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Abstract

I present results from three studies addressing apparently disparate challenges: conserving biodi-

versity, maintaining sustainable fisheries, and controlling infectious disease. All, however, require

fateful choices to be made urgently in the context of substantial uncertainty and environmental

change. Uncertainty and environmental change can have complex interactive effects on the decision-

making process. Uncertainty adds an element of risk that can be amplified over time by changing

conditions and dynamics feedback mechanisms. Furthermore, the combination of uncertainty and

time introduces the possibility of learning; policymakers may choose to delay fateful choices until

more information is available, invest in improved knowledge, and take experimental actions. For my

dissertation, I developed mathematical models to understand how these interactive effects shape

optimal decision-making in three applied case studies: prioritizing scarce COVID-19 vaccines, mit-

igating unintended genetic impacts of fish hatcheries, and designing fisheries monitoring programs.

Across the case studies, I found that the time scales of underlying biological processes were crit-

ical for designing effective management strategies. Furthermore, when decision-makers respond

adaptively to changes in the underlying ecosystem state, they can act as a stabilizing feedback

mechanism, reducing the risks introduced by stochastic environmental variability and scientific

uncertainty.
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Introduction
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This dissertation presents three studies addressing apparently disparate challenges: conserving bio-

diversity, maintaining sustainable fisheries, and controlling infectious disease. All, however, require

fateful choices to be made urgently in the context of substantial uncertainty and environmental

change. The changes these systems exhibit are dynamic: multiple components of the system si-

multaneously influence one another in cycles of mutual causation. These causal loops are called

feedback mechanisms, and they can amplify or dampen the impacts of our decisions and produce

to complex emergent behaviors in deceptively simple systems (1, 2). In the context of decision-

making, these feedback mechanisms cause choices in the present to have ramifying consequences

that influence the options available in the future (3).

Uncertainty is a more intuitive concept than dynamic change; it boils down to having incomplete

information about what the consequences of our actions will be, although it can arise in a variety of

different forms (4,5). Despite this simple definition, when combined with dynamic environmental

change, it can have complex and counter-intuitive implications for decision-making. Feedback

mechanisms can amplify uncertainty; for example, small variations in biological processes, like the

reproductive number of a disease, can determine the difference between an epidemic petering out

or growing into a pandemic (6). Furthermore, the combination of uncertainty and time introduces

the possibility of learning, adding a new layer to the decision-making process. Policymakers may

take active measures to reduce uncertainty through research and monitoring (7), delay a fateful

choice until more information is available (8), or take a chance on a new idea to learn how well it

works (9).

The goal of my research, in general and in this dissertation in particular, is to understand the

interactive effects of uncertainty and dynamic biological processes on the design of environmental

policy. I approach this general question by developing mathematical models to analyze specific

applied decision problems. This emphasis on specific case studies is necessary because the effects

of dynamic feedback mechanisms and uncertainty on decision-making are context-dependent: the

optimal approach to management depends on specific features of the study system and the goals

managers want to achieve. As a consequence, results from one case study are unlikely to hold

general. However, working on these specific case studies can help motivate the development of

novel mathematical tools and conceptual frameworks that can be more widely applicable. Given

these constraints, my research process is a dialectic between working on specific applied problems
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using conceptual frameworks to generate hypotheses and refining these frameworks based on the

findings from the case studies.

Using this approach, I present papers from three case studies largely chosen for their applied rele-

vance, although each leverages mathematical and computational tools and incorporates uncertainty

and dynamic biological processes. Chapter 2 presents results from a non-linear optimization model

used to identify strategies for allocating scarce COVID-19 vaccines when they became available

in the spring of 2021. The strategies are influenced by feedback between infection, vaccination,

the number of susceptible individuals in the population, and uncertainty about the rates of virus

transmission between demographic groups. Chapter 3 uses a population genetic model to iden-

tify strategies to mitigate unintended genetic impacts of a hatchery program used to maintain a

threatened population of White Sturgeon in British Columbia. Effective mitigation strategies are

determined by feedback between the population’s demography and the distributions of genotypes

within the population; the total magnitude of genetic effects is also difficult to measure in long-lived

species, creating uncertainty about the need for mitigation measures in this system. In Chapter 2,

I develop a bioeconomic model to characterize the optimal strategy for investing in monitoring to

reduce uncertainty about the abundance of harvested fish populations. This model uses tools from

decision theory to link the information from a monitoring program to the economic value of the

decisions it informs.

In all three projects, one can consider the relevant decision in terms of coupled human-natural

systems. The basic premise of coupled human natural system analyses is understanding the mutual

causal links between human actives and their environment and the outcomes generated by the

feedback between these components of the system (10). Coupled human-natural systems analysis

can be applied to a range of environmental and human systems, but to analyze decision-making,

I focus on the links between a decision maker and how their choices affect the environment and

how the decision-maker responds to these changes. A diagram of the relevant causal links is

given in Figure 1.1. The framework has three primary components 1) the environment, 2) human

activities that impact the environment, and 3) a manager regulates the level of human impacts. The

manager makes decisions based on observations state of the decision of the environment and their

understanding of the dynamics of the environmental system. In turn, these choices (imperfectly)

influence the level of human impacts on the environment, creating a feedback mechanism.
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Figure 1.1. Decision-making under uncertainty in the context of coupled human-
natural systems. Boxes show the interacting components of the system with black
arrows indicating causal links between them and colored dots representing the effect
of uncertainty on these links. I assume the model includes a description of some
human activities (yellow) that affect the state of the environment (blue), such as
resource extraction, restoration, etc. The state of the environment can in turn,
influence the magnitude of human impacts. The manager adds in direct feedback
between the environment and human activities. Information about the state of the
environment affects their choice, which in turn influences the magnitude of human
impacts on the system.

Thinking about the decision maker as a component of a larger system highlights a key insight:

echoing Hastings (2016), the time scale of the environmental process is critical for designing ef-

fective management strategies (11). Many modeling studies solely focused on biological processes

will ignore the time scale of dynamic processes by studying equilibrium behaviors. Because the

manager and the environmental processes are embedded in the same dynamical system, however,

the relationship between the time scales of the biological and management processes can deter-

mine the effectiveness of management strategies. For example, in Chapter 2, the model describes

how limited supply reduces the rate COVID-19 vaccines can be distributed to the population. We

found that the rate of transmission compared to the rate of vaccine distribution determined the

optimal prioritization strategy. When vaccines could be administered quickly relative to disease

transmission strategies that targeted demographic groups who were most likely to become infected

and spread infections to others, minimized total deaths from infection. In contrast, when supply

was limited, targeting demographic groups with the highest mortality rate minimized total deaths.

In Chapter 4, we find that the long-lived life history of white sturgeon causes the genetic impacts of

hatchery production to accumulate slowly over time. The slow time scale of the biological dynamics

facilitated adaptive management strategies that require time to learn and improve. This reduced
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the risks of operating the hatchery program in the short run because it provided a long window

of time to reduce uncertainty and test strategies to minimize the genetic impacts of the hatch-

ery. Finally, in Chapter 4, we found that under the optimal monitoring strategy, the frequency of

monitoring was largely determined by the time scale of the population dynamics. More productive

populations with higher turnover rates were monitored more frequently under the optimal policy.

This tightened the feedback between changes in the population’s abundance and the manager’s

decisions, increasing the stability of the system.

In addition to demonstrating the importance of time scales in environmental management, the

coupled human-natural system framework demonstrates that decision-makers function as a feedback

mechanism. By using information about the environment to adjust the level of human impacts

they can increase the resilience 1 of ecological systems (12). Although resilience is not always a

desirable characteristic, it can improve outcomes in resource management problems that involve

maintaining the environment in a state where it produces valuable ecosystem services. Fisheries

management (the topic of Chapter 4) is an instructive example; in the single species context, fish

stocks are most productive at intermediate levels of biomass, where it has the highest growth rate

(the maximum sustainable yield). In this context, management strategies that maintain the stock

in this productive state (i.e. promote resilience) produce the largest amount of harvest. In fact,

the strategy that maximizes the harvest from a fishery also maximizes the resilience 2 of the stock

around the optimal equilibrium biomass 3. In Chapter 4, I show that the value of monitoring for

fisheries management derives its value from its role in creating a stabilizing feedback mechanism

between the stock’s abundance and harvest.

1Resilience, annoyingly, has a few definitions. In this case, I mean the general propensity of a system to return to a
steady state after a disturbance.
2Here I mean engineering resilience: the rate of return to the steady state.
3Yes, this is true! The strategy that maximizes discounted harvest is a “bang bang” solution (Reed 1979, Clark
1993). The optimal strategy fishes the stock down to an optimal equilibrium level that depends on the discount rate
and the productivity of the stock. When the abundance of the stock is above this value, the maximum harvest rate
is applied, causing the stock to return as quickly as possible to the equilibrium abundance. When the stock is below
the equilibrium point, harvest is set at the minimum value to maximize the rate it returns to the equilibrium.
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Box 1: Adaptive policies outperform static ones under structural uncertainty and resource stochasticity

To illustrate this point, I used a simple model of a fishery that tracks the biomass of the stock B and harvest H over

time. The stock has density-dependent growth with growth rate r and carrying capacity K; stochasticity was included

in the model with multiplicative growth shocks described with a Brownian motion term with variance σ

dB = rB

(
1−

B

K

)
dt+ σBdW(1.1)

Following Tilman et al. (2023), in the absence of management, the harvest level is determined by the abundance of

the stock to reflect the fact that anglers reduce fishing effort when the stock is scarce

H =
cB2

h2 +B2
(1.2)

where c and h are constants that determine the shape of the relationship between biomass and harvest (13). I chose

the values of these constants so that the stock would become overfished in the absence of management.

The manager chooses a harvest limit H, which I assume acts as an upper bound on the harvest rate H < H. I compare

two strategies for setting the harvest limit: 1) a constant strategy where H is constant over time and 2) a responsive

strategy where H is set to a fraction f of the stock’s biomass H(B) = fB. For these two policies, I chose the values

of H and f to achieve 95% of the maximum sustainable yield (MSY ) of the stock.

I analyzed the performance of these two strategies with simulations. To illustrate the effects of structural uncertainty, I

simulated the model with the correct value of the harvest limit H and with a 10% error above and below the true value.

The responsive policy stayed near the maximum biomass that produces the maximum sustainable yield (BMSY = 1)

in all three cases (figure 1.2.A blue). However, the stock became overfished under the constant harvest limit when the

productivity of the stock was lower than expected (figure 1.2.A orange).

To model stochastic population dynamics, I set the variance term of the model to σ = 0.05. The results were very

similar to the structural uncertainty case, with the responsive policy staying near BMSY and the constant harvest

policy resulting in overfishing in some cases (figure 1.2.B).

Figure 1.2. Comparing the performance of policies that incorporate feedback with the environ-

ment (orange) to fixed policies (blue), under conditions of structural uncertainty (A) and resource
stochasticity (B). parameter values: r = 1.0, K = 2.0, c = 4.5, and h = 7.0

Using management as a stabilizing feedback mechanism can improve outcomes in dynamic environ-

ment systems under multiple forms of uncertainty. Box 1 illustrates this point with a simulation

from a simple model of fishery. A more thorough analysis of similar policies has also demonstrated
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that incorporating stabilizing feedback improves outcomes in the context of directional environ-

mental changes caused by global warming (14). By adjusting management in response to observed

changes in the state of the system, responsive management strategies automatically incorporate

information about the system’s biology over time, reducing their sensitivity to initial assumptions

and uncertainties. In effect, incorporating feedback mechanisms is a simple form of passive adaptive

management (5, 15). Analyzing policies as feedback mechanisms might be a useful heuristic for

designing adaptive management strategies in systems that are too complex for formal optimization

tools (16).

Designing environmental policy has always been challenged by the prevalence of uncertain and

dynamic environmental change, and these complicating factors are playing an increasing role as

the climate change. These problems can be addressed with both quantitative models as well as

conceptual models, and theoretical frameworks. My dissertation research makes specific and general

contributions in both dimensions. In the future, I am interested in building on these insights with

further research into the role of management as a feedback mechanism in coupled human-natural

systems and developing models to study the decision-making under uncertainty in environments

undergoing directional or non-stationary change that are more reflective of the impacts of global

warming on natural resource systems.
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CHAPTER 2

Dynamic Prioritization of COVID-19 Vaccines When Social

Distancing is Limited for Essential Workers

9



2.1. Author’s note

My co-authors, Michael Springborn and Gerardo Chowell, and I wrote this paper in the winter of

2020. It was originally published in the spring of 2021 in the Proceedings of the National Academy

of Sciences. The original paper is reproduced here, some of the discussion will reflect conditions at

the time of writing and publication.

2.2. Abstract

COVID-19 vaccines have been authorized in multiple countries and more are under rapid devel-

opment. Careful design of a vaccine prioritization strategy across socio-demographic groups is a

crucial public policy challenge given that (1) vaccine supply will be constrained for the first several

months of the vaccination campaign, (2) there are stark differences in transmission and severity

of impacts from SARS-CoV-2 across groups, and (3) SARS-CoV-2 differs markedly from previous

pandemic viruses. We assess the optimal allocation of a limited vaccine supply in the U.S. across

groups differentiated by age and also essential worker status, which constrains opportunities for so-

cial distancing. We model transmission dynamics using a compartmental model parameterized to

capture current understanding of the epidemiological characteristics of COVID-19, including key

sources of group heterogeneity (susceptibility, severity, and contact rates). We investigate three

alternative policy objectives (minimizing infections, years of life lost, or deaths) and model a dy-

namic strategy that evolves with the population epidemiological status. We find that this temporal

flexibility contributes substantially to public health goals. Older essential workers are typically

targeted first. However, depending on the objective, younger essential workers are prioritized to

control spread or seniors to directly control mortality. When the objective is minimizing deaths,

relative to an untargeted approach, prioritization averts deaths on a range between 20,000 (when

non-pharmaceutical interventions are strong) and 300,000 (when these interventions are weak). We

illustrate how optimal prioritization is sensitive to several factors, most notably vaccine effectiveness

and supply, rate of transmission, and the magnitude of initial infections.

2.3. Introduction

As the novel coronavirus (SARS-CoV-2) continues to inflict substantial morbidity and mortality

around the world despite intervention efforts, public health experts see vaccines as essential to
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dramatically reduce the mortality burden and possibly halt local transmission (1). Novel coron-

avirus disease 2019 (COVID-19) has resulted in over 2.3 million confirmed deaths globally (2) as of

early February 2021. Fortunately, multiple promising vaccines are under rapid development, with

the final weeks of 2020 seeing the first authorization and shipping of doses (3). However, vaccine

availability will be highly constrained for at least several months (4). This scarcity, combined

with stark differences in the spread and impact of SARS-CoV-2 across demographic groups, means

that vaccine prioritization poses a key public health challenge. National and international public

health organizations have mobilized to assemble guidance, including the World Health Organization

(WHO), the National Academy of Medicine (NAM), and the Advisory Committee on Immunization

Practices (ACIP) of the US Centers for Disease Control and Prevention (CDC) (5).

An effective public health policy for pandemic vaccine allocation requires an understanding of how

risk of infection and severe disease varies across socio-demographic groups and how a given vaccine

policy will impact the continued spread of infections within the population. Accounting for these

two processes is critical when the population with the greatest risk of infection differ from those

with the greatest risk of severe disease, as is the case for COVID-19, because an effective policy will

need to balance direct protection of the most vulnerable against limiting secondary infections and

rapidly achieving herd immunity (6). These key components can be integrated into a mathematical

and statistical modeling framework of the transmission dynamics of the novel pathogen. Such an

analytic framework can then be utilized to investigate the optimal vaccine allocation strategies

to achieve a defined public health objective while taking into account the value of vaccines for

mitigating health outcomes at the individual and population level.

Previous experience with vaccine development mid-pandemic offers limited insights for SARS-CoV-2

prioritization. SARS and Zika vaccine development was incomplete when those outbreaks ended (7).

In 2009, as the novel A/H1N1 influenza virus continued to spread across the U.S., researchers in-

vestigated optimal vaccination strategies using an age-structured dynamical model. They found

that school-aged children and their parents should be prioritized, a strategy that would indirectly

protect individuals at higher risk of severe health outcomes (8). Sharp differences in the epidemi-

ology of human influenza and COVID-19 indicate that vaccination strategies against the ongoing

pandemic should not simply mirror vaccination policies against influenza. For example, COVID-19

is associated with lower susceptibility to infection among children and adolescents (9,10) and has a
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substantially higher infection fatality rate overall that also increases markedly with age (11). Toner

et al. (5, p. 24) provide a detailed overview of the 2018 pandemic influenza vaccination plan and

conclude that, “the priority scheme envisioned...does not comport with the realities of the COVID-

19 pandemic and new guidance is needed.” Fitzpatrick and Galvani (12) concur, detailing how the

unique “epidemiological, clinical, behavioral, and vaccine-related relationships” of SARS-CoV-2

motivate the need for “pathogen-specific transmission modeling”.

We develop and apply a mathematical model to assess the optimal allocation of limited COVID-

19 vaccine supply in the U.S. across socio-demographic groups differentiated by age and essential

worker status (see Methods). The transmission dynamics are modeled using a compartmental

model tracking eight demographic groups through the nine disease states as shown in Fig. 2.1. The

parameters are calibrated to capture our current understanding of the epidemiology of COVID-19,

and our analysis is designed to capture two key features of COVID-19 prioritization: essential work-

ers and the gradual availability of vaccines over time. A large number of workers are constrained

in their ability to work from home (essential workers) exposing them to higher level of risk of infec-

tion, and increasing the chance they transmit the disease if infected. Policies that account for the

greater risk essential workers are exposed to may be more just and highlight a group of individuals

“who have been overlooked in previous allocation schemes” (5). Furthermore, these policies may

be more effective at mitigating morbidity and mortality as they can account for a key factor driving

transmission of the disease.

To account for the gradual rollout of vaccines, we employ stochastic non-linear programming tech-

niques to solve for vaccine prioritization policies that distribute vaccines to susceptible individuals

and change on a monthly time step responding to changes in the epidemiological status of the

population (shares of the population in different disease states). These dynamic policies account

for a key feature of the policy-making process since the supply of vaccines is likely to be constrained

with available doses administered as they become available over a period of several months.

The transmission of COVID-19 is a complex process contingent on the characteristics of the disease

and ever changing social behavior. Furthermore many of the key dynamics can change depending

on the spatial scale considered, with differences in the transmission process within and between

communities. We seek to summarize the features of the complex and evolving processes that are

most relevant to the spread of the disease within and between socio-demographic groups. To do so
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Figure 2.1. Schematic of the modeled movement of individuals between epidemi-
ological states defined in Methods (A), the portion of individuals from the U.S.
population in each demographic group determined by essential worker status (*)
and age (B), and the contact rates between demographic groups, given by average
daily number of contacts a group on the horizontal axis makes with a group on the
vertical axis (C).

we model COVID-19 transmission with the social contact hypothesis (13) and describe the contact

patterns between demographic groups using contact matrices estimated for the United States from

Prem et al. (14) scaled by the location where the contacts were made (home, school, work and

other) to reflect the impacts of social distancing. Although these assumptions present a stylized

version of contacts during the pandemic, they allow us to capture many key features of social

contacts, such as the concentration of contacts within age groups, parent-child relationships and

receiver-caregiver relationships (15).

Existing published studies of COVID-19 vaccination prioritization analyses include Matrajt et

al. (16) and Bubar et al. (17).1 Both consider the optimal allocation of vaccines across five or

more age groups within a country. Their approaches feature rich exploration of policy sensitivity

to vaccine effectiveness and availability. Matrajt et al. is particularly detailed in this respect,

1We also note (18) use simulation without optimization to explore implications of vaccines with various levels of
direct and indirect protection.
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while Bubar et al. uniquely consider differences in demographics and contact rates across multiple

countries and Hogan et al. also consider allocation between countries. Our analysis is differentiated

by a deeper approach to the behavioral, demographic and decision models by addressing social

distancing, essential worker groups, and allocation policies that can change over the course of the

vaccination campaign.

General ethical guiding frameworks for vaccine prioritization decision-making have appeared earlier

in the literature. Toner et al. (5) emphasize promoting three ethical values: the common good;

fairness and equity; and legitimacy, trust and communal contributions to decision-making. Emanuel

et al. (4) promote four ethical values: maximizing benefits, treating equally, instrumental value,

and priority to the worst off. Our analytic focus on minimizing new infections, years of life lost

(YLL), or deaths emerges from promoting “the common good” or “maximizing benefits”. Our

focus on essential worker groups illustrates how ethical values (e.g. prioritizing essential workers

due to the fairness of protecting those placing themselves at risk) may overlap with the common

good (e.g. prioritizing essential workers to best reduce mortality and transmission). Issues of

fairness and equity and protecting the worst off are not directly analyzed here but remain critical

considerations.

For the sake of simplicity, we do not address in detail the potential set of complex and differential

feedback processes between health status and opening of schools, workplaces and other institutions.

While we limit policy objectives to a concise metric of health outcomes (minimizing expected cases,

YLL, or deaths) we acknowledge that other values of returning to school, work and social life

are important. Finally, we do not address additional vaccine complications, such as temporary

effectiveness, potential side effects or any failure to take a second dose of the vaccine if necessary.

Although much is known about the epidemiology of COVID-19, uncertainty remains a key limitation

to modeling the disease. Therefore, we consider a wide range of plausible scenarios and focus on

the general features of the solutions, the commonalities between the alternative scenarios, and

identification of model parameters that drive systematic differences in optimal vaccine allocations.

Given these assumptions we find that optimal allocation strategies are responsive to both the

initial and evolving epidemiological landscape of the disease. When focusing on mortality (YLL

or deaths), vaccination of older essential workers and ages 60+ was almost always a top priority

(i.e. targeted in the first 30% of the population vaccinated). Alternatively, when infections are
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minimized, essential workers are prioritized followed by school age children across a range of likely

scenarios. We find that prioritization can substantially improve public health outcomes—31 to 40%

in the Base scenario, relative to untargeted vaccination. Two components unique to our model are

important contributors to this improvement. First, policies that differentiate and target essential

workers in addition to age substantially outperform those utilizing age-alone. Furthermore essential

worker differentiation reduces trade offs between objectives (e.g. deterioration of YLL and infection

metrics when focused on minimizing deaths). Second, extending from a static allocation (without

phases) to allowing changes in prioritization over time provides substantial gains. Finally, while

optimal prioritization is quite insensitive to model specification when minimizing infections, we find

some sensitivity when focused on minimizing deaths or YLL. This sensitivity indicates benefits to

adjusting the targeting strategy at the local level to match epidemiological conditions.

2.4. Results

To illustrate the qualitative nature of optimal dynamic prioritization, we first present results from

a single “Base” scenario, representing a plausible set of parameters (detailed in Appendix A.1.2).

These results are then compared to a set of alternative model scenarios as described in Table 2.1.

While we begin with Base scenario results, we emphasize the sensitivity analysis under alternative

scenarios that follows since information about some input parameters—e.g. expected vaccination

supply—continues to change with time. In Fig. 2.2 the Base model allocation decisions are shown

for each monthly decision period (in percent of vaccine supply) and then cumulatively (in percent

of group vaccinated) at three and six months, respectively. Broadly, we find that the optimal

policy is very dynamic: specific groups are targeted each period and these targets shift over time.

Furthermore, targeting is very narrow initially but then becomes less so as a larger fraction of the

population has been covered.

The whiskers on bars in Fig. 2.2 show the range of alternative allocations that still produce an

outcome that is within 0.5% of the optimum. These indicate that the optimized outcome is relatively

sensitive to substitutions between groups for the first three months as indicated by narrow whiskers

around the cumulative allocations. There is, however, some limited ability to substitute vaccines

between the two essential worker groups in the first two months when minimizing YLL or deaths.

As the size of the susceptible population declines due to vaccination and infections the optimized
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outcomes become less sensitive to substitutions (longer whiskers) with shifts between nearly all

groups possible without substantial sacrifice. This suggests that targeting strategies can become

less strict over time as the most vulnerable populations are protected. Comparing individual periods

(Fig. 2.2A) and cumulative measures (Fig. 2.2B) shows that whiskers represent a combination of

substitution between groups as well as between periods for the same group.

Figure 2.2. The optimal allocation of vaccines (vertical axes) between demo-
graphic groups for each decision period (horizontal axis) under the Base scenario
(A). The three rows represent each objective, to minimize deaths, minimize years of
life lost (YLL) and minimize infections. The bars for the six decision periods show
the percentage of vaccines allocated to a specific group (indicated by a letter, color,
and stars indicating essential worker groups) in that period. The two final columns
(B) show cumulative measures at the end of months three and six, respectively,
for the percent of each group that has been vaccinated. The whiskers on each bar
represent the sensitivity of the optimal solution to small deviations in the outcome,
specifically the range of allocations resulting in outcomes within 0.5% of the optimal
solution.

