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Abstract 

In this report we present two approaches for synthesis of real-time systems with a minimal 
number of application specific integrated circuits (ASICs) while still meeting the required 
performance constraints. One approach starts with a single process description which can be 
easily compiled into a software implementation for any standard processor. If this software 
implementation does not satisfy the required performance, descriptions of the performance­
critical parts are extracted out and implemented as ASICs. The other approach starts with 
a description written as multiple processes communicating through global signals. This de­
scription can be naturally mapped to a hardware-only implementation in which each process 
is implemented as one ASIC. In order to minimize number of ASICs, the processes are merged 
and split for mapping to a combination of standard processors and ASICs. The step-wise 
refineme'nt process for both approaches is demonstrated on an example of a real-time system. 
Issues and tools regarding the automation of the proposed codesign methodology are also 
discussed. 
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1 Introduction 

Many real-time applications need both hardware and software components. Software imple­
mentation is preferred because of lower cost, shorter design cycle and simpler upgrading while 
hardware implementation offers performance necessary for real-time systems. Traditionally, 
the partitioning of a design into software and hardware is made at very early stage and after 
which the hardware and software are developed separately. With high-level synthesis and 
software compilation techniques in a fairly mature state, it becomes possible to consider the 
software-hardware tradeoffs thr~ugh the entire development cycle and to automate the code­
sign process by building tools for software-hardware codesign. Those tools allow a designer 
to trade software for hardware in order to achieve performance and hardware for software to 
minimize cost. 

Software-hardware codesign involves many design aspects: system modeling, software­
hardware partitioning, mixed module simulation and integration. Several researchers have 
described frameworks for modeling, simulation and generation of mixed types of software­
hardware designs, time-discrete or time-continuous specialized hardware. Srivastava and 
Brodersen [SrBr92], using a library of parameterized hardware modules and existing syn­
thesis tools, map the system description to a hierarchical four-level architecture template in 
which ASICs only appear at the lowest level of the hierarchy while software runs on either 
DSP units, off-shelf single board processor or host workstation. Their work describes a man­
ual methodology for hardware and software prototyping. Another approach by Kalavade 
and Lee [KaLe92] suggests a unified framework for software-hardware codesign by using 
Ptolemy. Ptolemy is an environment for simulation and prototyping of heterogeneous sys­
tems containing components with different design style or implementation. They also point 
out some issues related to software-hardware partitioning, such as shifting dedicated heavy­
computation function from software into ASICs to let processor have sufficient computation 
cycles for other computations. However the partitioning process is still manual and Ptolemy 
does not have tools to support partitioning. Falling in the same trend, the work by Buchen­
rieder and Veith [Bu Ve92] tries to integrate several available tools in an open architecture 
through a codesign manager to facilitate system specification, component design, as well 
as system simulation and integration. Basically, all the work described above focuses on 
modeling, simulation and generation of software-hardware system in a unified framework by 
using, extending, or integrating existing tools or systems. 

On the other hand, only a few papers exist for software-hardware partitioning problem 
that is essential in the codesign process. The approach used by Ernst and Henkel [ErHe92] 
starts with complete software implementation and then extracts out for implementation in 
hardware only those code segments where timing constraints are violated. It suggests us­
ing extensive simulation to identify if and where timing constraints are violated. It points 
out that the overhead of hardware extraction includes communication overhead, interlocks, 
as well as compiler effects, and that cost function should consider area overhead and tim­
ing improvement caused by additional hardware. Although this paper proposes a system 
for software-hardware codesign, the criteria and the procedure for the hardware· extraction 
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are not discussed. Gupta and De Micheli [GuDe92] propose a partitioning algorithm that 
starts with an initial partition where all operations, except for the unbounded delay data­
dependence operations, are assigned to hardware. The rest is assigned to software running on 
a processor. If the partition is not feasible, then the algorithm fails, otherwise the partition 
is refined by migrating operations from hardware to software in the search for a lower cost 
feasible partition. This algorithm considers input/output data rates as a constraint. It does 
not consider another commonly used type of constraint such as timing constraint between 
operations. The algorithm does not describe the the procedure of determining the feasibility 
of each partition and the order of moving operations from hardware into software. 

