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Abstract 

Motivated by the need for new means for specification and determination of 3D fields that are 
produced by electromagnetic lens elements in the region interior to coil windings and seeking to 
obtain techniques that will be convenient for accurate conductor placement and dynamical study 
of particle motion, we have conveniently generalized the representation of a 2D magnetic field 
to 3D. We have shown that the 3 dimensional magnetic field components of a multipole magnet 
in the curl-free divergence-free region near the axis r=O can be derived from one dimensional 
functions An(z) and their derivatives (part 1).b. 

In the region interior to coil windings of accelerator magnets the three spatial components 
of magnet fields can be expressed in terms of "harmonic components" proportional to functions 
sin (nO) or cos (nO) of the azimuthal angle. The r,z dependence of any such component can 
then be expressed in terms of powers of r times functions An (z) and their derivatives. For two
dimensional configurations Bz of course is identically zero, the derivatives of An{z) vanish, 
and the harmonic components of the transverse field then acquire a simple proportionality 
Br,n ex r n - 1 sin (nO), B"n ex r n - 1 cos (nO) [for non-skew configurations], whereas in a 3-D 
configuration the more complex nature of the field gives rise to additional so-called "psuedo
multipole" components as judged by additional powers of r required in the development of the 
field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct 
result of a specified current configuration or coil geometry, can be calculated explicitly through 
use of the Biot-Savart law and from such data the coefficients can then be derived for a general 
development of the type indicated above. We indicate, discuss, and illustrate two means by which 
this development may be performed, employing in the second of these methods computations 
based on the use of differential algebra with field-point variables representing quantities with 
respect to which derivatives are evaluated by the computer program. 

Introduction 
The performance quality of beam-transport lines and of particle accelerators is basically 

dependent upon the characteristics of the magnetic fields that normally are employed to guide 
and focus the beam, the beam behavior being critically influenced by such resonances and non
linearities as may develop in the course of the particle motion. Quite aside from the complications 
of collective motion that will develop in the presence of space-charge fields, an analysis of beam 
dynamics accordingly requires an adequate and convenient specification of the applied fields 
produced within the beam channel by the current windings of the electromagnetic components 
of the machine. 

The character of such fields of course will be affected by the configuration of any nearby 
magnetic material as may be present, but evaluation of the supplemental contributions from such 
magnetizable material will not be discussed here. C The derivation and the description of the 
three-dimensional (3-D) field produced "directly" by the current windings of magnetic elements 

b 3D Field Harmonics - S.Caspi , M.Helm , and LJ. Laslett , SC-MAG-328 , LBL-30313 , 
March 1991. 
C See, however, a separate report presented at the 1991 Conference on the computation of 
Electromagnetic Fields (Sorrento, Italy), for inclusion in the Proceedings, concerning relaxation 
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deserve however detailed consideration, even for simple designs in which the 3-D magnetic 
elements are themselves straight, and it is with these issues that we shall be concerned in the 
present note with the object of giving adequate attention to the influence of the end-winding 
configurations. 

We propose here a form in which it may be convenient to express a general non-skew 3-D 
magnetic field and we indicate two alternative methods by which we have proceeded to develop 
such an explicit form as a consequence of field computations based on applications of the Biot 
and Savart law. It is our hope that the proposed form for expressing the field will prove to 
constitute an efficient means for transferring to a subsequent user field information concerning 
the magnetic field under consideration and that this form also will prove convenient for such 
future dynamical computations as may be required for evaluation of the quality of the field It 
moreover is our hope that the procedure we describe will lead to further developments in which 
such goals can be more accurately and efficiently attained through a more perfectly understood 
and more sophisticated application of computational techniques akin to those we outline here. 

We have developed two methods for computing the functions An(z) and their derivatives and 
used them to calculate the magnetic field anywhere inside the curl-free divergence-free region. 
The first method is using Biot-Savart to compute the magnetic field from a set of "line current" 
segments that simulate the coil windings. Calculating the magnetic field components at several 
discrete angles on an arc (e.g. at a 50% radius of the inner bore) so chosen that a Fourier 
analysis can conveniently be performed, the harmonic components are evaluated and stored for 
successive values of z. Next these components are numerically differentiated with respect to z 
( and hence the name -NUMERICAL method) to provide A values and their derivatives up 
through the 6th ordert. In the second method we eliminate the need for harmonic analysis by 
using the Biot-Savart formula directly (Appendix A) with Differential Algebra ( DA ), yielding 
both the An(z) and their derivatives simultaneously.e.t: It should be noted that when the magnetic 
field can be expressed in terms of analytical functions of Z the An(z)'s and their derivatives can 
be computed directly as in the simple case where A2(Z) = cos (¥-) and the solution is separable 
and reduces to Bessel functions in r. 

In this report we apply both methods to the "end" region of two magnets -the 50-mm 
bore dipole D19, and the 4O-mm bore SSC quadrupole QC. In the dipole case we computed 
Al through a

8 $;iz
), and A3 through A9 with up to 6 derivatives each. In the quadrupole case 

we computed A2 through a
16 

A 2Jz) A6 through a12 
A6Jz} AI0 through a

8 
A10{z) A14 through &zl , az! , l)z8 , 

computations for the field contributions arising from a high-permeability yoke with a circular bore 
[Caspi, Helm, and Laslett, Lawerence Berkeley Laboratory Report LBL-29826/SC-MAG-317, 

, July 1991]. 
d The 40 mm SSC Arc Quadrupole - Magnetic Design - S.Caspi , M.Helm , and L.J. Laslett, 
se·MAG=314 , LBID-1677 , November 1990. 
e Differential Algebraic Description of Beam Dynamics to Very High Orders - M.Berz , SSC 
Central Design Group , Lawrence Berkeley Laboratory 
f DAFOR - Differential Algebra Precompiler Version 3 , Reference Manual - M.Berz , 
Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, 
Michigan State University, East Lansing, Mi 48824 
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8' ~:\( z), and A 18 through 8
4 
~:\( z). In part 2 we have reconstructed the field from the As for 

the quadrupole magnet and compared results with direct Biot-Savart field calculation. The plots 
for the A functions themselves are presented in part 3. 
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Part 1- 3D Field Representation. 

