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ABSTRACT. This report compares the performance of three double-cycling algorithms

used to determine the sequence with which to load and unload containers from a vessel

with a quay crane. Double cycling is a technique which can improve the efficiency of a

quay crane and container port by unloading and loading containers in the same crane cy-

cle. The three algorithms, the greedy strategy, the proximal strategy, and Johnson’s rule,

are introduced and results from applying the three strategies to a set of simulated vessels

are compared. While Johnson’s rule provides the minimum number of cycles required to

unload and load a vessel using double cycling, it is operationally less convenient. The

proximal strategy is operationally convenient, but provides a smaller benefit when com-

pared to single cycling. All strategies provide significant benefit (about a 40% reduction

over single cycling for hatchless ships), and the results are not particularly sensitive to the

algorithm used.

INTRODUCTION

Double-cycling is a technique that can be used to improve the efficiency of quay cranes

by eliminating some empty crane moves. Instead of using the current method, where often

all relevant containers are unloaded from the vessel before any are loaded (single-cycling),
1
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FIGURE 1. (a) Unloading using single-cycling (b) Unloading and loading with double-cycling.

containers are loaded and unloaded simultaneously (see Fig. 1). This allows the crane

to carry a container while moving from the apron to the ship (one move) as well as from

the ship to the apron; doubling the number of containers transported in a cycle (or two

moves). This crane efficiency improvement can be used to reduce ship turn-around time

and therefore improve port throughput. For more background on the motivation behind

double cycling, and other strategies ports have undertaken to improve port throughput, see

[1].

For the purposes of this report, we will assume the ship’s loading plans are given, and

that they are the same with and without double-cycling. We assume the metric for com-

paring strategies is the number of cycles required to complete loading and unloading op-

erations for one row of the vessel. When considering the benefits of double-cycling, we

assume that existing planning tools had been used to create a loading plan, as is current

practice, and that this loading plan has made no accommodations for double-cycling. We

therefore consider changes only to the crane’s sequence of operations. The ideas presented

here are not meant to substitute for detailed terminal and vessel planning programs, but to

provide portable insights into double-cycling at a more general level. For a more thorough

analysis of double cycling see [1].
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FIGURE 2. Plan and side views of a simplified ship (number of containers shown not

representative of typical ship size).

In the next section a framework is set for analysis of the problem. The section also

includes an example that is used to illustrate the problem’s basic properties. In Section

2 we discuss a scheduling formulation for the problem. Section 3 presents the greedy

algorithm. Section 4 introduces the proximal stack strategy. In Section 5 we provide some

detail regarding the computer program that was used to generate vessel data. In Section 6

results are presented from the computer program which allows for comparison of the three

strategies. The report concludes with Section 7.

1. MODELING FRAMEWORK

The layout of containers on a ship can be modelled as a 3-dimensional matrix. Contain-

ers are stacked on top of one another, and arranged in rows (see Fig. 2). One row stretches

across the width of the ship. Large container vessels today typically hold 20 stacks of

containers across the width of the ship, and up to 20 stacks along the length of the ship

(40-foot equivalent units). Of course, we expect these figures to increase with the market

penetration of Malacca-max carriers. Figure 2 gives a top and side view of a typical vessel

(although the number of container stacks is not representative).
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FIGURE 3. Detailed plan for containers to be unloaded and loaded.

We assume that ships lack hatch-coverings, or doors on the deck that separate above-

deck and below-deck storage. For an analysis of vessels with deck hatches see [1].

Consider the case where a ship arrives in port with a set of containers on board to be

unloaded and a loading plan for containers to be loaded. The loading plan indicates the

placement of containers on the ship. Given are uc and lc, the number of containers to be

unloaded and loaded, respectively, in each stack labelled c. Figure 3 is an example problem

that will be used for illustrative purposes. Notice that in Fig. 3, uA = 3 and lA = 2. A

rehandle is a container that must be moved to access containers below it, but will then be

stowed again before the ship departs. Note that if any rehandles are necessary, we include

these in the total number of loads and unloads.

The number of cycles necessary to complete loading and unloading will be represented

by the variable w. We will consider double-cycling within one row of the ship. Due to

the difficulty with which the crane moves laterally along the ship, it is not practical to

consider double-cycling across two rows. We will complete unloading and loading of one
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row before moving the crane lengthwise along the ship to the next row. A key feature of

double-cycling is the order in which the stacks within each row are handles, and this is

explained below.