The work towards software-hardware codesign is in its initial stages. There are lots of 
problems which need to be identified and solved, e.g. the interface between software and 
hardware, the criteria and algorithm for the partition, the techniques for mapping software­
hardware description to target architecture etc. To understand the codesign process and 
necessary tools to support this process, we have studied two contrasting software-hardware 
codesign methodologies. One approach starts with a cost-effective (software) design and the 
other starts with a performance-effective (hardware) design. In the first approach, we start 
with a description which is compiled into machine code for a selected processor .. However 
such a pure software implementation may be too slow to meet the imposed performance 
constraints. Therefore we extract performance critical parts and implement them as ASICs. 
In the second approach, a hardware solution is assumed at the beginning. This description 
is modified and mapped onto a target architecture containing standard processor and one 
or more ASICs. Non-performance-critical parts are identified in the description and imple­
mented by software running on the standard processor in order to reduce total design cost. 
The step-wise description refinement process for both approaches and the necessary CAD 
tools are discussed in this report. 

The report is organized as follows. An example of a real-time system is described in 
section 2; The two contrasting codesign approaches are described in sections 3 and 4. Sec­
tion 5 describes the tools needed to support such codesign process. The report concludes 
with section 6. 

2 A Example Real-time Embedded System 

Our codesign approaches will be demonstrated on a real-time medical system used to measure 
patient's urinary bladder volume [Wu85]. Typical characteristics of the system include real­
time control, data acquisition, and complex computation. The system controls a transducer, 
which is attached to the motors, to scan the related abdominal area along a two-dimensional 
grids. At each scanning point, the transducer sends a ultrasonic wave directly into the 
anatomical region to be examined. When the ultrasonic wave strikes tissues of different 
acoustic impedance, an echo is reflected back to the transducer. Two major peaks will be 
generated by the echoes from the anterior and posterior walls of the bladder. Therefore the 
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distance between the anterior and the posterior walls of each section of the bladder can be 
determined and thus the volume of the bladder can be computed. Fig. 1 shows the volume 
measuring system and its interfaces with the environment. 

Input 

------· 

------------ -------------------~ I I I 
I I I 
1 output 1 1 AID converter 
I I I 

L- ------- _1 L ------- -- ------• 

Volume 

Y-step 

X-step 

Start 

Data Ready Strobe 

System tasks: 

Initialization 
Motor position control 
Data acquisition 
Wall detection 
Volume calculation 
Data storing 

Reset X-pos Y-pos X-dir Y-dir Trigger 

r- ----- --- ---- -1 
I I 

: Motor control : 
I I 

'--------------------------· 

.-----
I ..., 

•• •• •• •• 
: : Disk 
• 1 Driver •• ......, 

I ......, 
I 
I -I 
I ·-----

Figure 1: An example real-time system 

Basically, the system consists of six tasks: (1) initialization; (2) motor position control; 
(3) data acquisition; (4) wall detection; (5) volume calculation; (6) data storing. In the 
initialization stage, the system loads the number of control steps along x direction and y 
direction and resets the motors to the initial scanning position. When the starting signal 
is set, the scanning process begins. The motor position controller sends out the control 
signals that drive the motors to move the transducer to the scanning position. Then the 
motor controller activates the transducer to send the ultrasonic wave to the examing point. 
The data acquisition module converts the ultrasonic echo into digital signals and store them 
temporarily. The wall detection and volume calculation modules determine the distance 
between the anterior and posterior walls of the bladder and the volume based on the fetched 
data. Finally the data storing module stores the fetched data into disk for later analysis. 
The process continues until the system covers the entire given scanning range. 

There are two main imposed performance constraints for this system: (1) data acquisition 
and conversion of 1000 data points is 1 ms; (2) maximum time between two scans, including 
time for motor control, data acquisition, wall detection, volume calculation and data storing, 
is two seconds. 
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3 Hardware Extraction Approach 

This approach starts with a complete software implementation from which the critical parts 
are extracted· and implemented as ASICs. 