Across objectives there are substantial differences in which groups are targeted early on. When

minimizing deaths, targeting progresses from essential workers (20-39*, 40-59*), to the oldest (75+)

and then younger seniors (60-74). These groups are a mix of those at high risk of mortality

(older groups) and high risk of contraction and spread (essential workers). When minimizing YLL,
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younger seniors are targeted earlier (given their longer average years of life remaining).2 Finally,

when minimizing infections we find that younger essential workers take top priority, followed by

older essential workers and school-age children (5-19), since these groups have higher contacts and

thus risk of contraction and spread.

In Fig.2.3A we show the dynamic path of infections, starting from the period in which vaccines

become available, under various policies. As expected, infections are highest given no vaccines.

Results for allocating vaccines in a manner proportional to each group’s size shows the substantial

value of even “untargeted” vaccines. As expected, the policy for minimizing infections leads to the

lowest level of infections.

Figure 2.3. The number of infections per 1,000 individuals over time under ref-
erence policies (no vaccines; untargeted vaccine allocation) and optimized policies
minimizing a given metric (A); and the performance of each optimized policy rela-
tive to an untargeted allocation policy (B) for the Base scenario. The bars are boxed
by each resulting metric, colored by the objective driving each policy and textured
to reflect any constraint considered (e.g. age-only or static policies).

In Fig. 2.3B we show the performance of various policies for resulting outcome metrics (infections,

YLL and deaths) in terms of the percentage improvement relative to an untargeted vaccine allo-

cation. We consider the optimal policies presented in Fig. 2.2 where the objective is minimizing

infections (green), YLL (purple) , or deaths (orange) with no constraints (“none”). We also consider

two constrained alternatives: an “age-only” dynamic policy that does not differentiate by essential

worker status, and a “static” policy where the fractional allocation across groups does not change

2We do not discount in our calculation of YLL; doing so would lead to more equal weighting on mortality across age
groups and thus results that are closer to those when minimizing deaths.
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over decision periods.3 We find that the unconstrained policy—that is dynamic and differentiated

by essential workers—outperforms the untargeted approach by approximately 31-40% depending

on the objective. Relative to the unconstrained policy, the age-only and static polices perform sub-

stantially worse for infections and YLL, though not for deaths. However, even while the age-only

and static polices do not substantially impede performance in minimizing deaths, these constrained

approaches still suffer substantial performance loss (9-18 percentage points) in the other two out-

comes not optimized (YLL and infections) but clearly still of interest.4 In other words, accounting

both for essential workers and a dynamic prioritization strategy provides substantial improvements

in the metric being optimized and/or the other two metrics of interest.

In general, we find that no matter the policy objective pursued in targeted vaccine allocation, some

improvement is made on all three metrics. However, there are trade offs in what can be achieved

between the objectives. For example policies that minimize infections result in substantially more

deaths than a policy that minimizes deaths. We also find that differentiating essential workers

substantially reduces these trade offs between objectives relative to age-only or static policies.

2.4.1. Sensitivity of vaccine prioritization. To assess how robust our Base scenario find-

ings are to key uncertainties in the model, we conduct three different sensitivity analyses. First we

consider a set of 10 alternative plausible scenarios involving a broad set of model inputs; then we

focus on a narrower set of 4 parameters each explored in richer gradient detail; finally we examine

a few fundamental changes to model structures.

2.4.1.1. A broad set of alternative scenarios. We solved for the optimal vaccine allocation across

a range of 10 alternative scenarios selected to assess sensitivity to key assumptions of the Base

model. Differences between these scenarios and the Base case are detailed in Table S.1. Relative

to the Base model, in these alternative scenarios, we consider: higher initial infections; stronger

or weaker non-social distancing non-pharmaceutical interventions (NPI) like mask wearing; weaker

vaccine effectiveness overall or for seniors (60+); lower vaccine supply or supply that starts low and

ramps up; more open schools; or higher contact rates overall.

To compare and contrast optimal early vaccination allocation for each scenario and objective, in

Fig. 2.4 A we show the percentage of each group vaccinated after 30% of the overall population

3Excess vaccine is allocated without targeting if all the susceptible individuals in a given group have already been
vaccinated.
4See resulting YLL and resulting infections for the deaths objective with age-only and static constraints.
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Scenario Change from Base scenario parameters Source

Base scenario None (Base parameter values are provided in
Appendix A.1.2)

High initial in-
fections

Increased number of initial symptomatic in-
fections (300% increase)

Assumed: pandemic state will
vary between localities when
vaccine first available to the
general public.

Strong NPI Non-social distancing (NSD) NPI are strong,
resulting in a declining infection rate

Consistent with R < 1

Weak NPI NSD NPI are weak, resulting in a sharply
increasing burden of infection

Consistent with R >> 1

Weak vaccine Lower vaccine effectiveness (success rate) for
all age groups relative to the Base scenario

Minimum value required by
FDA guidelines

Weak vaccine
60+

Lower vaccine effectiveness for ages 60+ yrs. Informed by influenza vaccine
effectiveness

Even suscepti-
bility

All ages are equally susceptible to infection.
Increase in susceptibility for ages < 20 yrs
relative to Base

Assumed: tests sensitivity
to age-dependent susceptibil-
ity described by (9) and (19)

Low supply Sufficient supply for 5% of the population
monthly (50% of supply relative to Base sce-
nario; prioritization changes every 10% of the
population vaccinated, such that decision pe-
riod is 2 months)

Assumed: vaccine supply is
uncertain and known to im-
pact optimal allocations (20)

Ramp up Vaccine supply is 5% per month for the first
two months and 10% per month thereafter
(first decision period is 2 months so incre-
ments of 10% of the population are vacci-
nated each decision period)

Informed by comments from
the scientific head of the U.S.
vaccine development program
(21)

Open schools Rate of social contact in schools increased
from 30% in Base model to 70%

Assumed: tests sensitivity of
optimal allocations to school
closure intensity

High contacts Increased number of contacts outside the
home, school and workplace (50% increase
relative to base)

Assumed: tests sensitivity to
relaxed distancing

Table 2.1. Descriptions of alternative scenarios reletive to the Base model (see
Appendix A.1.3 for specific levels).

is covered (typically in three months, except for alternative supply scenarios). We find that high

priority groups—by percent of group vaccinated—are typically but not always robust to the alterna-

tive scenarios. For example, when deaths are considered (Fig.2.4 A, top panel) we see substitution

between younger essential workers (20-39*) and ages 60-74 and when YLL are considered there

is substitution between younger essential workers and ages 75+. To illustrate differences in the

relative order of these high priority groups, in Appendix Fig. A.5 we show optimal prioritization of
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vaccination in the very first decision period across objectives and scenarios. We find that when YLL

are considered essential workers ages 40− 59 are the highest priority group in all scenarios. How-

ever, when deaths are considered ages 75+ are the highest priority group under several alternative

scenarios.

Figure 2.4. The cumulative percent of each demographic group (horizontal axis)
vaccinated after the first 30% of the population is vaccinated under the alternative
scenarios (vertical axis) and each objective (panel) (A). The percentage of additional
YLL in excess of the optimum when applying a policy for a given alternative scenario
(row) when a particular scenario is the “truth” (column) (B).

For insight into the cost of error in specifying the correct scenario, we assessed the performance

of the policy identified for each of the 11 alternative scenarios, depending on which of these 11

is the “true” scenario. In Fig. 2.4B we show these results for the YLL objective. For example,

the first column shows the performance loss (in percentage of additional YLL above the optimum)

when the true scenario is the Base model but the decision maker applies a policy matched to any

of the alternative scenarios (rows). By construction, when the policy applied matches the true

scenario, the performance loss is zero. When YLL is the focus and the Base specification is the

“true” scenario, the greatest performance loss (9%) comes from mistakenly applying the high initial

infections policy.

We find that performance costs in percentage terms from applying the wrong policy from this set are

typically modest (low single digits) albeit with notable exceptions. For example, when the “truth”
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is that we have a weak vaccine for ages 60+, several policies applied perform very poorly relative to

the true optimal policy since they substitute vaccine away from younger essential workers to ages

75+. A few of the policies were generally less robust across various true models, specifically those

for high initial infections, strong NPI, and weak vaccine 60+. The Base scenario policy performed

reasonably well across true alternative models, with the largest loss arising (7%) when children are

not less susceptible (even susceptibility).

Equivalent versions of Fig.2.4B for minimizing deaths or infections are provided in the appendix

(Figs. A.3, A.4). When the focus is minimizing deaths, the pattern of performance between sce-

narios is very consistent with YLL in Fig. 2.4. However, the scope for performance loss is larger

overall–up from a maximum of 26% for YLL to 46% for deaths. When the focus is infections,

the range of performance loss is much less intense at 7%. For infections, this relatively robust

performance arises because optimal policies are much more similar across scenarios when mini-

mizing infections (compared to the other objectives). Given greater scenario-driven heterogeneity

in policies for minimizing YLL or deaths, there is greater opportunity for performance loss from

specification error.

2.4.1.2. A gradient over four key parameters. For further sensitivity analysis, as shown in Fig.

2.5, we assessed how optimal vaccine allocation policy changed along a gradient for four key model

inputs: non-social distancing NPI effectiveness (e.g. mask wearing) which determines the initial

reproductive number (when the vaccine first becomes available); initial infections; monthly rate of

vaccine supply; and vaccine effectiveness.

Echoing sensitivity results reported above, variation in these parameters had little effect on the

optimal policy for minimizing infections. But we found systematic differences in the policies for

minimizing YLL and deaths. Essential workers, ages 60-74 and ages 75+ remained the highest pri-

ority groups across the full range of parameters tested but there was substitution between younger

essential workers (20-39∗) and the older age groups.

In most instances the percent of vaccines responded in relatively monotonic fashion as parameters

varied. For example, consider the objective of minimizing deaths. As depicted in Fig. 2.5A:D,

prioritization of essential workers fell and 60+ or 75+ increased as (1) initial infections grow; (2)

vaccine supply decreases; or (3) vaccine effectiveness increases. In a few instances, the percent of

vaccine allocated to a given group responded non-monotonically to variation in the parameter. For
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Figure 2.5. The total percent of each demographic group vaccinated after 3 months
under the optimal dynamic policy. Each panel shows the effect of varying a key
parameter relative to the Base model: (A) effectiveness of NPI, which determines the
initial reproductive number (when the vaccine first becomes available); (B) monthly
rate of vaccine supply; (C) initial infections; and (D) vaccine effectiveness. Base
scenario parameter values are indicated with an apostrophe (‘).

example, for effectiveness of NPI in Fig. 2.5A, the allocation skewed towards 75+ and away from

essential workers when the parameter was very high and very low.

These results indicate that when focusing on deaths or YLL, if transmission cannot be reduced

quickly by the vaccine—due to limited supply, high reproductive numbers or large initial number of

infections—typically this initial supply is most efficiently used to directly protect individuals with

the greatest risk of death if infected. This pattern differs for vaccine effectiveness: we find that as

the effectiveness of the vaccine decreased, supply is substituted away from the older (higher risk)

age groups to essential workers. This difference is consistent with the fact that as vaccines become
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less effective for a given individual, protecting vulnerable individuals is better achieved by reducing

population-level transmission.

2.4.1.3. Changes to model structures. As a final sensitivity analysis, we examined robustness

of the results to three alternative model structures: (1) clustered essential workers, where essential

workers only contact other essential workers in the workplace, (2) concentrated essential workers,

where relative to the Baseline scenario, the portion of the working age population deemed “essen-

tial” is half (20%) and they have approximately double the contact rate; and (3) leaky vaccine,

where rather than working perfectly for 90% of individuals, vaccinated individuals have reduced

susceptibility to infection, infectiousness and risk of death if infected. A more detailed discussion

of these models is included in Appendix A.4.

We found that the qualitative nature of the solutions remained constant across each of these al-

ternative models, with some minor differences. Treating the essential worker group as a cluster

increased the proportion of vaccine allocated to ages 60+ when deaths and years of life lost were

considered. This shows that when essential worker contacts are clustered within-group, this reduces

the indirect protection that vaccinating these individuals provided to others. Conversely, concen-

trating the essential worker group (to a more select group with higher contact rates) increased the

fraction of these individuals vaccinated. This shows that select essential workers with especially

high contact rates (e.g. medical professionals and essential retail workers) are particularly strong

candidates for early vaccination.

2.5. Discussion

Key insights and results from our analysis are summarized in Box 1. Together these lessons show the

strong implications of considering dynamic solutions, social distancing and essential workers (given

their limitations in social distancing) for vaccine prioritization. Our analysis of COVID-19 vaccine

prioritization uniquely accounts for two critical needs: (1) dynamic prioritization given gradual

roll out of vaccine during an active pandemic, and (2) attending to substantial heterogeneities in

work contacts among the adult population due to the ability of many to work from home. These

two novel features demonstrably change optimal vaccine prioritization. Given gradual vaccine

deployment, static policies are out-performed by dynamic polices, which narrowly target a small

number of demographic groups and (after substantial coverage of them) switch to lower priority
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groups. Static policies identify a set of high priority groups but not how to order them when phased

deployment is necessary. More strikingly, targeting essential workers (or other adults with large

number of work contacts) reduces not just the adverse outcome of focus but also trade offs for

remaining outcomes. For example, when minimizing deaths, allocation that differentiates essential

workers substantially lessens the degree to which infections and YLL climb from the minimum

achieved when each is optimized on its own.

Box 1. Key insights and results

(1) Benefits: Prioritization can reduce a particular undesirable outcomes (deaths, YLL, or infections), by

32-40% in the Base scenario (or 17-44% depending on the alternative scenario).

(2) Objectives: Moving from minimizing infections to YLL to deaths, boosts each of the following: benefits

from vaccination targeting, prioritization differences between scenarios, and (therefore) the sensitivity of

optimal prioritization to scenario.

(3) Dynamic prioritization: Dynamic prioritization (1) is responsive to the initial and evolving disease

status, and (2) generates substantial improvement in outcomes relative to a static prioritization indicating

that a phased approach to vaccine distribution is well justified. However, diminishing marginal returns to

additional vaccination within a group drives a shift to other groups before 100% vaccination of the first

group is achieved.

(4) Widening prioritization: As vaccination rates rise, precise prioritization becomes less critical and tar-

geting widens to a larger set of groups.

(5) Trade offs: Policies that target one objective forgo opportunities to reduce alternative metrics. For

example, policies that minimize deaths do not reduce infections nearly to the same degree as policies that

minimize infections. These trade offs are typically stronger when policies do not allow for targeting based

on essential worker status.

(6) Essential workers: Relative to an age-only model, policies that allow targeting of essential workers

provide the greatest improvements when minimizing infections and YLL are the focus. In the Base scenario,

essential workers are a high priority group under all three objectives (i.e. they are among the first 30% of

the population to receive vaccines). However, their priority relative to ages 60+ is affected by key model

parameters (see Sensitivity next).

(7) Sensitivity: The high priority groups remain consistent across the range of parameters considered. How-

ever, when minimizing deaths or YLL, the fraction of vaccine allocated to essential workers and ages 60+

depends on: the number of infections and reproductive number when the vaccine became available; the

supply of vaccines; and vaccine effectiveness. In effect when the vaccine has a limited ability to quickly

reduce the transmission of the virus optimal policies more heavily prioritize older individuals.
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Existing published analysis of optimal COVID-19 vaccination targeting includes Matrajt et al. (16)

and Bubar et al. (17). Before comparing and contrasting results some key modeling differences

should be noted. These two analyses consider a wider range of vaccine availability than considered

here. Our analysis uniquely incorporates non-pharmaceutical interventions (NPI), including social

distancing and non-social distancing (e.g. mask wearing). Doing so allows us to account for differ-

ences between groups like essential workers constrained in distancing versus others who are much

less so. All three preprints implement static optimization where vaccines are allocated and admin-

istered in a one-shot process. Our allocation is dynamic, responding to changing epidemiological

conditions over a six-month period. Finally, all three model vaccines as “leaky”, i.e., reducing the

probability that a susceptible individual will be infected (and the probability of severe disease (22)).

Bubar et al. also considers an “all-or-nothing” vaccine that is 100% effective for a fraction of the

population. In our Base model the vaccine is “all-or-nothing”, though we also consider a leaky

vaccine, as discussed at the end of the Results.

Matrajt et al. (16) found that optimal strategies to minimize deaths and years of life lost will either

exclusively target groups with high infection fatality rates maximizing the direct benefit of vaccines,

or will target groups with high rates of infection maximizing the indirect benefits of the vaccine. In

contrast, our results indicate that optimal policies initially target groups with high risk of infection

and then switch to targeting groups with high infection fatality. This difference most likely follows

from our dynamic versus static allocation. The switching behavior we identify is consistent with

past work on pandemic influenza vaccine prioritization, which suggests that early in an outbreak

when the infection rate is growing targeting spread (maximizing indirect benefits) is more efficient,

but later when the infection rate is leveling off or declining, maximizing direct protection is most

efficient (20).

Bubar et al. found that prioritizing adults older than 60 years of age is a robust strategy for min-

imizing deaths. In contrast we find that working-age adults are a key priority group, particularly

older essential workers. These differences may either arise from our allowance for social distancing

and/or dynamic allocation. Our accounting for social distancing on COVID-19 transmission in-

creases the modeled benefits of targeting essential workers, who are less able to substantially reduce

their social contacts than individuals over 60. Furthermore, as discussed above, the ability of dy-

namic policies to switch over time allows the allocation schemes we discuss to capture the benefits
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of using the initial vaccine supply to slow transmission without sacrificing direct protection of more

vulnerable individuals later on.

Two notable additional analyses of optimal COVID-19 vaccination targeting in preprint form in-

clude Wang et al. (23) who focus on the mortality costs of delay in vaccine rollout and the tradeoff

between prioritizing first versus second doses as well as Hogan et al. (22) who examine ideal allo-

cation both within and between countries.

National and international institutions have also begun to disseminate guidance. In particular,

general guidelines for vaccine prioritization have been put forward by SAGE of the WHO (24) and

the US CDC’s ACIP (25). For example, CDC recommendations prioritize (A) health care person-

nel, (B) residents of long-term care facilities, (C) persons aged 75 and over and frontline essential

workers, (D) persons aged 65-74, persons aged 16–64 years with high-risk medical conditions, and

essential workers, and (E) everyone aged 16 and over remaining. (A) and (B) are subgroups at a

finer scale than considered here, though with clear logic supporting top priority. Notably, a clear

priority is not set between persons aged 75 and over and frontline essential workers. This is con-

sistent with our findings in that prioritization within this pair was sensitive to specific conditions,

which will vary over location. Our recommendations differ in the distinction made here between

younger and older essential workers, with priority on the latter motivated by increasing mortality

from infection with age. The CDC guidelines also consider underlying health conditions, a salient

distinction not considered here. WHO guidelines—written more broadly for a global audience—

agree on the prioritization of frontline health care workers at high risk of infection followed by

older adults. However subsequent priority focuses on various sociodemographic groups at high risk

(e.g. those in poverty) and essential educational workers before turning to essential workers more

broadly.

Although our model provides useful insight for the policy-making process, a number of caveats are

in order. In reality the risk of infection varies continuously across individuals, even between different

“essential” occupations. While our model is unique in capturing differences between essential and

non-essential workers, the representation of these differences is simplified by averaging the total

number of contacts over a group with high work contacts (essential workers) and a group with

lower rates of work contacts. This allows us to demonstrate the importance of this heterogeneity
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in the adult population relative to the standard age-only models, indicating that policy makers

should strongly consider occupation-differentiated vaccine allocation strategies.

While we explored a large set of alternative scenarios, further extensions remain for future work. For

example, if certain groups (e.g., children or seniors) experience significant vaccination side effects,

prioritization might shift away from these groups (26). From a logistical perspective, vaccination

will occur through various points of contact with the community (pharmacies, clinics, schools, etc.).

Constraints imposed by the distribution network used will affect the relative costs of reaching var-

ious subgroups. While the longevity of immunity to COVID-19—either following natural infection

or vaccination—is not yet well understood, emerging analysis suggests that, following infection,

“durable immunity against secondary COVID-19 disease is a possibility for most individuals” in

the sense that immune memory was present in approximately 95% of individuals studied 5-8 months

after symptom onset (27). How long lasting immune memory will be in the longer run is a key

unknown. We assume immunity spans at least through the end of our six month time horizon.

However, if instead this durability is more limited and/or already waning for those infected early

in 2020, we might expect the symptomatic infections curve (Fig.2.3A) to stretch further out and

for ideal vaccination strategies to shift towards direct protection of older, vulnerable populations.

From a behavioral perspective, vaccine hesitancy may influence the ability to achieve vaccination

priorities, especially as coverage of the population increases. In general, we find that it is not

necessary or even ideal to vaccinate all of the susceptible individuals in a demographic group, at

least given the level of 60% of the population vaccinated considered here. Thus, at least initially,

some level of vaccine hesitancy may have limited material impact. However, hesitancy may play

a more significant role in the longer run, especially if hesitancy rates are large and herd immunity

proves difficult to achieve (e.g. if vaccine effectiveness is low, and/or NPI relaxation is aggressive).

Vaccine hesitancy that is concentrated in a particular community or demographic group could also

change the optimal prioritization strategy. Similarly, adjustments would be needed if groups differ

in the duration of vaccine effectiveness or diligence in obtaining a second dose of the vaccine where

(and when) necessary.

For simplicity we limited policy objectives to a set of concise metrics of health outcomes (minimizing

expected cases, YLL, or deaths). However, other health-related metrics such as protecting the

most vulnerable and social values such as returning to school, work and social life are important to
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consider. Our analysis reveals that optimal strategies for minimizing deaths and YLL are broadly

aligned with the goal of protecting the most vulnerable. These solutions target essential workers

who are the least able to participate in NPI such as social distancing and thus are the most at

risk of infection, and individuals over the age of 60 yrs. who have the highest risk of death if

infected by the disease. Other social values such as returning to school will most likely change the

allocation schemes to offset the risk created by relaxing social distancing. For example, if allowing

children to return to school was a high priority, then allocation strategies might be tilted towards

targeting school-age children and teachers. A detailed analysis of optimal vaccine allocation given

the relaxation of social distancing to achieve particular social objectives is a key direction for future

research.

2.6. Methods

2.6.1. Model. To investigate the impact of vaccination strategies on the COVID-19 pandemic

in the U.S., we employed a structured compartmental transmission model similar to (28). We

incorporated the demographic structure of the population by tracking six age groups in the set

J = {0-4, 5-19, 20-39, 40-59, 60-4, 75+}. We then extend this set to differentiate essential workers

by splitting the two prime working age groups into two groups—non-essential workers (20-39, 40-59)

and essential workers (20-39*, 40-59*)—yielding four groups of prime working age individuals and

a total of eight demographic groups in J = {0-4, 5-19, 20-39, 20-39∗, 40-59, 40-59∗, 60-74, 75+}. For

each demographic group we tracked 9 epidemiological states: susceptible (S), protected by a vaccine

(P ), vaccinated but unprotected (F ), exposed (E), pre-symptomatic (Ipre), symptomatic (Isym),

asymptomatic (Iasym), recovered (R) and deceased (D). In Fig. 2.1 we display the compartmental

diagram and directions of transitions between epidemiological states.

We modeled the COVID-19 transmission dynamics using a system of coupled ordinary differential

equations for each demographic group, indexed by i and j. The transmission rate was given by

the product of the transmission probability (q), the age-specific susceptibility (si), strength of non-

pharmaceutical interventions (θ), the relative infectiousness of each symptom type (τm)—where

m ∈ M ≡ {asym, pre, sym}—and the rate of contact (rm,i,j) between infected individuals with

symptom type m from group j and susceptible individuals from group i. The exogenously given
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population vaccination rate at time t is given by v(t), where units of time are days.5 In our Base

model we assume that for each individual the vaccine either works or it does not (though we also

consider vaccines that are partially effective for all vaccinated in our sensitivity analysis). Individ-

uals in group i are vaccinated at a rate of µiv(t) and a fraction of the those (ϵi) are protected while

a fraction remain susceptible and move to the failed vaccination category (F ).6 Once infected, indi-

viduals move from exposed to pre-symptomatic at rate γ−1
exp. Pre-symptomatic individuals become

symptomatic or asymptomatic at rates σasym/γpre and (1 − σasym)/γpre, respectively. Asymp-

tomatic individuals recover at an uniform rate γ−1
asym and symptomatic individuals either recover or

die at a rate of (1− δa)/γsym or δa/γsym, respectively, where δa is the age-specific infection fatality

rate. These assumptions yield the system of differential equations described in Appendix A.1.1,

with parameter values given in Appendices A.1.2 and A.1.3.