Let S denote the set of stack labels in a row, |S| = N the number of stacks in the set,

and Π a permutation of S indicating an ordering of the stacks. A permutation is a one-to-

one correspondence between the set of n ∈ {1, . . . , N} and c ∈ S such that Π(n) = c, or

n = Π−1(c). For example, in Fig. 3, the set of stack labels is S = {A,B,C, D}. A permu-

tation of these is {B,A,C, D} given by the function Πe where Πe(1) = B, Πe(2) = A,

Πe(3) = C, and Πe(4) = D. We will restrict our attention to special cases of the generic

double-cycling method described below:

• Choose an unloading permutation, Π′. Unload all containers in the first stack of

the permutation, then all containers in the second stack of the permutation, proceed

in this fashion until all stacks have been unloaded.

• Choose a loading permutation, Π, and load the stacks in that order. Load all

containers in the first stack, then in the second, etc. Loading can start in any stack

as soon as it is empty or it contains just containers that should not be unloaded at

this port. Once loading has begun in a stack, continue loading until that stack is

complete.

In all cases single- or double-cycling, we assume that the crane starts and finishes on the

dock.

Figure 4(a) is a diagram for a single-cycling operation where the stacks of Fig. 3 are

handled in the order {A,B,C, D} both for loading and unloading. Time is expressed in

cycles. Note that loading operations must wait until cycle w = 10, when unloading is
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FIGURE 4. Turn-around time with different methods: (a) single-cycling with ordering

A,B,C,D unloading starts at w = 10, 20 cycles (b) double-cycling with ordering A,B,C,D

unloading starts at w = 4, 14 cycles. (c) double-cycling with ordering A,B,C,D unloading

starts at w = 3, 14 cycles. (d) double-cycling ordering B,A,C,D unloading starts at w = 3,

13 cycles.

finished. The process requires w = 20 cycles. With single cycling, we assume the crane

unloads each row of the vessel before loading any containers.

If we double-cycle, we can still plot the unloading curve on the same diagram. Now,

using the same sequence for unloading and loading, Π′ = Π = A,B,C, D, we can shift

the loading curve to the left as far as possible without overlapping the unloading curve.

Figure 4(b) shows the maximum shift. Loading can start as early as w = 4 and the process

would require only 14 cycles. The same number of cycles is obviously obtained if we start

loading each stack as early as possible, as in Fig. 4(c). This introduces some delay as the
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loading operations must wait one cycle for the unloading operations to be completed in

stack B, but does not change the completion time.

With single-cycling one cycle is required for every container. With double-cycling,

however, the number of cycles will depend on the sequence. Fig. 4(d) shows that if the

loading and unloading sequence is B,A, C, D, then the completion time is w = 13.

This framework considers the work of one crane, working on individual rows of a vessel.

A scheduling formulation for this problem is discussed in the next section.

2. SCHEDULING APPROACH

Although double-cycling involves only one physical machine (the quay crane), the prob-

lem can be formulated as a two-machine flow shop scheduling problem where one job cor-

responds to one stack and each job has two operations: an unloading operation that must

be completed first, and a subsequent loading operation. The crane performs as the loading

machine when its trolley is moving from the apron to the vessel and as the unloading ma-

chine when its trolley is moving from the vessel to the apron. We can assume that there is

a separate machine for loading and another for unloading because in every cycle the crane

can perform exactly one task of each type, and as a result the number of crane cycles avail-

able to do a task of either type is unaffected by what the crane does with tasks of the other

type. Thus, the crane can operate on both tasks in the same exact way as two independent

machines that could handle one container per cycle.

Our problem is to determine the best unloading and loading sequences to minimize

the maximum completion time (makespan). The formulation (shown in the Appendix)

includes a technological constraint: stacks must be unloaded before they are loaded, but no

precedence constraints. We assume all rehandles (containers that must be moved to access

another container, but are to stay on the vessel) are loaded back into the stack from which
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they are unloaded, and that there are no constraints on the order in which a set of stacks is

operated on by an individual machine (loading or unloading).

This problem can be solved optimally with Johnson’s rule [2]. It has three key features.

First, the assumption of uninterrupted loading and unloading of stacks is not restrictive;

preemption cannot improve the solution. Second, it is sufficient to consider schedules in

which the processing orders on the two machines are identical. Third, if the processing

times are interchanged then an equivalent inverse problem results.

Although Johnson’s rule can be used to determine the optimal sequence for a specific

vessel it does not yield a simple formula for the number of cycles that could be used for

port planning. In the next section we introduce an algorithm that is more amenable to

developing port planning formulae.

