, a range which naturally
accommodates the masses of all the known fermions,
from the top quark at the upper bound, down to the
likely values of the neutrino masses not too far above
the naive bound. Thus, in the 10-20-30 scenario, all the
SM fermion masses can be Dirac masses, in a technically
natural way.

C. Gauging

Next we couple the system to relativistic Yang-Mills
fields. In the microscopic theory, this is done by co-
variantizing the derivatives to Dtφ ≡ φ̇ + iea0φ and
Diφ = (∂i + ieai)φ. We normalize the gauge fields
such that when rewritten in the nonrelativistic language,
their standard relativistic action is

∫
dt d3y { 1

2
(∂ia0−ȧi+

. . .)2−(c2/4)(∂iaj−∂jai+. . .)2}. Thus, we have [ai] = 0,
[a0] = 2/3, and the gauge coupling is relevant, [e] = 1/3.
The low-energy relativistic fields Aµ and the Yang-Mills
coupling are related to these microscopic variables by
Ai = c3/2ai, A0 = c1/2a0, and g

2
YM = e2/c.

What is the size of the Yang-Mills coupling gYM seen
by the low-energy observer? The microscopic gauge cou-
pling e breaks the constant shift symmetry of φ. Hence,
the gauge loops can be expected to correctm2 by ∼ e2µ4.
To maintain naturalness, this would require e2 ∼ ε0µ

2;
the low-energy observer would then find the Yang-Mills

coupling gYM = e/c1/2 ∼ ε
1/2
0 /ε

1/4
1 . Unfortunately, if

these estimates are accurate (i.e., in the absence of addi-
tional cancellations or hidden symmetries), it would be
very difficult to make gYM ∼ 1 while keeping λh ∼ 1.

In particular, in our simple 10-20-30 model the natural
values of the gauge couplings come out unrealistically
small, gYM ∼ 10−10, implying unrealistically light gauge
bosons. It is at present unclear whether these estimates
can be improved to achieve a scenario with more realistic
values of gYM; this question would require a more detailed
analysis of the interplay between polynomial shift sym-
metries and gauge symmetries, beyond the scope of this
paper.

D. z = 2 or z = 3?

How important is it to embed the Higgs into a z = 3
theory? Can we choose the simpler z = 2 short-distance
behavior, perhaps improving the prospects of a realistic
gauging? Interestingly, the answer is no, if we insist on
λh in (14) to be ∼ 1: In the absence of z = 3 terms, the
leading nonrelativistic corrections originate from ζ22 ∼ 1,
and they become important at unacceptably low energies
≪ m. The z = 2 observer would be almost as mystified
about the naturalness of a light Higgs as the relativistic
observer. Thus, z = 3 is the lowest value of z in the
microscopic system for which our mechanism with rela-
tions (14) and λh ∼ 1 can work, without generating large
Lorentz violations at low energies.

V. CONCLUSIONS

In this paper, we have presented a new mechanism
leading to naturally light scalars whose nonderivative
self-couplings can be large. The mechanism involves a
crossover from the low-energy relativistic regime to a
highly nonrelativistic high-energy regime. In the un-
derlying nonrelativistic theory, the effective low-energy
speed of light c2 can be naturally small, allowing natu-
rally light scalars with massesm≪M much smaller than
the naturalness scaleM . When coupled to fermions, this
mechanism yields an appealing structure of Yukawa cou-
plings. However, while the construction can be extended
to include gauge fields with the scalar interpreted as a
Higgs, our simplest 10-20-30 scenario does not quite work
for the SM Higgs: the gauge couplings and consequently
the W and Z boson masses are simply too small.
Our results have been based on rather conservative

estimates of the quantum corrections, ensuring but not
necessarily optimizing naturalness. These estimates can
certainly be further tightened, refined by invoking more
symmetries, or otherwise improved. In particular, it
should be noted that we have not relied on (nor in-
cluded) the omnipresent loop suppression factors involv-
ing powers of ∼ 1/(16π2). A more detailed investigation
is needed before we can conclude whether our mechanism
is a useful ingredient for resolving the Higgs mass hierar-
chy puzzle in the SM. It is clear, however, that our results
about naturalness are relevant to other scalar fields, with
or without gauge invariance, including the inflaton.
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