
UC Irvine
ICS Technical Reports

Title
A methodology for software-hardware codesign

Permalink
https://escholarship.org/uc/item/65s983js

Authors
Gong, Jie
Gajski, Daniel D.
Wu, Allen C.

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/65s983js
https://escholarship.org
http://www.cdlib.org/

A Methodology for

Software-Hardware Codesign

Jie Qong_
Daniel D. Ga}ski

Allen C. Wu

Dept. of Information and Computer Science
University of California, Irvine

October, 1992

Technical Report 92-94

Notice: This Material
may be protected ,
by Copyright Law
(Title 17 U.S.C.)

Abstract

In this report we present two approaches for synthesis of real-time systems with a minimal
number of application specific integrated circuits (ASICs) while still meeting the required
performance constraints. One approach starts with a single process description which can be
easily compiled into a software implementation for any standard processor. If this software
implementation does not satisfy the required performance, descriptions of the performance­
critical parts are extracted out and implemented as ASICs. The other approach starts with
a description written as multiple processes communicating through global signals. This de­
scription can be naturally mapped to a hardware-only implementation in which each process
is implemented as one ASIC. In order to minimize number of ASICs, the processes are merged
and split for mapping to a combination of standard processors and ASICs. The step-wise
refineme'nt process for both approaches is demonstrated on an example of a real-time system.
Issues and tools regarding the automation of the proposed codesign methodology are also
discussed.

Contents

1 Introduction 2

2 A Example Real-time Embedded System 3

3 Hardware Extraction Approach 5

3.1 The Design Process 5
3.2 Design Steps for the Example 7

4 Software Selection Approach 13
4.1 The Design Process 13
4.2 Design Steps for the Example 14

5 System for Software-Hardware Codesign 20

6 Conclusion 21

7 Acknowledgements 21

8 References 22

List of Figures

1 An example real-time system 4
2 Design process in hardware extraction strategy 5
3 Initial description 7
4 Refined description after memory process is introduced 8
5 Control and data fl.ow graph for the description 9
6 The refined three-process description 10
7 The refined five-process description 12
8 Design process in software selection strategy 13
9 Initial description 15
10 Refined description after collapsing 'wall detection' and 'volume aggregation' 16
11 ·Refined description after migration of 'arbiter' 17
12 Refined description after channel merging . . 18
13 Refined description after moving arbiter out 19
14 The system for software-hardware codesign . 20

1

I
11

I
' I I

I

1 Introduction

Many real-time applications need both hardware and software components. Software imple­
mentation is preferred because of lower cost, shorter design cycle and simpler upgrading while
hardware implementation offers performance necessary for real-time systems. Traditionally,
the partitioning of a design into software and hardware is made at very early stage and after
which the hardware and software are developed separately. With high-level synthesis and
software compilation techniques in a fairly mature state, it becomes possible to consider the
software-hardware tradeoffs thr~ugh the entire development cycle and to automate the code­
sign process by building tools for software-hardware codesign. Those tools allow a designer
to trade software for hardware in order to achieve performance and hardware for software to
minimize cost.

Software-hardware codesign involves many design aspects: system modeling, software­
hardware partitioning, mixed module simulation and integration. Several researchers have
described frameworks for modeling, simulation and generation of mixed types of software­
hardware designs, time-discrete or time-continuous specialized hardware. Srivastava and
Brodersen [SrBr92], using a library of parameterized hardware modules and existing syn­
thesis tools, map the system description to a hierarchical four-level architecture template in
which ASICs only appear at the lowest level of the hierarchy while software runs on either
DSP units, off-shelf single board processor or host workstation. Their work describes a man­
ual methodology for hardware and software prototyping. Another approach by Kalavade
and Lee [KaLe92] suggests a unified framework for software-hardware codesign by using
Ptolemy. Ptolemy is an environment for simulation and prototyping of heterogeneous sys­
tems containing components with different design style or implementation. They also point
out some issues related to software-hardware partitioning, such as shifting dedicated heavy­
computation function from software into ASICs to let processor have sufficient computation
cycles for other computations. However the partitioning process is still manual and Ptolemy
does not have tools to support partitioning. Falling in the same trend, the work by Buchen­
rieder and Veith [Bu Ve92] tries to integrate several available tools in an open architecture
through a codesign manager to facilitate system specification, component design, as well
as system simulation and integration. Basically, all the work described above focuses on
modeling, simulation and generation of software-hardware system in a unified framework by
using, extending, or integrating existing tools or systems.

