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Abstract

Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder with 

a major genetic component. Here we present a genome-wide association study meta-analysis 

of ADHD comprising 38,691 individuals with ADHD and 186,843 controls. We identified 

27 genome-wide significant loci, highlighting 76 potential risk genes enriched among genes 

expressed particularly in early brain development. Overall, ADHD genetic risk was associated 

with several brain-specific neuronal sub-types and midbrain dopaminergic neurons. In exome-

sequencing data from 17,896 individuals, we identified an increased load of rare protein-truncating 

variants in ADHD for a set of risk genes enriched with likely causal common variants, potentially 

implicating SORCS3 in ADHD by both common and rare variants. Bivariate Gaussian mixture 

modeling estimated that 84–98% of ADHD-influencing variants are shared with other psychiatric 

disorders. Additionally, common variant ADHD risk was associated with impaired complex 

cognition such as verbal reasoning and a range of executive functions, including attention.
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Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder, 

affecting around 5% of children, and persists into adulthood in two-thirds of cases1,2. It is 

characterized by extensive hyperactive, impulsive and/or inattentive behaviors that impair 

daily functioning. The disorder is associated with multiple adverse outcomes, such as 

injuries3, accidents4, depression5, substance use disorders6, aggression7, premature death8 

and high rate of unemployment9, and has large societal costs10–12.

ADHD has a major genetic component, with an estimated twin heritability of 0.7413. 

Despite this, ADHD’s complex polygenic architecture makes it difficult to unravel 

its underlying biological causes. Previously, we discovered the first 12 genome-wide 

significant loci for ADHD14 in a genome-wide association study (GWAS) of 20,183 cases 

and 35,191 controls (here referred to as ADHD2019) that combined the first wave of 

data from the Danish iPSYCH15 cohort (iPSYCH1) with 11 ADHD cohorts collected 

by the Psychiatric Genomics Consortium (PGC). We established the role of common 

variants in ADHD, explaining around 22% of the variance in the phenotype. The results 

implicated brain-expressed genes and demonstrated considerable genetic overlap of ADHD 

with a range of phenotypes, e.g., within psychiatric, cognitive, and metabolic domains. 

Additionally, a recent cross-disorder GWAS of ADHD and autism16 has identified shared 

and differentiating loci and showed that individuals with both ADHD and autism have 

distinctive patterns of genetic association with other traits compared to those with only a 

single diagnosis. This highlights that further mapping of the shared genetic risk component 

with other psychiatric disorders is important for understanding the complexity of the 

genetics underlying ADHD. Analyses of whole-exome sequencing data have shown that 

rare variants also contribute to the risk for ADHD17, especially in mutationally constrained 

genes.

To better understand the biological mechanisms underlying ADHD, it is fundamental to 

conduct large genetic studies, as has been demonstrated in other psychiatric disorders18–

20. Here we present results from an updated GWAS meta-analysis of ADHD, combining 

data from the newly extended Danish iPSYCH cohort, the Icelandic deCODE cohort 

and the PGC, almost doubling the number of cases compared with ADHD2019. We 

fine-map identified risk loci and integrate with functional genomics data to pinpoint 

potential causal genes and evaluate the burden of rare deleterious variants in top-associated 

genes. We characterize the polygenic architecture of ADHD and its overlap with other 

phenotypes by bivariate mixture modeling and perform polygenic score (PGS) analyses 

to test for association of ADHD-PGS with neurocognitive measures in the Philadelphia 

Neurodevelopmental Cohort (PNC).

RESULTS

Identification of new ADHD risk loci by GWAS meta-analysis.

We conducted a GWAS meta-analysis based on expanded data from iPSYCH (25,895 cases; 

37,148 controls), deCODE genetics (8,281 cases; 137,993 controls) and published data 

from 10 ADHD cohorts with European ancestry collected by the PGC (4,515 cases; 11,702 

controls), resulting in a total sample size of 38,691 individuals with ADHD and 186,843 

controls (effective sample size (neff_half) = 51,568; cohorts listed in Supplementary Table 1).
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The GWAS meta-analysis identified 32 independent lead variants (i.e., with a squared 

correlation (r2) < 0.1 between variants) located in 27 genome-wide significant loci (Fig. 

1, Table 1, locus plots in Supplementary Data 1, and forest plots in Supplementary Data 

2), including 21 novel loci. No statistically significant heterogeneity was observed between 

cohorts (Supplementary Fig. 1). The three most strongly associated loci (P < 5 × 10−14) were 

located on chromosome 1 (in and around PTPRF), chromosome 5 (downstream of MEF2C) 

and chromosome 11 (downstream of METTL15); the latter is a novel ADHD risk locus. 

Four loci on chromosomes 1, 5, 11, and 20 had secondary genome-wide significant lead 

variants (r2 < 0.1 between the index variant and the secondary lead variant within a region of 

0.5 Mb), but none remained genome-wide significant in analyses conditioning on the index 

variant using COJO21 (Supplementary Table 2).

Six of the previously identified 12 loci in the ADHD2019 study14 were significant in the 

present study (Table 1), and the remaining six loci demonstrated P-values < 8 × 10−4 

(Supplementary Table 3). Overall, the direction of association of the top loci (726 loci with 

P < 1 × 10−4) was consistent with the direction of association in ADHD2019 for all loci but 

one (Supplementary Table 4).

Genetic correlations among cohorts and SNP-heritability.

Genetic correlation analyses supported a high consistency in the phenotype across cohorts 

(rg ranging from 0.82 to 0.93, Supplementary Table 5), and between iPSYCH1 and 

iPSYCH2 (rg = 0.97; s.e. = 0.06). None of the genetic correlations were significantly 

different from 1. LD score regression analysis found an intercept of 1.04 (s.e. = 0.009) 

and ratio of 0.092 (s.e. = 0.02), the latter indicating that around 90% of the deviation 

from null, in the distribution of the test statistics, reflects polygenicity (QQ-plot shown in 

Supplementary Fig. 2). The SNP heritability (h2
SNP) was estimated to 0.14 (s.e. = 0.01), 

which is lower than the previously reported h2
SNP of 0.2214. The h2

SNP for iPSYCH (h2
SNP 

= 0.23; s.e. = 0.01) was in line with the previous finding, but lower h2
SNP was observed for 

PGC (h2
SNP = 0.12; s.e. = 0.03) and deCODE (h2

SNP = 0.08; s.e. = 0.014). The difference 

in h2
SNP was not caused by different sex distributions across cohorts as there were no 

significant differences in h2
SNP between males and females in the iPSYCH and deCODE 

cohorts (Supplementary Table 5). Between-cohort heterogeneity in h2
SNP is not unusual and 

has been observed in other diagnoses such as major depressive disorder22.