We note that in the curl-free divergence-free region near the axis r=O the field components 
may be expressed as given by jj = - VV where V is a scalar potential function for which 
V2V = O. The proposed solution ( non-skew) can be written in the form : 

v = E Vn(r, z) sin nO 
n=1 

with: (1) 

!.£. (r aVn) + a
2vn _ n

2
Vn = 0 

r ar ar az2 r2 

We note that if V D were to be free of any z-dependence, the acceptable solution for V D near 
the axis would be expressed by a single term proportional to r" (Le.. involving r raised to the 
positive power n); more generally one would represent V D by a power series involving factors 
r"+2k, commencing with t', and employing z-dependent coefficients : 

Vn = E Cn,k(z)rn+2k 

k=O 
with Cn,k(Z) satisfying the recursion relation 

) 
1 d2Cn,k_1 

Cn,k(Z = ( 2 4k n + k) dz 

The magnetic field components can be derived accordingly as : 

Br = - E a;n sin nO = E grnrn-1 sin nO 
n n 

B8 = - E .!: Vn cos nO = E g8nrn- 1 cos nO 
r 

n n 

Bz = - E ~n sin nO = E gznrn sin nO 
n n 

(2) 

k = 1, ... 

(3) 

In order that the series for V n satisfy the differential equation written above we introduce 
An (z) and express the coefficients grn , 98n , 9 zn as general functions of r and z as shown below: 

~ k+1 n!(n + 2k) (2k) 2k 
grn(r,z) = ~(-l) 22kk!(n + k)!An (z)r 

~ k+1 n!n (2k) 2k 
g8n(r, z) = ~ (-1) 22k k!(n + k)!An (z)r (4) 

( ) ~ ()k+1 n! (2k+1) 2k 
gznr,Z=t:o-1 22k k!(n+k)!An r 
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Explicitly we can write the above as : 

n+2 II 2 n+4 "" 4 
9rn(r, z) = -nAn(z) + 4(n + 1) An(z)r - 32(n + 1)(n + 2) An (z)r 

n + 6 """ 6 
+ 384(n + 1)(n + 2)(n + 3) An (z)r - ... 

() ( nil ( ) 2 n ""( ) 4 
96n r,z = -nAn z) + 4(n + 1)An z r - 32(n + 1)(n + 2)An z r (5) 

n """( ) 6 
+ 384(n + 1)(n + 2)(n + 3)An z r - ... 

, 1", 2 1 "", 4 
9zn(r, z) = -An(z) + 4(n + 1) An (z)r - 32(n + 1)(n + 2) An (z)r ..... 

We have computed &n , gOn and gm from which we calculated A(z) and derivatives (part 
3). In general the need for high derivatives and their relative contribution to the magnetic field 
should be considered only when field values are needed close to the winding. 

Extended = 3D Field. 

A more general form for the scalar potential of a 3D magnetic field interior to the windings 
includes both "skew" and "non-skew" terms of all integer harmonic of order n (including n=O): 

{~ n ~ (_1)k+1 n ! 2k [ (2k) ). -(2k)( ) ]} 
V = - :::0 r ~ 22k k!(n + k)! r An (z sm nO - An Z cos nO (6) 

for which V2V = 0 ( the negative sign in front of the "skew" term complies with the right 
hand rule). 

The magnetic field can be derived accordingly as : 

where 

Br = - ~~ = ~ [9rnrn-1 sin nO - 9rnrn-1 cos nO] 
n 

Be = -~V = ~ [genrn-1 cos nO + genrn-1 sin nO] 
r. 

n 

Bz = - ~~ = ~ [gznrn sin nO - 9znrn cos nO] 
n 

9rn = 9rn 

gen = gen 

9zn = 9zn 

(7) 

(8) 

are general functions of r and z that include the appropriate "non-skew" and "skew" terms 
An(z) and An(z). 
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Integral Form. 

In commenting on a power series development in terms of powers of r of the form treated 
above, Lloyd Smith has referred to an earlier HIFAR Note-167 when remarking (in HIFAR 
Note-173) that a potential function of harmonic order n, such as the function Vn (r, z) introduced 
here, can be expressed more compactly in terms of an integral - thus it is stated that: 

Fora function Vn(r,z)::: that is of the form (rn An(z) + terms of higher order in r)::: 
and where sin nfJ and cos nfJ denote "non-skew" and "skew" terms, one may write 

Vn(r, z) sin nfJ
fJ 

= l2~~(n;t rn / cos2n 4> [An(z + i rsin 4» + An(z - i r sin 4»]d4> sin nfJ
fJ { ~ } 

cosn 1r n. cosn 
o 

(9) 

= {.!.22n(n!)2 n[2" (_1)10 210/1(/2 ·2n.l... 2k.l..d.l..] A(2k) ( )}sinnfJ 
(2 ) ' r L..J (2k)' r cos Of sm Of Of n Z fJ 1r n . L • cosn 

~=O 0 

= {.!. 22n(n!)2 rn [" (_I)kr2k 
(2n)!(2k)! 1r] A~2k)(Z)} sin nfJ 

1r (2n)! ~ (2k)! 22(n+k)n!k!(n + k)! cos nfJ 

, . fJ 
= rn" (_1)10 n. r2k A~2k)(z) sm n t:o 22kk!(n + k)! cos nfJ 

n L C () 210 sin nfJ 
=r nkzr fJ ' cosn 

10=0 

with 
_ (-I)kn! (210) 

Cn,k(Z) - 22k k!(n + k)!An (z) 

then providing the desired form with Laplacian equal to zero as was introduced on p.2. [Dr. 
Smith has verified (HIFAR Note-173, p.2) that use of the integral form shown above leads to 
a potential function with zero Laplacian.] 
Note: The integral 

1(/2 

A = 2 / cos2n 4> sin2k 4>d4> 
o 

= B( n +~, k +~) (See Gradshteyn and Ryzhik p.369 sect 3.621(5» 

r(n + 1)r(k + 1) = 2 2 (S ee ditto p.350 sect 8.384( 1» 
r(n + k + 1) 
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where B is the Beta function (Euler's integral of the first kind). But 

r ( n + ~) = ~;:l~ v;r (See ditto p.938 sect 8.339(2». 