On the other hand, only a few papers exist for software-hardware partitioning problem
that is essential in the codesign process. The approach used by Ernst and Henkel [ErHe92]
starts with complete software implementation and then extracts out for implementation in
hardware only those code segments where timing constraints are violated. It suggests us­
ing extensive simulation to identify if and where timing constraints are violated. It points
out that the overhead of hardware extraction includes communication overhead, interlocks,
as well as compiler effects, and that cost function should consider area overhead and tim­
ing improvement caused by additional hardware. Although this paper proposes a system
for software-hardware codesign, the criteria and the procedure for the hardware· extraction

2

are not discussed. Gupta and De Micheli [GuDe92] propose a partitioning algorithm that
starts with an initial partition where all operations, except for the unbounded delay data­
dependence operations, are assigned to hardware. The rest is assigned to software running on
a processor. If the partition is not feasible, then the algorithm fails, otherwise the partition
is refined by migrating operations from hardware to software in the search for a lower cost
feasible partition. This algorithm considers input/output data rates as a constraint. It does
not consider another commonly used type of constraint such as timing constraint between
operations. The algorithm does not describe the the procedure of determining the feasibility
of each partition and the order of moving operations from hardware into software.

The work towards software-hardware codesign is in its initial stages. There are lots of
problems which need to be identified and solved, e.g. the interface between software and
hardware, the criteria and algorithm for the partition, the techniques for mapping software­
hardware description to target architecture etc. To understand the codesign process and
necessary tools to support this process, we have studied two contrasting software-hardware
codesign methodologies. One approach starts with a cost-effective (software) design and the
other starts with a performance-effective (hardware) design. In the first approach, we start
with a description which is compiled into machine code for a selected processor .. However
such a pure software implementation may be too slow to meet the imposed performance
constraints. Therefore we extract performance critical parts and implement them as ASICs.
In the second approach, a hardware solution is assumed at the beginning. This description
is modified and mapped onto a target architecture containing standard processor and one
or more ASICs. Non-performance-critical parts are identified in the description and imple­
mented by software running on the standard processor in order to reduce total design cost.
The step-wise description refinement process for both approaches and the necessary CAD
tools are discussed in this report.

The report is organized as follows. An example of a real-time system is described in
section 2; The two contrasting codesign approaches are described in sections 3 and 4. Sec­
tion 5 describes the tools needed to support such codesign process. The report concludes
with section 6.

2 A Example Real-time Embedded System

Our codesign approaches will be demonstrated on a real-time medical system used to measure
patient's urinary bladder volume [Wu85]. Typical characteristics of the system include real­
time control, data acquisition, and complex computation. The system controls a transducer,
which is attached to the motors, to scan the related abdominal area along a two-dimensional
grids. At each scanning point, the transducer sends a ultrasonic wave directly into the
anatomical region to be examined. When the ultrasonic wave strikes tissues of different
acoustic impedance, an echo is reflected back to the transducer. Two major peaks will be
generated by the echoes from the anterior and posterior walls of the bladder. Therefore the

3

distance between the anterior and the posterior walls of each section of the bladder can be
determined and thus the volume of the bladder can be computed. Fig. 1 shows the volume
measuring system and its interfaces with the environment.