3.1 The Design Process 

OUtput the refined 
description and the 
target hardware 

Initial description 
refinement 

Map description onto 
the target hardware 
(a standard processor) 

Analyze performance and 
detect performance-critical 
parts 

Yes 

Extract the performance-crltlcal 
parts and convert them into 
descriptions for ASICs 

Synthesize the Interface and 
reflne the description 

I 
I 

Refine the target hardware - - - - - - - - - - - - - - - - - - - -' 

Figure 2: Design process in hardware extraction strategy 

The design process, shown in Fig. 2, starts with a VHDL description of the system. 
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'Initial description refinement' task connects the input description into one process. In 
the beginning the input description is assumed to be implemented completely by software 
running on a standard processor. The associated target hardware (shown in the ovals) 
is a bus-oriented uni-processor architecture in which the memory modules, I/O ports or 
ASICs are connected to the processor bus. Although the target model can be extended 
to multi-bus, multi-processor architecture [SrBr91], we believe that most of the real-time 
applications, including our example, can be accommodated by this uni-bus uni-processor 
model. Initially no ASICs are connected to the target hardware since the description is 
implemented completely in software, The mapping of description onto the target hardware 
can be achieved by compiling the description into the processor instruction set. The designed 
system communicates with its environment through memory mapped parallel I/O ports. 

To see whether the software implementation satisfies the performance constraints or not, 
performance estimation is carried out and performance-critical parts are detected in this 
step. Performance-critical parts (PCPs) are referred to those description segments whose 
estimated performance do not satisfy the imposed constraints. Here control flow graph and 
inter-basic block data flow graph are built from the description. The nodes are basic blocks, 
and the edges in the control flow graph represent sequencing while the edges in the data flow 
graph represent data dependence. The control flow graph is used for finding PCPs. The data 
:flow graph is used to find the potential concurrency among basic blocks. If the performance 
constraints are satisfied, then the description refinement process ends, otherwise the codesign 
process proceeds. 

After detection, performance-critical parts are extracted and converted into separate 
ASIC descriptions. The task of detecting and extracting of PCPs is a problem by itself 
which will be discussed in a subsequent reports. After the extraction, the description is 
further decomposed into several processes since the extracted PCPs form new processes 
which are going to be implemented in ASICs. The concurrency identified from the data flow 
graph may be exploited by inserting PCPs into different processes. We call these new formed 
processes ASIC processes. The original process, from which the PCPs are extracted, is called 
the software process. Thus, software process is fragmented and refined to a new software 
process. All these processes communicate through global signals realized by the processor 
built-in bus. Protocols used for the communication between software process and ASIC 
processes are generated and inserted in appropriately. If more than two AISC processes may 
access global signals simultaneously, necessary arbitration process is generated to resolve the 
competition. The arbitration process will be implemented as an interface circuit. 

Along with the description refinement, the target hardware is also modified by adding 
ASIC modules to the processor bus. If there is an arbitration process, an arbitration mod­
ule will be added in the target hardware also. Basically, the codesign system will refine 
either description or target hardware in order to achieve one-to-one mapping between them. 
The codesign process ends whenever the performance constraints are satisfied. After the 
constraints are met, we must (1) generate machine code for the chosen processor from the 
software process; and (2) synthesize ASICs from the ASIC processes. 
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3.2 Design Steps for the Example 

We have chosen the 8086 microprocessor to implement our example. The hardware extraction 
design process follows the strategy described in Fig. 2. 

The initial description is mapped onto its corresponding target hardware as shown in 
Fig. 3. The resulting machine code (called software) will be stored in the program memory. 
Variables in the description will be stored in data memory while global signals through which 
the processor communicates with its environment will be mapped to the parallel IO ports. 
The processor bus is invisible at this level, where the description is implemented completely 
by the machine code. 