Accordingly 
A _ (2n )!(2k )!1r 

- 2(n+k)n!k!(n + k)! 

The Case 0=0 

As a special case we write down the field components for n=O : 

(20) 

or explicitly : 

B = 0 - A~ (z ) (:.) + ! A~" (z) (:.) 3 _ 1.. A~"" (z) (:.) 5 • 
r 2 2 2 12 2 .. 

B, = 0 (21) 

-, -III (r)2 1 -"", (r)4 Bz = Ao(z) - Ao (z) 2 + :tAo (z) 2 ... 

Note that: 

The fonn proposed above in which a 3-D field throughout an interior region is expressed in tenns of the 
function ..4o(z) and its derivatives may appear analogous in spirit to the familiar similar desCription of fields 
with rotational symmetry in tenns of a z-directed field ( solenoid ) ..4~(z) = Bo,z(z) and its derivatives along 
the symmetry axis.' 

The representation specified above for 3-D magnetic fields, written in terms of functions 
An (z) and An (z) and their derivatives, will describe a field that fonnally is both divergence 
free and curl free - provided that the summations are not truncated. If, however, we wish to 
truncate these series expressions. we at best can only do so in such a way that one, but not both, 
of these conditions is satisfied. Thus, if we wish to preserve the divergence condition V . ii = 0 
(so that the consequent dynamical equations for charged-particle motion can be derived from a 
Hamiltonian function in which the magnetic field is described by a vector potential), we should 
take care that the sum over the index k (e.g. in Eqs. 4 or 20 above) in the series for Bz should 
terminate at a value of k that is less by unity than the termination value for this index in the 
series for the transverse field components Br &B,. One possible form for the vector potential of 
such a field is indicated in Appendix A (p.4l) an LBL reporth relating to a non-skew 3-D field. , 
" 

See V. E. Cossleu, "Introduction 10 Electron Optics" (Oxford Univ. Press. Ed. 2,1950), '36, esp. Eqns. (lV.4S) and (lV.46), p.l06 
UC-405/LBL-30313/SC-MAG-328 
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The "Biot & Savart" Field Evaluation 

The current windings of a typical magnet element may be regarded as fonned of "cables" 
for which the resulting field may be computed, in the case of complete curcuits, through use 

of the law of Biot & Savart or Ampere: jj = 1: J Jdi~:c_p (with po = 1~ for em, amp, and 
gauss; 411" x 10-7 for meter, amp, and Tesla). In application, to accommodate curved and twisted 
cables it appears desirable to break the individual cables into a number of short "blocks", with 
quadrilateral (planar) end-faces (A & B) and to calculate the individual contributions of these 
several blocks to the magnetic field. 

For blocks of significant cross-section the field calculations are based on representing the 
block current by that of several straight "wires", extending between the end faces, in such a 
manner that (because of transposition of the actual conductors within a superconducting cable) 
a constant current density across every transverse cross-section will be represented even if the 
cable itself is curved. If local coordinate variables e ,7] are used to denote the wire end-points 
in the end faces A & B (with -1< e <1, -1< 7] <1), it may be economical computationally, 
when computing fields at substantial distances from a current block, to situate such wires at 
e,7] locations appropriate for 2-D Gaussian integration with wire currents proportional to their 
corresponding Gaussian weighting factors; for computing field contributions at locations very 
close to a current block, however, it can be preferable to employ a number of wires consistent 
with the number (e.g., 2x18) of which the cable is actually formed and to situate these wires 
(with equal weights) unifonnly across the cross-section of the current block. 

The "Biot & Savart" contribution of an individual straight wire segment (extending between 
XA,YA,ZA and XB,YB,ZB) to the field at a field-point location X,Y,Z is given by the fonnula 
written below (for By, with other components similarly represented by cyclical premutation). 
Define Xm = XA}=I:B, etc.; 6x = XB2'XA, etc.; and 

Then 

Tl = (YM - Y).6.z - (ZM - Z).6.y 

T2 = (ZM - Z).6.x - (XM - X)6z 

T3 = (XM - X)6y - (YM - Y)6x 

T A = (XA - X)6x + (YA - Y)6y + (ZA - Z).6.z' 

T B = (XB - X)6x + (YB - Y).6.y + (ZB - Z).6.z 

[ 
2 2 2] 1/2 DAF = (XA - X) + (YA - Y) + (ZA - Z) 

[ 
2 2 2] 1/2 DBF = (XB - X) + (YB - Y) + (ZB - Z) 

DMS = (Tl)2 + (T2)2 + (T3)2. 
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Such fonnulas fonn the basis of a routine GAUSBLK. For numerical (arithmetic) computation 
it may be advisable to introduce some "scaling" of distance parameters, introducing a common 
scale factor into ~x, ~y, ~z, DAF, and DBF (thus automatically also scaling TI, T2, and T3) 
and further scaling once more TA and TB (so that ultimately TA, TB, and DMS become doubly 
scaled). [Ideally the values obained for the field components should not be modified by this 
scaling.] (see Appendix A for a computer listing ). 

An especially detailed application of GAUSBLK may be needed for evaluation of fields at the 
edge, or in the interior (near the individual wires), of a superconducting cable in order to assess 
the danger of reaching quenching conditions. In other applications one will only require field 
evaluations at somewhat more remote locations in order (i) to detennine harmonic components 
of the direct field near surrounding polarizable material; or (ii) to enable proceeding with field 
analyses of the type required to evaluate coefficients such as the functions .4.o(z) (and their 
derivatives) introduced on p. 2. We outline below two methods that may be used to perfonn, 
in the region interior to the windings, the field analyses mentioned immediately above - namely 
an algebraic finite-difference method and, as an alternative, the use of the differential-algebra 
(D-A) routine developed by M. Berzi 

A Numerical Finite-Difference Method 
This method was proven to be more successful than originally thought We have used the 

Biot-Savart relation in conjunction with a large number of current line elements to compute the 
field at a given point. The file containing the coil geometry consists of S2 conductor blocks per 
tum with 2x8 (or more) line currents per block in a minimum symmetry configuration. However, 
during computation the program generated the line current for all other symmetries (e.g. x4 
for a dipole, x8 for a quad). 