Input

------·

------------ -------------------~ I I I
I I I
1 output 1 1 AID converter
I I I

L- ------- _1 L ------- -- ------•

Volume

Y-step

X-step

Start

Data Ready Strobe

System tasks:

Initialization
Motor position control
Data acquisition
Wall detection
Volume calculation
Data storing

Reset X-pos Y-pos X-dir Y-dir Trigger

r- ----- --- ---- -1
I I

: Motor control :
I I

'--------------------------·

.-----
I ...,

•• •• •• ••
: : Disk
• 1 Driver ••,

I,
I
I -I
I ·-----

Figure 1: An example real-time system

Basically, the system consists of six tasks: (1) initialization; (2) motor position control;
(3) data acquisition; (4) wall detection; (5) volume calculation; (6) data storing. In the
initialization stage, the system loads the number of control steps along x direction and y
direction and resets the motors to the initial scanning position. When the starting signal
is set, the scanning process begins. The motor position controller sends out the control
signals that drive the motors to move the transducer to the scanning position. Then the
motor controller activates the transducer to send the ultrasonic wave to the examing point.
The data acquisition module converts the ultrasonic echo into digital signals and store them
temporarily. The wall detection and volume calculation modules determine the distance
between the anterior and posterior walls of the bladder and the volume based on the fetched
data. Finally the data storing module stores the fetched data into disk for later analysis.
The process continues until the system covers the entire given scanning range.

There are two main imposed performance constraints for this system: (1) data acquisition
and conversion of 1000 data points is 1 ms; (2) maximum time between two scans, including
time for motor control, data acquisition, wall detection, volume calculation and data storing,
is two seconds.

4

3 Hardware Extraction Approach

This approach starts with a complete software implementation from which the critical parts
are extracted· and implemented as ASICs.

3.1 The Design Process

OUtput the refined
description and the
target hardware

Initial description
refinement

Map description onto
the target hardware
(a standard processor)

Analyze performance and
detect performance-critical
parts

Yes

Extract the performance-crltlcal
parts and convert them into
descriptions for ASICs

Synthesize the Interface and
reflne the description

I
I

Refine the target hardware -'

Figure 2: Design process in hardware extraction strategy

The design process, shown in Fig. 2, starts with a VHDL description of the system.

5

'Initial description refinement' task connects the input description into one process. In
the beginning the input description is assumed to be implemented completely by software
running on a standard processor. The associated target hardware (shown in the ovals)
is a bus-oriented uni-processor architecture in which the memory modules, I/O ports or
ASICs are connected to the processor bus. Although the target model can be extended
to multi-bus, multi-processor architecture [SrBr91], we believe that most of the real-time
applications, including our example, can be accommodated by this uni-bus uni-processor
model. Initially no ASICs are connected to the target hardware since the description is
implemented completely in software, The mapping of description onto the target hardware
can be achieved by compiling the description into the processor instruction set. The designed
system communicates with its environment through memory mapped parallel I/O ports.

To see whether the software implementation satisfies the performance constraints or not,
performance estimation is carried out and performance-critical parts are detected in this
step. Performance-critical parts (PCPs) are referred to those description segments whose
estimated performance do not satisfy the imposed constraints. Here control flow graph and
inter-basic block data flow graph are built from the description. The nodes are basic blocks,
and the edges in the control flow graph represent sequencing while the edges in the data flow
graph represent data dependence. The control flow graph is used for finding PCPs. The data
:flow graph is used to find the potential concurrency among basic blocks. If the performance
constraints are satisfied, then the description refinement process ends, otherwise the codesign
process proceeds.

After detection, performance-critical parts are extracted and converted into separate
ASIC descriptions. The task of detecting and extracting of PCPs is a problem by itself
which will be discussed in a subsequent reports. After the extraction, the description is
further decomposed into several processes since the extracted PCPs form new processes
which are going to be implemented in ASICs. The concurrency identified from the data flow
graph may be exploited by inserting PCPs into different processes. We call these new formed
processes ASIC processes. The original process, from which the PCPs are extracted, is called
the software process. Thus, software process is fragmented and refined to a new software
process. All these processes communicate through global signals realized by the processor
built-in bus. Protocols used for the communication between software process and ASIC
processes are generated and inserted in appropriately. If more than two AISC processes may
access global signals simultaneously, necessary arbitration process is generated to resolve the
competition. The arbitration process will be implemented as an interface circuit.