Specification 

Target Hardware 

Micro-processor 
(8086) 

Initialization 
Motor position control 
Data acquisition 
Wall detection 
Volume calculation 
Data storing 

Program 
memory 

Data 
memory 

- •• • -1 •• - I --------1 
: AID • ! Motor • ! Disk • 
• converter : • controller : • driver : ·-------- ·-------- •--------

Figure 3: Initial description 

Since the processor bus is used for communication with ASICs, it needs to be specified 
explicitly as global signals. Therefore the original single process description is decomposed 
into two processes communicating through those global signals supported by processor built-
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in bus (Fig. 4). One process (left oval) is the original main process with some of its variables 
such as arrays allocated to the data memory locations. Variables which can be allocated into 
processor registers still remain in the main process. The other process is a newly-formed 
memory process which communicates with the main process using conventional read/write 
protocols. Thus the memory process will be synthesized into the data memory module while 
the main process will be compiled into the processor instruction set. Basically, this step 
refines our description to reflect the connections between standard components. 

Specification 

Target Hardware 

Micro-processor 
(8086) 

i-- ---· 
I OUtput : 
I I ·--------

Program 
memory 

addr 

data 
read 
write 
mem/IO 

Data 
memory 

v1 

vn 

Mapping 

- - -- -1 -- - I --- ----1 
: AID • : Motor • : Disk • 
• convener : • controller : • driver : •-------- , ________ ·--------

addr 
data 

:?~ 
mem/10 

Figure 4: Refined description after memory process is introduced 

To see whether the previous implementation satisfies system requirements or not; perfor~ 
mance of the system is estimated and performance-critical parts are detected; Fig. 5(a) and 
(b) demonstrate the control fl.ow graph for the whole description and the data fl.ow graph 
for the loop body consisting of blocks 1 through 7 in Fig. 5(a). Time constraint 1 and 2 are 
associated with block 2 and the loop body. First we do software estimation for the 'data 
acquisition' block. It is compiled into instruction set. The clock cycles needed to execute it 
can be estimated from the number of instructions and the clock cycles used for each instruc­
tion. If the estimated performance does not satisfy constraint 1, then 'data acquisition' is a 
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PCP and will be moved to hardware. 

' ' -'---.....-----... 
constraint 1 

constraint 2 

• I 

7 

--~------------------

(a) Control flow graph 

malorcan1nlf 

(b) Data flow graph 

Figure 5: Control and data flow graph for the description 

After detection, we extract the PCP 'data acquisition' out to form a new process. Three 
global signals 'bus..xequest ', 'bus_granted' and 'interrupt', which are supported by the pro­
cessor bus, are added to the description to facilitate the communication between the main 
process and the newly-formed data acquisition process. Communication protocols for the 
bus access are generated and inserted in the main process and the data acquisition process. 
Besides, conventional read/write protocol is inserted in the data acquisition process. Fig. 6 
shows the refined description consisting of three processes and its corresponding target. 

After constraint 1 is satisfied, we try to deal with constraint 2 which is associated with 
the loop body showri in Fig. 5 (a). We do software estimation for 'motor control'(block 1), 
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Specification 

Target Hardware 

Miao-processor 
(8086) 

Program 
memory 

J ____ -· 
1 A/D I 

: converter : ·--------

Data 
memory 

Figure 6: The refined three-process description 
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'computation'(block 3 to block 6), and 'data storing'(block 7). And we also do hardware 
estimation for 'data acquisition' and its related protocols. Both software and hardware 
estimation will be discussed in subsequent report. 

If the loop body does not satisfy constraint 2, we must extract some parts or the whole 
loop body and implement them as ASICs. Among many alternatives, here we describe one 
way for the extraction. Since 'motor control' includes only several simple output statements, 
we can leave it in software. Since 'data acquisition' (block 2) is already an ASIC process, 
we can add the rest of the description (block 3 to block 7) to the same process. However 
'computation' and 'data storing' can be executed concurrently shown in the data flow graph 
in Fig. 5(b ). Therefore 'computation' and 'data storing' could be in different processes 
to preserve the concurrency. Since 'computation' itself is complicated enough, we put 'data 
storing' in the same process with 'data acquisition' and have 'computation' in a new process. 