2.6.2. Contact rates. Contact rates indicating the level of direct interaction of individuals

within and between groups drive the transmission dynamics in the model. We built the contact

matrices used in this model from the contact matrices estimated for the U.S. in (14). These

estimates are given for age groups with five year age increments from 0 to 80 yrs. These estimates

were aggregated to provide estimates for the six-level age structure used in our model. We also

extended these data to estimate the contact rates of essential workers. A detailed derivation of

these contact rates can be found in Appendix A.1.6. In short, we assumed that essential workers

have on average the same pattern of contacts as an average worker in the population in the absence

of social distancing. We then scaled the contact rates for essential and non-essential workers to

represent the effects of social distancing and calculated the resulting mixing patterns assuming

homogeneity between these groups.

We constructed contact matrices for each of four locations, x ∈ {home,work, school, other}, follow-

ing (14). The total contact rate for an asymptomatic individual before the onset of the pandemic

is given by the sum of these location specific matrices. However, it is clear that populations are

exhibiting social distancing in response to the pandemic (29). We further expect symptomatic

5In the event that vaccination requires two doses over time, we consider an individual vaccinated upon receipt of the
second dose at time t and we assume that v indicates the number of individuals that can be vaccinated with the
required number of doses.
6This vaccine effectiveness is inclusive of any efficiency loss from typical handling in the distribution chain.
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individuals to change their behavior in response to the illness. We account for these behavioral

changes as described next.

2.6.3. Social distancing. Expression of symptoms and social distancing policies are likely to

change individuals’ behaviors over time. To model these changes we scaled the contribution of each

contact matrix for location x:

(2.1) rm =
∑
x

αm,x ∗ rx.

The weights αm,x depend on disease and symptom status (m) and location (x) as specified in

Table 2.2. We scaled social contacts for symptomatic individuals following changes in behavior

observed among symptomatic individuals during the 2009 A/H1N1 pandemic (30). For those

without symptoms (susceptible and asymptomatic) the weights were specified to match reduced

levels of social contacts as the product of social distancing policies. Home contact rates were held

constant, and non-household contact rates were roughly based on survey data from (15). However,

levels of social distancing have varied strongly over time and between locations. To account for

this variability we tested a range of alternative levels in addition to the Base model. The results

for these alternative parameter values are discussed in Appendix A.1.6. Also, notably we do not

consider the seasonality of contact rates for children in the scenarios where schools are modeled as

closed. This would likely have limited impact on the optimal solutions, but when this is not the

case we may over or underestimate the importance of school contacts depending on the time of

year when vaccines are distributed.

The proportion of essential workers in the population was set to be consistent with estimates

of the portion of jobs that can be done from home (31) and estimates from the U.S. Cyber-

security and Infrastructure Security Agency, which indicate that 70% of the workforce is involved

in these essential activities (e.g. healthcare, telecommunications, information technology systems,

defense, food and agriculture, transportation and logistics, energy, water, public works and public

safety) (32). However, essential workers are not a cleanly defined group of individuals and there

is heterogeneity in the level of contact rates within this group. As a robustness check on this Base

scenario approach, we also tested a model with a smaller number of essential workers with higher

contact rates. Results from this model are discussed in Appendix A.4.
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Disease and Contact rate weights, αm,x

symptom type home work school other

symptomatic 1.0 0.036 0.036 0.075
susceptible or
asymptomatic

1.0 0.4∗, 0.1 0.3 0.4

Table 2.2. Weights on contact rates for a given disease and symptom type (m)
and location/activity (x) under social distancing. When essential and non-essential-
worker weights are both needed the former is marked with a star.

2.6.4. Transmission rate and vaccine effectiveness. The model was calibrated to match

the predicted R0 for COVID-19 in the U.S. (see Appendix Table A.1.2) by solving for probability of

transmission q, assuming a naive (pre-pandemic) population. Details of this procedure are provided

in Appendix A.1.5.

In our Base model we considered vaccine effectiveness of 90%. This level is at the low end of the

range of estimates reported (90-95%) for reduction in symptomatic infections in the fall of 2020

from phase three clinical trials (33). We selected the low end since real world performance is

typically somewhat lower than clinical trial effectiveness due to imperfect implementation of dual-

dose timetables and or cold storage requirements. We also assume this effectiveness is the same

across age groups since initial evidence does not show substantial differences between subgroups

(34). As an alternative, lower-bound scenario we considered vaccine effectiveness of 50% since this

is the minimum expectation of the U.S. FDA for approval (35). Finally, we considered a case where

the vaccine is less effective for ages 60+. The phase three trials do not fully resolve the effectiveness

of the vaccines by age, leading to uncertainty. This scenario represents a worst case scenario where

the vaccine is much less efficacious for the most sensitive groups.

2.6.5. Initial conditions. Because the expected epidemiological conditions {Ipre(0), Iasym(0),

Isym(0), S(0)} by the time the initial vaccine doses are ready for deployment are uncertain, we con-

sider a range of possible values from 1 case per thousand to 20 cases per thousand. These cases

were apportioned between demographic groups to reflect the attack rates of COVID-19 for each

group under the given social distancing policy. Alternative levels considered for initial conditions

are described in Appendix A.1.4 and appear in Results (see Table 2.1, Fig. 2.4 and Fig. 2.5C).

2.6.6. Vaccine prioritization optimization. The planner’s decision problem is to allocate

the daily supply of vaccine (v(t)) across the demographic groups according to a given objective.
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We assume that this group allocation vector, µ, can be chosen on a monthly basis at the beginning

of each of the first six decision periods. We also assume that only susceptible individuals are

vaccinated. We numerically solved for vaccine allocation strategies that minimize the total burden

associated with three different health metrics: deaths, years of life lost (YLL) or symptomatic

infections:

deaths: min

{∫ T

0

∑
i∈J

Isym,i(t)/γsymdt

}
(2.2)

YLL: min

{∫ T

0

∑
i∈J

eiδiIsym,i(t)/γsymdt

}
(2.3)

symptomatic infections:min

{∫ T

0

∑
i∈J

δiIsym,i(t)/γsymdt

}
,(2.4)

where ei is the years remaining of life expectancy for group i and with a six month time horizon (T =

180 days). Preventing deaths and years of life lost are “consensus value(s) across expert reports”

(4, p. 2052) while some argue that “protecting public health during the COVID-19 pandemic

requires...minimizing COVID-19 infection” (5, p. 10).

We solved for the optimal allocation of available vaccines across demographic groups for each month

over six months. We identified the optimal solution using a two-step algorithm. In the first step we

used a genetic algorithm similar to (36) to identify an approximate solution. This approach uses

random sampling of the potential solution space to broadly explore in order to avoid narrowing

to a local and not global minimum. In the second step we used simulated annealing to identify

the solution with precision. At a given optimal solution, it may or may not be the case that the

outcome of interest (e.g. minimizing deaths) is sensitive to small changes in the allocation decision.

Thus, around the optimal allocation we also identified nearby allocations that produce outcomes

that are less desirable but still within 0.5% of the optimized outcome. A detailed description of

the algorithm is given in Appendix A.1.7. All code for the optimization was written in the Julia

programming language (37).

The whiskers on optimal vaccine allocation bars in Fig. 2.2 show the range of alternative allocations

that still produce an outcome that is within 0.5% of the optimum. The upper (lower) bound of

each whisker was produced one at a time by systematically exploring higher (lower) levels of the

given decision variable (proportion of vaccines allocated to a given demographic group in a given
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decision period). This entailed fixing a candidate level of that decision variable as a constraint and

optimizing the remaining parameters. If the optimized value of this constrained objective function

was within 0.5% of the unconstrained optimum then the candidate value was accepted and included

within the bounds specified by the whisker. The whisker bounds were found using bisection linear

search algorithm tuned to identify each bound to within one percentage point of the true value (see

Appendix A.1.8).

To assess the benefits of (1) using a dynamic allocation policy and (2) differentiating by essential

worker status in addition to age, we constructed two constrained policies: a static policy and

an age-only policy. The static policy was found by allowing the proportion of vaccine allocated

to each age group to be chosen once when the vaccine first becomes available and then applied

constantly over time.7 The age-only policy simply involves constraining allocation choices age

groups (not differentiated by essential worker status)—vaccines allocated to working age groups

accrue to essential workers simply in proportion to their relative share of these groups.

7If all of the susceptibles from a single group were exhausted (either by full coverage from the vaccine or from
infection) then vaccine that would have been allocated to individuals from that group are instead allocated to other
age groups at a rate proportional to the size of their susceptible population.
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CHAPTER 3

Long life spans can mitigate the genetic effects of strays from

temporary conservation hatchery programs.
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3.1. Abstract

While artificial propagation can serve as a conservation tool that provides demographic support,

it can also cause domestication and outbreeding depression that risks unintended fitness conse-

quences to both target and connected populations. When artificial propagation programs are used

temporarily, the interaction between program duration and species life history might determine

the potential for such fitness consequences and the effectiveness of mitigation measures. Here, we

develop a mathematical model to quantify approaches to mitigate unintended fitness consequences

in temporary artificial propagation programs. We build and parameterize our model on a conser-

vation aquaculture-based recovery program for white sturgeon (Acipenser transmontatus) in the

Nechako River (British Columbia), which might impose genetic risks on the adjacent populations

within the Fraser River. We find that, within time scales of 50-200 years, the life history character-

istics of white sturgeon, particularly late age of maturity and longevity, typically reduce the genetic

risks associated with captive breeding, compared to shorter-lived species like salmonids. Genetic

effects of gene flow from hatchery-origin individuals to nearby wild populations accumulate at a

rate inversely proportional to the generation time of the population, and thus slowly in long-lived

species. The slow rate at which risks accumulate in this system provides a window of opportunity

to learn and adapt management while the risks of hatchery inputs remain relatively small.

3.2. Introduction

Captive breeding and artificial propagation can be valuable conservation and natural resource man-

agement tools that help achieve a range of objectives. For example, fish hatcheries are used to sup-

plement harvested populations (1,2), maintain declining populations of threatened and endangered

species (1, 3), and re-introduce locally extirpated species into formerly occupied habitats (3, 4).

These practices, however, can have unintended consequences that threaten biodiversity through

genetic and ecological mechanisms (5). Captive breeding can affect the fitness of supplemented

populations through inadvertent domestication (6, 7) and reduce genetic diversity by increasing

the reproductive output of a few individuals (8, 9). Individuals released from captive breeding

programs can also have unintended ecological interactions with their wild counterparts through

competition for scarce resources, increasing predator abundance, and the risk of disease (10).
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In addition to these potential impacts on the target population, hatchery production can im-

pact neighboring wild populations when hatchery-origin fish are introduced to open systems and

“stray” between adjacent locations. This dynamic creates the possibility that hatcheries designed

to support a single population can threaten the viability of neighboring groups and the collective

meta-population (1,11). In addition to the risks from domestication, genetic diversity, and ecolog-

ical interactions analogous to the risks to the target population, straying poses additional risks to

non-target populations. First, outbreeding depression can occur if straying leads to hybridization

between populations with distinct local adaptation, thus reducing fitness (1). Second, straying

can also threaten diversity by homogenizing formerly distinct populations, affecting population

dynamics by increasing synchrony and reducing portfolio effects (12,13).

Previous modeling studies suggest that even a small number of hatchery strays can have large effects

on the long-term genetic and demographic state of wild populations (14,15,16). For example, Ford

(2002) showed that the equilibrium genetic state of the wild population can approach that of the

hatchery population unless the rate of gene flow is very small (less than 5% of the spawning

population is of hatchery origin). The models used to derive these results, however, describe the

long-run equilibrium behavior of the system. As a result, these model findings might not hold if

hatchery production is intended as a temporary conservation measure, which is often the case due

to its high costs (17) and use as a stop-gap measure until other measures address the root cause of

the species decline (1,18). Furthermore, declines in fitness and genetic diversity caused by captive

breeding can occur more slowly in longer-lived species (19). Therefore, life history and duration of

stocking could interact to mitigate the potential unintended consequences of hatchery production.

Species life history and the duration or hatchery programs can also determine the effectiveness of

management strategies designed to mitigate the genetic effects of strays. Potential measures to

reduce the impacts of the hatchery releases include reducing the number of individuals released,

removing individuals that have strayed to non-target populations, and limiting the duration of

the stocking program. The relative efficacy of these approaches, however, might depend on their

interactions with one another. For example, the effect of reducing stray rates could depend on

the duration of the stocking program because a longer duration would allow more time for fitness

effects to accumulate in both the hatchery-raised and wild-origin populations. Furthermore, the

effectiveness of removing hatchery-origin individuals that have strayed from adjacent populations
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could be determined by their life history because reproductive output and thus potential for gene

flow change though an individual’s life cycle.

An example of a temporary conservation hatchery with potential effects on connected populations

is the conservation fish culture program for Nechako white sturgeon (Acipenser transmontanus).

White sturgeon are one of 27 species of sturgeon (Ascipenseridae), freshwater and anadromous

fishes native to the Holarctic. Across this range, all species have been assessed at some level of risk

of extinction and all are characterized by a long-lived life history. Populations in the upper Fraser

River, British Columbia, form a genetically distinct designable unit (DU) have been assessed as

Endangered by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC), and

the DU awaits a listing decision under the Canadian Species at Risk Act (20). The Upper Fraser

DU contains three groups that show a combination of genetic, demographic, and spatial distinctions

the Nechako River, mid-Fraser, and upper-Fraser (21,22,23). The two groups in the mainstem

of the Fraser River (mid-Fraser and upper-Fraser ) are near historical abundance levels (24). The

Nechako River group, however, has experienced a recruitment failure and a long-term decline in

abundance (25,26).

To forestall further effects of the ongoing recruitment failure a captive breeding program was es-

tablished to supplement recruitment while research and restoration efforts address the root causes

of the decline. Hatchery production began in the Nechako River in 2015 with the goal of releasing

a sufficient number of juveniles to produce 50-60 mature adults per year class over a 45-year pe-

riod (27). Since hatchery releases began, evidence has accumulated that hatchery-origin fish have

emigrated from the Nechako River to the mid-Fraser, either permanently or temporarily. In some

areas, hatchery fish comprise over half of the juveniles captured in monitoring programs in the

mid-Fraser River (28). This unexpectedly high proportion of hatchery-origin fish has raised con-

cerns that the Nechako River hatchery might impact the neighboring populations in the mainstem

of the Fraser River. Since inception, the captive rearing program has been designed to minimize

the genetic risks by using wild-origin brood stock from the Nechako River and maximizing genetic

diversity by using full factorial crosses. These steps, however, do not rule out the possibility that

hatchery-origin fish that stray to the Fraser River could cause outbreeding depression. Declines in

fitness could occur if the Nechako-origin fish dilute local adaptation in the mid-Fraser population

or if they experience rapid adaptation to captivity, as has been documented in salmonids (6,7).
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The long-lived life history of white sturgeon and the intention to use the hatchery as a temporary

conservation measure, however, might reduce genetic and ecological risks.

To explore how species life history and hatchery management measures might affect the potential

for unintended fitness consequences of temporary hatchery programs, we developed a mathematical

model of hatchery immigrating into a wild population. To build and parametrize our model, we use

the Nechako River hatchery and neighboring population segments in the mainstem Fraser River as

an example system. Building on previous work (14,16,29) we use a coupled genetic-demographic

model to describe the effects of the hatchery program on the abundance and fitness of neighboring

wild populations. To capture the effects of the population’s life history, we use an age-structured

demographic model parameterized to match demographic rates of white sturgeon measured by a

system-wide monitoring program (21). In addition, we develop a novel method to calibrate the

genetic parameters of the model to match fitness declines observed in early-generation hatchery fish

estimated by meta-analysis (30), which provides additional empirical grounding for our modeling

framework.

Using this modeling framework, we test how interactions between the duration of the hatchery

program and the species’ longevity interact to determine the fitness and demographic effect of

the hatchery program, while accounting for feedbacks between these demographic and genetic

changes. We also test how life history and transient dynamics of temporary hatcheries determine

the effectiveness of alternative mitigation strategies and discuss implications of our findings for

adaptive management.

3.3. Methods

3.3.1. Model overview. Our model describes the genetic and demographic consequences of

hatchery-origin immigrants on a neighboring wild population by tracking the abundance and geno-

types of the wild population as it receives an influx of immigrants from a hatchery-raised population.

We develop models for both the Nechako River hatchery population and a single wild population

to represent the naturally occurring Fraser River populations. Given the recruitment failure in the

Nechako River and the corresponding lack of natural production, we assume all reproduction in the

system occurs in captivity and is subject to domestication selection. Following previous modeling

studies (14,16), we represent the effects of domestication with a single quantitative genetic trait.
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This trait represents a suit of phenotypes that can adapt to the natural or hatchery environment.

We model domestication selection with stabilizing selection acting on the fecundity of adults and

the viability of yearlings. We calibrate the strength of domestication selection to match fitness

declines observed in early-generation hatchery fish (30). A fixed reduction in the fecundity of

hatchery-origin individuals in the wild represents the plastic effects of captive breeding on fitness.

To capture the effects of the domestication of hatchery origin stray on the Fraser population, we

track the abundance and genotype distributions through five demographic events: reproduction,

density dependence, selection, immigration, and adult survival (Figure 3.1). For reproduction, fe-

cundity is a function of age and genotype to capture the effects of growth, maturation, and fecundity

selection. Mating pairs form independently of their ages and phenotypes, and using the infinites-

imal model of quantitative genetics, the genotypes of their offspring follow a normal distribution

centered at the mid-parental value (31). Yearlings experience density-dependent mortality and

viability selection around an optimum genotype, with selection events occurring before and after

density-dependence to represent a combination of hard and soft selection, respectively (16,32). We

then track each cohort as it ages and experiences growth, maturation, natural mortality, and senes-

cence. We parameterized the vital rates of the population to match observations from a long-term

monitoring study (21) and previous demographic analysis (24,26).

To understand how hatchery operations affect the fitness and abundance of the wild population, we

varied three factors: (1) the number of hatchery-origin individuals that immigrated into the wild

population per year (immigration rate), (2) duration of hatchery releases, and (3) stray removal.

The immigration rate captures the effect of the number of individuals released from the hatchery

and factors influencing the probability of straying between river segments, such as acclimatization

to the local environment before release. To test the effect of the duration of hatchery production

and the system’s dynamics, we vary the time over which immigration from the hatchery population

occurs in our numerical simulations. For stray removal, we test the effect of removing post-release

hatchery strays of different age classes and how the effectiveness of removals changed as a function

of the planned hatchery duration and immigration rate.
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Figure 3.1. The model is composed of two components: a model of the geno-
types of the Nechako River population as it experiences domestication selection
and a model of the fitness and abundance of the wild Fraser River population as
is receives immigrants from the Nechako hatchery population. In both models, fe-
cundity selection affects the reproductive success of adults, and viability selection
affects the survival of juveniles. In addition, the model of the Fraser River popu-
lation includes density-dependent mortality. Viability selection occurs before and
after density dependence, representing soft and hard selection. Immigration from
the Nechako River to the mainstem Fraser occurs before recruitment at age one, and
immigrants remain in the mainstem or Nechako River population for the remainder
of their life cycles. Each of these events effects the abundance N(i,j,a,t and genotype
distribution ψi,j,a,tof the population of origin i in location j. The arrows indicate
moment between demographic stages. Transitions influence by selection are indi-
cated by hash marks.

3.3.2. model details.

3.3.2.1. State variables. We follow the population size of each cohort Ni,j,a,t and their genotype

g distribution ψi,a,t(g) where i denotes the origin (hatchery H or wild W ), j denotes their location

(Nechako River n or Main-stem Fraser River m), a denotes age, and t denotes time. We follow

the full genotype distribution rather than tracking the mean and variance of a normal distribution

because gene flow between the populations can create departures from normality (16). We track

the abundance of wild origin yearlings NW,m,0,t through three life stages prior to recruitment, with

each stage denoted by NW,m,0,t, N
′
W,m,0,t,, and, N ′′

W,m,0,t, along with the genotype distributions

ψW,m,0,t(g), ψ
′
W,m,0,t(g), and, ψ

′′
W,m,0,t(g). We track the genotypes of hatchery origin fish through two
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life stages prior to recruitment: ψH,n,0,t(g) and ψ
′
H,n,0,t(g). We only track the genotype distribution

in the hatchery environment assuming a management-controlled constant population size.

3.3.2.2. Reproduction. The fecundity of an individuals is determined by their age and genotype,

and environmental effects of the hatchery, where the effect of age is given by a vector of age-specific

fecundities Fa, and the effect of genotypes is given by a selection gradient Wf,j(g). Fecundity

selection is stabilizing around an optimum genotype θj with strength sf,j , both of which depend on

the spawning environment j ∈ {W,H}. Regardless of genotype, Hatchery fish spawning in the wild

are less successful by a factor of ∆ than their wild origin counterparts. Therefore, the fecundity of

an individual in spawning environment j is the product of these three factors

Fj,i,a(g) = Fa∆
Ii=He−0.5sf,j(g−θj)

2
(3.1)

where Ii=H is an indicator variable that takes the value of one for hatchery fish spawning in the

wild and are zero otherwise. Following Wood et al. (2007) and Smyth et al. (2016), fecundity at

age is proportional by a constant c to the amount weight at age exceeds the weight at maturation

wm

Fa =

 c(wa − w) if wa > w

0 if wa > w
.(3.2)

where weight is an isometric function of length La with the average weight at 100 cm given by w100

wa = w100L
3
a × 100−6,(3.3)

the factor of 100−6 is included to ensure wa = w100 when La = 100 cm. Length at age La follows

a von Bertalanffy growth curve with asymptotic length L∞, and growth rate k

La = L∞(1− e−ka).(3.4)

The total reproduction is determined by the sum of age, genotype, and origin specific fecundities

Fj,i,a(g) weighted by abundance Nj,i,a,t

Nj,j,0,t =
∑

i∈W,H

Amax∑
a=1

Nj,i,a,t

∫ ∞

−∞
Fj,i,a (g) dg(3.5)
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the genotype distribution of the yearlings is determined by the distribution of genotypes in the

spawning population, the formation of mating pairs, and the transmission of genotypes from parents

to offspring. The distribution of genotypes in the spawning population is the sum of genotypes for

each age class weighted by their abundance and fecundity

ψspawn,j,t (g) =
1

Zj,t

∑
i∈{W,H}

Amax∑
a=1

Nj,i,a,tFj,i,a (g)(3.6)

where Zj,t is a normalizing constant. Mating pairs form at random such that the genotypes g1 and

g2 of the parents of each yearling can be treated as a random sample from the spawning popula-

tion ψspawn,j,t (g). The transmission of genotypes follows the infinitesimal model of quantitative

genetics (31), which assumes genotypes are determined by small contribution from alleles at many

loci. Given this model, the genotype g of yearlings with parent genotypes g1 and g2 are normally

distributed around the mid-parental value with variance Vr. Combining these three assumptions

yields an integral equation for the genotype distribution of yearlings

ψj,0,t (g) =
1√
2πVr

∫ ∞

−∞

∫ ∞

∞
e

−(g−0.5g1−0.5g2 )2

2Vr ψspawn,j,t (g1)ψspawn,j,t (g2)dg1dg2(3.7)

(Slatkin 1970).

3.3.2.3. Domestication selection. After reproduction, hatchery fish experience stabilizing via-

bility selection. We model viability selection as a single event with survival probability (fitness)

determined by the distance from the optimum genotype θH and selection strength sv,H

Wv,H (g) = e−0.5sv,H(g−θH)2 .(3.8)

The effect of selection on the genotype distribution of the population is the product of the initial

genotype distribution and the survival probability, normalized by Zv,H,t

ψ′
H,n,0,t(g) =

1

Zv,H,t
ψH,0,t (g)Wv,H(g).(3.9)

3.3.2.4. Natural selection. The wild population experiences two viability selection events: one

before and one after density-dependent mortality with survival probabilities determined by stabiliz-

ing selection gradients Wv1,W (g) and Wv2,W (g). Following Dédarre and Gandon (2011), selection

before density dependence has a smaller effect on the abundance of the population and is called
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“soft” selection, while selection after density dependence or “hard” selection has a larger demo-

graphic effect. These two selection events have the same optimum genotype θW , but different

selection strengths sv1,W and sv2,W respectively, such that the fitness function is (survival probabil-

ity) for each is Wvx,w (g) = e−0.5svx,w(g−θw)2 . The survival probability integrated over all genotypes

determines the proportion of the population that survives selection and therefore the abundance

after the first N ′
W,0,t and second selection events N ′′′

W,0,t

N ′
W,0,t = NW,0,t

∫ ∞

−∞
ψW,0,t (g)Wv1,W (g)dg(3.10)

N ′′′
W,0,t = N ′′

W,0,t

∫ ∞

−∞
ψ′′
W,0,t (g)Wv2,W (g)dg,(3.11)

where density dependence (described in the next sub-section below) occurs between these two

selection events to determine N ′′
W,0,t. The genotype distribution after natural selection is given by

the product of the fitness function and genotype distribution, normalized by Zvx,t

ψ′
W,0,t(g) =

1

Zv1,t
ψW,0,t (g)Wv1,W (g)(3.12)

ψ′′′
W,0,t(g) =

1

Zv2,t
ψ′′
W,0,t (g)Wv2,W (g),(3.13)

where again, density dependence determines ψ′′
W,0,t as described below.