Along with the description refinement, the target hardware is also modified by adding
ASIC modules to the processor bus. If there is an arbitration process, an arbitration mod­
ule will be added in the target hardware also. Basically, the codesign system will refine
either description or target hardware in order to achieve one-to-one mapping between them.
The codesign process ends whenever the performance constraints are satisfied. After the
constraints are met, we must (1) generate machine code for the chosen processor from the
software process; and (2) synthesize ASICs from the ASIC processes.

6

3.2 Design Steps for the Example

We have chosen the 8086 microprocessor to implement our example. The hardware extraction
design process follows the strategy described in Fig. 2.

The initial description is mapped onto its corresponding target hardware as shown in
Fig. 3. The resulting machine code (called software) will be stored in the program memory.
Variables in the description will be stored in data memory while global signals through which
the processor communicates with its environment will be mapped to the parallel IO ports.
The processor bus is invisible at this level, where the description is implemented completely
by the machine code.

Specification

Target Hardware

Micro-processor
(8086)

Initialization
Motor position control
Data acquisition
Wall detection
Volume calculation
Data storing

Program
memory

Data
memory

- •• • -1 •• - I --------1
: AID • ! Motor • ! Disk •
• converter : • controller : • driver : ·-------- ·-------- •--------

Figure 3: Initial description

Since the processor bus is used for communication with ASICs, it needs to be specified
explicitly as global signals. Therefore the original single process description is decomposed
into two processes communicating through those global signals supported by processor built-

7

in bus (Fig. 4). One process (left oval) is the original main process with some of its variables
such as arrays allocated to the data memory locations. Variables which can be allocated into
processor registers still remain in the main process. The other process is a newly-formed
memory process which communicates with the main process using conventional read/write
protocols. Thus the memory process will be synthesized into the data memory module while
the main process will be compiled into the processor instruction set. Basically, this step
refines our description to reflect the connections between standard components.

Specification

Target Hardware

Micro-processor
(8086)

i-- ---·
I OUtput :
I I ·--------

Program
memory

addr

data
read
write
mem/IO

Data
memory

v1

vn

Mapping

- - -- -1 -- - I --- ----1
: AID • : Motor • : Disk •
• convener : • controller : • driver : •-------- , ________ ·--------

addr
data

:?~
mem/10

Figure 4: Refined description after memory process is introduced

To see whether the previous implementation satisfies system requirements or not; perfor~
mance of the system is estimated and performance-critical parts are detected; Fig. 5(a) and
(b) demonstrate the control fl.ow graph for the whole description and the data fl.ow graph
for the loop body consisting of blocks 1 through 7 in Fig. 5(a). Time constraint 1 and 2 are
associated with block 2 and the loop body. First we do software estimation for the 'data
acquisition' block. It is compiled into instruction set. The clock cycles needed to execute it
can be estimated from the number of instructions and the clock cycles used for each instruc­
tion. If the estimated performance does not satisfy constraint 1, then 'data acquisition' is a

8

PCP and will be moved to hardware.

' ' -'---.....-----...
constraint 1

constraint 2

• I

7

--~------------------

(a) Control flow graph

malorcan1nlf

(b) Data flow graph

Figure 5: Control and data flow graph for the description

After detection, we extract the PCP 'data acquisition' out to form a new process. Three
global signals 'bus..xequest ', 'bus_granted' and 'interrupt', which are supported by the pro­
cessor bus, are added to the description to facilitate the communication between the main
process and the newly-formed data acquisition process. Communication protocols for the
bus access are generated and inserted in the main process and the data acquisition process.
Besides, conventional read/write protocol is inserted in the data acquisition process. Fig. 6
shows the refined description consisting of three processes and its corresponding target.