Fig. 7 demonstrates the further decomposition of the example system. The previous 
description are refined to five-process description. Those processes communicate through 
the global signals supported by the processor built-in bus. Those five processes include 
one software process, one memory process, two ASIC processes and one arbitration process. 
Protocols for the bus access are generated and inserted in the software process and the 
two ASIC processes. Besides, conventional read/write protocols are inserted in both ASIC 
processes. Since the two ASIC processes may request bus at the same time, an arbitration 
process is generated to resolve bus contention. 
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Specification 

Target Hardware Program 
memory 

Arbitration ....__ _______ .,. circuit 

Mapping 

Data 
memory 

addr 
data = memJIO 

parallel ports (8255) 

Figure 7: The refined five-process description 
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4 Software Selection Approach 

This approach starts with a hardware solution in which all concurrent activities are imple­
mented as ASICs. Some ASICs are merged and others are selected for implementation in 
software. 

4.1 The Design Process 

Initial description 
refinement 

Map description onto 
the target hardware 
(multi-ASICs) 

Process merging/splitting 

Channel merging 
(Global signal eltmination) 

Mapping description 
onto the target hardware 

Yes >-------·• Output the refined description 
and the target hardware 

Figure 8: Design process in software selection strategy 

The design (Fig. 8) starts with a VHDL multi-process description of the system. These 
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multiple processes communicate with one another through global signals. This model can be 
naturally mapped into the target hardware in which each process is realized by an ASIC and 
the global signals are realized as buses. This hardware implementation however may be too 
costly since it uses hardware for non-performance-critical parts. It may be also redundant 
since certain functions may be available in the standard processor selected for software 
implementation. Thirdly, the design has too many busses since each process communicates 
directly with other processes. In order to reduce system cost and design time, it is necessary 
to map the description to an architecture which consists of a standard processor and some 
inevitably needed ASICs for performance-critical parts. The target architecture we choose 
is still the single-bus uni-processor architecture used in the previous section. 

To map the given description to the target architecture, we need to merge processes. 
By merging two processes, we can eliminate global signals used for communication between 
them and convert them into local variables of the newly-merged process. The order in which 
processes are merged, depends on the data dependences or communication rates among 
processes. On the other hand we may need to split some process to facilitate mapping to 
standard components. For example the arbiter for the bus belongs to the memory process 
in the description. But in the target hardware, the memory process only reads/writes and 
does not resolve the bus contention. Therefore the arbiter description needs to be moved 
away from the memory process. 

Besides process merging or splitting, channel merging is also needed because processor bus 
can only accommodate certain number of global signals. Those global signals which can not 
be realized by the processor bus should be mapped into memory locations accessible through 
the bus lines. We call this procedure channel merging. Channel merging is considered as one 
type of global signal elimination. Basically there are two types of global signal elimination. 
One is through process merging. The other is through channel merging. 

After each refinement step, estimation is used to see if the design satisfies the quality 
metrics such as cost and performance. If not, the codesign process continues. Otherwise 
the refined description and it corresponding target hardware are generated. From here, the 
software and hardware can be compiled or synthesized. 

4.2 Design Steps for the Example 

The multi-process description for the example real-time system is shown in Fig. 9. There 
are six processes communicating with one another through 19 global signals. Memory is 
accessed by data and address buses. The arbiter in the memory process resolves bus con­
tentions coming from 'data acquisition', 'disk storage' and 'wall detection' processes. Since 
there is data dependence between 'wall detection' and 'volume aggregation' processes, they 
can be merged. 

Fig. 10 shows the description after the 'wall detection' process and the 'volume aggrega-
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Figure 9: Initial description 
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tion' process are collapsed together. Previous global signals such as 'found', 'anterior_wall', 
'posterior_wall' and 'walLdone' are eliminated and mapped to the local variables of the new 
'computation' process. 