3.3.2.5. Density dependence. In white sturgeon, there is evidence that yearlings are most sensi-

tive to density-dependent mortality (33). Therefore, we model a density dependence with a single

mortality event acting on yearlings between the two selection events. Survival is decreasing function

of abundance, consistent with a Beverton Holt stock recruit relationship f
(
N ′

W,0,t

)
= 1

1+βN ′
W,0,t

,

where β determines the strength of density dependence. The abundance of the wild population

after density-dependent mortality is

N ′′
W,0,t =

S0N
′
W,0,t

1 + βN ′
W,0,t

.(3.14)

Finally, we assume, density-dependent survival is independent of genotype, so the genotype distri-

bution is unchanged ψ′′
W,0,t (g) = ψ′

W,0,t (g).

3.3.2.6. Immigation. After density dependence and selection, hatchery-origin individuals emi-

grate. The number of hatchery-origin fish emigrating from the Nechako River population is subject
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to uncertainty and is determined by many factors, including the number of releases, rearing strate-

gies, and variable environmental conditions. To accommodate this uncertainty, we test a range of

scenarios determined by a fixed number of immigrants each year when the hatchery is in operation

N ′′′
H,f,0,t = NH,0.(3.15)

We represent the immigration rate as a proportion of natural recruitment at equilibrium rH =

NH,0/N
∗
W,f,1 in our results to account for the effect of the wild population size on the rate of gene

flow.

3.3.2.7. Transitions between age classes. After selection, density dependence, and immigration,

yearlings enter the first age class such that

Ni,1,t+1 = N ′′′
i,0,t(3.16)

ψi,1,t+1 (g) = ψ′′′
i,0,t(g).(3.17)

All age classes one year and older experience density-independent mortality with survival proba-

bility Sa before transitioning to the next age class

Ni,a+1,t+1 = SaNi,a,t for a > 0.(3.18)

Survival between age classes does not depend on genotype; therefore, the genotype distribution of

all cohorts (accept yearlings) is unchanged after each time step

ψi,a+1,t+1 (g) = ψi,a,t(g) for a > 0.(3.19)

3.3.3. Genetic parameters. There is a significant body of evidence linking captive breeding

to rapid declines in fitness in the wild (30). These studies measure the relative reproductive success

of captive-raised and wild-origin fish in the wild by comparing the performance of individuals with

mixed wild and hatchery ancestry in the wild and hatchery environments, respectively. These

studies, however, all require multiple generations of data and, therefore, have only been conducted

in short-lived species like salmonids (7). Acknowledging the uncertainty associated with using these

estimates in a longer-lived species, we calibrate the range of genetic parameters of the model (Table

3.1) to match the fitness declines in early-generation hatchery fish estimated by the meta-analysis
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by Christie et al. (2014), as the best available data on the range of plausible values. Christie et

al. (2014) observed fitness declines between 30% and 60% in a single generation. These declines

are attributed to both genetic (adaptation) and environmental effects (plasticity). The relative

contribution of genetic and environmental effects varies by program and species (6,34). We follow

a prior modeling study (19) and consider a range of fitness declines caused by genetic effects between

0.0% and 30% per generation, with a baseline value of 15%. We calculate the relative fitness of

hatchery-origin fish after one generation of hatchery production by fist solving for the equilibrium

genotype distribution of the population at birth under natural selection ψ∗
W (g). We then calculate

the genotype distribution of the first generation of hatchery fish ψg1 (g) by applying the model

of reproduction and domestication selection to the equilibrium genotype distribution after natural

selection ψ′′′
W

∗(g). We compute the relative fitness in the wild by comparing the average fitness of

each population under natural selection.

Qg1 =

∫∞
−∞ e−

sW
2

(g−θW )2ψg1(g)dg∫∞
−∞ e−

s
2
(g−θW )2ψ∗

W (g)dg
,(3.20)

where sW = sf,W + sv1 + sv,2 is the total strength of selection summed across the three selection

events. We used an optimization algorithm to solve for the strength of the domestication section

events (sf,H , sv,H), optimum phenotype in the hatchery (θH) and the total strength of natural

selection (sW ) which produced the target value of fitness decline. This optimization problem

is over-determined because we are tuning four variables to achieve one outcome. Therefore, we

add additional constrains by specifying the expected effect of fecundity selection on the average

fitness of wild origin fish in the hatchery
(
Sf =

∫
ψ∗
W (g)Wf,H (g) dg

)
, and the expected survival of

the domesticating viability selection event
(
Sv =

∫
ψg1 (g)Wv,H (g) dg

)
. We select the parameter

combination that met these three constraints with the minimum strength of natural selection sW

and distance between the optimum hatchery genotype θH and a target value θH . We solve the

optimization problem using the Nelder-Mead algorithm implemented in the Optimization.jl package

in Julia programming language (35). The contribution of each natural selection event to the total

selection strength sW determines the effect of selection on demographic outcomes and gene flow.

For the base parameter set we fix the value of the soft selection and fecundity selection event at

sf,W = sv1,W = 0.25sw with the rest contributed by the hard selection event sv2,W = 0.5sw. We

consider the effects of alternative parameter choices in the Appendix B.1.
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Parameter Interpretation Value range

Qg1 Relative fitness of fist generation hatchery
fish genetic component

0.85 (0.7, 1.0)

∆ Relative fitness of fist generation hatchery
fish environmental component

0.85 (0.7,1.0)

Sf Effect of fecundity selection on first-
generation hatchery fish

0.1

Sv Fraction of fish generation hatchery fish that
survival viability selection.

0.01 (0.05, 0.005)

Vr Recombination variance 0.5
θW Optimal genotype in the wild 0.0
θH Optimal genotype in hatchery 10.0
sW Total strength of natural selection 0.25 (0.18,0.61)
sf,W Strength of natural fecundity selection 0.25sW (0.0sW , 1.0sW )
sv1,W Strength of soft viability selection 0.25sW (0.0sW , 1.0sW )
sv2,W Strength of hard viability selection 0.5sW (0.0sW , 1.0sW )
sv,H Strength of domesticating viability selection 0.10 (0.06, 0.13)
sf,H Strength of domesticating fecundity selection 0.05

Table 3.1. Base value and ranges of the parameters of the genetic model

3.3.4. Demographic parameters. We chose the demographic parameters in our analysis

(Table 3.2) to represent the life history characteristics of the mid-Fraser River white sturgeon pop-

ulation. We obtained information on growth, survival, maturation, and fecundity from population

monitoring studies and previous demographic modeling exercises (21,24,26). No information was

available to estimate yearling survival rates or the strength of density dependence. We tuned these

parameters to fix equilibrium recruitment at 100 individuals per year, using the equilibrium condi-

tions given in Appendix B.2, and varied the strength of density dependence. We tuned the strength

of density dependence β and the yearling survival S0 to adjust the strength of density dependence

without changing equilibrium recruitment (Appendix B.3). These two changes, in turn, change the

basic reproductive number of the population R0 (i.e. the expected number of offspring produced

in an individual’s lifetime in the absence of density dependence), with larger values of R0 implying

greater density dependence (higher values of β). To improve the interpretability of our results, we

report these values of R0 to represent the changes in the strength of density dependence.

3.3.5. Simulations. We numerically iterated eqn. (3.1-3.19) to characterize the recipient

population’s response to immigration by hatchery-origin fish. We developed numerical procedures

to approximate the genotype distribution in the Julia programming language (35). A detailed
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Parameter Interpretation Value range source

L∞ Asymptotic or maximum length 300cm (24)
k Von Bertlanffy growth coefficient 0.034 (24)
a0 Length at age zero 0.0
w100 Weight at 100cm 9.3Kg (24)
wm Weight at maturation 33Kg (24)
c Size to fecundity conversion factor 1 w.l.o.g
Sa Survival from age a to age a+ 1 0.96 (24)
R0 Basic reproductive number 3.0 (1.5-9.0)

Table 3.2. Base value and ranges and sources for demographic parameters

Parameter Interpretation Value Range

rH Annual proportional hatchery immigration 0.5 (0.0, 1.0)
T Hatchery duration 100 (0, 250)

Table 3.3. Parameter values and ranges used in the simulations

description of these methods is in Appendix B.4. We initiated each simulation with the population

at equilibrium without a hatchery, iterated forward in time for T ∈ (0, 250] years with annual

proportional immigration from the hatchery of rH ∈ (0, 1], and then simulated another 20 gener-

ations without immigration to evaluate the recovery dynamics. For each simulation, we tracked

four statistics that summarized the genetic and demographic state of the population (Table 3.3):

1) we characterized changes in abundance by tracking annual recruitment N1,W,t, and we described

changes in the genotype distribution with 2) the average fitness WW,t, 3) the mean genotype g1,W,t,

and 4) the genetic variance V1,W,t. We extracted the minimum fitness Wmin, minimum abundance

Nmin and cumulative immigration rH× T from each simulation to characterize the maximum effect

of the hatchery program.

3.3.6. Sensitivity analysis. We used a local sensitivity analysis to identify the effects of the

genetic and life history parameters on the cumulative fitness effects of straying by hatchery-origin

fish. To account for the effects of immigration rate rH and the duration of the hatchery program

in years T we calculated the difference between the equilibrium fitness and the minimum fitness

∆W (rH , T ) = W
∗
W − Wmin across the range of values of rH and T . We found this was well

approximated by a log-linear function ∆W (rH , T ) ≈ αrHT
2, where the parameter α determined

the magnitude of the genetic effects for a given combination of rH and T . We tested the sensitivity

of the parameter α to the genetic and life history parameters of the model using a local sensitivity
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analysis where the elasticity of α to a parameter θ is defined as λα (θ) =
θ
α
∂α
∂θ . We computed the

slope coefficient α of the log-linear relationship using the GLM package in Julia and the partial

derivatives with finite differences.

3.3.7. Mitigation measures. We evaluated the effectiveness of two approaches to reducing

the fitness effects of the hatchery: 1) reducing the annual proportion of the hatchery-origin fish

rH , 2) reducing the duration of hatchery supplementation T , and 3) removing hatchery-origin

individuals after they have immigrated. For hatchery emigration and duration, we characterized

the effect of a small reduction in each factor on the minimum fitness (Wmin) by calculating the

elasticity of Wmin to rH and T
(
i.e. rH

Wmin

∂Wmin
∂rH

, T
Wmin

∂Wmin
∂T

)
across the range of rH and T values

given in Table 3.3. We calculated the derivatives for these elasticity values using the finite difference

method. For removal of hatchery-origin strays, we solved for the number of removals required to

reduce the fitness loss by 50%. To this end, we defined a function that returns the maximum fitness

loss L (E, q⃗) = W
∗
w (E, q⃗) −Wmin as a function of the total removal effort E and the catchability

of each age class q⃗. We applied the bisection algorithm (Roots.jl package) to solve for the level

of removal effort E∗ required to reduce L by 50% for a given vector of catchabilities a. We then

calculated the total removals by simulating the model with removal effort E∗ summing the total

removals in each period. The effect of removing individuals was largely determined by their age

class. To help interpret these results, we calculated the expected gene flow caused by a single

hatchery-origin individual from each age class (Appendix B.5).

3.4. Results

3.4.1. Transient dynamics in fitness effects and demographic outcomes. Our model

captures a small decline in recruitment of the wild population ( 2%) after 100 years of hatchery

production (Figure 3.2B) owing to a decline ( 5%) in fitness (Figure 3.2A). Gene flow from the

hatchery shifts the genotype distribution of the wild population away from the local optimum and

increased the genetic variance, which together reduces the average fitness (Figure 3.2C,D). We

found a substantial delay between when hatchery production occurred and the eventual decline in

abundance (Figure 2B). Hatchery stocking can create a demographic boost that leads to increased

abundance in the short run, followed by a decline caused by the reduction in fitness. We found

that the minimum abundance often occurred over 100 years after hatchery production ended. This
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delay between the end of hatchery production and the eventual decline in abundance depended on

the strength of density dependence measured by the basic reproductive number. Smaller values

of R0 lead to longer delays between the decline in fitness and the eventual demographic response

(Figure B.1) because density dependence is weaker, which strengthens the feedback between the

population’s reproductive potential and future population sizes. The decline in abundance also

depends on the timing of selection, with the largest declines caused by viability selection after

density dependent mortality (Figure B.2), the relative contribution of genetic and environmental

fitness effects (Figure B.3), and the strength of natural selection (Figure B.4).

Figure 3.2. Time series of the A) fitness, B) recruitment, C) mean genotype and
D) genotype variance of the wild population under the default parameter values in
Tables 3.1-3.3 The red shading indicates the period of hatchery operation.

3.4.2. Effect of immigration rate and hatchery duration. Minimum fitness and recruit-

ment decreased with increasing hatchery duration (T ) and immigration (rH), and the smallest

values of fitness and abundance occurred when both parameters (T and rH) were large (Figure

3.3A,C). Based on the deterministic simulations, the effect on fitness increased linear with the rate

of immigration and with the 3/2 power of the duration of the hatchery program (T 3/2), while the

effect on recruitment increased linearly with the rate of immigration (rH) and with the square of

duration (T 2; Figure 3.3B, D). These exponents with values greater than one imply that increas-

ing hatchery duration has a disproportionally larger effect on outcomes. The convex relationship

between hatchery duration and fitness effects occurs because the duration of the hatchery program

determines the number of generations in captivity and, therefore, the level of domestication as well
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as the cumulative number of immigrants and gene flow to the wild population. In contrast, the

rate of immigration only affects the amount of gene flow from the hatchery.

Figure 3.3. Time series of the A) fitness, B) recruitment, C) mean genotype and
D) genotype variance of the wild population under the default parameter values in
Tables 3.1-3.3 The red shading indicates the period of hatchery operation.

3.4.3. Effect of biological parameters on minimum fitness. In the local sensitivity anal-

ysis, both the genetic and demographic parameters determine the genetic impacts of the hatchery

program (Figure 3.3E). Of the genetic parameters, the plastic effects of the hatchery (∆) and the

strength of fecundity selection (s3) have the largest effect on the accumulation of fitness effects

because these two mechanisms determined the efficiency of gene flow from the hatchery to the

wild population. The strength of the viability selection events also reduced the genetic impacts

of the hatchery by limiting gene flow. They do so to a lesser degree, however, because viability

selection does not act directly on hatchery-origin fish; rather, it affects their progeny. The fitness

effects of the immigration by hatchery-origin fish are also determined by the generation time of the

population. The demographic parameters with the largest impact were the somatic growth rate

(k), asymptotic length (L∞), age at senescence (µs), and the natural mortality rate (m), which

interact with each of which determine the generation time. Longer generation times lead to smaller

fitness effect. This can be explained in two ways. First, fitness effects accumulate more slowly in

long-lived species. Therefore, given a fixed duration of hatchery operation, we expect lower total

impacts in longer-lived species. Second, in longer-lived populations, the age structure acts as a
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buffer, reducing the genetic impact because each year class contributes less (in proportional terms)

to the total reproductive potential of the population.

Figure 3.4. The effects of mitigation strategies. The marginal effect of reducing
the immigration rate from the hatchery A) and the duration of the hatchery B) on
the minimum fitness of the wild population. C) The total number of adults (age 20
and over) and D) juveniles (age 19 and under) removed to achieve a reduction in
the genetic load by 50%. E) The expected reduction in gene flow from removing an
individual as a function of its age for two alternative sets of demographic parameters,
one with senescence (dashed line) and one without senescence (solid line).

3.4.4. Effects of alternative mitigation strategies. We found that reducing the duration

of hatchery operation and reducing the immigration rate of hatchery-origin fish were similarly

effective strategies for mitigating the genetic effects of hatchery production (Figure 3.4A,B), but

the effects of a small change in each depended on both the immigration rate and the planned

duration of the program. Reducing the immigration rate resulted in the largest increase in fitness

when the planned duration of the program was long and when the initial immigration rate was

low (Figure 3.4.A). The relationship between the initial immigration rate and the effect of a small

change is caused by a saturating relationship between the immigration rate and the minimum fitness

of the wild population. As the immigration rate increases, the fitness effects approach a maximum

value. Near this point, small reductions in gene flow have a limited effect on the wild population.

In contrast, we found that reducing the duration of the hatchery program was most effective when

immigration rates were high (Figure 3.4.B). This is likely because when gene flow is high, the

domestication of the hatchery population (which increases over time) more directly impacts the

wild population. Translocating or removing hatchery-origin individuals can also mitigate the fitness
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effect of hatchery releases, but the effectiveness of the strategy depends on the age of the removed

individuals (Figure 3.4C, D). Removing older individuals had a larger effect because they had higher

expected lifetime reproductive potential (Figure 3.4E). An older mature individual is more likely to

reproduce successfully and affect the genetic state of the population. In contrast, a young individual

that is removed would have had a higher probability of dying before it reproduced (Figure 3.4E).

Removing very old individuals also had a small effect if they had reached the age of senescence.

3.5. Discussion

Our model shows that even temporary hatchery programs can have the potential to create long-

lasting effects on the fitness and abundance of wild populations, but the longevity of the species,

the strength of domestication selection, and the duration of the program strongly influence the

magnitude of those impacts. In our model, gene flow from hatchery-origin individuals that im-

migrate results in a decline in fitness in the adjacent wild population, an expected outcome given

the parameterization based on evidence for domestication and decline in relative fitness of hatch-

ery populations (30). Once hatchery operations end, natural selection causes the fitness of the

wild population to eventually recover back to the optimum, given the available genetic variance

in our model. Over the range of parameter values we considered, gene flow is a stronger force

than selection, causing genetic effects to accumulate quickly in the wild population and recover

more slowly back to the original fitness, resulting in long-lasting impacts. Despite this potential for

long-term impacts, we found that the maximum genetic effects of temporary hatchery programs in

our long-lived example species were much smaller than the potential long-run impacts if stocking

continued indefinitely (14,16). Therefore, limiting the duration of captive breeding programs can

be an effective strategy for mitigating unintended fitness consequences. Doing so reduces the time

required for domestication to occur in the hatchery environment and the total amount of gene flow

from the hatchery population to the wild, limiting the overall genetic load. The duration of captive

breeding is one of several interacting risk factors identified in the case study of Nechako white stur-

geon. The combined effects of the relative fitness of hatchery-origin individuals, the immigration

rate, the program duration, and the population’s generation time determine the scale of genetic

risks. Risks from each of these factors roughly combine in a roughly multiplicative fashion, which

means that low levels of risk from only one factor can offset high values of the other three. For
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example, careful genetic management and cultivation practices can reduce domestication (36,37).

In these cases, the genetic risk of captive breeding can be small even if it lasts for many generations

and straying is high. Conversely, reducing the duration of captive breeding can offset cultivation

practices that increase the risk of domestication. For example, currently (in 2023), Nechako River

hatchery sturgeon are released at two years of age to increase survival. While this practice might

increase domestication selection, the long generation time of the species (white sturgeon mature

between ages 20-40 on average) acts to offset these risks. Finally, if logistically feasible, removals

from non-target populations can also reduce the rate of gene flow, offsetting high values of im-

migration, domestication, and duration. We found that the effectiveness of removing individuals

increased with their age because the expected reproductive success (and thus gene flow) tends to

increase through an individual’s life cycle. The population’s life history characteristics determined

outcomes by changing the time scale of the population dynamics. We found that both the rate of

accumulation of genetic load and the rate of recovery are a function of the population’s generation

time. Willoughby & Christie (2019) found a similar result for the effects of hatcheries on fitness

and genetic diversity with an individual-based model by comparing species with different life his-

tories. Measuring the duration of captive breeding in terms of generations (rather than years) can

largely account for these effects of life history and differences between species. For example, all

else equal, forty years of hatchery production of white sturgeon would have a similar effect to four

years for Chinook salmon (Oncorhynchus tshawytscha). Re-scaling time in this way allows us to

draw a rough equivalence between the dynamics of populations with very different life histories.

Interestingly, models of the long-term effects of aquaculture escapees show that long-lived species

can be more sensitive to the fitness consequences of gene flow due to greater total accumulation

of fitness effects over their lifespan (38), further emphasizing the differences between the long-run

and transient dynamics of the system.

3.5.1. Implications for adaptive management. The time scale of population dynamics

relative to the time scale of management interventions can determine the effectiveness of such

interventions. In the case of the Nechako River white sturgeon system, a mismatch in these time

scales might provide an opportunity. Because fitness effects accumulate slowly, captive breeding

can maintain recruitment in the Nechako River population for a long period with relatively low

risks to neighboring populations, thus providing time to identify and address the root causes of the
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recruitment failure. In shorter-lived species, restoration efforts might take the same amount of time

as they would for longer-lived species due to similar levels of scientific uncertainty and bureaucratic

delays. The genetic effect of captive breeding, however, would accumulate more quickly. Longevity,

therefore, can have a strong effect on the balance between conservation benefits from hatchery

production and genetic risks. The time scale of population dynamics can also determine the ability

of managers to learn and adapt. In the first years of operation, the Nechako River hatchery released

large numbers of yearling sturgeon, observed high natural mortality, and detected emigration to the

mid-Fraser River. In response, the program shifted to releasing fewer larger individuals, causing

an apparent decline in both mortality and emigration. In a short-lived population, these initial

year classes could have caused larger decreases in fitness in the mid-Fraser River if they interbred

before managers could have observed and responded to the event. In the Nechako River Sturgeon

system, however, the impact of these cohorts is likely to be relatively small because each year

class contributes less to the total reproductive potential of the population. In this case, each

year provides an opportunity to learn, and because the population dynamics are slow, adaptive

management approaches (sensu. (39)) can be employed quickly relative to the rate at which impacts

accumulate.

3.5.2. Limitations and Assumptions. As with all modeling studies, ours involves simpli-

fying assumptions, and the interpretation of our results depends on this context. The quantitative

results of our model are sensitive to the value chosen for the fitness declines of hatchery-origin fish

in the natural environment. There is a substantial body of evidence suggesting that differences in

relative fitness can arise from both domestication selection and plastic environmental effects (6,7).

The cumulative fitness declines and the relative contribution of genetic and environmental effects,

however, varies between systems (7), and measurements of these quantities are not available in

our study system. This limits the quantitative precision of our model estimates. Our qualitative

findings about the relative effectiveness of the alternative mitigation measures and the effects of life

history traits, however, are robust to this source of uncertainty. Furthermore, the scenarios with

high estimated fitness effects likely represent an upper bound on the program’s potential impact,

given that much of the uncertainty is associated with potential mitigating factors such as the timing

of natural selection and the relative contribution of environmental effects.
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In addition to parametric uncertainty, our model uses a simplified representation of the population’s

genetics. We assume the effects of domestication can be represented by a single quantitative trait.

This model captures the additive fitness effects of domestication selection, but it also assumes there

is sufficient genetic variation for the population to recover back to the wild phenotypic optimum

once hatchery production ends. In a small population, however, unfavorable alleles might reach

fixation through genetic drift, permanently limiting the population’s ability to recover (40, 41).

Furthermore, if multiple traits are under selection, differences in selection strengths and heritabil-

ities between these traits can result in quantitative changes in the accumulation of genetic load

accumulation and recovery. Still, our single-trait model likely captures the essential qualitative

features of these processes (42,43).

Our model also makes several simplifying assumptions about the population’s ecology. We assume

that the primary ecological interactions between hatchery and natural origin individuals occur

before recruitment. This is consistent with a meta-analysis that shows density-dependent mortality

declines in fish populations with age (44). It does not, however, account for other interactions which

might operate through the life cycle. For example, competition between juveniles and adults could

reduce growth, maturation rates, and fecundity. The presence of hatchery-origin fish in a population

can also increase the risk of disease and attract predators (10). Incorporating these processes was

beyond the scope of our study, but they might play an important role in the demographic effects

of hatchery production.

Finally, our model presents a highly simplified representation of the spatial and movement ecology

of our study organism. We represent the hatchery and wild populations in our model as two distinct

populations separated by a clearly defined boundary; however, these boundaries might be less clear

in many real-world systems with multiple populations characterized by patterns such as isolation by

distance. Furthermore, we assume that all movement occurs before maturation and that fish do not

exhibit homing behaviors, returning to their river of origin to reproduce. It is currently unknown if

the hatchery-origin fish that have emigrated from the Nechako River will remain in the mid-Fraser

River throughout their life cycle or return to the Nechako to reproduce. If some hatchery fish do

return to the Nechako River, gene flow impacts will be reduced; however, ecological impacts from

hatchery fish using the mid-Fraser River habitat would remain. More detailed information about
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habitat uses and spawning behavior would help reduce uncertainty about the extent of the genetic

and ecological effects of the hatchery program.