3. A GREEDY STRATEGY

We propose to unload and load each stack as soon as possible, assuming that the loading

and unloading sequences are given by the same “greedy” permutation, Π′ = Π = G. The

greedy permutation is obtained by ordering the stacks in descending order of the variable

dc where:

(1) dc = lc − uc when Λ ≥ Y

(2) dc = uc − lc when Y > Λ

The rationale for equations 1 and 2 is that we want the unloading operations to run ahead

of the loading operations as much as possible.
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This strategy should provide a smaller benefit than the optimal strategy, but it is useful

because the sequence can be easily calculated and the results can be tightly bounded from

above and below by a simple formula. See [1] for more detail.

4. THE PROXIMAL STACK STRATEGY

The proximal stack strategy is based on the strategy typically used in current operations.

LetR be the number of rows on a vessel, and let Ci be the number of stacks in row i. Rows

are numbered i = 1..R starting from the bow. Let {1...Ci} be the set of stack numbers, c,

in one row of a vessel. The first number, c = 1 is the stack closest to the shore, and Ci the

stack nearest the water.

Definition 1 (Proximal Stack Strategy). The crane processes rows one at a time in order

of increasing i. For each row it:

(1) Unloads all containers in the stack closest to the shore, c = 1, then all containers

in stacks c = 2, 3, etc. until all stacks in the row have been unloaded.

(2) Loads the stacks using the same ordering. Loading can start in a stack as soon as it

is empty or contains just containers that should not be unloaded at this port. Once

loading has begun in a stack it is continuously loaded until complete.

We expect the benefit with this strategy to be smaller than that with the optimal or greedy

strategy. We choose to focus on this strategy because it is operationally and mathematically

convenient, and the strategy used in practice. In the next section we evaluate the reduc-

tion in the number of cycles (over single cycling) achieved by using double-cycling. We

compare the three strategies with results from a set of simulated vessels. We also present

details of the simulation program used to generate the vessel data.
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5. COMPUTER PROGRAM

A computer program was developed that generates ship data, and calculates the number

of moves to turn around the ship using the three strategies. The purpose of the program

was to provide large sets of data upon which to evaluate algorithms. The program pro-

vides turn around times (in number of moves) using single cycling, the greedy algorithm,

Johnson’s rule, and the proximal stack strategy. The program can generate data for many

different ship designs and market conditions (imports and exports, origins and destinations,

and number of stacks). Table 1 describes how different parameter values can be used to

simulate different market environments.

Necessary inputs into the simulator are:

• number of stacks

• hi, maximum stack height (in containers) for imports

• he, maximum stack height (in containers) for exports

• pi and qi, parameters for the beta distribution, applied to imports

• pe and qe parameters for the beta distribution, applied to exports

The number of containers to unload and load in each stack, uc and lc, are assumed

to be independent and generated by sampling from a beta distribution. According to the

input parameters pi, qi, pe, and qe, the beta distribution is sampled twice for each stack,

obtaining a value between 0 and 1, with a different distribution for imports and exports.

Each sampled value is then multiplied by the maximum stack height, then rounded down

to the nearest integer. Notice some stacks will have 0 containers.



PERFORMANCE COMPARISON OF CRANE DOUBLE CYCLING STRATEGIES 11

Description Parameter Values

Shallow (River Boat) Maximum stack height ≤ 10

Deep (Ocean Vessel) Maximum stack height > 10

Small Vessel Number of stacks in row ≤ 10

Medium Vessel Number of stacks in row > 10,≤ 15

Large Vessel Number of stacks in row > 15

Balanced Load (similar demand for im-

ports and exports)

maximum stack height, p and q same for

imports and exports

Unbalanced Load (different demand for

imports and exports)

maximum stack height, p and q different

for imports and exports

Varying Demand and Loading Vary parameters p and q

TABLE 1. How computer program parameters can be varied to reflect different market conditions.

6. RESULTS COMPARISON

To understand the benefits on a larger scale a computer program was used to generate

problem instances and calculate the number of moves for each algorithm. The number of

containers to unload and load in each stack, uc and lc, were determined with independent

draws of beta random variables with parameters: (pi, qi) for imports and (pe, qe) for ex-

ports. Since beta random variables have a range between 0 and 1, each sampled value was

multiplied by the maximum stack height and then rounded down to the nearest integer.