Mapping risk variants to genes and enrichment analyses.

To link identified risk variants to genes, we first identified sets of Bayesian credible 

variants for each risk locus, with each set most likely (probability > 95%) including a 

causal variant (Supplementary Table 6). Credible variants were subsequently linked to genes 

based on genomic position, information about expression quantitative trait loci (eQTLs) and 

chromatin interaction mapping in human brain tissue as implemented in FUMA23 (datasets 

selected are listed in the Supplementary Note). We identified 76 plausible ADHD risk genes 

(Supplementary Table 7); four of the 76 were mapped by position alone. We found that 

this set of genes is significantly enriched among genes upregulated during early embryonic 

brain development (19th post-conceptual week; Pone_sided = 0.0008; Supplementary Fig. 3) 

and highly enriched for genes identified in GWASs of cognition-related phenotypes and 
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reproduction (Supplementary Fig. 4). The role of the genes in synapses was evaluated using 

SynGO data24; nine genes mapped to SynGO annotations, and genes encoding integral 

components of the postsynaptic density membrane were borderline significantly enriched 

(P = 5.43 × 10−3; q-value 0.022; genes PTPRF, SORCS3, and DCC; Supplementary Fig. 5 

and Supplementary Table 8). One SynGO-mapped gene was also a part of the upregulated 

genes during early embryonic brain development (ARHGAP39). Additionally, enrichment of 

the 76 genes in biological pathways was tested using data from 26 databases implemented 

in Enrichr25,26. No pathways showed significant enrichment after Bonferroni correction 

(database significant findings can be found in Supplementary Table 9). Finally, MAGMA27 

gene-set analysis using gene-based P-values derived from the full GWAS summary statistics 

(i.e., no preselection of specific genes) did not reveal any significant findings (top gene sets 

can be found in Supplementary Table 10).

Transcriptome-wide association analysis.

To identify and prioritize ADHD risk genes, we also performed a transcriptome-wide 

association study (TWAS) of the genetically regulated gene expression using EpiXcan28 

and expression data from the PsychENCODE Consortium29 on genes as well as isoforms 

detected in 924 samples from the dorsolateral prefrontal cortex (DLPFC). The TWAS 

identified 15 genes (Supplementary Table 11) and 18 isoforms (Supplementary Table 

12), which together identified 23 distinct genes (Supplementary Fig. 6) with significantly 

different predicted gene expression levels in ADHD cases compared to controls (after 

Bonferroni correction for all the 34,646 genes and isoforms tested; Supplementary Fig. 6). 

Eight of the genes were among the 76 genes mapped by credible variants in FUMA. When 

using a less stringent correction (false discovery rate < 5%), we identified 237 genes with 

different predicted expression among cases and controls, of which 19 were also among 

the 76 prioritized risk genes. The B4GALT2-205 isoform located in the genome-wide 

significant locus on chromosome 1 showed the strongest association (P = 7 × 10−11), 

with lower predicted expression in ADHD compared to controls (Supplementary Fig. 7a). 

The expression model for B4GALT2-205 implicated four genome-wide significant variants. 

The second top gene was PPP1R16A (P = 1.4 × 10−8), which showed a predicted under-

expression in cases compared to controls. The expression model for this gene implicated one 

genome-wide significant variant (Supplementary Fig. 7b).

Tissue- and cell type-specific expression of ADHD risk genes.

Gene-based association analysis using MAGMA27 identified 45 exome-wide significant 

genes (P < 2.72 × 10−6 (0.05/18,381 genes)) associated with ADHD (Supplementary Table 

13). Gene association results across the entire genome were tested for a relationship with 

tissue-specific gene expression. This showed that brain-expressed genes, and in particular 

genes expressed in the cortex, are associated with ADHD (Supplementary Fig. 8). This 

result was supported by LDSC-SEG30 analysis, showing a significant enrichment in 

the heritability by variants located in genes specifically expressed in the frontal cortex 

(Supplementary Table 14).

Next, we examined neuronal cell type-specific gene expression in ADHD using two 

approaches. First, we tested for enrichment of variants located in cell-specific epigenomic 
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peaks by intersecting our genetic associations with data from two recent catalogs of the 

human epigenome that profile major human body cell types31 as well as brain-specific 

cell types32. Here we found enrichment for genes expressed in major brain neuronal cell 

types, including both excitatory and inhibitory neurons (Supplementary Fig. 9). Second, 

we performed cell type-specific analyses in FUMA33 based on single cell RNA-sequencing 

data. This revealed a significant association (P = 0.005) between ADHD-associated genes 

and genes expressed in dopaminergic midbrain neurons (Linnarsson midbrain data34; 

Supplementary Fig. 10 and Supplementary Table 15).

Convergence of common and rare variant risk.

To test for convergence of risk conferred by common variants and rare protein-truncating 

variants (rPTVs), we analyzed whole-exome sequencing data from a subset of the iPSYCH 

cohort consisting of 8,895 ADHD cases and 9,001 controls. We tested three gene sets: 

(1) the 76 prioritized risk genes identified by positional and functional annotation, (2) 

the 45 significant genes in the MAGMA analysis, and (3) 18 genes with at least five 

credible variants located in the coding region (Supplementary Table 16). While there was 

no indication of increased burden of rPTVs in the first gene set (P = 0.39, OR = 1,30, 

s.e. = 0.16), the second gene set showed borderline nominal significant enrichment (P = 

0.05, OR = 1.43, s.e. = 0.18), and the set of genes identified based on credible variants 

had a significantly increased burden of rPTVs in individuals with ADHD compared to 

controls (P = 0.015, OR = 2.19, s.e. = 0.32). For comparison, there was no enrichment 

in rare synonymous variants in the third gene set (P = 0.59). When evaluating the 18 

genes from the “credible gene set” individually, SORCS3 was nominally significantly (P = 

0.008; Supplementary Table 16) enriched in rPTVs in ADHD cases when compared to a 

combined group of iPSYCH controls and gnomAD individuals (non-psychiatric non-Finnish 

Europeans; n = 58,121); this suggests that SORCS3 might be implicated in ADHD both by 

common and rare deleterious variants.