3.6. Conclusions

In our modeled case study, the long-lived life history of white sturgeon caused the genetic effects

of hatchery production to accumulate slowly over time. Given that captive breeding is expected

to be a temporary measure in this system, the slow time scale of the population’s dynamics is a

dominant factor determining the level of genetic risks. This highlights the general importance of

time scales and the management of ecological systems. Models that only account for a population’s

biology often explicitly ignore the time scale of the system’s dynamics by studying equilibrium

behaviors and rescaling (non-dimensionalizing) the units of time. Although these can be useful

methods in some cases, in an applied setting, the time scale of the ecological system’s dynamics

can influence the options available to managers. In our case study, the relatively slow time scale

of the population’s dynamics provides a long window of time for managers to learn and address

the root causes of the population’s decline, with a relatively limited risk of unintended genetic

consequences when compared to shorter-lived species. In effect, the time scale of the biological

system becomes important in an applied context because of its interaction with the time scale of

the management system.
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CHAPTER 4

Investing in Information for Fisheries Management
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4.1. Abstract

Successful conservation and natural resource management often require significant investments in

monitoring programs to allow management actions to respond to changes in the ecosystem. How-

ever, financial and scientific resources for these programs are often limited and must be allocated

between competing priorities. This problem is particularly acute for fisheries management, where

harvest limits are ideally updated to track changes in population abundance, but in many cases,

the number of stocks in need of assessment exceeds the available capacity. I developed a bioe-

conomic model to identify the optimal strategy for investing in monitoring information used to

set catch limits for a fishery. Using this model, I tested the sensitivity of the economic value of

monitoring information, such as fisheries independent surveys and model-based stock assessments,

to the manager’s objectives and the population’s biology. Based on these findings, I identified a set

of factors that can be used to prioritize scarce monitoring resources. The relative abundance and

productivity of the stock increased the economic value of monitoring information, while stocks with

more variable dynamics were assessed more frequently under the optimal strategy. Furthermore,

monitoring was more valuable for maximizing fishery profits than for achieving conservation goals.

These results follow from the effect of monitoring on the dynamics of the management system.

Monitoring allows harvest limits to be updated in response to changes in the stock’s status, cre-

ating stabilizing feedback that maintains the stock in a productive, economically valuable state.

Increasing the frequency of monitoring tightens these feedback loops, which disproportionately in-

crease the value of fisheries targeting stocks with high and variable growth rates whose abundance

varies more rapidly over time.

4.2. Introduction

Monitoring programs can be critical components of conservation and natural resource management

strategies. Monitoring forms the basis of adaptive management strategies that use monitoring

to estimate the effectiveness of past interventions (1), and monitoring support state-dependent

policies that apply interventions based on current biological and environmental conditions (2).

More generally, accurate and timely information about the state of the ecosystem allows people to

change their behaviors to respond to changes in the underlying ecosystem, establishing a stabilizing

feedback mechanism that can increase the resilience of the coupled human-natural system (3).
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Despite these potential sources of value, the cost-effectiveness of many environmental monitoring

programs has been called into question (2,4). Monitoring consumes large fractions of many conser-

vation and resource management agency budgets (2), and these funds might have a larger impact

if spent on active interventions like restoration projects or other forms of information collection like

basic research. Furthermore, in some contexts, resources for monitoring are scarce, creating a need

to prioritize scientific resources for data collection and analysis between systems (5).

Fisheries management exemplifies both the potential value of monitoring programs and the need for

prioritization. Many successful models of fisheries management require accurate estimates of the

abundance of harvested populations to set catch limits, season lengths, and other restrictions on

the fishery (6). Annual catch limits exemplify the value of state-dependent management. Policies

that use a fixed catch limit (e.g., the maximum sustainable yield) are inherently unstable (7), but

if these limits are adjusted in response to changes in the abundance of the stock, they can be robust

to uncertainty and environmental change (8). However, given the remote location of many fisheries

and other logistical challenges, fisheries monitoring programs that assess abundance levels are a

significant expense. In the United States, the National Marine Fisheries Service (NMFS) spent

$175 million on fisheries data collection, surveys, and stock assessments in 2021, about 30% of its

total fisheries science and management budget ($620 million, NOAA Blue Book 2021). Globally,

management agencies often have many more stocks within their portfolios than they can regularly

monitor and assess (5,9), with resources being especially limited in developing countries (10). This

combination of factors has created a need for fisheries management agencies to develop strategies

for prioritizing scientific resources between fisheries based on biological characteristics, economic

value, and perceived management needs (5).

A critical component of these prioritization decisions is identifying biological attributes and man-

agement contexts that determine the value of monitoring information for a given fishery. These

factors can provide a science-based approach for allocating scientific resources between competing

priorities and for evaluating the efficiency of fisheries monitoring programs. For example, Methot

(2015) developed a framework that assigns a numerical score to stocks managed by NMFS based

on biological characteristics, conservation goals, and economic value. These numerical scores were

then used to identify the target number of years between assessments for each stock and to set a list

of annual priorities. Although the choice of factors included in this framework is well motivated by
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verbal arguments, more recent advances in bioeconomic modeling techniques provide a set of tools

to produce rigorous quantitative estimates of the value of monitoring information and the optimal

investment strategy (11,12,13).

Here, I build on these advances in bioeconomic modeling by developing a model of fisheries moni-

toring programs that characterizes the optimal strategy for investing in monitoring information and

estimates its economic value for fisheries management. However, the modeling alone cannot quan-

tify the effect of the biological and economic attributes of the fishery on the value of monitoring.

To estimate these values, I combined the bioeconomic model with global sensitivity analysis (14),

which produces a novel measure of the effect of biological and management context on the value

of information. The resulting estimates can help identify when fisheries monitoring programs are

cost-effective and prioritize monitoring resources between fisheries when they are scarce. Further-

more, the sensitivity analysis method is highly generalizable, allowing this novel application of the

technique to be applied to other systems where monitoring resources need to be prioritized.

4.3. Methods

4.3.1. Model overview. I develop a bioeconomic model of a fishery that tracks the biomass

of the stock Bt and the harvest Ht at each annual time step t. A manager sets a catch limit Ht each

period based on an estimate of the stock’s abundance B̂t and the corresponding level of uncertainty

CVt, derived from noisy observations of the stock yt. The manager can choose to increase the

accuracy of the observations yt each period by investing in monitoring it. The abundance estimate

is updated each period in a two-step process. The first step updates the estimate to account for

harvest and population growth. The second step updated the estimates using Baye’s law to account

for the monitoring observation yt. The manager sets the catch limits Ht according to a predefined

harvest control rule and chooses when to monitor the stock to maximize an objective function,

which includes profit from harvesting the stock, non-consumptive value of the stock, and the cost

of monitoring the population.

The model is constructed from three sub-models (fig. 4.1) mirroring the management strategy

evaluation (MSE) framework (15): 1) an operation model that describes the dynamics of the

stock, the harvest Ht, and the monitoring observations yt, 2) an estimation model, that converts

the observations yt into the abundance estimate, and 3) a management strategy that defines how
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the abundance estimate is used to set the target harvest level Ht and monitoring decision it. This

allows me to analyze the dynamics of the stock’s abundance, the information available to the

manager and their choice of actions as a coupled system. An example of how the dynamics play

out is shown in the time series in figure 4.1.B. The manager’s abundance estimates track the true

abundance of the stock, with uncertainty growing between periods with monitoring. However, in

contrast with the MSE framework, which compares the performance of predefined policies, I use

dynamic optimization techniques solve for the optimal monitoring decisions.

Figure 4.1. A) Schematic model diagram illustrating the causal links between
the state of the stock, the managers beliefs about the stocks abundance and the
resulting harvest and monitoring decisions. B) an example time series of model
output, tracking biomass, harvest, monitoring, and the estimated abundance of the
stock.

4.3.2. Operation model. The operation model describes how management decisions map to

biological and economic outcomes. The model has two management decisions: the target harvest

level Ht and the monitoring decision it. These choices determine the harvest in the current period

Ht and the biomass in the following period Bt+1 through the stock growth equations and the

accuracy of the monitoring observation yt through the observation model.

4.3.2.1. Stock growth. I assume the current biomass of the stock Bt depends on the biomass

in the previous period Bt−1, the harvest limit Ht−1, and variable environmental conditions νt−1.

For each period, the biomass is updated in two steps. First, the harvested individuals are removed

from the population. This number generally equals the harvest limit Ht−1, but because the biomass

Bt−1 is uncertain, the harvest limit can exceed the stock biomass. Fisheries rarely, if ever, cause

harvest populations to go extinct (16), so I cap the harvest level so that it does not deplete the
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stock below a minimum biomass Bmin

B′
t−1 =


Bt−1 −Ht−1 if Bt−1 −Ht−1 > Bmin

Bmin if Bt−1 −Ht−1 ≤ Bmin

(4.1)

I set Bmin to 5% of the biomass that produces the maximum sustainable yield in the main text

and test the sensitivity of our results to this assumption in appendix C.1.1.

Second, the population grows. I assume the growth is a density-dependent function of the biomass

B′
t−1 and environmental conditions νt−1. For simplicity, I use a two-parameter model consistent

with logistic growth, where r describes the growth rate at low biomass and b is the strength of

density dependence

Bt =
rB′

t−1e
νt−1−0.5τ2

1 + bB′
t−1

.(4.2)

I assume that the environmental term (νt) is stochastic and defined by a sequence of independent

and identically distributed normal random variables with mean zero and variance τ2. These equa-

tions define the probability of transitioning T (Bt−1, Bt|Ht−1) from biomass Bt−1 to Bt given the

harvest limit Ht−1.

4.3.2.2. Observation model. At the beginning of each period, the manager makes an observation

yt of the stock’s biomass. Following the previous literature on optimal environmental monitoring,

I assume the observations have log-normally distributed measurement errors (12,13). This choice

of distribution ensures the observations will also take a positive value and causes the errors to

scale proportionally with the stock size. The variance parameter of the measurement errors σit−1

is determined by the monitoring decision it−1 ∈ {0, 1} made in the previous period. If the manager

chooses to invest in monitoring (it−1 = 1), the measurement error is σ1. However, these investments

might only represent part of the information used to manage the fishery. For example, it = 1 can

represent investing in the fishery-independent surveys. In this case, the manager might also estimate

the stock’s abundance using fishery-dependent data. The quality of these alternative information

sources is represented by the measurement errors σ0. Given these assumptions the likelihood of

observing yt given the biomass Bt and monitoring decision it−1 is given by a log-normal probability

density function
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g(yt, Bt, it−1) =
1

ytσit
√
2π
e
− 1

2

(
log(yt)−log(Bt)

σit−1

)2

.(4.3)

4.3.3. Estimation model. The biomass estimates are formed using Bayesian inference. The

information available to the manager about the stock’s abundance is represented by a probability

density function f(Bt). Each period, this distribution is updated in a two-step process. First, the

initial belief state f(Bt) is updated to account for the new observation yt using Bayes’ law

f ′(Bt) =
g(yt, Bt, it−1)f(Bt)∫∞

0 g(yt, u, it−1)f(u)du
.(4.4)

Second, the belief state is updated to account for the effects of harvest and population growth.

The belief states f(Bt+1) after harvest, and growth is found by integrating the state transitions

probabilities T (Bt+1, Bt|Ht) over the current belief state f ′(Bt)

f(Bt+1) =

∫ ∞

0
f ′(u)T (Bt+1, u|Ht)du.(4.5)

For the optimization procedure, I approximate the manager’s belief state with a normal probability

density function ϕ with mean B̂t and coefficient of variation CVt. I track changes in the belief state

by calculating the effects of equations 4.4 and 4.5 on the mean B̂t and coefficient of variation CVt

as described in Appendix C.2.1. This method is equivalent to the density projection approach used

by (17).

4.3.4. Management strategy. The management strategy specifies two decisions in each pe-

riod: 1) the harvest limit Ht and 2) monitoring it. Both quantities are determined by policy

functions that map from the manager’s belief state (B̂t, CVt) to a decision. The catch limit Ht is

set by a predefined function shown in figure 4.2. This function is based on HCRs commonly used

for marine fisheries management in the United States (18).

In contrast, I do not set a predefined function for the monitoring decision it. Instead, I define

a management objective and apply an optimization procedure to solve the policy function that

maximizes it. The optimal solution specifies the optimal sequence of actions ({i}t) over time, given

the uncertainty over the population’s biomass. This type of decision problem is called a Partially
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Observable Markov Decision Process (POMDP); see (19) for a detailed discussion of the application

of POMDPs to environmental monitoring.

4.3.4.1. Harvest control rule. The harvest control rule is sets the harvest limit Ht for each

period based on the expected biomass B̂t. The control rule first determines the annual target

exploitation ratio F t based on the expected biomass based on the hockey stock rule commonly

used in US marine fisheries management (18). Above a target biomass level Btarget, the target

exploitation ratio is set at a constant value Ftarget. Below Btarget, the exploitation ratio declines

linearly down to a threshold value Blimit below which the target exploitation ratio is set to a

minimum value Fdm. This is defined as a piecewise function

F t(B̂t) =


Ftarget if B̂t > Btarget

ZtFtarget + (1− Zt)Fdm if Blimit < B̂t ≤ Btarget

Fdm if B̂t ≤ Blimit

(4.6)

Zt ≡
B̂t −Blimit

Btarget −Blimit
.(4.7)

The two threshold values Btarget and Blimit correspond to target and limit reference points (18).

Figure 4.2 illustrates the effect of these reference points on the control rule. Throughout, we fix the

biomass target at the biomass at maximum sustainable yield Btarget = BMSY , the target fishing

mortality at the maximum sustainable yield Ftarget = FMSY , the limit reference point Blimit at

25% BMSY and the de minimus fishing mortality Fdm at 2%. I also consider a case with a constant

fishing mortality target, which corresponds to setting the target and limit reference points to zero

(Btarget = Blimit = 0.0).
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Figure 4.2. A) The harvest control rule, relating the target fishing mortality rate

F t to the estimated biomass B̂t based on the reference points Blimit and Btarget and

mortality rate targets Fdm and Ftarget. B) The harvest limit Ht is determined by

the target exploitation ratio times the estimated biomass (F t × B̂t) minus a buffer
β.

The harvest limit is set by solving for the harvest that will yield the annual target exploitation

ration F t given the expected biomass B̂t, minus a buffer β ∈ (0, 1) to account for uncertainty

Ht = (1− β)B̂tF t.(4.8)

In the base specification, we assume β is a fixed value that does not depend on the level of uncer-

tainty CVt. However, some fisheries are managed with harvest control rules that reduce harvest

limits when the stock abundance is more uncertain. A common approach is the p∗ − σ rule (20).

We explore the effects of this specification in appendix C.1.2.

4.3.4.2. Manager’s problem. I assume the manager chooses whether or not to monitor the stock

each period to maximize profits from the fishery πH(Ht, Bt) and non-consumptive values πN (Bt)

minus the cost of monitoring c×it. These three components are combined into an objective function

that depends on the harvest Ht and biomass Bt, which are given, as well as the choice to monitor

it, which is chosen optimally.

The profits from the fishery πH are determined by revenues from harvest, stock-dependent costs,

and a quadratic term associated with processing and handling the catch

πH(Ht, Bt) =
Ht

MSY
− c1Ht

FMSYBt
− c2H

2
t

MSY 2
(4.9)

The revenues Ht/MSY equal the catch as a fraction of the maximum sustainable yield, and the

cost terms are constructed to simplify to c1 and c2 when the stock is harvested at the maximum
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sustainable yield (Ht = MSY and Ft = FMSY ). This parameterization facilitates comparison

between scenarios with different stock sizes and productivity. It also ensures that the expected

profit from harvest set by the HCR is always positive.

I assume the non-consumptive values are a concave function of the stock’s abundance to capture

the conservation benefits from leaving biomass in the ecosystem and risk aversion

πN (Bt) =
ρBt

Bt + (1− ρ)2BMSY
.(4.10)

The strength of risk aversion is determined by a parameter ρ that controls the curvature of the

function. The non-consumptive values are scaled to equal one when the population is at the

equilibrium abundance in the absence of fishing.

Figure 4.3. The effect of the cost and risk aversion parameters on the objective
function. A) The value of the objective function in the base parameter set as a
function of harvest Ht and biomass Bt. B) The effect of the cost parameters c1 and
c2 on the fisheries profits as a function of the biomass Bt and harvest relative to
the maximum sustainable yield. C) The effect of risk aversion parameter ρ on the
non-consumptive values as a function of the biomass Bt relative to the biomass that
produces the maximum sustainable yield BMSY .

The manager’s problem maximizes the weighted sum of the fisheries profits, non-consumptive val-

ues, and monitoring costs c, discounted into the future at rate r, subject to the harvest control
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rule, harvest constraints, and the stock dynamics

max
it∈{0,1}

{ ∞∑
t=0

(
1

1 + r

)t

(ωHπH(Ht, Bt) + ωNπN (Bt)− cit)

}
(4.11)

s.t. eqn. 4.1− 4.10,

where ωH is the weight given to fisheries profits and omegaN is the weight given to nonconsumptive

value.

The solution to the manager’s problem is characterized by two components: a policy function

P (B̂t, CVt) that maps from the manager’s belief state to the optimal monitoring decision it and a

value function V (B̂, CVt) that maps from the manager’s belief state to the expected net present

value of the fishery under optimal monitoring. I solved for approximations of these functions using

a dynamic programming algorithm described in appendix C.2, and tested their performance using

Montecarlo integration in appendix C.3.

4.3.5. Value of information sensitivity analysis. I used the bioeconomic model to com-

pute the effects of the biological and management context on the value of monitoring information.

This was done in two stages. First, I defined three metrics that characterize the value of infor-

mation and the optimal policy: The total value of the monitoring program (V oIT ), the marginal

benefit of monitoring net of monitoring costs (V oIM ), and the frequency of monitoring (ωi=1). I

then applied a global sensitivity analysis (GSA) to characterize the effects of changes to the model

parameters in the bioeconomic model on the value of the monitoring program.

4.3.5.1. Total value of monitoring. I calculated the total economic value of the monitoring to

understand the importance of monitoring for the performance of the fishery management strategy.

I computed this value by comparing the expected net present value of the fishery when monitoring

is chosen optimally V (B̂t, CVt) to the expected net present value of the system in the absence of

monitoring Vit=0(B̂t, CVt). I computed Vit=0(B̂t, CVt) by solving the manager’s problem (eqn.4.11)

with the value of it fixed at zero. The total value of monitoring is given by the difference between

these two value functions,

V oIT = V (B̂t, CVt)− Vit=0(B̂t, CVt).(4.12)
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Parameter Interpretation base value range

B̂t Estimated biomass N.A. 0.05BMSY −
BMSY

CVt Uncertainty in B̂t N.A. 0.0− 1.0
MSY Maximum sustainable yield 10.0 w.l.o.g.
FMSY Exploitation ratio that produces the

maximum sustainable yield
0.2 0.05− 0.3

BMSY The biomass that produces the maxi-
mum sustainable yield

50 33.3− 2001

r The population growth rate when rare N.A. 1 N.A.1

b The effect of density dependence on
population growth

N.A. 1 N.A.1

τ2 Variance of stochastic environmental
conditions

0.05 0.025− 0.1

β Uncertianty buffer 0.4 0.0− 0.3
Bmin Minimum biomass 0.05BMSY N.A.2

Ftarget Maximum target exploitation ratio FMSY N.A. 2

Fdm Minimum target exploitation ratio 0.02 N.A. 2

Btarget Target reference point rule BMSY N.A.2

Blimit Limit reference point BMSY N.A. 2

σ2it=1 Variance of observation error when ac-
tively monitoring

0.2 0.1− 0.5

σ2it=0 Variance of passive observations 2.0 1.0− 3.0
c cost of active monitoring 1.0 w.l.o.g
c1 Stock dependent costs param. 0.1 0.0− 0.5
c2 nonlinear costs param. 0.05 0.0− 0.1
ρ Nonconsumptive values nonlinear

param.
1.5 1.2− 2.0

ωH Harvest values weight 10.0 1.0− 15.0
ωN Nonconsumptive values weight 10.0 1.0− 15.0
δ Discount rate 0.05 0.01− 0.1

Table 4.1. Model parameters and ranges used in the global sensitivity analysis.
1 value is determined by choice of MSY and FMSY
2 not included in global sensitivity analysis

4.3.5.2. Marginal benefit of monitoring. In addition to calculating the total value of monitoring I

computed the marginal benefit of choosing to monitor once without cost when otherwise following

the optimal policy V oIM . The goal of calculating this quantity is to understand what factors

make monitoring most valuable at a given time, guiding short-term prioritization decisions, like

the annual stock assessment priorities described in (5). I computed this value by comparing the

expected present value of the system assuming monitoring was chosen it = 1 verses assuming it

was not it = 0. I compute this value using the Q function (appendix C.3), which is the net present

value of the fishery given the current belief state (B̂t, CVt) and choice of action it. Given the Q
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function, the expected benefit of a single monitoring observation is found by taking the difference

between the net present value when choosing to monitor and not choosing to monitor in the current

period, plus the monitoring costs

V oIM (B̂t, CVt) = Q(B̂t, CVt, 1)−Q(B̂t, CVt, 0) + c.(4.13)

In addition to the raw value V oIM used in the sensitivity analysis, I also calculated the annuity

value of monitoring V oIA = V oIM (1 + 1/r). The annuity value calculates the present value of a

stream of income discounted at the rate r. Re-scaling the marginal value for one period V oIM to

the annuity value V oIA allows a more direct comparison to the total value of monitoring and the

net present value of the fishery, which are determined by the discounted stream of income from the

fishery.

4.3.5.3. Frequency of monitoring. I calculated the frequency that the manager chose to monitor

the stock under the optimal policy to characterize the importance of monitoring to the management

strategy over the long run. These values are intended to guide long-run prioritization decisions like

the target stock assessment frequency described in (5). I used simulations (appendix C.3) to

compute how often the manager monitors the stock under the optimal policy.

4.3.5.4. Global sensitivity analysis. I used a global sensitivity analysis (GSA) to identify the

effect of biological parameters and the management objective on the value of monitoring and

frequency under the optimal policy. GSA quantifies the effect of varying each model parameter

over a range of possible values on a chosen outcome. The parameters included in the sensitivity

analysis and the respective ranges are given in table 4.1. I quantified the magnitude of the effect

of each parameter using variance-based GSA (14). In addition, I characterized the sign and shape

of the relationship with partial dependence plots (21).

GSA metrics require many repeated evaluations of the model and, therefore, are computationally

expensive to compute directly. To mitigate this cost, I computed the GSA metric with an emulator,

a machine-learning model approximating the true model that is cheap to evaluate repeatedly. I

trained the emulators on a data set generated by calculating V oIT , V oIm, and ωi=1 at a set of

input parameters sampled by a low discrepancy sequence (Sobol sequence) from the ranges used in

the global sensitivity analysis. I then fit boosted regression tree models to each data set (22), and

tested the quality of the approximations on a set of test data not included in the training process.

74



The correlation between the test data and the predicted values was 0.996 for the marginal value of

monitoring, 0.996 for the total value, and 0.961 for the frequency of monitoring.

4.4. Results

4.4.1. Optimal monitoring strategy. The optimal choice to monitor the stock in a given

period it depends on the current abundance estimate B̂t and the associated level of uncertainty CVt

(the manager’s belief state). The relationship between the belief state and the choice to monitor

is called the policy function. The shape of the policy function in turn depends on the harvest

control rule, management objectives, and biological characteristics of the stock. However, the

policy functions do have some common features. In general, monitoring is optimal for large values

of uncertainty, but the threshold value CV depends on the estimated biomass B̂t (fig.4.4.A). The

relationship between the estimated biomass and the threshold uncertainty is a decreasing function

of the expected biomass, indicating that monitoring is more valuable when the stock is abundant

(fig.4.4.B). When the harvest control rule includes a limit reference point, it is never optimal to

monitor when the estimated abundance is small (fig. 4.4.A). Adding uncertainty buffers to the

harvest control rule tends to increase the threshold uncertainty, indicating that monitoring is less

valuable in these cases.