In use of this method the GAUSBLK routine is used to detennine numerically the spatial 
components of magnetic field at many z locations, several azimuthal locations, and (in our 
particular application) a single interior value of the polar-coordinate radius (e.g., r=1.0). These 
numerical data are subjected to Fourier analysis vs. () so as to obtain tabular values, for each 
apparent non-vanishing harmonic, of the functions gr,n, 99,n, and 9z,n defined by Equations 3--4 
(if only "non-skew" elements are present) and in which we henceforth may for brevity at times 
drop the subscripts n. [It may be noted that, in cases of basic dipole symmetry, quadrupole 
symmetry, or the like, the Fourier analysis need be performed solely in a single quadrant, octant, 
or so forth and can be particularly economically performed if the () values adopted are equally 
spaced (to take advantage of the orthogonality that such circular functions will then present 
with respect to summation). One may need, however, to take care to avoid the development of 
significant errors from the phenomenon of "aliasing" when only a limited number of () locations 
is employed in the Fourier analyses.] As will also be the case in an economical use of the 
D-A procedure one thus can perform the Fourier analysis, once the intended basic (non-skew) 
symmetry no is presumed, solely on the field of (closed) windings in the interval 0 < () < 2~o' In 
this case the algebraic Fourier analysis need be performed solely for values of n = no(21- 1), 
with 1= 1,2"", and one then multiplies the resultant values of9r,n, 99,n, and 9z,n each by 4no. 

j 
As treated by V. Brady. in HIFAR Note-261 (LBL. Jan 26. 1990) 
Particle Accelerators 24, 109 (1989 
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For each relevant hannonic number (n) the functions 9r, 98, and 9z are regarded as 
expressable in terms of the functions An (z) as [Eq. 5] in which superscripts (k) on A denote 
£r A( z) and the subscript n has been dropped in the interest of brevity. It is the task of a 
routine such as AVALS to derive from values of 9r, 98, and 9z at a single radius (r) and several 
adjacent z locations, values of A(z) and of a few derivatives of A that will serve so to specify 
the magnetic field in the interior region. We proceed to illustrate here how this specifically may 
be done (version 6 of the routine AVALS) by use of numerical values of 9r and 98 at a "central" 
location (zo) and values of 9z at this central location and at 3 additional equally-spaced values 
of z to each side. [We note from the equations wrtten above that under conditions in which 
the z dependence of the magnetic field becomes small the functions 9r and 98 tend to become 
identical (and the function 9z becomes small); it is for this reason that, in the procedure to be 
described below, we consider it desirable to make use of the values of 9z at several adjacent z 
locations and to employ only a single (suitably-weighted) average of 9r, 98.] 

To continue with this illustration in which we estimate the function A(zo), through use of 
values of 9r(Zo) and 98(Zo) and values of 9z(zo 1= 3h), 9z(Zo 1= 2h), 9z(Zo 1= h), and 9z(Zo), we 
presume that a Taylor-series development in this neighborhood can ignore derivatives of order 
7 and greater. With the definitions 

r2 r 4 

Q = 4(n + 1)' f3 = 32(n + 1)(n + 2) 

we then write 

D ( ) .- 9z(Zo - h) - 29z(Zo) + 9z(zo.+ h) _ Alii ( ) + [ h
2

] AV( ) 
1 Zo - - - Zo Q - - Zo . h2 12 

and 

D ( ) .- 9z(Zo - 2h) - 29z(zo) + 9z(Zo + 2h) _ A'" ( ) [ h
2

] AV( ) 
2 Zo .- 4h2 - - Zo + Q - 3" Zo . 

From these equations it then follows that 

From analogous definitions of Dl (zo 1= h) and of D2 (zo 1= h) one likewise can obtain values 
of the odd derivativesA'(zo 1= h), A"'(zo 1= h), and AV(zo 1= h). Such values then permit one to 
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evaluate the even derivatives at Zo with similar accuracy, viz: 

Avi( ) = AV(zo + h) - AV(zo - h) 
Zo 2h 

Aiv( ) = A"'(zo + h) - A"'(zo - h) _ h2 Avi( ) 
Zo 2h 6 ZO 

A" ( ) = A'(zo + h) - A'(zo - h) _ h2 Aiv( ) _ h4 Avi( ) 
Zo 2h 6 Zo 120 Zo . 

Finally to obtain the function A(zo) itself we employ a suitable average of the quantities 
9r(Zo) and 99(Zo), an average that in this example we take to be 

To the accuracy sought here this form may be expressed as 

G () n 2"() n 4Aitl( ) 
D ~ 6nA Zo - n + 1 r A Zo + 16(n + 1)(n + 2) r Zo 

since the relative weighting factors proposed for forming this average are such as to eliminate the 
derivative A vi (zo) that may have been determined to only moderate accuracy. In the procedure 
outlined here we accordingly take the function A( zo) to be given by 

GD + n~l r2 A" (zo) - 16(n+~)(n+2)r4 Aiv(zo) 
A(zo) = 6n 

Analogous procedures, of various expected accuracies, can be similarly designed to employ 
differing numbers of 9z(Z) values in the neighborhood of a "central" Zo and the arithmetical 
cprrectness of such procedures can be verified by tests in which (for example) the function A(z) 
is taken to be such a function as A(z) = [2(z + 1)]NZ-l for which derivatives of order NZ 
and beyond vanish identically. It should be noted that the procedures specifically described here 
require the availability of values of 9r, 99, and 9z at only a single value of the coordinate r and 
that appropriate use of such procedures may require some judgment be exercised in selecting 
the value of this radial coordinate to be employed in such work. 