Genetic overlap of ADHD with other phenotypes.

The genome-wide genetic correlation (rg) of ADHD with other phenotypes was estimated 

using published GWASs (258 phenotypes) and GWASs of UK Biobank data (514 

phenotypes), available in LDhub35. ADHD showed significant genetic correlation (P < 2 × 

10−4) with 56 phenotypes representing domains previously found to have significant genetic 

correlations with ADHD: cognition (e.g. educational attainment rg = −0.55, s.e. = 0.021), 

weight/obesity (e.g. body mass index rg = 0.27, s.e. = 0.03), smoking (e.g. smoking initiation 

rg = 0.48; s.e = 0.07), sleep (e.g. insomnia rg = 0.46, s.e. = 0.05), reproduction (e.g. age 

at first birth rg = −0.65, s.e. = 0.03) and longevity (e.g. mother’s age at death rg = −0.42, 

s.e. = 0.07). When considering other neurodevelopmental and psychiatric disorders, autism 

spectrum disorder (ASD) (rg = 0.42, s.e. = 0.05), schizophrenia (SCZ) (rg = 0.17, s.e. = 

0.03), major depressive disorder (MDD) (rg = 0.31, s.e. = 0.07) and cannabis use disorder 

(CUD) (rg = 0.61, s.e. = 0.04) were significantly correlated with ADHD (Supplementary 

Table 17). In UK Biobank data, ADHD demonstrated the strongest genetic correlation with a 

low overall health rating (rg = 0.60, s.e. = 0.2; Supplementary Table 18).
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Furthermore, we applied MiXeR36, which uses univariate and bivariate Gaussian mixture 

modeling to quantify the actual number of variants that: (1) explain 90% of the SNP 

heritability of ADHD and (2) overlap between ADHD and other phenotypes representing 

domains with high genetic correlation with ADHD (psychiatric disorders, smoking behavior, 

weight, reproduction, and sleep were evaluated). MiXeR considers all variants, i.e., variants 

with the same and opposite directions of effects. Approximately 7.3K (standard deviation 

(s.d.) = 324) common variants were found to influence ADHD, which is less than our 

estimates for SCZ (9.6K; s.d. = 199), MDD (11.7K; s.d. = 345) and ASD (10.3K; s.d. = 

1,011), and less than previously reported for bipolar disorder (BD) (8.6K, s.d. = 200)18.

When considering the number of shared loci as a proportion of the total polygenicity of 

ADHD, the vast majority of variants influencing ADHD were also estimated to influence 

the other investigated psychiatric disorders (84%–98%; Fig. 2, Supplementary Fig. 11, and 

Supplementary Table 19). While the fraction of concordant variants (within the shared part) 

with ASD and MDD was at the high end (75–76%), it was lower for SCZ (59%). When 

considering other phenotypes, insomnia demonstrated the smallest overlap with ADHD in 

terms of actual number of variants (4.5K, s.d. = 1,281; 62% of ADHD variants shared), 

while almost all variants influencing ADHD also influence educational attainment, age at 

first birth and smoking (Fig. 2 and Supplementary Table 19). For insomnia and smoking, 

83% and 79% of shared variants had concordant directions, respectively, while only 21% 

and 20% of ADHD risk variants were concordant with educational attainment and age at 

first birth associated variants, respectively (Supplementary Table 19).

Impact of ADHD polygenic scores on cognitive domains.

Educational attainment is one of the phenotypes with the strongest negative genetic 

correlation with ADHD, as demonstrated above, and cognitive impairments in ADHD are 

well described37. To further explore how ADHD risk variants affect specific cognitive 

domains, we assessed the association of ADHD polygenic scores (PGS) with 15 cognitive 

measures in the Philadelphia Neurodevelopmental Cohort (PNC)38,39. This cohort is from 

the greater Philadelphia area and includes individuals, 8–21 years of age, who received 

medical care at the Children’s Hospital of Philadelphia Network. The subsample of the PNC 

cohort (v1 release) of 4,973 individuals with European descent was utilized in this study. 

The Computerized Neurocognitive Battery40 was used to assess cognitive performance in 

the study participants. The battery consists of 14 tests in five domains: executive control, 

episodic memory, complex cognitive processing, social cognition and sensorimotor speed. 

Additionally, the Wide Range Achievement Test (WRAT-4)41 was used as a proxy measure 

for overall IQ39.

ADHD-PGS was negatively associated with seven neurocognitive measures (Fig. 3), with 

the strongest association for the WRAT-4 test (beta = −0.09, P = 1.09 × 10−10). ADHD-PGS 

was associated with measures of executive control (attention: beta = −0.08, P = 3.94 × 10−8; 

working memory: beta = −0.05, P = 1.56 × 10−3), complex cognition (verbal reasoning: beta 

= −0.08, P = 1.31 × 10−10; non-verbal reasoning: beta = −0.05, P = 1.08 × 10−3; spatial 

reasoning: beta = −0.06, P = 5.15 × 10−5) and one measure of episodic memory (facial 

memory: beta = −0.05, P = 3.23 × 10−3) (Supplementary Table 20). The negative association 
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of ADHD risk variants with executive functions, especially attention, is in line with the 

inattention problems often observed in individuals with ADHD.

DISCUSSION

The present study identified 27 genome-wide significant loci in the largest GWAS of ADHD 

to date. We analyzed around twice as many ADHD cases compared to the ADHD201914 

study and more than doubled the number of associated loci, indicating that we have passed 

the inflection point for ADHD with respect to the rate of risk loci discovery.

Six of the 12 previously identified loci were also significant in this study. Even though some 

previously identified loci demonstrated weaker association here, their associations remained 

strong, and there was almost complete concordance in the direction of association between 

top-associated variants in this study and ADHD2019. In GWAS of complex disorders, it is 

not uncommon for some loci to fluctuate around the significance threshold with increasing 

sample sizes until they eventually achieve stable significance; this can often be attributed 

to the “winner’s curse” phenomenon, where effect size estimates close to the discovery 

threshold tend to be overestimated in initial GWAS42.

We report a lower h2
SNP for ADHD (h2

SNP = 0.14) than estimated previously (h2
SNP = 

0.22). This is driven by a lower h2
SNP in the PGC and deCODE cohorts compared to 

iPSYCH. Different ascertainment and diagnostic strategies and designs among PGC cohorts 

could decrease the h2
SNP, while a lower effective sample size43 in Iceland, and thus fewer 

recent variants, might bias h2
SNP downwards in the deCODE cohort44.