Figure 4.4. The policy functions A) heatmaps indicating regions of state space
where monitoring is optimal (yellow) and where it is not (green). B) The threshold
value of CVt above which monitoring is optimal with and without buffers β added
to account for uncertainty.
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4.4.2. Economic value of monitoring. Monitoring programs can contribute a large fraction

(¿20% in our base scenario) of the total economic value of a fishery. I characterize the economic value

of monitoring information in two ways. The marginal benefit of a single observation is calculated

as an annuity and the total net present value of the monitoring program. Both the marginal benefit

and the total value of the monitoring programs depend on the estimated biomass B̂t and level of

uncertainty CVt (fig. 4.5). The marginal benefit of monitoring is very sensitive to the current level

of uncertainty and biomass varying between 0% and 60% in the base scenario. The total value

of the monitoring program is less sensitive to the current belief state varying between 16% and

24% of the net present value of the fishery. Both values are larger in proportional terms when the

harvest objective is considered in isolation, between 0% and 80% and 20% and 30%, respectively

(fig. C.5). The increase in percentage terms can be attributed to the fact I demonstrate in the

following section that non-consumptive values have a small effect on the value of monitoring but

do increase the total value.

Figure 4.5. The economic value of the monitoring program in the base scenario.
A) The marginal benefit of monitoring is calculated as an annuity, and B) the total
value of the monitoring program as percentages of the net present value of the
fishery. Not the difference in scale between the y axes

4.4.3. Effect of biological and management context. The economic value of monitoring

programs was primarily derived from the fishery’s profits, even though non-consumptive conserva-

tion goals were given equal weight in the manager’s problem. The value of information was then

modified by the biological characteristics of the stock and additional management context.

The marginal benefit of monitoring depends primarily on the current level of uncertainty CVt

and estimated biomass B̂t (fig. 4.6.A). If the current level of uncertainty is low, then additional

observation will have a limited effect. Similarly, when the stock is scarce, the choice in harvest
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limit Ht is insensitive to small changes in abundance, limiting the value of new observations. In

addition to the belief state and fishery profits, the size of the uncertainty buffer β, the quality of

information in the absence of monitoring σp, and the growth rate of the stock FMSY have a large

positive effect on the marginal benefit of monitoring.

Figure 4.6. A) the global sensitivity of the marginal benefit of minoring V oIM

to each model parameter and the belief state variables. The global sensitivities
are measured in two ways: the first-order effect, which only considers the effect of a
change in the focal parameter, and the total effect, which includes interaction effects
between multiple parameters. B) The partial dependence of the value of monitoring
on each belief state variable and model parameters.

These same factors also contribute to the total value of the monitoring program (fig. C.6). However,

we found that the belief state has a much smaller effect on the total value than the marginal benefit,

while the discount factor had a larger influence on the total value. The total value of monitoring

depends on the benefits from the program accumulating over a long time horizon, reducing the

importance of the system’s current state. The discount factor also becomes important because it

determines the weight given to the value of observations made in the distant future.

The frequency of monitoring under the optimal policy was determined by many of the same factors

that determined the economic value but was more sensitive to the growth rate of the stock FMSY and

the amount of environmental variability τ . The effect of environmental variability on monitoring

is somewhat ambiguous ex-ante. A more variable environment increases the need for information

because uncertainty grows more quickly over time, but one the other hand, any information you

get from monitoring decays more quickly, decreasing its value. Here, we find that the first effect
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seems to dominate, and environmental variability increases monitoring frequency. The large effect

of the growth rate of the stock on monitoring frequency is caused by the fact that stocks with

higher growth rates are harvested at higher target exploitation ratios Ft. Because the exploitation

rate is higher, mistakes in setting the catch limit will compound more quickly over time.

Figure 4.7. A) Importance of each model parameter for determining the frequency
of monitoring under the optimal policy. B) The partial dependence of the frequency
of monitoring on each model parameter.

4.4.4. Robustness tests. I tested the robustness of my findings to two key assumptions: 1)

that the fishery cannot reduce the biomass of the stock below a minimum value Bmin and 2) the

uncertainty buffers β were constant over time. The qualitative results are generally robust to these

assumptions (appendix C.1) with a few exceptions discussed below.

4.4.4.1. Minimum biomass. I found that the value of monitoring was largely unaffected by the

choice in minimum biomass Bmin except for high values of uncertainty (fig. C.1). When uncertainty

is high there is a chance that the harvest limit H is set at or near the biomass of the stock Bt

in which case the biomass limit Bmin would bind. Small values of Bmin increase the value of

monitoring because these over-harvest events are more costly as it takes a longer amount of time

for the stock to recover. Understanding the capacity of the fishery to deplete the stock is likely

an important factor for designing programs and prioritizing monitoring resources for data-limited

stocks.
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4.4.4.2. Uncertainty buffers (p∗ − σ). I tested the effect of buffers that scaled with the current

level of uncertainty CVt using the p∗ − σ rule (20). Ex-ante, The effect of these rules on the value

of monitoring is ambiguous; it may increase the value of monitoring because greater uncertainty

systematically reduces harvest limits or reduce its value because the probability of overfishing the

stock because of uncertainty is reduced. I found the latter to be true. The marginal benefit

and the total value of monitoring are lower when the p∗σ rule is applied (fig.C.2). Furthermore,

The frequency of monitoring under the optimal policy was reduced for larger uncertainty buffers

(smaller values of p∗, fig.C.3). The p∗ − σ rule also changed the sensitivity of the optimal policy

to the management objectives, increasing the effect of fishery profits ωH and reducing the effect

of conservation values ωN (fig. C.3). The p∗ − σ rule reduces the effect of conservation values by

reducing the risk of overharvest when uncertainty is high.

4.4.5. Comparison to U.S. National Marine Fisheries Service (NMFS) stock assess-

ment prioritization framework. To illustrate how my findings can inform practical management

decisions, I compared them to a framework developed by NMFS to prioritize model-based stock

assessments. Stock assessments are used in commercial fisheries management to evaluate the abun-

dance of harvest populations and identify sustainable harvest levels; thus they play an analogous

role to the monitoring observations described by our model. Furthermore, stock assessments are

updated at semi-regular intervals depending on the needs of the management agency. The NMFS

framework discusses these prioritization decisions.

I found two primary differences between the NMFS prioritization framework and our model results

(table 4.2): 1) the NMFS framework gives equal weight to ecosystem importance (non-consumptive

values) and fishery importance (harvest value). In contrast, my results showed that harvest values

are the primary driver of the value of the monitoring program. 2) The NMFS framework increases

the priority of assessments for stocks that are below their target abundance. My model indicates

that it is not valuable to monitor the stock at low abundances because the choice in harvest limit

is not sensitive to new information under these circumstances.

In addition, the NMFS framework and my model include different biological characteristics of the

stock. The NMFS framework uses the population age structure (mean and in catch) while my

framework includes the stock productivity FMSY . However, these two factors are often correlated;

short-lived fast-growing species (younger mean age in catch) are consistently more productive than
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Factor
NMFS
framework

Model
parameter

Annual priorities Target frequency
NMFS Model NFMS Model

Fishery
importance

recreational,
subsistence
commercial

Harvest
weight ωH

0− 15 0.075 +1 yr 0.3

Non-
consumptive
values

ecosystem
importance

NCV weight
ωNCV

0− 10 0.008 +1 yr 0.06

Stock status

Abundance,
rebuilding
status

Estimated

biomass B̂t
0− 6 0.15 0 0

relative
fishing
mortality

Not considered 0− 5 0 0 0

Assessment
information

years
assessment
overdue

Uncertainty
CVt

0− 10 0.34 0 0

Assessment
level

Measurement
accuracy σa

0 0.009 0 0.002

New data,
changes in
indicators

Not considered 0− 10 0 0 0

Not considered
passive
info. σp

0 0.009 0 0.09

Stock
biology

mean age
in catch

Not considered 0 0 ×1/2 0

Not considered
Productivity
FMSY

0 0.035 0 0.35

Recruitment
variability

productivity
shocksτ

0 0.00 ±1 yr 0.03

Policy
process

Constituent
demand

Not considered 0− 5 0 0 0

Harvest
Control rule

Uncertainty
buffer

Uncertainty
buffer β

0 0.006 0 0.025

Table 4.2. Factors included in the NMFS stock assessment prioritization frame-
work (5) and the corresponding factor included in the model. Factors that are not
included in the framework have a weight of ”0” and while factors that are tested
and have no weights are marked ”0.00”

long-live species (23). My finding that more productive stocks are assessed more frequently under

the optimal policy is consistent with the NMFS framework, which increases assessment frequency

for stocks with lower mean ages in catch.
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4.5. Discussion

My analysis demonstrates that monitoring programs can significantly increase the economic value

of a fishery, with contributions ranging from 5% to 20% in the total value in our base scenario.

This value stems from improved harvest decisions, which allow for higher harvest limits for a risk

of over fishing the stock. As such, the value of monitoring is primarily derived from fisheries profits

rather than non-consumptive conservation values (ecosystem importance). This does not mean

that conservation cannot justify monitoring in general because this information could be useful for

other conservation measures, like identifying critical habitats not considered by our model.

Management context and biological factors also influenced the value of monitoring. The availability

of alternative information sources reduced the value of additional investments in monitoring; this is

described by the passive monitoring variable σp in our model. This parameter is important for sce-

narios where multiple information sources are available. For example, many fisheries management

systems combine fishery-dependent data and independent surveys to estimate the stock biomass. In

this context, the value of the independent surveys depends on the quality of the fishery-dependent

data. The optimal monitoring strategy was also effected by adding buffers to reduce the harvest

limits; this suggests a difference between the costs of reducing harvest with the buffers and the

cost of additional monitoring. Finally, the growth rate of the stock FMSY increased the value of

monitoring programs. Indicating that faster-growing, short-lived species require more monitoring

resources.

4.5.1. Mechanistic interpretations. In addition to providing a quantitative estimate of the

economic value of monitoring programs, my findings illustrate two general principles: 1) information

is valuable only if it is likely to change a decision (2,24) and 2) monitoring (and the associated

learning) helps establish stabilizing feedback mechanisms (sensu. (3)). The first principle explains

the sensitivity of the optimal monitoring policy to the choice in harvest control rule. Monitoring

was most valuable when the expected stock size was larger than management targets. In this region

of the state space, changes in estimated stock size result in relatively large changes in the harvest

limit. When the stock is below management targets, the harvest limit is much less sensitive to new

information and, therefore, less valuable. These findings align with previous research on optimal

monitoring strategies, which demonstrated that monitoring is most beneficial near thresholds where

81



discrete changes in management actions occur (12, 13). However, in this case, the management

action is continuous, so the value of monitoring is increased over a large region of the state space

where the harvest limits are sensitive to the estimated biomass.

4.5.2. Monitoring as a stabilizing feedback. The second principle links the economic value

of monitoring to its effects on the dynamics of the coupled human–natural system. Accurate and

frequently updated monitoring information allows managers to respond to opportunities created by

increases in abundance and avoid overfishing the stock if it declines in abundance. This responsive-

ness is especially important for setting fisheries catch limits because it eliminates a positive feedback

mechanism that can create a tipping point and cause fishery to collapse (7). Consider an extreme

case where monitoring is absent, and the harvest levels are constant over time. The amount of

biomass that can be removed sustainably from a population is determined by its abundance; there-

fore, if the stock declines in abundance, the sustainable harvest level might also decline. If the

harvest limits remain constant, they can exceed the new lower sustainable level, causing further

declines in abundance and initiating a vicious cycle. Preventing this vicious cycle may explain the

relatively high value of monitoring in this system.

This second principle can also explain why monitoring is more valuable for stocks with higher

productivity. We found that more productive stocks (higher FMSY ) were monitored more frequently

under the optimal policy, indicating that tighter feedback between abundance and harvest limit

is valuable in these scenarios. One explanation is more productive stocks are exploited at higher

ratios (a larger fraction of the stock is harvested each period) and, therefore, can become overfished

more quickly if the stock declines and corrective actions are not taken. This mechanism might also

explain why monitoring is more valuable when the harvest control rule has a smaller uncertainty

buffer (higher values of β), which also leads to higher exploitation ratios. A second explanation

is the effect of productivity on the time scale of the population dynamics. Larger values of FMSY

are associated with fast-growing, short-lived species (23) that have faster population turnover and

whose abundance varies on shorter time scales. In this context, more frequent monitoring is needed

to match the faster time scale of the population dynamics.

The value of monitoring for establishing stabilizing feedback mechanisms also points to a limitation

of our modeling framework: the absence of alternative feedback mechanisms. In the absence of

strong regulations, bioeconomic theory suggests that fisheries are self-stabilizing. All else equal, as
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stocks decline, fish become more difficult to find and expensive to harvest until an equilibrium is

reached where harvest costs are equal to revenues (25,26), albeit at a lower equilibrium stock and

profits relative to a managed fishery. This process creates a stabilizing feedback mechanism that can

reduce the extent of overfishing if managers fail to adjust catch limits appropriately. My model does

not incorporate these alternative stabilizing mechanisms, which could cause it to overestimate the

value of the monitoring program. However, this stabilizing feedback can be weakened if the price of

catch greatly outweighs the costs of harvesting, the stock remains easy to find when rare (27,28,29),

or the stock is exploited as part of a multi-species fishery (30). Although including them would

likely increase the value of monitoring, these additional economic factors are beyond the scope of

this study.

4.5.3. Incentives to invest in monitoring. In addition to identifying factors that determine

the value of information, the model also illustrates where the incentives to invest in monitoring come

from. Specifically, we find that the value of monitoring is largely derived from fisheries profits. This

finding aligns with previous results on optimal harvest strategies, demonstrating that under a wide

range of conditions, a sole owner of a fishery has a strong incentive to conserve the stock (26,31).

Under these conditions, the sole owner limits harvest in the present, given their understanding of

how it affects future profitability. Similarly, the optimal monitoring decision takes into account

how monitoring costs today influence future profits. However, if the profits from the fishery are

low relative to the cost of monitoring, this incentive might not be strong enough to justify the

investment, which can compromise sustainability.

4.5.4. Implications for designing harvest control rules. My findings also have implica-

tions for designing fisheries’ harvest control rules. Multiple recent studies have identified modifica-

tions to HCRs as a simple and potentially effective reform to increase the resilience of fisheries to

climate change (8,32,33). My results indicate that these reforms will also influence the optimal

strategy for investing in monitoring information. Specifically, I find that adding uncertainty buffers

and reference points to HCRs makes management less information-hungery; especially when stocks

are scarce. This is logical because both measures are designed to improve the robustness of the

harvest strategy to uncertainty (33). Reducing the information requirements of harvest strategy

may be a valuable contribution of these reforms, especially under climate change, where increasing
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variability in the abundance and distribution of stocks could make reliable abundance estimates

more costly; on the flip side, where robust monitoring systems are in place changes to HCRs maybe

less valuable.

4.5.5. Model assumptions and limitations. Although these results have clear implications

for investing in monitoring information and designing harvest strategies, they need to be considered

in light of simplifying assumptions and limitations of the model. Critically, we assume that the

catch limits chosen by the manager will be a binding constraint unless the stock’s abundance is

very low Bt < 5%BMSY . This may be a reasonable assumption for highly valuable commercial

or popular recreational fisheries, but it limits the applicability of our results to less valued species

where the harvest limits do not constrain harvest levels. This assumption is useful because it allows

the model to take as given the decisions made by harvesters, simplifying our analysis. In practice,

however, the adaptive behavior of these decision-makers may need to be considered. For example,

increases in fishing efforts might signal a need for additional monitoring.

The model also uses a simplified representation of uncertainty. First, I assume the manager knows

the exact functional form and parameter value for the stock’s population dynamics. Relaxing this

assumption would cause uncertainty to increase more rapidly between monitoring observations,

likely increasing the frequency of monitoring under the optimal policy. The model’s representation

of state uncertainty (measurement error) is also simplified. Abundance estimates from stock assess-

ments typically have two sources of uncertainty: an estimate of abundance relative to a historical

baseline and a scaling factor relating changes in relative abundance to changes in biomass (34).

Both factors are important for implementing harvest control rules. Monitoring changes in relative

abundance allows harvest levels to respond to changes in abundance, establishing a stabilizing feed-

back mechanism, while the scaling factor is used to calibrate the harvest control rule (5) (i.e. how

much to increase or decrease harvest in response to a change in relative abundance). My model

assumes the HCR is well-calibrated and focuses on uncertainty in relative abundance. Therefore,

it does not capture the value of monitoring for improving estimates of the scaling factor and may

overestimate the performance of the harvest control rules.

More broadly, my analysis is based on a decision-theoretic approach that weighs the costs and

benefits of monitoring to inform a specific decision (catch limits), assuming the manager follows a
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predetermined rule (the HCR). By focusing on one specific decision, the model may tend to underes-

timate the value of monitoring information. The model ignores the value of monitoring information

for decisions like gear or area restrictions for the fishery. It also ignores the value of transferable

knowledge produced by long-term monitoring data sets (35). In contrast, my assumption that the

manager will strictly follow a predetermined rule will cause the model to overestimate the value of

information because factors like status-quo bias and conflict between interest groups might limit

the impact of new information on management actions, reducing its potential value (35).

4.6. Conclusion

Fisheries are an example of coupled human and natural systems where human activities and the

state ecosystem are linked in a cycle of mutual causation. Fisheries management, defined by a com-

bination of data collection schemes, decision-making rules, and regulatory enforcement (32), can be

a stabilizing feedback mechanism linking ecosystem states and the level of human impacts. Tight-

ening these feedback loops can increase the resilience of the coupled system, improving economic

and environmental outcomes (3). Monitoring information can be costly but forms a critical link in

the cycle. We find that efficient strategies for investing in monitoring depend on the choice harvest

control rule, the stock biology, and the management objectives. This suite of factors can help

regulators prioritize scarce scientific resources, improving the efficiency and resilience of fisheries

and the ecosystem services they provide.
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Vaccine Prioritization
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A.1. Model specification, parameterization and optimization

A.1.1. Model dynamic equations. The dynamic equations specifying transitions between

the disease states are as follows:

Ṡi = −qsiθ

∑
j∈J

∑
m∈M

τmrm,i,jSi
Im,j

Nj

− µiv(A.1)

Ḟi = −qsiθ

∑
j∈J

∑
m∈M

τmrm,i,jFi
Im,j

Nj

+ (1− ϵi)µiv(A.2)

Ėi = qsiθ

∑
j∈J

∑
m∈M

τmrm,i,j(Si + Fi)
Im,j

Nj

− Ei/γexp(A.3)

Ṗi = ϵiµiv(A.4)

İpre,i = Ei/γexp − Ipre,i/γpre(A.5)

İasym,i = σasymIpre,i/γpre − Iasym,i/γasym(A.6)

İsym,i = (1− σasym)Ipre,i/γpre − Isym,i/γsym(A.7)

Ṙi = Iasym,i/γasym + (1− δi)Isym,i/γsym(A.8)

γ̇i = δiIsym,i/γsym.(A.9)

To reduce clutter we have suppressed the time index t on each of the state variables, the vaccine

allocation vector µi, and the vaccination rate v.
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Parameter Description Base Value(s) Source

J demographic groups: (1)
age-only,

{0-4, 5-19, 20-39, 40-59,
60-74, 75+},

Assumed

(2) age and essential work-
ers

{0-4, 5-19, 20-39, 20-
39*, 40-59, 40-59*, 60-
74, 75+}

σasym infection asymptomatic rate 0.16 (1)
δ infection fatality rate (age-

specific)
{6.7×10−6, 2.5×10−5,
0.0002, 0.002, 0.018,
0.12}

(2)

s susceptibility (age-specific) {0.5, 0.5, 1.0, 1.0, 1.0,
1.0}

(3)

τpre relative infectiousness 0.51 (4)
τasym by symptom type 0.51
τsym 1.0
γexp symptom duration 3.0 (4)
γpre (days) 3.2
γasym 3.5
γsym 7.0
ϵ vaccine effectiveness 0.9 Informed by initial COVID-19

vaccine effectiveness estimates
(5)

p proportion of essential
workers

0.40 Calculated with labor data (6,7);
alternative: (8)

R0 secondary infections in a
naive population

2.5 (9), (10)

q transmission probability in
a naive population

0.053 Calculated given R0, s and other
parameters

θ scaling factor for transmis-
sion probability due to NPI
other than social distancing

0.65 Assumed (consistent with esti-
mated COVID-19 R0 under NPIs
(10))

n population shares: (1) age-
only,

{0.06, 0.19, 0.27, 0.26,
0.19, 0.04},

(11)

(2) age and essential work-
ers

{0.06, 0.19, 0.19, 0.08,
0.18, 0.8, 0.19, 0.04}

e remaining years of life ex-
pectancy (age-specific)

{76, 66, 50, 31, 17, 6} (12)

R(0) initial recovered 0.08 Informed by IHME projections
(13)

Isym(0) +
Iasym(0)

initial sympt. and asympt. 0.005

v fraction of population vacci-
nated daily

0.1/30 Informed by comments from
CDC Director to U.S. Senate
Panel (14)

Table A.1. Base model parameter values and sources.

A.1.2. Model parameters.
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Scenario Change from Base scenario parame-
ters

Source

High initial infections 15 symptomatic infections per 1000 Assumed
Strong NPI θ = 0.5 Assumed
Weak NPI θ = 0.75 consistent with 30-70%

of U.S. population al-
ways wearing a mask
(15) with 33-58% effec-
tiveness (16)

Weak vaccine ϵi ∈ {0.5, 0.5, 0.5, 0.5, 0.5} Minimum value from
FDA approval

Weak vaccine seniors ϵi ∈ {0.9, 0.9, 0.9, 0.9, 0.5, 0.5} Informed by influenza
vaccine effectiveness

High susceptibility ages
< 20

si ∈ {1.0, 1.0, 1.0, 1.0, 1.0} Assumed

Low supply v(t) = 0.05/30
allocation policies switched every 60
days

Assumed

Ramp up

v(t) =

{
0.05/30, t ≤ 60
0.10/30, t > 60

]
Allocation polices switch for every
10% of population vaccinated

Informed by comments
from the scientific head
of the U.S. vaccine
development pro-
gram (17)

Open schools αschool = 0.7 Assumed
High contacts αsocial = 0.5 Assumed

Table A.2. Parameter values that differ from the Base case for alternative scenar-
ios.

A.1.3. Parameters for alternative scenarios.
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A.1.4. Initial conditions. The number of susceptible, infected and recovered individuals is

likely to vary by region and will depend on the time when the vaccine is deployed. Because of the

likely variation in this parameter, we test a range of values from 1-20 symptomatic cases per 1000

(when the vaccine is deployed). The infections are assumed to be distributed between groups in

accordance with the stable distribution of cases when the epidemic is growing exponentially. The

portion of each group infected at time t = 0 in the Base parameter set is shown in Fig. A.1. The

number of recovered individuals in the population was set to 8% of each demographic group which

was informed by IHME projections (13). When the vaccine is first deployed, we set the number of

deceased and vaccinated individuals in each age group to zero (since the share of actual deceased

is very small, i.e. approximately 0.0015). The number susceptible was set to ensure the proportion

of individuals in each category summed to 100% after the number of individuals at each stage of

infection was determined.

Figure A.1. The proportion of each demographic group infected when vaccine
distribution begins in the Base scenario.
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A.1.5. Calibration. The relationship between the basic reproduction number, R0, and pa-

rameters governing transmission and epidemiological characteristics is given by the so-called next-

generation matrix:

R0 = max[eigenval{qγpreτpre(r∆s)∆n+ qσasymγasymτasym(r∆s)∆n+(A.10)

q(1− σasym)γsymτsym(r∆s)∆n}],

where the maximum eigenvalue operator wraps several terms including r, the social contact matrix,

s, the age-specific susceptibility rate, n, a vector of the proportions of the population in each

demographic group and ∆, an operator that signifies multiplying each row of a matrix by the

corresponding entry in the vector. For symptom type m ∈ {asym, pre, sym}, the constants γm, τm

and σm represent the duration, relative infectiousness of an individual and the probability of type

m, respectively.

We first set a baseline R0 = 2.5 as estimated by (9). We then solve for the transmission probability

parameter, q, using Equation A.10, assuming a naive (pre-pandemic) population. We then scaled

q by a fixed factor θ ∈ [0, 1] to reflect the impact of non-pharmaceutical interventions (NPI) like

masks, hand washing and maintaining distance when contacts are made.
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A.1.6. Contact matrices distinguishing essential workers. Estimated contact rates for

the U.S. were obtained from (18) who used population-based contact diaries from the European

POLYMOD survey to project to other countries, including the U.S. These included contact rates

for 16 age classes in five year increments from ages 0 to 80. We collapsed these to five age groups

(0-4, 5-19, 20-39, 40-59, 60-80) using population-weighted sums:

(A.11) r̂i,j,x =
∑
i∈i

Npop
i

Npop
i

∑
j∈j

ri,j,x

 ,

where {i, j} are the subscripts for the five year age bins, {i, j} are the subscripts for the larger

age bins, ri,j,x is the average number of daily contacts a person in group i makes with a person in

group j for activity/location x, and Npop
h is the population size for age group h.