These values were in general different for imports and exports. Some stacks could have

0 containers. Parameter settings used to generate the figures are shown in Table 2. The

results are shown in Figure 5. Each data point represents the average value of 40 generated

vessels.
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Parameter Setting

Number of stacks Varies (as indicated in the figure)

Beta Distribution Parameters 5 runs with pi = 1, qi = 1, pe = 1, qe = 2

5 runs with pi = 1, qi = 1, pe = 2, qe = 1

10 runs with pi = 1, qi = 1, pe = 2, qe = 2

5 runs with pi = 2, qi = 2, pe = 1, qe = 1

10 runs with pi = 2, qi = 2, pe = 2, qe = 2

5 runs with pi = 2, qi = 2, pe = 2, qe = 1

Maximum number of imports in one stack 20

Maximum number of exports in one stack 20
TABLE 2. Parameter settings used to generate vessel data.

As expected, the benefits using the greedy strategy are greater than the benefits using

the proximal stack strategy, but smaller than the benefits using the optimal strategy, but

the differences are small. For a row of 20 stacks, there is a 45% reduction in the number

of moves over single cycling for the optimal strategy, a 44% reduction using the greedy

strategy, and about a a 40% reduction using the proximal stack strategy. Notice that the

savings range in the figures has been reduced to allow closer comparison of the values, and

that benefits above 35% are commonplace.

7. CONCLUSIONS

The proximal stack strategy is presented more completely in [1], where a formula is

developed for longer term port planning. The greedy strategy allows us to develop some

simple formula for the number of moves required to unload and load a specific vessel.

That work is presented in [1], along with the optimal strategy, which provides the smallest
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FIGURE 5. Performance comparison of greedy strategy and Johnson’s rule to single cy-

cling for vessels without deck hatches. Each data point shows the percentage savings over

single cycling and is the average result for 40 generated vessels.

number of moves required to turn around a vessel. This report defines and compares the

three algorithms. Outside of these mathematical manipulations, all strategies provide an

opportunity for significant improvement over the status quo.

REFERENCES

[1] A. V. Goodchild. Crane Double Cycling in Container Ports: Algorithms, Evaluation, and Planning. PhD

thesis, University of California at Berkeley, Department of Civil and Environmental Engineering, 2005.

[2] S.M. Johnson. Optimal two- and three-stage production schedules with setup times included. Naval Research

Logistics Quarterly, 1:61–68, 1954.



14 A.V. GOODCHILD AND C.F. DAGANZO

8. APPENDIX

The double-cycling problem can be formulated as the 2-machine flow shop problem

below. We use the following notation:

• uc - number of containers to unload in stack c ∈ S

• lc - number of containers to load in stack c ∈ S

• FUc - completion time of unloading c ∈ S

• FLc - completion time of loading c ∈ S

• w - maximum completion time

• Xkj - binary variable to for ordering of unloading jobs (1 if j ∈ S is unloaded

after k ∈ S and 0 otherwise)

• Ykj - binary variable to for ordering of loading jobs (1 if j ∈ S is loaded after

k ∈ S and 0 otherwise)

• M - a large number

The scheduling problem (SP) is to minimize the maximum completion time of all jobs

subject to constraints. The result is to uniquely identify the permutations Π and Π′, and

a feasible set of job start and end times. It is assumed that the process starts at time zero.

The formulation is:
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(SP ) minimize w(3a)

subject to w ≥ FLc ∀c ∈ S,(3b)

FLc − FUc ≥ lc ∀c ∈ S,(3c)

FUk − FUj + MXkj ≥ uk ∀j, k ∈ S,(3d)

FUj − FUk + M(1−Xkj) ≥ uj ∀j, k ∈ S,(3e)

FLk − FLj + MYkj ≥ lk ∀j, k ∈ S,(3f)

FLj − FLk + M(1− Ykj) ≥ lj ∀j, k ∈ S,(3g)

FUc ≥ uc ∀c ∈ S,(3h)

Xkj , Ykj = 1, 0 ∀j, k ∈ S.(3i)

These constraints completely define the double-cycling problem. Constraints (3b) en-

sure that the makespan is greater than or equal to the completion of loading of all stacks.

Constraints (3c) ensure that stacks are only loaded after all necessary stacks have been un-

loaded. Constraints (3d), (3e) and (3i) ensure that every stack is unloaded after the previous

one in Π′ has been unloaded. This is achieved by specifying for every pair of stacks (j, k)

that either stack k is unloaded before stack j (if Xkj = 1) or the reverse (if Xkj = 0), and

that the time difference between the two events is large enough to unload the second of the

two stacks. Constraints

(3f), (3g) and (3i) are equivalent to (3d), (3e) and (3i) but for loading jobs. Constraints

(3h) ensure that each unloading completion time allows for enough time to at least unload

that stack.