We refined ADHD’s genetic architecture by estimating that around 7.3K (s.d. = 324) 

common variants can explain 90% of the h2
SNP. This is a higher estimate than reported 

based on the 2019 ADHD GWAS (5.6K, s.d. = 400)45, but the current estimate is based on 

a better fit to the causal mixture model (AIC = 80 vs. AIC = 31 in Hindley et al.45). ADHD 

is often comorbid with other psychiatric disorders46, with 12–16% of cases also diagnosed 

with ASD16,47,48 and around 40% with depression49, which is also reflected in the genetic 

correlations reported here and previously14. Strikingly, when assessing both concordant and 

discordant allelic directions, over 90% of ADHD risk variants also seem to influence SCZ 

and MDD, and 84% influence ASD. This extensive sharing with SCZ, MDD, and ASD is 

at the same level as observed for SCZ and bipolar disorder36, which are among the most 

genetically correlated mental disorders50. Notably, for both MDD and ASD, around 75% 

of the variants shared with ADHD demonstrated concordant direction of association. The 

large sharing of variants influencing ADHD and other psychiatric disorders, when assessing 

both concordant and discordant allelic directions, suggests that the disorders are even more 

intermingled with respect to their common genetic architecture than previously thought 

based on their overall genetic correlations36,50. For common variants, the developmental 

trajectory towards ADHD might therefore be influenced by variants involved in several 

psychiatric disorders, but with disorder-specific allelic directions and effect sizes rather than 

actual ADHD-specific loci.
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We also note that almost all variants that influence ADHD overlap with educational 

attainment51, and that the vast majority (79%) are associated with decreased educational 

attainment, consistent with the overall negative genetic correlation. For the models 

indicating a high number of shared variants (ADHD vs. MDD, SCZ, BMI, educational 

attainment, age at first birth and smoking), we found support (evaluated using the Akaike 

Information Criterion52) for the best fitting MiXeR models above the “minimal model”, 

which indicate that the data support the existence of a polygenic overlap, beyond the 

minimal level needed to explain the observed genetic correlations. For ADHD vs. ASD, the 

model had limited support, and the results should therefore be interpreted with caution.

Fine-mapping of the 27 loci identified credible variants, but only four variants had posterior 

probabilities greater than 0.5 in all three fine-mapping methods, and none were linked to 

specific genes based on our functional annotation analyses. Linking the credible variants 

to genes by integration with functional genomics data identified 76 prioritized risk genes, 

which were enriched among genes upregulated during early embryonic development and 

involved in cognitive abilities identified by GWAS of cognitive phenotypes. Among the 76 

genes were PPP1R16A and B4GALT2 (mapped by psychENCODE eQTLs; Supplementary 

Fig. 12a,b), which were also the top-ranking genes in our TWAS of DLPFC expression, 

both showing a predicted decreased expression in cases compared to controls. These genes 

have not previously been linked to psychiatric disorders, but both have been linked to 

educational attainment51. The set of risk genes also included PTPRF, SORCS3 and DCC, 

which encode integral components of the postsynaptic density membrane. Involvement 

of postsynaptic components in the pathology of ADHD has been reported previously53 

and also for SCZ54. We also highlight FOXP1 and FOXP2. The association signals were 

located within the transcribed regions of both genes and had credible variants being eQTLs 

(FOXP2, Supplementary Fig. 12c) or located in chromatin interacting regions (FOXP1, 

Supplementary Fig. 12d) in brain tissue. FOXP2 was identified in the ADHD2019 study14 

and is also a risk gene for cannabis use disorder55, while FOXP1 is a new ADHD 

locus. Both FOXP1 and FOXP2 encode transcription factors that can heterodimerize to 

regulate transcription in brain tissues56,57 and have been implicated in speech disorders and 

intellectual disability58 by highly penetrant rare variants.

Overall, less than half of the TWAS Bonferroni significant genes overlapped with the 

76 candidate risk genes (40% of “TWAS transcript genes”; and 47% of “TWAS genes”; 

Supplementary Fig. 13). This was not unexpected and could be due to noise in the data 

and/or that TWAS models are based on expression in adult brains whereas a large proportion 

of individuals in the GWAS are children. Additionally, eQTLs used to derive TWAS models 

might not overlap GWAS identified variants as the two types of methods are systematically 

biased toward identification of different types of variants59.

We report convergence of common and rare variants in a set of 18 genes defined by location 

of credible variants. Thirteen of the genes were hit by rPTVs, and eight had a higher load 

in cases compared to controls, and thus, the signal was not driven by a few genes but by 

several genes with an increased burden of rPTVs. Of particular note, SORCS3 seems to be 

implicated in ADHD by both common and rare variants. Common variants in SORCS3 show 

strong pleiotropic effects across several major psychiatric disorders50, but to our knowledge, 
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rare variant analyses have not implicated SORCS3 in psychiatric disorders before. Our 

results add to the emerging picture of overlap between genes and pathways affected by 

common and rare variants in psychiatric disorders54,60–62.

We found that ADHD risk was associated with common variants located in genes 

significantly expressed in the brain, especially the frontal cortex. We also observed an 

enrichment of ADHD risk variants in genes expressed in major cell types of the brain, 

including both excitatory and inhibitory neurons and in midbrain dopaminergic neurons. 

The findings for frontal cortex and dopamine neurons fit well with the motor, reward 

and executive function deficits associated with ADHD; the frontal cortex is involved in 

executive functions including attention and working memory63, and midbrain dopaminergic 

neurons are essential for controlling key functions, such as voluntary movement64 and 

reward processing65. This interpretation is further supported by our ADHD-PGS analyses in 

PNC, which revealed that common ADHD risk variants impair several domains of cognitive 

abilities.

The PGS analyses in PNC identified strong association of polygenic ADHD risk with 

decreased overall IQ (approximated by the WRAT test scores), in line with the high negative 

genetic correlation of ADHD with educational attainment and the observation that 79% of 

all ADHD risk variants are associated with decreased educational attainment. Interestingly, 

we found that ADHD-PGS associates with decreased attention, which is a key ADHD 

symptom, and with impairments in measures of other cognitive traits such as working 

memory. Smaller studies have analyzed the impact of ADHD-PGS on executive functions 

with mixed results66–69. This study robustly identifies specific cognitive domains impacted 

by ADHD-PGS, and our results support ADHD-PGS being negatively associated with 

neurocognitive performance.