The total number of i-to-j contacts must equal the total number of j-to-i contacts: Npop
i ri,j,x =

Npop
j rj,i,x. Because numerical issues—estimation in (18), bin discretization and rounding—can lead

to small differences, we ensure this condition holds by imposing,

(A.12) ri,j,x =
0.5(Npop

i r̂i,j,x +Npop
j r̂j,i,x)

Npop
i

,

where the numerator is the mean of the two measures of total contacts between groups i and j and

the denominator transforms the result to per-capita in i.

Setting essential worker contact rates requires additional assumptions and attention to the activ-

ity/location. We define the essential worker indicators e ∈ {n, y} for “no” and “yes”. Our grouping

is such that all essential workers (e = y) are employed but non-essential-workers (e = n) are a mix

of employed and not employed. Let e′ represent the indicator for a second group which can be

equal or not equal to the value for e.

In the case of all activities/locations x that are not work, contact rates are given by

(A.13) r(i,e),(j,e′),x =
Npop

(j,e′)

Npop
j

ri,j,x, ∀ x ̸= work.

This follows from the assumption that contacts made by any group (i, e) with any other group

(j, e′) are independent of i’s essential worker status. Thus, we only need to split contacts ri,j,x into

those made with essential worker type e′ = y versus the remainder with type e′ = n, i.e. given the

share Npop
(j,e′)/N

pop
j .
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Estimating contacts when x = work involves a larger number of steps. We first address contacts

made by essential workers (e = y) before turning to non-essential workers (e = n). For e = y, let

the share of the working age population (20− 59) in group i that is employed be given by pi.

We assume that all of the work contacts are attributable to employed adults resulting in an employed

adult contact rate of ri,j,work/pi. Then the contact rate of essential workers (e = y) in group i with

age group j is

(A.14) r(i,y),j,work =
ri,j,work

pi
.

Let the fraction of working age group i that is employed in an essential worker role be given by pi,y.

The average workplace contact rate for non-essential-workers in group i with group j is given by

(A.15) r(i,n),j,work = αwork

(
ri,j,work

pi

)(
pi − pi,y
1− pi,y

)
,

where αwork < 1 scales for social distancing and the final term in brackets scales for the share of

non-essential workers that are employed and thus have contacts at work.

Finally, we assume that the average workplace contact rate for an individual of type (i, e) with

individuals of type (j, e′) is given by the partial contact rate r(i,e),j,work times the proportion of

total work contacts of individuals in group j that are made by individuals in sub group e′:

(A.16) r(i,e),(j,e′),work = r(i,e),j,work

(
N(j,e′) · ri,(j,e′),work

N(j,y) · ri,(j,y),work +N(j,n) · ri,(j,n),work

)
.

In addition to The formulation described above we also considered a scenario where essential workers

contacts were clustered (i.e. individuals only contact others of the same essential worker status at

work). The work contact rates for each group are calculated in the same manner as described

above, but we assume that the c work contacts between essential and non-essential workers are

zero.

These two model formulation represent two extremes. Work contacts are likely to be concentrated

among others of the same essential status (as opposed to formulation one) but essential workers

are likely to have some contacts non-essential workers in the work place.

Finally we scale the work contacts for age groups that are not separated into essential and non-

essential workers (5-19, 60-80) to match the scaling for prime working age classes.
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(A.17) ri,j,work =

(
pi,y
pwork

+ α
pwork − pi,y

pwork

)
ri,j,work

A.1.7. Optimization algorithm. The optimization algorithm used in our analysis is split

into two parts. First a genetic algorithm is run to identify an effective strategy near a global

optimum. This solution is then refined via simulated annealing.

Genetic algorithms take inspiration from the natural process of evolution, and work by randomly

sampling a populating of candidate solutions, selecting a set of survivors based on the candidates

performance against the objective function, information from these survivors is then used to gen-

erate a new generation of candidates solutions, and so forth (19). The genetic algorithm executes

the following steps:

(1) Sample Nt=0 candidate solutions {xn,t=0} from a Dirichlet distribution with parameter

α0.

(2) Each candidate solution is evaluated with the objective function.

(3) The bests Kt=0 candidates {xbestn,t=0} are solved and the distributions parameter α0 is up-

dated to α1 which is the mean of {xbestn,t=0} times the entropy parameter for that time step

ηt. The entropy parameter determines how concentrated new samples will be around the

mean of the selected samples in the prior step.

(4) Steps 1 to 3 are repeated for a fixed number of iterations T and the best candidate solution

sampled at any iteration is returned. The values Nt, Kt and ηt are tuned for each step to

maximize performance.

Simulated annealing is based on thermodynamic models of cooling metals. Briefly, the algorithm

is initialized by sampling a candidate solution x0, this candidate solution is updated by sampling a

new candidate solution xt from a proposal distribution centered around x0. This solution is either

accepted and replaces the current x0 or it is rejected and a new candidate solution is drawn using

the existing value of x0. The proposed solutions xt are accepted if they perform better against the

objective than the incumbent x0, if xt > x0 it is selected with probability p = exp [−(xt − x0)/Tt].

large values of Tt increase the probability that a new candidate solution will be accepted allowing

the algorithm to explore the solution space and move away from local minima. Tt is reduced over
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time to allow the algorithm to start exploring the solution space and then eventually stabilize on

a global minimum. The simulated annealing executes the following steps:

(1) Initialize a chain with value x0. Generate a new sample from the proposal distribution

xt ∼ tr(N(tr−1(x0), σI)) where the transform tr from Rn to the solution space. Initialize

a counter i that tracks the number of iterations.

(2) If xt < x0 replace x0 with xt, update i = i+ 1 and repeat from step 1.

(3) If xt > x0 sample µ ∼ unif(0, 1). If µ > exp (−(xt − x0)/T (i)) then replace x0 with xt

update i and repeat from step 1. Otherwise save x0 and repeat from step 1. We used

T (i) = T0/i as the temperature function.

(4) Stop when i > max iter

These algorithms were tuned experimentally to consistently converge on a minimum solution on a

test case. We used the minimum years of life lost under the Base parameter set as our test case.

We found that numerical errors (defined as difference between the test runs) increased over the

decision periods. This is caused by the face that the final decision periods are a region of very flat

payoff, leading to a large number of solutions that perform very similarly but differ in this region

To quantify the sensitivity of the solutions to deviations in the outcome of interest, for each decision

variable, we identified the range of alternative values nearby that produced a similar objective

function value. This procedure is described in Appendix A.1.8.

A.1.8. Whiskers on optimal vaccine allocation bars in Fig. 2.2. The whiskers on opti-

mal vaccine allocation bars in Fig. 2.2 show the range of alternative allocations that still produce

an outcome that is within 0.5% of the optimum. The upper (lower) bound of each whisker was

produced one at a time by systematically exploring higher (lower) levels of the given decision vari-

able (proportion of vaccines allocated to a given demographic group in a given decision period).

Let x represent the level of a single decision variable. The whiskers for x were found in a two step

process. First, approximate upper (lower) bounds on the range of x were found by sampling new

candidate solutions above (below) the optimum with a Markov chain using the algorithm below.

(1) Initialize a chain with the optimized value x0 = x∗. Generate a new sample from the

proposal distribution tr(xt) ∼ N(tr−1(x0), σI), where the function applies the soft max

function to each decision period so that the solutions are represented by a vector in
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R(ngroups−1)∗nsteps , I is the identity matrix and σ = 0.001. ngroups = 8 is the number

of demographic groups and nsteps = 6 is the number of decision periods. Initialize a

counter i that tracks the number of iterations.

(2) If f(xi) < 1.005 ∗ f(x∗), where f returns the value of the objective function, replace xi−1

with xi, update i = i+ 1, save xi and sample a new candidate solution centered at xi.

(3) Else reject xi and sample a new candidate solution centered at xi−1.

(4) Stop when i > Nsamples = 10000

(5) Repeat steps 1-4 to generate samples from Nchains = 30 independent chains. For each

decision variable x, return the maximum (x) and minimum (x) value from the list selected

samples.

For each decision variable, this algorithm produces the pair (x, x), an upper bound for the minimum

whisker value and, similarly, a lower bound for the maximum value for the whisker. We refined this

solution as follows. For each decision variable, we take x and explore alternative candidate values

xcand ∈ [0, x], i.e., values between the lower bound on the decision variable and x. To do so we use

the bisection root finding algorithm adjusting the value of xcand until f(xcand) − 1.005 ∗ f(x∗) ≤

tol = 0.01. The procedure is repeated for the upper extent of the whisker for xcand ∈ [x, 1]. Thus

the final whisker extents are each within a percentage point of the true bound.

A.2. Static policies

We found that the patterns observed for our dynamic solutions were similar for the static policies.

The static policies targeted the same high priority groups: ages 5-19 and essential workers when

minimizing infections, and ages 60+ along with essential workers when minimizing deaths and

YLL. Again consistent with the dynamic policies we found that optimal vaccine allocations were

substituted towards essential workers when the effectiveness of the vaccine was low and when the

reproductive number when the vaccine first became available was small. These patterns are shown

in Fig. A.2A. 1

In Fig. A.2B we show how robust the static policies are when applied to the “wrong” scenario. As

with the dynamic policies we found that most polices performed very poorly when applied to the

weak vaccine ages 60+ and the strong NPI scenarios, relative to the optimum. But, in general,

1It should be noted that the quantities plotted in Fig.A.2A correspond to the allocation of the initial supply, which
is different from the similar main text Fig.2.4 that presents the percent of each group vaccinated at 3 months.
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deterioration in performance (due to a mismatch between the true scenario and the one driving

the policy applied) was much worse for static than dynamic polices. One driver of this effect is

that static polices identify one set of high priority groups and do not switch. Dynamic polices also

identify one set of high priority groups but then also switch. Thus dynamic policies differ by when

a group is prioritized, as opposed to the static polices which differ by which groups are a high

(unchanging) priority.

Figure A.2. The sensitivity of static policies to the alternative scenarios as given
by the percent of the initial supply allocated to each demographic group (A), the
performance relative to the optimum allocation of each policy when applied to each
of the alternative scenarios when the objective is YLL (B).

A.3. Additional model robustness results

Here we present performance loss due to a mismatch between the true scenario and the one used

to establish the allocation policy. Results are presented for either minimizing deaths (Fig. A.3) or

infections (Fig. A.4).

A.4. Alternative model structures

In addition to considering a range of alternative parameter sets, we tested our results against three

alternative model structures: (1) clustered essential workers: essential workers only contact other

essential workers in the work place; (2) concentrated essential workers: 20% of the working age

population are “essential” and have substantially higher (slightly above doubled) contact rates than
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Figure A.3. The percentage of additional deaths in excess of the optimum when
applying a policy for an alternative scenario (row) to an alternative “true” scenario
(column).

essential workers in the Base model; and (3) leaky vaccine: the vaccine reduces the susceptibility of

all vaccinated individuals to infection, and reduces their infectiousness and risk of death if infected.

The corresponding parameter values for each alternative model are summarized below in Table

A.3 and the model structure for the leaky vaccine model is given in SI Appendix A.4.1. Results

presented in Fig. A.6 are discussed in the main text.

A.4.1. Leaky vaccine specification. Vaccines can provide multiple forms of protections

against infections. Among these protections is the ability for vaccines to prevent individuals from

becoming infected (the case considered in the main text). In addition, if vaccinated individuals

still become infected they may (1) be exhibit reduced infectiousness and/or (2) develop less severe

symptoms. To allow for these latter two cases we changed the model structure to track vaccinated

and infected individuals. To do this we maintained the protected and uninfected category P and

added four categories: vaccinated and exposed class Pexp, vaccinated and pre-symptomatic Ppresym,

vaccinated and asymptomatic Pasym and vaccinated and symptomatic Psym. The effectiveness of
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Figure A.4. The percentage of additional infections in excess of the optimum when
applying a policy for an alternative scenario (row) to an alternative “true” scenario
(column).

Model New parameters
Clustered essential
workers

Essential workers contacts focused
within group as discussed in SI Ap-
pendix A.1.6

Concentrated essen-
tial workers

The proportion of essential work-
ers is 20% work; contact rates
are increased for essential workers
(αwork = 0.1, αwork∗ = 1.0 )

Leaky vaccine 1 V Esucpt = V Etrans = V Esym = 0.9
Leaky vaccine 2 V Esucpt = 0.9, V Etrans = V Esym =

0

Table A.3. The parameter values changed between the alternative model struc-
tures and the base model.

the vaccine is modeled with three age specific vectors, V Esucpt, V Etrans, and V Esym, which quantify

the extent to which the vaccine reduces the susceptibility of vaccinated individuals to infection, the

reduction in infectiousness of vaccinated individuals and the reduction in infection fatality rate of

vaccinated individuals. This new model can be described by the following system of equations:
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Figure A.5. The percentage of each demographic group vaccinated after the fist
decision period under each objective and the alternative scenarios.

Figure A.6. The percent of each demographic group (horizontal axis) vaccinated
after three months under the optimal policy for each of the alternative model struc-
tures (vertical axis) and objectives (panels).
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Ṡi = −qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,jSi
Im,j

Nj
+ τmrm,i,jSi

Pm,j(1− V Etrans)

Nj

]
− µiv(A.18)

Ṗi = −qsi(1− V Esucpt,i)θ

[∑
j∈J

∑
m∈M

τmrm,i,jPi
Im,j

Nj
+ τmrm,i,jPi

Pm,j(1− V Etrans)

Nj

]
+ µiv(A.19)

Ėi = qsiθ

[∑
j∈J

∑
m∈M

τmrm,i,jSi
Im,j

Nj
+ τmrm,i,jSi

Pm,j(1− V Etrans)

Nj

]
− Ei/γexp(A.20)

˙Pexp,i = qsi(1− V Esucpt,i)θ

[∑
j∈J

∑
m∈M

τmrm,i,jPi
Im,j

Nj
+ τmrm,i,jPi

Pm,j(1− V Etrans)

Nj

]
− Ei/γexp(A.21)

İpre,i = Ei/γexp − Ipre,i/γpre(A.22)

Ṗpre,i = Pexpi/γexp − Ppre,i/γpre(A.23)

İasym,i = σasymIpre,i/γpre − Iasym,i/γasym(A.24)

Ṗasym,i = σasymPpre,i/γpre − Pasym,i/γasym(A.25)

İsym,i = (1− σasym)Ipre,i/γpre − Isym,i/γsym(A.26)

Ṗsym,i = (1− σasym)Ppre,i/γpre − Psym,i/γsym(A.27)

Ṙi = Iasym,i/γasym + (1− δi)Isym,i/γsym + (1− δi (1− V Esym))Psym,i/γsym(A.28)

γ̇i = δi(1− V Esym)Psym,i/γsym + δi(1− V Esym)Isym,i/γsym(A.29)

We consider two cases: a vaccine with equal effectiveness set to 90% for consistency with the Base model V Esym =

V Esucpt = V Etrans = 90%, and a vaccine that only reduces susceptibility to infections V Esym = 90% and V Esucpt =

V Etrans = 0%.

A.4.2. Contact rates sensitivity. One key source of both uncertainty and heterogeneity between communities

is the true set of underlying social contact rates. To test the effects of these parameters we considered a range of

work and other contact rates around those specified in the Base scenario. The “other” (outside of the home, school

and workplace) contacts were scaled from the pre-COVID-19 average while the work contact rates were increased for

essential workers and held at 10% of pre-COVID-19 levels for non-essential workers. Results are presented in Fig.

A.7, where each scenario is labeled with the percentage change in average work contact rate and the contact rates of

essential workers are a percentage of pre-COVID-19 average levels. We found that the policies did change as both

other and work contacts increased and that these changes were consistent with the changes in reproductive number

induced by the higher contact rates.
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Figure A.7. The percentage of each demographic group vaccinated after 3 months
under the optimal dynamic policy given variation in (A) “other” (non-work) contacts
and (B) work contacts.
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APPENDIX B

Modeling white sturgeon hatchery impacts
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B.1. Effect of parametric assumptions on simulation results

The results of our simulation analysis, and especially the link between genetic effects of the hatchery and demographic

outcomes in the wild population, are determined by four biological parameters that are difficult to measure empirically:

the growth rate of the wild population when rare in the absence of hatchery production R0, the timing of natural

selection with the life cycle, the curvature of the fitness function (“strength of selection”) sW , and the change in

relative fitness caused by domestication selection Qg1 . The effects of these parameters on the link between genetic

and demographic outcomes has been explored previously (1,2), and our findings are consistent with these previous

results. We illustrate their effects in this section by comparing simulations with three levels of each parameter, holding

all other parameters at the base values. As expected, the quantitative predictions of the model are highly sensitive to

the choice in these model parameters, but the qualitative dynamics of the fitness effects are generally consistent. In

contrast, the demographic impacts of the hatchery are not always present. These are highly sensitive to the timing of

selection. If all selection occurs early in the life cycle before density dependence, the effect of mortality from selection

is offset by a reduction in density-dependent mortality, decoupling the fitness of the individuals from the growth rate

of the population.

Figure B.1. Simulations with different values of R0, the parameter that deter-
mines the strength of density dependence in the demographic model. Each simula-
tion shows similar effects on fitness, but the declines in recruitment after hatchery
production ends are smaller and occur after a longer delay when density dependence
is weaker (Lower values of R0).
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Figure B.2. The effect of the timing of selection on the genetic and demographic
outcomes. The two viability selection events s1 and s2 lead to similar fitness effects,
but the decline in fitness only leads to a decline in abundance if selection occurs after
density-dependent mortality s2. When selection occurs before density dependence, it
reduces the level of density-dependent mortality partially offsetting the demographic
impacts. Fecundity selection results in smaller fitness and demographic effects be-
cause its demographic effects are offset by density-dependent mortality and it acts
directly on hatchery-origin fish in the wild reducing the rate of gene flow.

Figure B.3. Simulations varying the curvature of the fitness function (sw = s1 +
s2 + sf ) while holding the fitness declines in hatchery constant. More curvature
(stronger selection) results in smaller declines in fitness and abundance, because
stronger selection removes a greater fraction of poorly adapted individuals before
they can reproduce, which in turn, reduces geneflow from the hatchery population
to the wild.
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Figure B.4. Simulations varying the genetic component of fitness decline (values
of relative fitness Qq1 closer to one) in the hatchery holding the total fitness decline
constant. Smaller values of relative fitness declines result in smaller impacts on
fitness are recruitment in the wild population, because the process of domestication
acts more slowly.

B.2. Equilibrium solution

To calibrate the model, we solved for the equilibrium abundance, age structure, and genotype distribution without

immigration from the hatchery. At equilibrium, the abundance and genotype distribution of the yearling cohort will

be constant over time

NW,0,t = N∗
W,0(B.1)

ψW,0,t(g) = ψ∗
W,0(g).(B.2)

These constants then determine each age class’s equilibrium abundance N∗
W,a and genotype distribution ψ∗

W,a (g).

We calculated the equilibrium abundance and genotype distribution for each age class by tracking the changes in a

cohort’s abundance and genotype distribution through each step in the life cycle. The first step is density-dependent

mortality (main text eqn.3.14), which affects the abundance but not the genotype distribution

N ′∗
W,0 = N∗

W,0S0f(β Xt)(B.3)

ψ′∗
W,0,t(g) = ψ∗

W,0(g).(B.4)
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The second step is selection (main text eqn.3.10-3.11) which changes both the genotype distribution and the abundance

of the cohort

N ′′∗
W,0 = N ′∗

W,0S
∗)(B.5)

ψ′′∗
W,0(g) =

1

S∗ψ
′∗
W,0 (g)W

′ (g)(B.6)

S∗ =

∫ ∞

−∞
ψ′∗

W,0,t (g)W
′ (g) dg(B.7)

We can then track the newly recruited cohort through its life history calculating the genotype distribution and

abundance at each age.

N∗
W,1 = N ′′∗

W,0(B.8)

ψ∗
W,1(g) = ψ′′∗

W,0(g)(B.9)

N∗
W,a+1 = SaN

∗
W,a, for a > 0(B.10)

ψ∗
W,a+1(g) = ψ∗

W,a(g)(B.11)

We can then find a closed-from for the age-specific abundance and genotype distribution given the recursive definition

given above in eqns.B.8-B.11

N∗
W,a = N∗

W,0S0f (βXt)S
∗

(
a−1∏
i=1

Sa

)
, (for a > 1)(B.12)

ψ∗
W,ais = S∗ψ

∗
W,0(g)W

′ (g) .(B.13)

Finally, we checked if our initial assumption that the yearling abundance and genotype distribution are constant

by applying the reproduction model (main text eqn.3.1-3.5) to the equilibrium age-structured conditions defined by

eqn.B.12 and B.13. This yields equilibrium conditions strictly in terms of the initial cohort abundance and genotype

distribution

N∗
W,0 =

Amax∑
a=1

FaN
∗
W,0S0f (βXt)S

∗

(
a−1∏
i=1

Sa

)
(B.14)

Xt = b0

Amax∑
a=1

Fa

(
a−1∏
i=1

Sa

)
N∗

W,0S0f (βXt)S
∗

(
a−1∏
i=1

Sa

)
+

Amax∑
a=1

ba

(
a−1∏
i=1

Sa

)
N∗

W,0S0f (βXt)S
∗

(
a−1∏
i=1

Sa

)
(B.15)

ψ∗
W,0(g) =

1√
2πVr

∫ ∞

∞

∫ ∞

∞
e

−(g−0.5g1−0.5g2)22Vrψ
∗
spawn(g1)ψ∗

spawn(g2)

d g1dg2

(B.16)

ψ∗
spawn (g) =

1

S∗ψ
∗
W,0(g)W

′ (g) .

(B.17)
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To solve for the equilibrium abundance, we combine the equilibrium age structure eqn.B.12-B.13 and use the model

of density dependence and selection eqn.B.3 and B.5 to rewrite the equilibrium conditions in terms of N ′′∗
W,0

N ′′∗
W,0 = S∗S0f

(
β

(
b0

Amax∑
a=1

Fa

(
a−1∏
i=1

Sa

)
N ′′∗

W,0 +

Amax∑
a=1

ba

(
a−1∏
i=1

Sa

)
N ′′∗

W,0

))
×

Amax∑
a=1

Fa

(
a−1∏
i=1

Sa

)
N ′′∗

W,0.(B.18)

Solving eqn.B.18 for N ′′∗
W,0 yields the equilibrium abundance at recruitment

N ′′∗
W,0 =

f−1

(
1

S∗S0
∑Amax
a=1 Fa(

∏a−1
i=1 Sa)

)
βb0

∑Amax
a=1 Fa

(∏a−1
i=1 Sa

)
+ β

∑Amax
a=1 ba

(∏a−1
i=1 Sa

) .(B.19)

We combined eqn.B.16-B.17 to create one equilibrium conditions for the genotype distribution

ψ∗
W,0(g) =

1√
2πVr

∫ ∞

−∞

∫ ∞

∞
e

−(g−0.5g1−0.5g2)2

2Vr

(
1

S∗

)2

ψ∗
W,0 (g1)W

′ (g1)ψ
∗
W,0 (g2)W

′(g2)dg1dg2.(B.20)

The right-hand side of eq. S21 combines two operators, a convolution (the double integral) and multiplication by

the selection gradient W ′ (g), both of these operators preserve normal distributions (i.e. if they are applied to a

normal distribution they will produce a normal distribution). Because of this property, we can check for solutions

where the ψ∗
W,0(g) is a normal distribution, and solve for the equilibrium mean ĝ∗ and variance V ∗. The convolution

operator does not change the mean of the distribution, and the selection operator pulls the mean toward the genotypic

optimum therefore an equilibrium will occur at the genotypic optimum ĝ∗ = 0. To solve for the equilibrium variance,

we track the effect of the reproduction and selection operators. Selection decreases the genetic variance by a factor

determined by the selection strength s. Reproduction can act to increase of decrease the genetic variance, random

mating reduces the genetic variance by a factor of 1/2 because individuals with unusually large or small genotype

values are more likely to mate with individuals with a less extreme genotype. However, impact heritability increases

the genetic variance by a factor of Vr. Applying selection and then reproduction produces an equilibrium condition

for the genetic variance of a cohort at birth

V ∗
W,0 =

1

2

(
V ∗
W,0 + s

)−1
+ Vr.(B.21)

solving for V ∗
W,0 yields

V ∗
W,0 =

2s

(1− sVr) +
√

(1− sVr)
2 + 4sVr

.(B.22)

Therefore, an equilibrium genotype distribution is

ψ∗
W,0 (g) =

1√
2πV ∗

W,0

e
− 1

2

(
g2

V ∗
W,0

)
.(B.23)

B.3. Model tuning and reparameterization

B.3.1. Density dependent parameters. We tune the model to achieve a specified R0 without altering the life

history characteristics of the population by tuning the density-independent survival at age zero (S0). The reproductive
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number R0 describes the expected number of offspring a newly born individual will have that survive to the same

point in the life cycle when density-dependent competition is negligible. We calculate it by multiplying the expected

lifetime egg production (LEP) of a recruit by the probability an egg survives to recruitment at the equilibrium

genotype distribution

R0 = S0S
∗ × LEP = S0S

∗
Amax∑
a=0

F
∏
a

a
j=1Sj .(B.24)

Higher values of R0 imply greater reproductive potential that is offset by density-dependent mortality at equilibrium

(thus stronger larger values of R0 imply greater density dependence). Tuning the model this way allows us to adjust

the strength of density dependence without changing the equilibrium abundance, which facilitates comparisons across

parameter sets. Solving for S0 in terms of R0 with eqn.B.24 yields

S0 =
R0

S∗
1S

∗
2

∑Amax
a=0 F ∗

a,n

∏a
j=1 Sj

.(B.25)

Given a value of S0, we solve for a the value of β that yields the target equilibrium population size using eqn.B.18

β =

f−1

(
S∗
1∑Amax

a=0 Fa
∏a
j=1 SjS

0

)
N∗

W,1

(
b0S0

∑Amax
a=0 Fa

∏a
j=1 Sj +

∑Amax
a=1 ba

∏a
j=1 Sj

) .(B.26)

B.3.2. Trait heritability. Previous studies have shown that the trait’s heritability under selection is an impor-

tant driver of the genetic effects of hatchery production (3). However, unlike these previous studies, our model does

not include heritability as a parameter. Rather it is an emergent property of the system that depends on the variance

of the trait distribution ψW,a,t, which can vary with time. To test the effects of trait heritability on outcomes, we tune

the model to fix the heritability of the trait given the equilibrium genotype distribution. The equilibrium heritability

depends on the variance of environmental effects VE and the variance of the equilibrium trait distribution V ∗
g

h2∗ ≡
V ∗
g

VE + V ∗
g

(B.27)

We derive V ∗
g in Appendix 2. Given this definition, we solve for the variance of environmental effects VE that produces

the target heritability at equilibrium

VE =
V ∗
g

h2∗ − V ∗
g .(B.28)

B.4. Numerical analysis

We used two alternative numerical techniques to represent the genotype distribution ψi,a,t(g). For the simulation

analysis we approximated the genotype distribution at a finite set of grid points. This method does not restrict

the genotype distribution to a specific functional form and can be the most accurate representation given sufficient

grid points. We also developed a method that represented the approximated the genotype distribution with a
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Gaussian density function and tracked changes in the mean and variance. This approach provided a finite dimensional

representation of the system that we used to calculate the Jacobian matrix for the recovery rate calculations.