The numerical quality of the As was proven to be of high accuracy especially in the vicinity 
of the radius at which the Fourier analysis was performed. This is not a surprise however, but 
it does restrict somewhat the region of interpolation. On the other hand this method provides 
the means for calculating fields closer to the windings by choosing a proper radius. It should 
be noted that this method is independent of which method is used in calculating the magnetic 
field and therefore can be applied to problems with iron. If the iron is allowed to saturate the 
As become a function of the current and therefore more complicated. 
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Differential Algebra Method 

It appears possible in principle to proceed directly, through use of the Differential Algebra 
program developed by M. Berz, from a fomula rerresenting a Biot and Savart evaluation of 
By ( B9 at 9 = 0) to evaluation of the functions A~ >(z) that may serve to describe the field in 
the manner shown by Eq. 3-4. In particular one may by this means (i) avoid the need to make 
an initial preliminary Fourier analysis of the field components (in the manner outlined by the 
Numerical method) and (ii) avoid the need to approximate various derivatives of functions An(z) 
through use of finite- difference forms applied fo field components at some non-zero radius. 

We may remark that the magnetic field formed from functions 9r, 99, and 9z of the type 
written for the Numerical method should, if not truncated, suitably represent a field that is 
both diverenge free and curl free - as should be the case for a field derived by application 
of the Biot and Savart law to a closed circuit. k Under such conditions it may be permissible 
to undertake evaluation of the functions An (z) through a somewhat curtailed use of the forms 
shown previously. We accordingly outline below a procedure based on use of a Biot and Savart 
expression for the field of a (non-skew) current distribution at field points (X,z) in the median 
plane (9=0, Y=O) - presuming that this expression is legitimately differentiable (several times) 
with respect to the field-point coordinates X and Z (including cross derivatives). We indicate 
below [case A] a method whereby direct applications of the D-A procedure can in principle 
be used to obtain tabulations of the fuctions A~k>(z) and [case B] an alternative method that 
more economically may be used in situations for which symmetry permits the Biot and Savart 
formulas to be written explicitly (but in a closed-circuit fonn) for only a portion of the interval 
211' in 9. In either case, as also in the Numerical method, a periodic array of course will require 
recognition of at least one or two magnet element neighbors (possibly of alternating sign) on 
either side of a central magnet element. 

case A Such a direct use of the differential algebra (D-A) procedure can be conveniently 
illustrated by consideration of a fully described current winding with a basic non-skew quadrupole 
symmetry. In this case the 9 dependence of the magnetic fields will be characterized by 
harmonic indices n equal to odd multipiles of no with no = 2 - namely n=2 (quadrupole), 
n=6 (dodecapole), etc., and for which we write explicitly below only the first few tenns of a 
development based on a representation of the magnetic field consistent with Eq. 3-5 : 

B,I,=o = Byly=o = [-2X A2(Z) + ~X3 A~(Z) - 1~2X5 A~V(Z) + ... 
- 6X5 A6(Z) + ... ). 

For this development to be of a valid fonn, all octants should be filled with wire configurations 
of the equivalent non-skew type -or, if only the upper octants are so filled, the lower octants 
should be considered also filled in the same manner and the functions A~k > (z), where n is an 
odd multiple of no, derived by the procedure outlined below then should be doubled. It is 
evident that if one fonns the first derivative of this expression with respect to the variable X 

A As mentioned, the functions 9r, 98, and,. can be tnmcated in such a manner as 10 be at least divergemce free and such a field 
acc:ordingly cau1d be regarded as derived from a vector potential. 
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and evaluates this at X=O one obtains 

or 

[a~[BYIY=o]]x=o = -2A2(Z) 

A2(Z) = -4 [a~[BYIY=o]]x=o 
and further differentiation with respect to Z will then similarly provide various derivatives of 
the function A2( Z) with respect to its argument. 

Infonnation concerning the function A6(Z) similarly is obtainable by evaluating the fifth 
derivative of Byly=o with respect to X at X=O, save that one will have to take into account a 
contribution from the quadrupole term A~t1 - thus: 

or 
[~BYIY=o] + 1~!2A~t1(Z) 

A6(Z) = 6~-;! 

= -7!O [a~.BYIY=olx=o + 23~4 [a':;Z4 BY1Y=°lx=o 
1 1 

= -'6bs,o + 96 bl,",! 

wherein we have introduced the notation 

1 an+m 

bn,m = n!m! axnazm Byly=o 

at X=O and specific Z. [The quantities bn,m introduced here as a convenient notation are identical 
to quantities that appear as direct output from the version of the D-A program available to us.] 

The method of employing the D-A program, as this method has been outlined on the previous 
page, is readily generalized to cover configurations of other basic harmonic character (no) and 
to extensions to series involving a greater number of derivatives of the functions An(Z). The 
algebra that is involved in interpreting D-A output of this nature can be checked if desired, by 
trial runs involving (for example) a 110=2 case in which 

By\y=o = C2,OX . A2(Z) + ... + C2,SXI7 • A~16)(Z) 
+ cs,oXs . A6(Z) + ... + CS,6X17 . A~12\Z) 
+ ... 
+ CIS,OX

I7 
. AIS(Z) 

wherein 

en,k = 22kk!(n + k)!jn! 
(42) 
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and we elect to choose functions An(Z) ex: z18-n (for example A2(Z)=Z16, A6(Z)=O.9 Z12, 

AIO(Z)=O.8 Z8, A14(Z)=O.7 Z4, and A18(Z)=O.6) with evaluations of the An(Z) and their deriva
tives sought for (say) Z=1.0 through use of the program. Such checks may serve not only to 

detect possible error in formulating details of the program that is to be subjected to O-A analysis 
but also may reveal possible inaccuracies that might arise from inadequate register lengths or 
similar restrictions that become significant during execution. 

case B As a more economical method for application of Biot and Savart results, one may 
employ (in our quadrupole example) only the Biot and Savart formula for (closed) windings in 
the single octant #1 - but with the understanding that all octants ultimately will be so filled as 
to produce a basic quadrupole field (n = odd multiples of 110=2). We then , in submittal to the 
O-A program, need however to include in the initial field development octupole terms involving 
functions Aik), decapole terms A~~, etc. and to include recognition of such functions in our 
initial evaluation of the A~k) - thus: 