In summary, we identified new ADHD risk loci, highlighted candidate causal genes, and 

implicated genes expressed in frontal cortex and several brain specific neuronal subtypes in 

ADHD. Our analyses revealed ADHD to be highly polygenic, influenced by thousands 

of variants, of which the vast majority also influence other psychiatric disorders with 

concordant or discordant effects. Additionally, we demonstrated that common variant 

ADHD risk has an impairing impact on a range of executive functions. Overall, the results 

advance our understanding of the underlying biology of ADHD and reveal novel aspects of 

ADHD’s polygenic architecture, its relationship with other phenotypes, and its impact on 

cognitive domains.

METHODS

The study was approved by the local scientific ethics committees and IRBs. The iPSYCH 

study was approved by the Scientific Ethics Committee in the Central Denmark Region 

(Case No 1-10-72-287-12) and the Danish Data Protection Agency. In accordance with 

Danish legislation, the Danish Scientific Ethics Committee has, for this study, waived the 

need for specific informed consent in biomedical research based on existing biobanks. 

This deCODE study was approved by the National Bioethics Committee of Iceland (VSN 

15-047) and all participants gave informed consent.
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Samples, quality control and imputation.

iPSYCH.—The iPSYCH15,70 cohort consists of 129,950 genotyped individuals, among 

which 85,891 are cases diagnosed with at least one of six mental disorders (i.e., ADHD, 

SCZ, BD, MDD, ASD, post-partum disorder) and the remaining are population-based 

controls. Samples were selected from a baseline birth cohort comprising all singletons born 

in Denmark between May 1, 1981, and December 31, 2008, who were residents in Denmark 

on their first birthday and who have a known mother (n = 1,657,449). ADHD cases were 

diagnosed by psychiatrists according to the ICD10 criteria (F90.0, F90.1, F98.8 diagnosis 

codes) identified using the Danish Psychiatric Central Research Register71 and the Danish 

National Patient register72. Diagnoses were given in 2016 or earlier for individuals at least 

1 year old. Controls were randomly selected from the same nationwide birth cohort and not 

diagnosed with ADHD.

Detailed information on genotyping, imputation and quality control can be found in the 

Supplementary Note. After QC, the iPSYCH1 ADHD sample included 38,899 individuals 

and iPSYCH2 included 24,144 individuals.

deCODE.—The deCODE cohort consisted of 8,281 individuals with ADHD. These were 

either individuals with a clinical diagnosis of ADHD (n = 5,583) according to the ICD10 

criteria (ICD10-F90, F90.1, F98.8) or individuals that have been prescribed medication 

specific for ADHD symptoms (ATC-NA06BA, mostly methylphenidate) (n = 2,698). 

The control sample did not contain individuals with a diagnosis of SCZ, BD, ASD or 

self-reported ADHD symptoms or diagnosis. All participants who donated samples gave 

informed consent. Information about genotyping, QC and evaluation of potential genetic 

heterogeneity between individuals identified based on diagnosis codes and medication can 

be found in the Supplementary Note.

PGC cohorts.—We used summary statistics from the 10 PGC cohorts with European 

ancestry generated as a part of our previous GWAS meta-analysis of ADHD. Detailed 

information about cohort design, genotyping, QC, and imputation can be found in Demontis 

et al.14.

GWAS meta-analysis of ADHD.

GWASs were performed separately for iPSYCH1 (17,019 cases and 21,880 controls) and 

iPSYCH2 (8,876 cases and 15,268 controls) using dosages for imputed genotypes and 

additive logistic regression with the first 10 PCs (from the final PCAs) as covariates using 

PLINK v1.9.

GWAS of deCODE samples (8,281 ADHD cases; 137,993 controls) was done using dosage 

data and logistic regression with sex, year of birth, and county of origin as covariates. To 

account for inflation due to population stratification and cryptic relatedness, test statistics 

were divided by an inflation factor (lambda = 1.23) estimated from LD score regression 

as done previously55. Findings from analyses of the genetic structure of the Icelandic 

population by Price et al.73 support that lambda correction will ensure proper correction 

without false positives. Subsequently alleles were converted to match HRC alleles.
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For the PGC cohorts, we used GWAS summary statistics for each of the 10 European PGC 

cohorts generated as a part of our previous GWAS meta-analysis14.

See Supplementary Note for sensitivity analyses related to the impact of using sex and age 

as covariates in the analyses. See Supplementary Figure 14 for the impact of including or 

excluding sex as covariate in GWAS of iPSYCH data.

Summary statistics from GWAS of the individual cohorts, containing variants with 

imputation quality (INFO score) > 0.8 and minor allele frequency > 0.01, were meta-

analyzed with a fixed effects standard error weighted meta-analysis using METAL (version 

2011-03-25)74. Only variants supported by an effective sample size greater than 60% were 

retained in the final summary statistics (6,774,224 variants).

Concordance in the direction of associations in the present GWAS with associations in the 

ADHD2019 data was evaluated by a sign-test at different P-value thresholds (see thresholds 

in Supplementary Table 4).

Conditional analysis.

We identified potentially independent genome-wide significant lead variants for four loci 

located on chromosome 1 (two secondary lead variants), 5, 11 and 20. To evaluate if these 

variants were independent from the lead variants, we performed association analyses of 

the secondary variants while conditioning on the index variant in the locus using COJO as 

implemented in GCTA21.

Identification of sets of credible variants.

To identify sets of causal variants, we fine-mapped each of the 27 genome-wide loci 

using three fine-mapping tools, FINEMAP v. 1.3.1 (ref. 75), PAINTOR v.3.0 (ref. 76) and 

CAVIARBF v.0.2.1 (ref. 77), using CAUSALdb-finemapping-pip downloaded from https://

github.com/mulinlab/CAUSALdb-finemapping-pip78. Since no secondary lead variants 

remained genome-wide significant after conditional analyses, one causal variant was 

assumed per locus. Variants located in a region of 1 Mb around index variants were included 

in the analyses. We used a threshold of 95% for the total posterior probability of the variants 

included in the credible sets, and only variants claimed to be within the set by all three 

methods were included in the final credible set for each locus.

Genetic correlations among cohorts and SNP heritability.

SNP heritability (h2
SNP) and pair-wise genetic correlation among the cohorts were 

calculated using LD score regression79 analysis of summary statistics from GWAS of 

deCODE samples, meta-analysis of iPSYCH1+iPSYCH2 and meta-analysis of the 10 PGC 

cohorts (applying the same approach as described for the meta-analysis of all cohorts). 