~~' memory 

---6ti--
~ 

~ar1r, ...... ______ 

volume 

ADC 

feleh_done 

I s1Dre_vol 

I vol_done _ _J 
' 

I 
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I mem_lock 
I 

I which 

. I num_data 

1 star11ng_addr 

read 

write 

data_bus 

I addr_bus 
I 

-~ 
I 

..... 

' - ..... ... -- --.... 
data acquisition ) disk storage computation 

Figure 10: Refined description after collapsing 'wall detection' and 'volume aggregation' 

To make mapping to real hardware possible, the arbiter description is removed from 
the 'memory' process and merged with the 'control' process (Fig. 11). Notice that a new 
global sigal, 'memJO', must be introduced for the 'control' to distinguish memory from 
other components. 

Global signals are also eliminated by channel merging. Fig. 12 shows the refined descrip­
tion after some global signals (shown in rectangle boxes) are mapped into the locations in 
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Figure 11: Refined description after migration of 'arbiter' 
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the memory addressing space. The processes in the description communicate through the 
remaining global signals. 

'\ 
\ 

' control 
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arbiter 

J 
I 

' ' 
letch_don• s1Dre_done 

I 

AOC store_ vol 

num_data num_dala 
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computation 
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nted 

0 

bus_gra 

mem_I 

data_ bu s 

s addr_bu 

done 

Figure 12: Refined description after channel merging 

Fig. 13 shows the final description in which the arbiter is moved out from the 'control' 
process and described separately. Global signal 'done' is mapped to bus line 'interrupt' 
and global signal 'which' is mapped to 'interrupt...ack' to accommodate daisy chain in the 
arbitration process. At the same time 'data acquisition' and 'disk storage' are merged into 
one process because of the data dependence between them. 
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Specification 
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Figure 13: Refined description after moving arbiter out 
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5 System for Software-Hardware Codesign 

Map de~lon onto 
the target hardwat11 
(A standlud proCISlor) 

No 

Detect the performance­
crltlcal parts (PCPs) 

Extract the PCPs and 
convert them Into 
desc:r\:lllone for ASICe 

Generate desalptlon 
for Interlaces and 
arblratlon clroul 

Refine description and 
modify the target hardwal8 

Analyze performance 
and other metrics 

Yes 

mullple 

Map desalptlon onto 
th• target hardwal8 
(Mutllple ASICs) 

No 

Merge channels 
(Globml signal ellmlnallon) 

Refine description and 
modify the target hardwat11 

Figure 14: The system for software-hardware codesign 

The block diagram of the system supporting the software-hardware codesign process is 
shown in Fig. 14. The following tools are needed to support it. 

1. Control and data flow graph generator: It takes a single-process behavioral description 
as input and generates a control and data flow graphs. 

2. Quality-metrics estimator: It does software and hardware performance estimations 
from the input description. Software estimates are obtained by compilation into in-
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struction set. Hardware estimates are obtained by scheduling for the target architec­
ture. 

3. Performance-critical parts(PCPs) detector: It finds the parts where the estimated per­
formances do not meet the imposed performance constraints. 

4. Performance-critical parts extractor: It extracts the PCPs and converts them into 
ASIC descriptions. 

5. Interface and arbitration generator: It generates the interface (protocol) description 
for the communicating processes. If needed, it also generates the arbitration scheme 
for resolving contentions for the shared buses. 

6. Description and hardware refinement: It supports merging or decomposing processes 
in the description and correspondingly modifies the target hardware. 

7. Global signal elimination: It maps global signals to local variable of new processes or 
maps global signals to memory locations. 

8. Software compiler: It generates machine code for selected processor from the given 
description. 

9. Hardware synthesis: It produces ASICs from the given description. 

6 Conclusion 

To understand the software-hardware codesign process and identify tools needed for automa­
tion of such a process, we have studied two contrasting approaches for software-hardware 
codesign. One starts with single process description which can be naturally mapped to 
a software implementation supported by a processor. The other approach starts with de­
scription of multiple processes communicating through global signals, which can be naturally 
mapped to a hardware implementation consisting of ASICs. The step-wise description refine­
ment process for both approaches has been demonstrated through an example of real-time 
system. 
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