One then forms 

1 
bI,o = - 2A2(Z) or A,e(Z) = - 2 bI,O (44) 

and thence A~2)(Z) = -b1,2, A~4)(Z) = -12bl,4, etc. (including also odd derivatives); 

1 (2) 1 (2) 1 
ba,o = 6A2 (Z) - 4A4(Z) or A4=24 A2 (Z) - 4'ba,o 

1 1 
= --bI 2 - -ba 0 

24' 4' 

(45) 

and thence the derivatives A~k) including A~2) = -!bI ,4 - !ba,2; 

bs,o = -1~2A~4)(Z) + ~Af)(z) - 6A6(Z) (46) 

or 
A6(Z) = 2..Ai2)(Z) - _1_A~4)(Z) - .!.bs 0 

30 1152 6 ' 
1 1 1 

= - 160 bI ,4 - 60 ba,2 - 6bs,o 

(47) 

and the corresponding A~k). On completion of such provisional evaluations one then can set 

identically to zero the functions Aik), etc., that would be absent if the basic symmetry were 
present and take the remaining functions (and their derivatives) eightfold to represent the 
complete quadrupole field with its true harmonics. 
Remarks: 

15 



The methods illustrated above by application to a basically quadrupole winding configuration 
have their corresponding application to any other type of winding but in cases of practical interest 
may again be supposed to be based on a By\y=o development that either required only odd 
powers of X or, alternatively, only even powers of X (including Xo in a development applicable 
to a dipole). 

It may be prudent at this stage of the work to mention a few instances in which some 
judgment may be required in application of the methods outlined above. Thus, as has already 
been noted in connection with the section concerning use of the Biot and Savart formula, it 
may be desirable to introduce some scaling of the distance parameters that serve to define the 
individual segments of the winding configuration. In connection with the D-A routine that has 
been made available to us there is an adjustable tolerance parameter that serves to annul certain 
quantities (such as the output quantities bn.m mentioned in our earlier description) whenever these 
quantities are sufficiently small to be considered inconsequential. There is, moreover, a decision 
to be made regarding the number of derivatives that can be regarded as evaluated in a trustworthy 
manner from our model configuration and that accordingly merit retention in the field evaluation. 

The best part of using DA is that higher derivatives can be calculated to any desired order 
(limited by truncation errors) and a degree of simplification introduced in the fact that a Fourier 
analysis is not needed and the required coil geometry is contained in its basic symmetry. The 
major drawback is the computation time which is dominated by the DA package and is very 
slow for the problem size used here ( 2 to 3 days of continuous cpu time on a SUN Sparc 1 are 
common). In addition we had to make several modification to the Biot-Savart formula to reduce 
errors. Normalizing each line current to its length (Appendix A) was proven very effective 
especially when long segments are present (e.g. a long straight section). We were unable so far 
in eliminating a difficulty that arises when a long line current connects to a much shorter one. 

Connection to a Fourier-Bessel Series 

It is informative to note a form that is obtained when the represention of the internal field 
functions An{z) are replaced by simple circular functions of z or, more generally, by Fourier 
series of the form 

An(z) = L En,m cos [(2m -1) ~Z] 
m=l 

(48) 

as would be characteristic of a periodic (half-period = L) alternating array of symmetric magnet 
elements. If we substitute this form for An (z) and the corresponding forms 

(2k) ~ k [ 7r] 2k [ 7rZ] An (z) = L.J (-1) En,m (2m -1) L cos (2m -1)£ 
m=l 

(49) 

for the required derivatives of An{z) into the expression proposed earlier for the scalar potential 
V, we obtain (after some intermediate algebra, and recognition of the Taylor-series expansion 
for a modified Bessel function of the first kind) 

~ [ 2L jn [(2m-l)7rrj [ . 7rZ]. V(r,z,O) = L.Jn! (2m -1)7r En,m1n L cos (2m -1)£ smnO 
n,m 

(50) 
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hence 
~ ~ [(2m - 1)1I"r] [ 1I"Z] • V(r,z,8) = L.-JL..JG'I&,mI'I& L cos (2m -1)7" smn8 

'1& m 

(51) 

where 

G - ,[ 2L ]'I&'E 
'I&,m - n. (2m -1)11" 'I&,m (52) 

which is recognized as being of such a fonn that '\12 V = O. 
We note that while a harmonic component with angular dependence proportional simply to 

sin(n8) contributes a dominant r-dependence proportional to r'l& , additional tenns proportional 
'1&+2 '1&+4 • fro th . de I f I to r , r , ... anse m e senes ve opment 0 '1&' 

Accordingly, as is also immediately evident from the development of V shown on p.2, 
"pseudo-hannonics" (as evidenced by the character of the r-dependence of such additional tenns) 
become present in the 3-D field of pure "true harmonic order" n (and may be particularly 
pronounced if the field varies rapidly with respect to z). Thus, as a simple example, one expects 
a 3-D periodic true quadrupole field (n = 2) also to contain pseudo-harmonic components of an 
octupole, dodecapole, etc. order. A true dodecapole tenn of course will also be present if the 
winding configuration is such as to introduce into the potential function terms proportional to 
sin(68). The tenninology referring to pseudo-multipoles has been suggested by P. Krejcik in a 
paper presented at the 1987 IEEE Particle Accelerator Conference.' 

We demonstrate the above by replacing An(z) with a pure quadrupole ( n=2 ) that is a circular 
function of z with a truncated Fourier series m=l and a half period L=50 : 

1I"Z 
A2(Z) = 35.346322 cos 50 (53) 

The current density was replaced with 40 wires placed on a cylinder with of 25 cm radius. The 
location of the current segments was such that the interior field was as close as possible to a 
quadrupole field with a pure sinuisoidal longitudinal dependence of focusing strength. We have 
used 3 magnets to simulate the periodic nature in z and used the DA method to calculate the A's. 