Conversion of h2
SNP estimates from observed scale to the liability scale was done using a 

population prevalence of 5%. Test for significant differences in h2
SNP between cohorts was 

done using a Z-test.
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Mapping of risk genes, enrichment and pathway analyses.

To link identified risk variants to genes, we used the set of credible variants (identified as 

described above) for each locus and linked variants to genes based on genomic position 

and functional annotations in FUMA23. Protein coding genes were mapped if they were 

located with a distance of 10 kb upstream or downstream of the index variants or if a 

credible variant was annotated to the gene based on eQTL data or chromatin interaction 

data from human brain (datasets used are listed in the Supplementary Note). The mapping 

linked credible variants to 76 ADHD prioritized risk genes. These genes were used in 

gene-set enrichment analyses to evaluate if the candidate genes were enriched among (1) 

genes differentially expressed in specific brain tissues, (2) genes differentially expressed 

at specific brain developmental stages, (3) genes encoding proteins involved in synapses 

and (4) genes encoding proteins in specific biological pathways. We corrected for multiple 

testing separately for each of these hypotheses. The first two aims were addressed by 

performing enrichment analyses in the GENE2FUNC module in FUMA. Enrichment of 

ADHD risk genes among predefined sets of differentially expressed genes in GTEx (54 

tissue types) and BrainSpan (29 different ages of samples and 11 general developmental 

stages) data using hypergeometric test, and protein-coding genes were chosen as background 

genes.

The third aim was addressed using SynGO24 (dataset version: 20210225) to test for 

enrichment among the 76 risk genes for genes involved in synaptic processes and locations. 

We analyzed for enrichment in two subsets: “biological process” (201 gene sets) and 

“cellular component” (92 gene sets). We controlled using a background set of “brain 

expressed” genes provided by the SynGo platform (defined as ‘expressed in any GTEx 

v7 brain tissues’) containing 18,035 unique genes, of which 1,225 overlap with SynGO 

annotated genes. For each ontology term, a one-sided Fisher exact test was performed to 

compare the list of ADHD risk genes and the selected background set. To find enriched 

terms within the entire SynGO ontology, the most specific term is selected where each 

‘gene cluster’ (unique set of genes) is found and then multiple testing correction is applied 

using False Discovery Rate (FDR) on the subset of terms that contain these ‘gene clusters’. 

Only ontology terms with gene sets with a minimum of three genes were included in the 

enrichment analysis.

The fourth aim was addressed by testing if the 76 genes were enriched in pathways/gene sets 

using Enrichr25,26 and its implemented databases (26 databases). Only pathways enriched 

with more than two genes were considered. We took a conservative approach and only 

considered pathways to be significant if the within-database adjusted P-value was smaller 

than 0.002 (0.05/26 databases evaluated). After correction for the number of databases, no 

significantly enriched pathways were identified.

We also tested for enrichment among the 76 genes of genes reported from the GWAS 

catalog (2019) and UK Biobank GWASs (v1) and used https://appyters.maayanlab.cloud/

Enrichr_Manhattan_Plot/ to visualize the results.
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Finally, we conducted pathway enrichment analysis using results from the full GWAS 

meta-analysis (i.e., no preselection of genes) by performing MAGMA27 gene-set analysis in 

FUMA (see details in the Supplementary Note).

Transcriptomic imputation model construction and TWAS.

Transcriptomic imputation models were constructed as previously described28 for 

dorso-lateral prefrontal cortex (DLPFC) transcript levels80. The genetic dataset of the 

PsychENCODE cohort was uniformly processed for quality control (QC) steps before 

genotype imputation. The analysis was restricted to samples with European ancestry as 

previously described28. Genotypes were imputed using the University of Michigan server81 

with the Haplotype Reference Consortium (HRC) reference panel82. Gene expression 

information (both at the level of gene and transcript) was derived from RNA-seq 

counts which were adjusted for known and hidden confounds, followed by quantile 

normalization80. For the construction of the transcriptomic imputation models, we used 

EpiXcan28, an elastic net-based method, which weighs SNPs based on available epigenetic 

annotation information83. We performed the transcript-trait association analysis for ADHD 

as previously described28. Briefly, we applied the S-PrediXcan method28 to integrate the 

ADHD GWAS meta-analysis summary statistics and the transcriptomic imputation models 

constructed above to obtain association results at both the level of genes and transcripts.

Gene-based association and tissue-specific gene expression.

We used MAGMA v1.08 implemented in FUMA v1.3.6a23 to perform gene-based 

association analysis using the full summary statistics from the GWAS meta-analysis. 

Genome-wide significance was assessed through Bonferroni correction for the number of 

genes tested (P = 0.05/18381 = 2.72 × 10−6).

The relationships between tissue-specific gene expression profiles and ADHD-gene 

associations were tested using MAGMA gene-property analysis of expression data from 

GTEx (54 tissue types) and BrainSpan (29 brain samples at different ages) available in 

FUMA (see Supplementary Note for datasets selected).

Enrichment in h2
SNP of ADHD-associated variants located in or close to genes expressed 

in specific brain regions was estimated using LDSC-SEG30. Annotations indicating specific 

expression in 13 brain regions from the GTEx gene expression database were downloaded 

from https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/.

Cell type-specific expression of ADHD risk genes.

We tested for enrichment in the ADHD h2
SNP of variants located in cell type-specific 

epigenetic peaks by examining the overlap of common genetic risk variants with open 

chromatin from a DHS (DNase I hypersensitive sites) study profiling major human cell 

types31 and an scATAC-seq (single-cell assay for transposase accessible chromatin)32 study 

using an LD-score partitioned heritability approach84. All regions of open chromatin were 

extended by 500 bp in either direction. The broad MHC region (hg19 chr6:25–35Mb) was 

excluded due to its extensive and complex LD structure, but otherwise default parameters 
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were used for the algorithm. We applied Bonferroni correction (correcting for 23 cell types), 

and results below P = 0.0022 were considered significant.

Additionally, we performed cell type-specific analyses implemented in FUMA, using data 

from 13 single-cell RNA sequencing datasets from human brain. The method is described in 

detail in Watanabe et al.33. Datasets used and a short summary of the method can be found 

in the Supplementary Note).

Overlap of common ADHD risk variants with rare protein-truncating variants (rPTVs).