B.4.1. Grid approximation. To account for deviations from normality we approximate the genotype distri-

bution by a probability mass function over a grid of genotype values. This numerical approximation replaces the

function ψi,a,t(g) with a vector ψ⃗i,a,t whose entries sum to one. The selection gradients vector W⃗ ′ defines the fitness

at each grid point. We calculated the effect of selection on the abundance, equation main text eqn. 9, with the

discretized version

N ′′
i,0,t = N ′

i,0,t(ψ⃗
′
i,a,t · W⃗ ′).(B.29)

We used a similar procedure to compute the effect of selection on the genotype distribution, with a discretized version

of main text equation 10

ψ⃗′
i,a,t =

ψ⃗i,a,t ◦ W⃗ ′

ψ⃗i,a,t · W⃗ ′
.(B.30)

The sold dot is the usual dot product operator, and the open dot is component-wise multiplication. We calculated the

abundance and genotype of the yearling age class in a similar fashion. The abundance of yearlings after reproduction

is unchanged by the discretization, but the genotype distribution is. The discretized version of main text eqn.3.10

and 3.11 is

ψ⃗spawn,t =
1

NW,0,t

Amax∑
a=0

F∑
i∈n,h

a,oψ⃗i,a,t.(B.31)

We can calculate the genotype distribution of the yearling population in the discrete model by replacing the integrals

in main text equation 3.6 with sums

ψ0,n,t [k] ∝
∑
i

∑
j

ψspawn,t [i] ∗ ψspawn,t [j] e
− (g[k]−0.5g[i]−0.5g[j])2

2Vr .(B.32)

However, we take advantage of the structure of these sums as a convolution to increase the computational efficiency

of the calculation using the Fast Fourier Transform (4). Eqn.B.32 is equivalent to applying two convolutions to the

spawning genotype distribution ψ⃗spawn,t. First the distribution of mid parental values are calculated by taking the

convolution of distribution of breeding values in the spawning population ψ⃗b,t with itself where breeding values are

exactly one half an individuals genotype value ψ⃗b,t [x] = ψ⃗spawn,t [2x]. Next, we then apply a convolution with the

inheritance kernel K⃗, a discretized normal distribution with mean zero and variance Vr, to the result of the first

operator to obtain the final value of the genotype distribution.

ψ0,n,t = (ψ⃗b,t ∗ ψ⃗b,t) ∗ K⃗,(B.33)

where ∗ denotes the convolution operator.
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B.4.2. Normal approximation. Another way to represent the genotype distribution numerically is to approx-

imate it with a normal distribution, where we then follow the expectation and variance of the genotype distribution.

In the following section we compute the effects of selection, reproduction and gene flow on the expectation and

variance of the genotype distribution, assuming the trait distribution normal.

B.4.2.1. Selection. When the genotype distribution ψ′
W,0,t is normal with mean EW,0,t and variance VW,0,t the

equation for selection (main text 3.10, 3.11) are

N ′
W,0,t =

∫ ∞

−∞

1

sVE + 1

√
1

2πVW,0,t
e
− 1

2

 s(g−popt)
2

2(sVE+1)
+
(g−EW,0,t)

2

2VW,0,t


dg(B.34)

ψ′
W,o,t (g) =

N ′
W,0,t

NW,0,t

1

sVE + 1

√
1

2πVW,0,t
e
− 1

2

 s(g−popt)
2

2(sVE+1)
+
(g−EW,0,t)

2

2VW,0,t


.(B.35)

To compute the new abundance and the expectation and variance after selection we rearranged the exponents in

eqns.B.34 and B.35 to take the form

(g − µ)2

2σ2
+ c.(B.36)

Rewriting the equations in this way reveals that they are equivalent to a normal distribution times a constant. The

expectation of the updated distribution is µ, the variance is σ2 and the constant c determines the survival rate. Using

this approach, we found that the updated expectation and variance of the genotype distribution are given by

E′
W,0,t =

VW,0,t

V ′ W,0,t
EW,0,t(B.37)

V ′
W,0,t =

V
(sVE+1)

W,0,t

sV +sVE+1
W,0,t .

(B.38)

The abundance after selection is determined by the abundance before selection and the constant c applying this yields

the updated abundance

N ′
W,0,t = NW,0,t

√
V ′
g

Vg
e
− 1

2

(
E2

Vg

(
1−

V ′
g
Vg

))
.(B.39)

B.4.2.2. Reproduction. In place of main text equations 3.6 and 3.7, which calculate the effects of reproduction

on the entire genotype distribution, here we calculate the mean and the variance of the genotype distribution of the

yearling age class. The mean is given by the weighted sum of the mean genotypes in each of the spawning age classes.

EW,0,t =

Amax∑
a=0

FaNW,a,t +

Amax∑
a=0

FaNH,a,t.(B.40)

We compute the variance of the yearling age class in two steps. First we computed the variance of the mid parental

genotype values of spawning pairs Vb, because we assume that spawning pairs form at random this value is half the
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variance of the genotype distribution in the spawning population

Vb,t =
1

2

Amax∑
a=1

∑
o∈{W,H}

FaV
′
o,a,t +

Amax∑
a=1

∑
o∈{n,c}

FaEo,a,t
2 − (EW,0,t)

2

(B.41)

To account for the variability in the inheritance of genotype values we then add the recombination variance to this

value

VW,0,t = Vb,t + Vr.(B.42)

B.5. Marginal effect of removals

The effect of removing a hatchery-origin individual on the genetic state of the population depends on its age. For

example, removing a young (immature) individual is likely to have a smaller effect than removing an older mature

individual because they are more likely to die before they have a chance to reproduce. We can formalize this idea by

calculating the expected lifetime reproductive success of an individual from the life table parameters for an individual

of age a

Ea [F ] =

Amax∑
i=a

(
Fi ×

i∏
j=a

Sj

)
.(B.43)

Where Fi is the fecundity at age i and
∏i

j=a Sj is the probability of surviving from age a to age i.
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Fisheries Monitoring
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C.1. Sensitivity Analysis

C.1.1. Minimum Biomass. One important assumption of the model is the minimum biomass. I assume that

the population cannot be driven to extinction by the fishery, which is consistent with both theory and empirical

evidence (1). However, this assumption requires a fixed lower bound on the population size Bmin In the main text

I set this value at 5%BMSY . To test the sensitivity of the results to this assumption I calculated the marginal value

of monitoring in the base scenario for three values {0.01BMSY , 0.025BMSY , 0.05BMSY }. The results of this analysis

are shown in SI figure C.1. The effect of Bmin has a small influence on the value of monitoring over most of the state

space, but significantly increases the value of monitoring for high values of uncertainty CVt.

Figure C.1. SI Figure 1.1) The effect of Bmin on the value of monitoring as a
function of the estimated biomass (x-axis) and uncertainty (colors). The values of
Bmin are denoted dashed and solid lines.

C.1.2. Incorporating uncertainty in the harvest control rule. In our base specification, the uncertainty

buffers are fixed and do not scale with uncertainty CVt. However, some fisheries do account for the level of uncertainty

in their harvest control rules. One simple way to incorporate uncertainty is the p∗ − σ rule. This rule is defined by

asking a simple question: Given our uncertainty about the abundance of the stock ”σ,” what is the probability of

overfishing given a harvest limit Ht? The harvest limit is then chosen to limit the probability of overfishing below a

target value p∗.

Overfishing occurs when the realized exploitation ratio Ft = Ht/Bt exceeds the target exploitation ratio F t. I define

the target exploitation ratio using an HCR similar to the one defined in the base specification (eqn. 4.6), but the
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value depends on the true biomass of the stock Bt

F t(Bt) =


Ftarget if Bt > Btarget

ZtFtarget + (1− Zt)Fdm if Blimit < Bt ≤ Btarget

Fdm if Bt ≤ Blimit

(C.1)

Zt ≡
Bt −Blimit

Btarget −Blimit
.(C.2)

Notice that both the realized exploitation ratio Ft and the target exploitation ratio depend on (unobserved) biomass

of the stock Bt. As a result, these values are not known with certainty. Instead, we can model them as random

variables whose distributions depend on the manager’s beliefs about the biomass of the stock B̂t and CVt. To find

the harvest limit we need to solve for the harvest limit Ht where the probability Ft exceeds F t is equal to p∗

p∗ = P (Ft > F t|B̂t, CVt, Ht).(C.3)

In the numerical implementation, I solve equation C.3 for Ht using the bisection algorithm.

To show how this specification changes the results, I computed the value of monitoring information and the monitoring

frequency sensitivity analysis. The marginal benefit and the total value of monitoring are both lower when the p∗−σ

rule is used(fig.C.2). The effect is greater for the total value. This difference can likely be explained by the difference

in performance in the absence of monitoring. Int he base scenario, the harvest control rule is set based on the

expected abundance of the stock even when uncertainty is very high, resulting in a high probability of over fishing

and destroying the value of the stock. in contrast the p∗−σ rule systematically adds a buffer, reducing the probability

of over fishing while still maintaining some harvest in the long run. The largest effect of the p∗ −σ rule was reducing

the sensitivity of the optimal policy to the non-consumptive values. This is likely because the highest probability

of depleting the stock occurs when uncertainty is high. However, when the p∗ − σ rule is used, the harvest limit is

significantly reduced when uncertainty is high, mitigating the risk of depleting the stock.

Figure C.2. A) Importance of each model parameter for determining the frequency
of monitoring under the optimal policy. B) The partial dependence of the frequency
of monitoring on each model parameter.
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Figure C.3. A) Importance of each model parameter for determining the frequency
of monitoring under the optimal policy. B) The partial dependence of the frequency
of monitoring on each model parameter.

C.2. Approximation of the manager’s problem

The manager’s problem is a partially observable Markov decision process (2). We approximate the solution by

restating the problem as a belief-state Markov decision process (MDP), which we solve using value function iteration

(VFI). Standard MDP solution techniques are limited when the observations yt are noisy because observations

from previous time steps yt−τ contain information about the system’s current state Bt not captured by the most

recent observation yt. Belief state MDPs solve this problem by defining the optimal policy as a function from the

manager’s beliefs about the system’s state f(Bt) to an action it. However, solving for the exact optimal policy

is infeasible because the belief states ft is a probability distribution, an infinite dimensional mathematical object.

Therefore, we choose to approximate the solution to the manager’s problem by representing the manager’s belief state

f with a parametric approximation; we then use the parameters of this distribution to define the optimal policy (3).

Following (4,5), I approximate the belief state with a log-normal density function with parameters µt and ηt, I find

the best fitting parameters to the true belief state f using density projection (3) which, in this, case correspond

to the expectation µt = Ef [log(Bt)] and variance η2t = Vf [log(Bt] of the log biomass. To improve interpretability,

We present the value and policy functions in terms of the expected biomass E[B] = B̂ = eµ+0.5η2

and coefficient of

variation CV =
√
e2η − 1.

I solve for the optimal policy using the Bellman equation, which implicitly defines the expected net present value of

the fishery as a function of the belief state variables V (µt, η
2
t ). The bellman equation defines the value function and

the expected return from the fishery in the current period E[π(Bt, Ht, it)|µt, η
2
t ] plus the discounted expected value
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of the fishery in the following year E[V (B̂t+1, CVt+1|µt, η
2
t ]

V (B̂t, CVt) = max
it∈{0,1}

{
E[π(Ht, Bt, it)|µt, η

2
t ] + δE[V (µt+1, η

2
t+1)|µt, η

2
t , it]

}
.(C.4)

The optimal policy is defined as the argument it that satisfies the maximization operator in the Bellman equation

P (B̂t, CVt) = argmax
it∈{0,1}

{
E[π(Ht, Bt, it)|µt, η

2
t ] + δE[V (µt+1, η

2
t+1)|µt, η

2
t , it]

}
.(C.5)

The integrals used to compute the expectations operators in equations C.4 and C.5 are defined in SI appendix C.2.1.

In short, these operators integrate over the belief state distribution f(Bt) to account for uncertainty in the current

biomass and integrate over the probability of transitioning between pairs of belief states T (µt+1, η
2
t+1|µt, η

2
t , it) to

account for uncertainty in the future state of the system. I solve equation C.4 using the value function iteration algo-

rithm, approximating V (µt, η
2
t ) at a fixed set of regularly spaced grid points defined by pairs (µ, η2). I approximated

values between the grid points by interpolating them with a cubic b-spline. Details of this implementation are given

in SI appendix C.2.2, and code for the analysis is available on GitHub.

C.2.1. Belief state transition probabilities. As discussed above, I approximate the belief state ft(Bt) with

a log-normal distribution and track the changes in the mean µt and variance η2t of the log biomass xt. The mean and

variance are updated in two steps corresponding to equations 4.5 and 4.4. The first step incorporates information

from new observations using Baye’s law, and the second accounts for the effect of harvest and population growth.

The manager’s prior beliefs f(Bt) and the measurement errors are normally distributed (after a log transformation).

Normal priors and likelihoods form a conjugate family of distributions; therefore, the Bayes’ update changes the

parameters of the prior distribution but not the functional form. We apply these formulas to the initial mean and

variance µt, η
2
t to obtain the updated values

µt
′ =

(
µt

σit
2
+
yt
η2t

)(
1

σit
2
+

1

η2t

)−1

,(C.6)

η2t
′
=

(
1

σit
2
+

1

η2t

)−1

.(C.7)

The second step, which calculates the effect of harvest and population growth on abundance, does not have a closed-

form solution because the stock dynamics are non-linear. Instead, the updated mean µ and variance η2 are represented

as integrals that calculate the expectation of the biomass after the nonlinear growth equations have been applied

µt+1 =

∫ ∞

−∞

∫ ∞

−∞
ϕ(xt|µ′

t, η
′
t
2
)ϕ(νt|0, τ2)log

(
r (ext −Ht) e

νt−0.5τ2

1− b (ext −Ht)

)
dxtdνt,(C.8)

η2t+1
′
=

∫ ∞

−∞

∫ ∞

−∞
ϕ(xt|µt

′, η′t
2
)ϕ(νt|0, τ2)

(
log

(
r (ext −Ht) e

νt−0.5τ2

1− b (ext −Ht)

)
− µ′

t+1

)2

dxtdνt.(C.9)

where ϕ(x|µ, η2) is the normal density function with mean µ and variance η. In the following sections, having a

compressed notation for each of these operations will be convenient. In the following, I refer to the Baye’s update
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equations (eqn. C.6) as a function Ub(µ, η
2, y, i), and the population growth update (eqn. C.8 as the function

Ug(µ, η
2).

C.2.2. Value function iteration. The Value Function Iteration algorithm has two primary components: a

method for calculating the expectation operators in the Bellman equation (eqn. C.4) and a method to numerically

approximate the value function V (µt, η
2
t )

C.2.3. Expectation operators. The Bellman equation C.4 evaluates the expected reward in the current

period, given the uncertainty in the biomass, and the expected value of the fishery in the following period, given

the uncertainty in the biomass and growth rate. The first term is computed by integrating the objective function

π(Ht, Bt, it) over the normal approximation of the managers belief state

E[πt|µt, η
2
t ] =

∫ ∞

−∞
π(Ht, e

xt , it)ϕ(xt|µt, η
2
t )dxt(C.10)

I approximate equation C.10 with Gauss-Hermite weights ωi and nodes ni. Gauss Hermite quadrature integrates

functions of the form f(xt)e
−x2

. Therefore, I used a change of variables to calculate the expectation of π(Ht, Bt, it)

with respect to the belief state distribution

E[πt|µt, η
2
t ] =

1

ηt
√
2π

∫ ∞

−∞
π(Ht, e

xt , it)e
− 1

2

(
xt−µt
ηt

)2
dxt(C.11)

u = ηtxt + µt(C.12)

E[πt|µt, η
2
t ] =

1√
2π

∫ ∞

−∞
π(Ht, e

u−µt
ηt , it)e

− 1
2
u2

du(C.13)

≈ 1√
2π

N∑
i=0

π(Ht, e
ni−µt
ηt , it)e

1
2
n2
i ωi(C.14)

The second expectation in equation C.4 accounts for uncertainty in the values of the belief state variables µt+1, η
2
t+1

in the following period. The belief state transitions are defined in SI appendix C.2.1 as a function U(µ, η2, yt+1, it).

The only source of uncertainty in the belief state transition is the observation yt+1. To compute the expected value

of the belief state after the updating step, we need to describe the probability distribution of yt+1 given the current

belief state variables µt, η
2
t . I calculate it in two steps. First, I compute the prior distribution for biomass at the

time when the observation is made f ′
t(Bt+1) by applying the growth update Ug(µ, η

2) (eqn.C.8) to obtain the mean

µ′
t and variance η2t

′
. Second, I combine the prior distribution f ′

t(Bt+1) with the observation g(yt|Bt) (eqn.4.3) model

to get the prior predictive distribution

ht(yt+1) =

∫ ∞

0

f ′
t(Bt+1)g(yt+1|Bt+1)dBt(C.15)

ht(yt+1) =

∫ ∞

0

ϕ(xt+1|µ′
t, η

2
t
′
)ϕ(yt+1|xt+1, ηit

2)dxt(C.16)

ht(yt+1) = ϕ(yt+1|µ′
t+1, η

2
t+1

′
+ σit

2).(C.17)
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Given the prior predictive distribution the expected value in the following period if found by integrating over the

possible values of yt

E[V (µt+1, η
2
t+1)] =

∫ ∞

−∞
V (U(µt, η

2
t , yt, it))ϕ(yt|µ′

t, η
2
t
′
+ it

2)dyt(C.18)

E[V (µt+1, η
2
t+1)] ≈

1√
2π

N∑
i=0

V

(
U

(
µt, η

2
t ,
ni − µ′

t+1

η′t+1

, it

))
e

1
2
n2
i ωi.(C.19)

C.2.4. Value function approximation. I solved the bellman operator with an integrative procedure called

value function iteration (VFI). The algorithm initialized the value function V at a fixed set of grid points in the

belief state space, in this case, pairs of mean and variance values (µt, η
2
t ). I chose a set of grid points evenly spaced

with n = 50 grid point in each dimension resulting in a total of n2 = 2, 500 points. Grid point in the mut dimension

spanned from 0.05BMSY to 2BMSY and from 0 to log(2) in for σ2
t , which corresponds to a coefficient of variation of

one. I interpolated the values between the grid points using cubic b-splines.

The value function was initialized at zero at each grid point. The VFI algorithm then updated the value at each grid

point by evaluating the bellman operator. This procedure repeats until the changes to the value function fall below

a threshold value of 10−4.

C.3. Testing the solution approximation

C.3.1. Monte Carlo simulations. I used simulations to test the performance of the monitoring policies,

compute the frequency of monitoring under the optimal policy, and visualize the dynamics of the fishery. I initialized

each simulation by sampling the true biomass B0 from the initial belief state distribution f(B0). I simulated the

biomass of the stock forward in time by applying equations 4.1 and 4.2. The observations yt are drawn from the

observation model (eqn. 4.3) given the true biomass Bt.

The manager’s belief state was simulated using the particle filter algorithm. This approach differs from the density

projection technique I used in the optimization algorithm. I used this method for the simulation because it approxi-

mates exact Bayesian inference. However, it was to computationally expensive to use in the optimization procedure.

This algorithm is initialized by sampling Npf particles (i.e. possible values of B0) from the initial belief state f(B0).

Two operations are applied to these particles each period, corresponding to equations 4.5 and 4.4, respectively. First,

each particle is updated with equations 4.1 and 4.2 to capture the effects of equation 4.5 on the belief state. Next,

each particle is weighted by the likelihood of the observation yt (eqn. 4.3). The particles are then re-sampled with

replacement according to these weights. The estimated biomass is defined as the sample mean of the particles and
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the coefficient of variation is computed from the sample variance

B̂pf,t =
1

Npf

Npf∑
i=0

Bt,i(C.20)

CVpf,t =

√
1

Npf

∑Npf
i=0

(
Bt,i − B̂pf,t

)2
B̂t

(C.21)

(C.22)

The harvest limit Ht and monitoring decision it are found by applying the harvest control rule and monitoring policy

to the mean B̂pf,t and coefficient of variation CVpf,t of the particle distribution. The realized harvest Ht is found by

applying the harvest constraints to the true biomass Bt and harvest limit Ht.

I computed the rewards for each period Rt, by applying equations 4.9 and 4.10 to the true biomass Bt and realized

harvest Ht. I computed the realized present value for each simulation by summing the discounted rewards δtRt. I

repeated this procedure NMC times to estimate the expected net present value

ENPV =
1

NMC

NMC∑
i=0

T∑
t=0

δtRt(C.23)

C.3.2. performance tests. To test the value function iteration algorithm and density projection approximation

of the belief state I compared the value function produced by the VFI algorithm to the expected net present value

of the system computed by Monte Carlo simulation using the base parameter set. I computed the expected net

present value at nine points in the belief state space using three values for the expected biomass B̂t ∈ {15, 50, 115}

and three values for the coefficient of variation CVt ∈ {0.25, 0.5, 0.75}. The value function and simulation-based

estimates showed close agreement C.4. However, the value function was systematically lower than the simulation-

based estimates. This difference in value may be caused by differences in the methods used to approximate the belief

state transitions (eqn. 4.5 and 4.4). The VFI algorithm assumes that the belief state is always normally distributed,

an approximation that is relaxed by the particle filtering algorithm used in the simulation. The management strategy

may perform slightly better in the simulations because the harvest level and monitoring decisions are based on a

more accurate representation of the belief state.
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Figure C.4. Comparison of the net present value under the optimal policy com-
puted by value function iteration using the density projection approach to approxi-
mate the belief state dynamics and the net present value computed by Monte Carlo
simulation using a particle filtering algorithm to represent the beleif state.

C.4. Q function

The Q function defines the expected net present value of the fishery conditional on the manager’s choice in monitoring

decision it. This value can be calculated by removing the maximization operator from the Bellman equation

Q(B̂, CVt, it) = E
[
π(Ht, Bt, it)

∣∣B̂t, CVt

]
+ δE

[
V (B̂t+1, CVt+1)

∣∣B̂t, CVt

]
.(C.24)

C.5. Supplemental figures

Figure C.5. The economic value of the monitoring program in the base scenario.
A) The marginal benefit of monitoring as a percentage of the net present value of
the fishery, and B) the total value of the monitoring program as a percentage of the
net present value.
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Figure C.6. A) Importance of each model parameter and the belief state variables
for determining the total value of the monitoring program. B) The partial depen-
dence of the value of monitoring on each belief state variable and model parameters.
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