Washington, D. C.; March 16-19. 1987, Proc. 1987 IEEE Panicle Acce1. Conf., v.2, 1278-1280 
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Figure 2 A truncated array of quadrupole magnets that were used to demonstrate the DA method (top view of one 
quadrant only for 3 half periods of the focusing field - - the lines are lines of current flow). 

I~ ~:346322.COS(Pi40z/SO.) I 
30.0 

~ 20.0 

10.0 

0.0 

..05 

1~~11942.Sin(pi.zJSO.) I 
-1.0 

Do 

~ 
-t.s 

-2.0 

-25 
0 s 10 15 20 2S 

Z <an> 

Figure 3 A2 and its first derivative showing the preservation of a simple sinusoidal variation in z. 
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Figure 4 More derivatives of A2 showing the preservation of a simple sinusoidal variation in z. 
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Figure 5 High derivatives showing uuncation errors. 
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Figure 6 The use of wires destroys the purity of the quadrupole and produces a small dodecapole A6. 
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Single Particle Orbits 

We demonstrate the use of the A(z),s in single-particle orbit calculations for a periodic A-G 
quadrupole array (as previously described) whose field gradient is a pure cosine function of the 
longitudinal co-ordinate z (see referenceslnllD). 

In Figs. 7-S we present in some detail the increase of tune with radius from the small
amplitude value of qo=72° to a limiting value just before the onset of the 90° resonance ( at 
XmaxIL =0.39). Substantially identical results have been obtained by a Bessel-function form 
for the r-dependence of the focusing field and for a sequence of A2(Z), A~k)(z) with k < 
4, and A6(Z) functions (evaluated by linear interpolation for values of z that were not integer 
multiples of 1 cm) intended to represent the Differential-Algebra development of that field ( 
1'=25 cm and half period L=50 cm). A pair of phase plots (Fig. 9), obtained by these two 
methods and depicting ~ vs. X at successive centers of X-focusing quadrupoles, shows the 
unstable order-4 fixed points (q=900

) with an apparently closed-curve stability boundary lying 
just inside the region at IXI=19.5 cm. Also shown on the phase plots are the locally stable 90° 
fixed points ( surrounded by small, presumably locally stable, closed curves situated in a more 
generally unstable region), some points at IXI ~ 15.58 etc & at I~I ~ 0.101 for q=SOo, and 
an additional closed curve launched with Xo=14.0 cm (q between 7So and 79°). 

m Single Particle Orbits in the Magnetic Field of the ILSE Current-Dominated Quadrupole
Victor Brady, HIFAR NOTE-188, February 25, 1988. 

n See, as an introductory note to HIFAR-427, a Single-Particle Aperature-Limit graph for 
particles moving with one transverse spatial degree of freedom in an A-G (electric or magnetic) 
quadrupole array with a gradient that has a purely sinusoidal variation with respect to the 
longitudinal co-ordinate z. It is noteworthy that on this graph one finds aperature ratios that 
with magnetic quadrupole focusing may be virtually twice those obtainable by use of an electric 
quadrupole lattice. 

o HIFAR Note-345 and 346. 
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Xc, (7 ( Bessel Function ) (7 ( D-A ) 
(em ) (deg) using field from 2 adjacent 

quads. (deg) 

1. 72.04 72.04 

5. 72.80 72.80 

10. 75.24 75.24 

14. - -
15.57 or 15.59 80.00 80.00 

19.0 84.80 84.69 

19.5 86.37 86.11 

19.55 90.00 -
19.62 - 90.00 

Figure 7 The change of tune ( tTo=72° ) using Bessel functions and A's to represent the quarupole field. 
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Figure 9 A pair of phase plots, obtained by the previously described methods. 
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Part 2- Magnetic field In the sse Quad end. 

The overall "end" configuration of the quad is shown in the first five of the following figures. 
We have computed the A(z) functions based on the numerical, OA, and Biot-Savart methods and 
compared the results at different radii - r=O.5 , 1.0 , 1.5 , 1.7 , and 1.9 cm or at 25%, 50%, 
75%, 85%, and 95% of the 2 cm bore radius. For the transverse field the best and worst result 
give an error of 1 part in lOs at 25% and 2 parts in 100 at 95%. Correspondingly the errors in 
Bz are 5 parts in lOS at 25% and 15 parts in 100 at 95% (Fig. 15). The configuration of the 
end of the dipole windings is likewise shown in Figs. 20--22. 

IRON 

5 10 15 20 25 30 35 

Figure 10 Coil and IRON in the end region of the SSC quad. 
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1-------- 10.21="R,------~ 

1------ 8.1636----~ 

Figure 11 Conductor geometry in the end region of the SSC quad - LAYER-l TOP. 

Figure 12 Conductor geometry in the end region of the SSC quad - LAYER-l SIDE. 

100-------- 11. 

Figure 13 Conductor geometry in the end region of the SSC quad - LAYER-2 TOP. 

Figure 14 Conductor geometry in the end region of the SSC quad - LAYER-2 SIDE. 
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Figure 15 Maximum error associated with reconstruction of field 
components from the As (the windings are located at R=2.0 em). 
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Figure 16 Transverse magnetic field at 9=45 and different radii computed at the "end" region of 
the sse QUAD. Results are compared between Bio_Savart and those reco~tructed from the As. 
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Figure 17 Error associated with the transverse magnetic field. 
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Figure 18 The magnetic field Bz at 8=45 and different radii computed at the "end" region of 
the sse QUAD. Results are compared between Bio_Savart and those reconstructed from the As. 
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Appendix A Biot-Savart and DA 

c $Header: dapkg.fox,v 1.1 91/10/14 17:48:47 mike Locked $ 
c $Log: dapkg.fox,v $ 
c Revision 1.1 91/10/14 17:48:47 mike 
c Initial revision 
c 
c 

c 

c 

c 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
c 
*DA 
*DA 
*DA 
*DA 
*DA 
*DA 

subroutine dapkg( xyza, xyzb, xff, cwir, bbst, 
$ xf, yf, zf, by ) 

implicit double precision (a-h,o-z) 

double precision xyza(3), xyzb(3), xff(3), cwir, bbst(3) 
double precision xa, ya, za, xb, yb, zb, bx, bz 
common no, nv 
integer no, nv 