After constraint 1 is satisfied, we try to deal with constraint 2 which is associated with
the loop body showri in Fig. 5 (a). We do software estimation for 'motor control'(block 1),

9

Specification

Target Hardware

Miao-processor
(8086)

Program
memory

J ____ -·
1 A/D I

: converter : ·--------

Data
memory

Figure 6: The refined three-process description

10

addr
data
read
wrile
mem/IO

'computation'(block 3 to block 6), and 'data storing'(block 7). And we also do hardware
estimation for 'data acquisition' and its related protocols. Both software and hardware
estimation will be discussed in subsequent report.

If the loop body does not satisfy constraint 2, we must extract some parts or the whole
loop body and implement them as ASICs. Among many alternatives, here we describe one
way for the extraction. Since 'motor control' includes only several simple output statements,
we can leave it in software. Since 'data acquisition' (block 2) is already an ASIC process,
we can add the rest of the description (block 3 to block 7) to the same process. However
'computation' and 'data storing' can be executed concurrently shown in the data flow graph
in Fig. 5(b). Therefore 'computation' and 'data storing' could be in different processes
to preserve the concurrency. Since 'computation' itself is complicated enough, we put 'data
storing' in the same process with 'data acquisition' and have 'computation' in a new process.

Fig. 7 demonstrates the further decomposition of the example system. The previous
description are refined to five-process description. Those processes communicate through
the global signals supported by the processor built-in bus. Those five processes include
one software process, one memory process, two ASIC processes and one arbitration process.
Protocols for the bus access are generated and inserted in the software process and the
two ASIC processes. Besides, conventional read/write protocols are inserted in both ASIC
processes. Since the two ASIC processes may request bus at the same time, an arbitration
process is generated to resolve bus contention.

11

Specification

Target Hardware Program
memory

Arbitration__ _______ .,. circuit

Mapping

Data
memory

addr
data = memJIO

parallel ports (8255)

Figure 7: The refined five-process description

12

4 Software Selection Approach

This approach starts with a hardware solution in which all concurrent activities are imple­
mented as ASICs. Some ASICs are merged and others are selected for implementation in
software.

4.1 The Design Process

Initial description
refinement

Map description onto
the target hardware
(multi-ASICs)

Process merging/splitting

Channel merging
(Global signal eltmination)

Mapping description
onto the target hardware

Yes >-------·• Output the refined description
and the target hardware

Figure 8: Design process in software selection strategy

The design (Fig. 8) starts with a VHDL multi-process description of the system. These

13

multiple processes communicate with one another through global signals. This model can be
naturally mapped into the target hardware in which each process is realized by an ASIC and
the global signals are realized as buses. This hardware implementation however may be too
costly since it uses hardware for non-performance-critical parts. It may be also redundant
since certain functions may be available in the standard processor selected for software
implementation. Thirdly, the design has too many busses since each process communicates
directly with other processes. In order to reduce system cost and design time, it is necessary
to map the description to an architecture which consists of a standard processor and some
inevitably needed ASICs for performance-critical parts. The target architecture we choose
is still the single-bus uni-processor architecture used in the previous section.

To map the given description to the target architecture, we need to merge processes.
By merging two processes, we can eliminate global signals used for communication between
them and convert them into local variables of the newly-merged process. The order in which
processes are merged, depends on the data dependences or communication rates among
processes. On the other hand we may need to split some process to facilitate mapping to
standard components. For example the arbiter for the bus belongs to the memory process
in the description. But in the target hardware, the memory process only reads/writes and
does not resolve the bus contention. Therefore the arbiter description needs to be moved
away from the memory process.

Besides process merging or splitting, channel merging is also needed because processor bus
can only accommodate certain number of global signals. Those global signals which can not
be realized by the processor bus should be mapped into memory locations accessible through
the bus lines. We call this procedure channel merging. Channel merging is considered as one
type of global signal elimination. Basically there are two types of global signal elimination.
One is through process merging. The other is through channel merging.

After each refinement step, estimation is used to see if the design satisfies the quality
metrics such as cost and performance. If not, the codesign process continues. Otherwise
the refined description and it corresponding target hardware are generated. From here, the
software and hardware can be compiled or synthesized.