We analyzed the overlap of common variants with rPTVs in a subset of iPSYCH samples 

that have also been whole exome sequenced. A major part of the data (Pilot 1, Wave 1, Wave 

2) was also included in the recent study by Satterstrom et al.17, and the same quality control 

procedure was applied in this study. Description of whole-exome sequencing procedure, QC 

and annotation can be found in the Supplementary Note. Variants were defined as PTVs if 

they were annotated as having large effects on gene function (nonsense variant, frameshift, 

splice site). We defined a variant as being rare if it had an allele count of five or less across 

the combination of the full iPSYCH exome-sequencing dataset (n = 28,448) and non-Finnish 

Europeans in the nonpsychiatric gnomAD exome database (n = 44,779).

We tested for increased burden of rPTVs in ADHD compared to controls in three gene sets: 

(1) the 76 genes linked to credible variants based on position and functional genomic data, 

(2) the 45 exome-wide significant genes identified in MAGMA analysis, and (3) genes with 

at least five credible variants within the coding regions. The requirement of five credible 

variants was chosen to prioritize the most likely causal genes. This threshold excluded 

eight genes located in the same locus covering a broad LD region on chromosome 3 

(Supplementary Data 1; page 25). Additionally, two other genes with less than five credible 

variants were excluded located in two other loci on chromosome 3.

The burden of rPTVs and rare synonymous (rSYNs) in cases compared to controls 

was tested for the three gene sets with logistic regression corrected using the following 

covariates: birth year, sex, first ten principal components, number of rSYN, percentage of 

target with coverage > 20x, mean read depth at sites within the exome target passing VQSR, 

total number of variants, sequencing wave.

Only significant enrichment in the set of 18 genes identified based on credible variants was 

found. We therefore looked specifically into these genes to identify whether the signal was 

driven by specific genes. rPTVs were found in 13 of the genes, and eight of these genes 

had more rPTVs in cases than controls when looking at raw counts (Supplementary Table 

16). We performed gene-based burden test using EPACTS (https://genome.sph.umich.edu/

wiki/EPACTS) and a logistic Wald test (correcting using the covariates as described 

above). Additionally, in order to increase power to detect an increased burden of rPTVs 

at the gene level in ADHD cases, we combined iPSYCH controls with information about 

rPTVs in gnomAD (non-Finnish European individuals), done as described previously17. We 

performed these gene-based tests using Fisher’s exact test, and only the following genes 

were considered: (1) genes with a higher number rSYN in gnomAD controls compared to 
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iPSYCH cases, and (2) genes with a higher rate of rPTVs in cases compared to controls in 

the iPSYCH data.

Genetic overlap with other phenotypes.

We estimated genetic correlations of ADHD with other phenotypes in LDhub35 (published 

GWASs: 255 phenotypes; UK Biobank GWASs: 514 phenotypes). Additionally, genetic 

correlations with three phenotypes not available in LDhub (cannabis use disorder55, smoking 

initiation85 and education attainment51) were estimated locally using LD score regression79.

We applied MiXeR36 to our ADHD GWAS summary statistics and GWAS from a 

selection of complex traits showing high genetic correlation with ADHD: ASD86, SCZ54, 

BMI87, educational attainmet88, age at first birth89, smoking initiation85, insomnia90 and 

a new GWAS meta-analysis of depression including 371,184 cases and 978,703 controls91 

(Supplementary Table 19) to quantify (i) the number of variants influencing each trait and 

(ii) the genetic overlap between ADHD and each of the other traits. We used MiXeR 

with default settings (https://github.com/precimed/mixer) in a two-step process. First, we 

ran a univariate model for each trait to estimate the number of common variants having 

a non-zero genetic additive impact on the phenotype. The univariate model generates 

estimates of “polygenicity” (i.e., the proportion of non-null variants) and “discoverability” 

(i.e., the variance of effect sizes of non-null SNPs). Second, the variance estimates from the 

univariate step were used to run a bivariate model in a pairwise fashion (i.e. ADHD vs. each 

of the other traits), which produced estimates of SNPs with a specific effect on the first or on 

the second trait, and SNPs with a non-zero effect on both traits (for details on the method see 

also ref. 18 and Supplementary Note). The models were evaluated by the Akaike Information 

Criterion52 (AIC) and illustrated with modeled versus observed conditional quantile-quantile 

(Q-Q) plots (Supplementary Fig. 11). The AIC values can be found in Supplementary Table 

19.

Polygenic score (PGS) analysis of cognitive measures in PNC.

PGS analysis was performed on 4,973 individuals of European ancestry from the 

Philadelphia Neurodevelopmental Cohort (PNC), ages 8–21. Information about imputation 

and QC of the PNC data can be found in the Supplementary Note.

The software PRS-CS92 was used to process ADHD GWAS summary statistics and assign 

per-allele posterior SNP effect sizes. A European LD reference panel generated from 

the 1000 Genomes Project data (https://github.com/getian107/PRScs) was utilized. The 

following default settings were used for PRS-CS: parameter a in the γ-γ prior = 1, 

parameter b in the γ-γ prior = 0.5, MCMC iterations = 1000, number of burn-in iterations 

= 500, and thinning of the Markov chain factor = 5. Additionally, the global shrinkage 

parameter phi was determined using a fully Bayesian method. Plink v2.093 was then used 

to calculate individual-level ADHD PGS. Linear regression was used to test the association 

between ADHD PGS and neurocognitive phenotypes measured in the PNC. Age (at time of 

neurocognitive testing), age2, genotyping batch, sex, and the first 10 MDS dimensions were 

used as covariates. The neurocognitive measures were obtained using the Computerized 

Neurocognitive Battery (CNB), which consists of 14 tests in 5 domains: executive control, 
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episodic memory, complex cognitive processing, social cognition, and sensorimotor speed. 

The battery has been described in detail elsewhere40. Additionally, association of ADHD-

PGS with results from the Wide Range Achievement Test (WRAT-4)41 were analyzed. See 

Supplementary Note regarding transformation of the CNB measures.