B D ; 
D V DA EXT XF NO NV · , 
D V DA EXT YF NO NV · , 
D V DA EXT ZF NO NV · , 
D V DA EXT BY NO NV · , 
D V RE EXT XYZA 3 . , 
D V RE EXT XYZB 3 . , 
D V RE EXT XFF 3 ; 
D V RE EXT CWIR . , 
D V RE EXT BBST 3 ; 
D V RE INT XA · , 
D V RE INT YA ; 

D V RE INT ZA · , 
D V RE INT XB ; 

D V RE INT YB ; 

D V RE INT ZB ; 

D V RE INT BX · , 
D V RE INT BZ ; 

ED; 

XA = XYZA(l) · , 
YA = XYZA(2) ; 

ZA XYZA(3) · , 
XB = XYZB(l) ; 

YB = XYZB(2) ; 

ZB = XYZB(3) ; 
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*DA 
*DA 
*DA 
*DA 
*DA 
c 

c 

c 

c 

c 
*FOX 
*FOX 
*FOX 
*FOX 

XF = XFF (1) · , 
YF = XFF(2) · , 
ZF = XFF (3) · , 
BX = BBST(l) · , 
BZ = BBST(3) · , 

call davar( xf, xff(l), 1 ) 
call davar( zf, xff(3), 2 ) 
call bees (xa, ya, za, xb, yb, zb, xf, yf, zf, bx, by, bz, 

$ cwir ) 

return 
end 
SUBROUTINE BEES( XA,YA,ZA,XB,YB,ZB,XF,YF,ZF,BX,BY,BZ,CUR) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

COMMON NO, NV 
integer no, nv 

B D . , 
D V DA EXT XF NO NV ; 

-D V DA EXT YF NO NV · , 
D V DA EXT ZF NO NV · , 

C*FOX D V DA EXT BX NO NV · , 
*FOX D V DA EXT BY NO NV · , 
C*FOX D V DA EXT BZ NO NV · , 
*FOX D V RE EXT XA · , 
*FOX D V RE EXT XB · , 
*FOX D V RE EXT YA · , 
*FOX D V RE EXT YB · , 
*FOX D V RE EXT ZA · , 
*FOX D V RE EXT ZB · , 
*FOX D V RE INT DZN . , 
*FOX D V RE INT XM · , 
*FOX D V RE INT DX ; 

*FOX D V RE INT YM · , 
*FOX D V RE INT DY · , 
*FOX D V RE INT ZM · , 
*FOX D V RE INT DZ ; 

*FOX D V DA INT XAF NO NV . , 
*FOX D V DA INT YAF NO NV ; 

*FOX D V DA INT ZAF NO NV . , 
*FOX D V DA INT XBF NO NV ; 

*FOX D V DA INT YBF NO NV ; 

*FOX D V DA INT ZBF NO NV ; 
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*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 
*FOX 

* 
c*DA 
*DA 
*DA 
*DA 
*DA 
*DA 
*DA 
*DA 
c*DA 
*DA 
*DA 
*DA 
*DA 
*DA 
*DA 
*DA 
*DA 
*DA 
c 
*DA 
*DA 
*DA 
*DA 
*DA 
*DA 

D V DA INT >eMF NO NV · , 
D V DA INT YMF NO NV · , 
D V DA INT ZMF NO NV · , 
D V RE EXT CUR . , 
D V DA INT Tl NO NV · , 
D V DA INT T2 NO NV · , 
D V DA INT T3 NO NV · , 
D V DA INT TA NO NV · , 
D V DA INT TB NO NV · , 
D V DA INT DMS NO NV · , 
D V DA INT DAF NO NV · , 
D V DA INT DBF NO NV ; 

D V 
E D 

DA INT ABF NO NV · , . , 

DZN=(ZB-ZA) ; 
DZN=SQRT«XB-XA)*(XB-XA)+(YB-YA)*(YB-YA)+(ZB-ZA)*(ZB-ZA» ; 
XM = (XB+XA)/2.0DO ; 
DX = (XB-XA)/2.0DO/DZN ; 
YM = (YB+YA)/2.0DO ; 
DY = (YB-YA)/2.0DO/DZN ; 
ZM = (ZB+ZA)/2.0DO ; 
DZ = (ZB-ZA)/2.0DO/DZN : 
DZ = 0.50DO ; 
XAF 

YAF 
ZAF 
XBF 
YBF 
ZBF 
XMF 
YMF 
ZMF 

= 
= 
= 
= 
= 
= 
= 
= 
= 

XA-XF 
YA-YF 
ZA-ZF 
XB-XF 
YB-YF 
ZB-ZF 
XM-XF 
YM-YF 
ZM-ZF 

· , 

· , 
· , 
· , 

· , 

· , 
· , 
; 

· , 

Tl = YMF*DZ - ZMF*DY ; 
T2 = ZMF*DX - XMF*DZ ; 
T3 = XMF*DY - YMF*DX : 
TA = (XAF*DX + YAF*DY + ZAF*DZ)/DZN ; 
TB = (XBF*DX + YBF*DY + ZBF*DZ)/DZN ; 
DMS = Tl*Tl + T2*T2 + T3*T3 ; 

*DA DAF = SQRT(XAF*XAF + YAF*YAF+ ZAF*ZAF)/DZN : 
*DA 
*DA 
C*DA 
*DA 
C*DA 

DBF SQRT(XBF*XBF + YBF*YBF+ ZBF*ZBF)/DZN ; 
ABF = (CUR/10.ODO)*«TB/DBF - TA/DAF)/DMS) ; 
BX = BX + Tl*ABF ; 
BY = BY + T2*ABF ; 
BZ = BZ + T3*ABF 
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c*DA· 
c*DA 
c 

YA=-YA ; 
YB=-YB ; 

RETURN 
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