4.2 Design Steps for the Example

The multi-process description for the example real-time system is shown in Fig. 9. There
are six processes communicating with one another through 19 global signals. Memory is
accessed by data and address buses. The arbiter in the memory process resolves bus con­
tentions coming from 'data acquisition', 'disk storage' and 'wall detection' processes. Since
there is data dependence between 'wall detection' and 'volume aggregation' processes, they
can be merged.

Fig. 10 shows the description after the 'wall detection' process and the 'volume aggrega-

14

..

~ ~00•1 ~ memory
+

arbiter

' r
volume

l
I

ADC

I fetch_done l

I store_vol

I
vol_ done

l I

I
store_done I

I wall_ done I

I mem_request

mem_lock
~

which

num_date

1 starting_addr

I
read l

I
write

r
date_bus I

r addr_bus

found

anterior_ wall

I posterior_ wall

---- - - - - - ------ -- ~- -- ------.
~ I

I I I ,_,.
.......

I

I v I

I I

data acquisition) disk storage I wall detection volume I

I
I

I aggregation I

I I

I : collapse - I -
·------------------------------------~

Figure 9: Initial description

15

tion' process are collapsed together. Previous global signals such as 'found', 'anterior_wall',
'posterior_wall' and 'walLdone' are eliminated and mapped to the local variables of the new
'computation' process.

~~' memory

---6ti--
~

~ar1r, ______

volume

ADC

feleh_done

I s1Dre_vol

I vol_done _ _J
'

I

I s1Dre_done
I

1 mem_request
'

I mem_lock
I

I which

. I num_data

1 star11ng_addr

read

write

data_bus

I addr_bus
I

-~
I

.....

' - -- --....
data acquisition) disk storage computation

Figure 10: Refined description after collapsing 'wall detection' and 'volume aggregation'

To make mapping to real hardware possible, the arbiter description is removed from
the 'memory' process and merged with the 'control' process (Fig. 11). Notice that a new
global sigal, 'memJO', must be introduced for the 'control' to distinguish memory from
other components.

Global signals are also eliminated by channel merging. Fig. 12 shows the refined descrip­
tion after some global signals (shown in rectangle boxes) are mapped into the locations in

16

s:;nbol+- memory

- _,,,
'

volume

AOC

I fe1Ch_done
I I store_vol

I vol_ done
I

I store_done
I

'
1 bus _request

I bus _granted

I which

I num_data

: startlng_addr

read

wrlte

data_bus

I addr_bus I

- I mem_IO

~ ~ ~ -- --,,,
data acquisition disk storage computation

-

Figure 11: Refined description after migration of 'arbiter'

17

the memory addressing space. The processes in the description communicate through the
remaining global signals.

'\
\

' control
+

arbiter

J
I

' '
letch_don• s1Dre_done

I

AOC store_ vol

num_data num_dala

stanlng_addr Slarting_addr

data acquisition disk storage

memory

'

'
wLdone

....- store_ vol

num_dala

slarting_addr

wlume

computation

read

write

which

bus_req uest

nted

0

bus_gra

mem_I

data_ bu s

s addr_bu

done

Figure 12: Refined description after channel merging

Fig. 13 shows the final description in which the arbiter is moved out from the 'control'
process and described separately. Global signal 'done' is mapped to bus line 'interrupt'
and global signal 'which' is mapped to 'interrupt...ack' to accommodate daisy chain in the
arbitration process. At the same time 'data acquisition' and 'disk storage' are merged into
one process because of the data dependence between them.