The total variance explained by ADHD-PGS and model covariates for each neurocognitive 

phenotype was reported using Adjusted R2. Additionally, the variance explained by 

ADHD-PGS was calculated in R using a variance partitioning tool (https://github.com/

GabrielHoffman/misc_vp/blob/master/calcVarPart.R). Reported P-values were Bonferroni-

adjusted to account for the number of independent tests performed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Results from GWAS meta-analysis of iPSYCH, deCODE and PGC cohorts including 
38,899 cases and 186,843 controls in total.
The y-axis represents −log10(two-sided P-values) from meta-analysis using an inverse-

variance weighted fixed effects model. Index variants in each of the genome-wide significant 

loci are marked as a green diamond (note that two loci on chromosome 3, index variants 

rs7613360 and rs2311059, are located in close proximity and therefore appear as one 

diamond in the plot). The red horizontal line represents the threshold for genome-wide 

significant association (P = 5 × 10−8).
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Figure 2 |. Venn diagrams showing MiXeR results of the estimated number of variants shared 
between ADHD and psychiatric disorders (with significant genetic correlations with ADHD) and 
phenotypes representing other domains with high genetic correlation with ADHD.
Circles represent shared variants (gray), unique to ADHD (light blue) and unique to 

the other phenotype of interest (orange). The number of shared variants (and standard 

deviations) is shown in thousands. The size of the circles reflects the polygenicity of 

each phenotype, with larger circles corresponding to greater polygenicity. The estimated 

genetic correlation (rg) between ADHD and each phenotype from LDSC is shown below 

the corresponding Venn diagram, with an accompanying scale (−1 to +1) with blue 
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and red representing negative and positive genetic correlations, respectively. Bivariate 

results for ADHD, autism spectrum disorder (ASD), major depressive disorder (MDD), 

schizophrenia (SCZ), body mass index (BMI), smoking initiation (SmoIni), insomnia, 

educational attainment (EA) and age at first birth (AFB) are shown (see also Supplementary 

Table 17).
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Figure 3 |. Association of ADHD-PGS with measures of cognitive abilities in the PNC cohort (n = 
4,973).
Beta values (represented as a dot and standard errors indicated as horizontal bars) from 

linear regression testing for the association of ADHD-PGS with the 15 neurocognitive 

measures listed on the y-axis (Wide Range Achievement Test-4 (WRAT). The color bar at 

the right indicates the −log10(Bonferroni adjusted two-sided P-value) and P-value thresholds 

are indicated by stars (*P = 0.05; **P = 0.01, ***P = 0.001).
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Table 1 |
Results for the 27 genome-wide significant index variants identified in the GWAS meta-
analysis of 38,691 individuals with ADHD and 186,843 controls.

The location (chromosome (chr)) base position (bp) in hg19), alleles (A1 and A2), frequency (Freq.) of A1 in 

cases and controls, odds ratio (OR) of the effect with respect to A1, standard error (s.e.) and association P-

values (two-sided) from inverse-variance weighted fixed effects model of the index variants are given. “Novel” 

indicates if the locus is a new ADHD risk locus i.e., not identified in ADHD2019 (ref. 14). Nearby genes 

located within 50 kb from index variants are listed (for a list of mapped genes based on other criteria see 

Supplementary Table 8).

Genomic 
locus chr bp rs ID A1 A2 Nearby genes

Freq. 
cases

Freq. 
controls OR s.e. P-value Novel

1 1 44076469 rs549845 G A PTPRF, KDM4A 0.321 0.326 1.082 0.01 9.03E-15 no

2 2 145714354 rs1438898 A C 0.762 0.769 1.065 0.01 4.88E-09 yes

3 3 20724204 rs2886697 G A 0.634 0.643 1.061 0.01 7.90E-10 no

4 3 43691501 rs9877066 G A
SNRK, ANO10, 

ABHD5 0.944 0.951 0.888 0.02 6.60E-09 yes

5 3 49916710 rs7613360 C T

TRAIP, CAMKV, 
MST1R, 

CTD-2330K9.3, 
MON1A 0.598 0.614 0.948 0.01 3.18E-08 yes

6 3 51884072 rs2311059 G A
IQCF3, IQCF2, 
IQCF5, IQCF1 0.314 0.308 0.944 0.01 3.16E-08 yes

7 3 71499401 rs17718444 C T FOXP1 0.695 0.660 1.063 0.01 2.87E-09 yes

8 3 87015142 rs114142727 C G VGLL3 0.988 0.988 1.285 0.04 5.13E-10 yes

9 4 112217523 rs17576773 C T 0.888 0.880 1.101 0.02 1.63E-10 yes

10 4 147099654 rs6537401 G A

LSM6, 
RP11-6L6.2, 

SLC10A7 0.660 0.655 0.945 0.01 1.40E-08 yes

11 5 87854395 rs4916723 A C 0.553 0.573 0.918 0.01 9.48E-15 no

12 5 103964585 rs77960 G A 0.665 0.682 0.929 0.01 2.46E-13 yes

13 5 144474779 rs10875612 C T 0.483 0.470 0.947 0.01 5.62E-09 yes

14 6 70858701 rs2025286 A C COL19A1 0.553 0.550 0.947 0.01 4.00E-09 yes

15 7 67685754 rs73145587 A T 0.910 0.901 1.107 0.02 3.67E-08 yes

16 7 114158954 rs9969232 G A FOXP2 0.344 0.382 0.934 0.01 9.98E-12 no

17 8 93277087 rs7844069 T G 0.428 0.399 1.057 0.01 6.74E-09 yes

18 8 145802447 rs4925811 T G
C8orf82, 

ARHGAP39 0.515 0.531 0.944 0.01 8.30E-09 yes

19 10 8784773 rs11255890 C A 0.389 0.401 1.054 0.01 4.14E-08 yes

20 10 106453832 rs11596214 G A SORCS3 0.597 0.569 1.054 0.01 3.17E-08 no

21 11 28602173 rs2582895 C A METTL15 0.634 0.618 1.075 0.01 4.09E-14 yes

22 12 89771903 rs704061 T C DUSP6, POC1B 0.554 0.560 0.946 0.01 2.30E-09 no

23 14 98690923 rs76284431 T A 0.847 0.842 0.922 0.01 1.19E-09 yes

24 16 61966703 rs1162202 C T CDH8 0.630 0.606 1.063 0.01 1.92E-09 yes

25 18 5871800 rs76857496 C A TMEM200C 0.870 0.859 1.083 0.01 1.24E-08 yes

26 18 50625779 rs7506904 G A DCC 0.343 0.372 0.946 0.01 1.24E-08 yes
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Genomic 
locus chr bp rs ID A1 A2 Nearby genes

Freq. 
cases

Freq. 
controls OR s.e. P-value Novel

27 20 21250843 rs6082363 T C XRN2, NKX2-4 0.296 0.291 1.073 0.01 4.38E-12 yes
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