18

Specification

control

1---++-+++----....... ------+-++++-interrupt
.r---+++++----'F----r---t-++++- bus_request

..._ __ _...,_---ttt1r---11--1--r-mr1interrupt_ack
....... --+-----++-+++--------+----+-++++-bus_granted

protocol
+

I data aquisition

I disk storage

or

Figure 13: Refined description after moving arbiter out

19

addr
data
read
write
mem/10

5 System for Software-Hardware Codesign

Map de~lon onto
the target hardwat11
(A standlud proCISlor)

No

Detect the performance­
crltlcal parts (PCPs)

Extract the PCPs and
convert them Into
desc:r\:lllone for ASICe

Generate desalptlon
for Interlaces and
arblratlon clroul

Refine description and
modify the target hardwal8

Analyze performance
and other metrics

Yes

mullple

Map desalptlon onto
th• target hardwal8
(Mutllple ASICs)

No

Merge channels
(Globml signal ellmlnallon)

Refine description and
modify the target hardwat11

Figure 14: The system for software-hardware codesign

The block diagram of the system supporting the software-hardware codesign process is
shown in Fig. 14. The following tools are needed to support it.

1. Control and data flow graph generator: It takes a single-process behavioral description
as input and generates a control and data flow graphs.

2. Quality-metrics estimator: It does software and hardware performance estimations
from the input description. Software estimates are obtained by compilation into in-

20

struction set. Hardware estimates are obtained by scheduling for the target architec­
ture.

3. Performance-critical parts(PCPs) detector: It finds the parts where the estimated per­
formances do not meet the imposed performance constraints.

4. Performance-critical parts extractor: It extracts the PCPs and converts them into
ASIC descriptions.

5. Interface and arbitration generator: It generates the interface (protocol) description
for the communicating processes. If needed, it also generates the arbitration scheme
for resolving contentions for the shared buses.

6. Description and hardware refinement: It supports merging or decomposing processes
in the description and correspondingly modifies the target hardware.

7. Global signal elimination: It maps global signals to local variable of new processes or
maps global signals to memory locations.

8. Software compiler: It generates machine code for selected processor from the given
description.

9. Hardware synthesis: It produces ASICs from the given description.

6 Conclusion

To understand the software-hardware codesign process and identify tools needed for automa­
tion of such a process, we have studied two contrasting approaches for software-hardware
codesign. One starts with single process description which can be naturally mapped to
a software implementation supported by a processor. The other approach starts with de­
scription of multiple processes communicating through global signals, which can be naturally
mapped to a hardware implementation consisting of ASICs. The step-wise description refine­
ment process for both approaches has been demonstrated through an example of real-time
system.

7 Acknowledgements

We are grateful for the support from the Semiconductor Research Corporation (grant #92-

DJ-146).

21

8 References

[Bu Ve92] K. Buchenrieder, C. Veith, " CODES: A practical concurrent design envi­
ronment", the International Workshop on Hardware/Software Codesign, Sept.
1992, Estes Park, Colorado, USA.

[ErHe92] R. Ernst, J. Henkel, "Hardware-software codesign of embedded controllers based
on hardware extraction", the International Workshop on Hardware/Software
Codesign, Sept. 1992, Estes Park, Colorado, USA.

[GuDe92] R.K. Gupta, G. De Micheli, "System-level synthesis using re-programmable
components", EDAC'92, Sept. 1992.

[GuDe92] R.K. Gupta, G. De Micheli, "Program implementation schemes for hardware­
software systems", the International Workshop on Hardware/Software Code­
sign, Sept. 1992, Estes Park, Colorado, USA.

[KaLe92] A. Kalavade, E.A. Lee, " Hardware/software co-design using ptolemy - a case
study", the International Workshop on Hardware/Software Codesign, Sept.
1992, Estes Park, Colorado, USA.

[SrBr91] M.B. Srivastava, R. W. Brodersen, "Rapid-prototyping of hardware and soft­
ware in a unified framework", ICCAD, Nov. 1991.

[Wu85] A. Wu, "A Microprocessor-based ultrasonic system for measuring bladder vol­
umes", Master Thesis in Electrical and Computer Engineering at University of
Arizona, Tucson, 1985.

22

\l\\l\\\\\1\1\\\\\l~~f\~li\lfl\\(~~~~f\\\l\\\l\\\l\\\\\\I APR 1 5 1993
3 1970 00987 5599

