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FORUM REVIEW ARTICLE

Nitric Oxide-Dependent Protein Post-Translational Modifications
Impair Mitochondrial Function and Metabolism
to Contribute to Neurodegenerative Diseases

Tomohiro Nakamura1 and Stuart A. Lipton1,2

Abstract

Significance: Most brains affected by neurodegenerative diseases manifest mitochondrial dysfunction as well
as elevated production of reactive oxygen species and reactive nitrogen species (RNS), contributing to synapse
loss and neuronal injury.
Recent Advances: Excessive production of RNS triggers nitric oxide (NO)-mediated post-translational
modifications of proteins, such as S-nitrosylation of cysteine residues and nitration of tyrosine residues.
Proteins thus affected impair mitochondrial metabolism, mitochondrial dynamics, and mitophagy in the
nervous system.
Critical Issues: Identification and better characterization of underlying molecular mechanisms for NO-
mediated mitochondrial dysfunction will provide important insights into the pathogenesis of neurodegenera-
tive disorders. In this review, we highlight recent discoveries concerning S-nitrosylation of the tricarboxylic
acid cycle enzymes, mitochondrial fission GTPase dynamin-related protein 1, and mitophagy-related proteins
Parkin and phosphatase and tensin homolog-induced putative kinase protein 1. We delineate signaling cas-
cades affected by pathologically S-nitrosylated proteins that diminish mitochondrial function in neurode-
generative diseases.
Future Directions: Further elucidation of the pathological events resulting from aberrant S-nitrosothiol or
nitrotyrosine formation may lead to new therapeutic approaches to ameliorate neurodegenerative disorders.
Antioxid. Redox Signal. 32, 817–833.

Keywords: nitric oxide, protein S-nitrosylation, nitration, mitochondrial metabolism, mitochondrial dynamics,
mitophagy

Introduction

The incidence of neurodegenerative disorders, in-
cluding Alzheimer’s disease (AD), Parkinson’s disease

(PD), amyotrophic lateral sclerosis (ALS), and fronto-
temporal dementia, is rising with the increasing longevity of
the global population. The majority of patients suffering from
neurodegenerative disorders manifest progressive impair-
ment of cognitive, behavioral, and motor function; a hallmark
of these disorders is synaptic dysfunction and loss, with
eventual irreversible neuronal dropout. In AD, synaptic

dysfunction may start early in presymptomatic stages and
correlates with cognitive decline as the disease progresses
(74, 111). Growing evidence in a variety of neurodegenera-
tive disorders has suggested that a number of factors may
contribute to synaptic loss and neuronal damage, including
misfolded proteins or lack of adequate degradation of these
proteins (e.g., amyloid-b [Ab], a-synuclein, tau, and TDP-
43), mitochondrial dysfunction, endoplasmic reticulum (ER)
stress, excitotoxicity, and neuroinflammation. Moreover,
recent studies have presented evidence that, as the disease
progresses, pathologically misfolded proteins may spread
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throughout the nervous system via cell-to-cell transmission,
propagating the toxic effects of the abnormal proteins to re-
cipient cells, including neurons and glia (39). Although the
mechanisms for these key neurodegenerative features remain
unclear, increased generation of reactive oxygen species
(ROS)/reactive nitrogen species (RNS) is known to precede
or accompany these pathological processes, consistent with
the notion that oxidative and nitrosative stress represents an
important contributor to pathogenesis (4, 43).

Along these lines, we and others have mounted evi-
dence that elevated production of RNS, including nitric oxide
(NO)-related species, engenders aberrant post-translational
modifications on specific cysteine residues (i.e., protein
S-nitrosylation), contributing to pathological disturbances in
neural networks, synaptic function, and neuronal survival
(81, 82). Analogous to other post-translational modifications,
S-nitrosylation can affect a protein’s enzymatic activity,
cause conformational changes (including protein aggrega-
tion), alter protein–protein interactions, and influence protein
localization, thus acting as an important signaling mechanism
under both physiological and pathological conditions. In
distinction to other post-translational modifications such as
phosphorylation, protein S-nitrosylation can occur both in-
tracellularly and extracellularly. Moreover, at low levels of
RNS, protein S-nitrosylation represents a normal signaling
process. For example, basal levels of NO support normal
mitochondrial function in part via S-nitrosylation of tran-
scription factors, such as CREB and p53 (8, 121), driving the
expression of proliferator-activated receptor gamma coacti-
vator 1a that promotes mitochondrial biogenesis. In contrast,
at high levels of RNS, as occurs in many neurodegenerative
disorders, aberrant protein S-nitrosylation involves reaction
with cysteine residues that would not normally become ni-
trosylated and often do not have a full consensus motif of
flanking amino acids that facilitate S-nitrosylation by lower
levels of RNS (82, 122). Given the fact that cysteines are often
located in the active site of enzymes, aberrant S-nitrosylation at
these sites can seriously compromise normal function. For in-
stance, aberrant S-nitrosylation of dynamin-related protein 1
(Drp1) and phosphatase and tensin homolog (PTEN)-induced
putative kinase protein 1 (PINK1) alters their enzymatic ac-
tivities, leading to abnormalities in mitochondrial bioener-
getics, morphology, and quality control, as discussed in detail
in subsequent sections of this review (22, 87). Additionally,
another type of RNS, peroxynitrite (ONOO-), can lead to
post-translational modification of tyrosine residues, known as
protein nitration, and also contributes to mitochondrial dys-
function, among other disturbances (33, 51). In this review
article, dedicated to the Special Forum Issue of ‘‘Mitochon-
drial Metabolism and Mitophagy,’’ we will focus on the
pathological effects of NO-dependent post-translational
modifications leading to mitochondrial dysfunction in neu-
rodegenerative disorders.

There are at least two classifications of neurodegenerative
diseases: rare familial cases (typically <5%–10% of all pa-
tients) and the much more common sporadic cases (>90%–
95%). The familial cases are generally early onset (before age
65) and due to a mutation in a single disease-causing gene,
such as a-synuclein, PINK1, or Parkin in PD, and amyloid
precursor protein or presenilin 1 in AD. In contrast, sporadic
forms are generally of late onset, have no familial predis-
position, and likely arise from a combination of genetic risk

factors (such as ApoE polymorphism) and environmental
influences (e.g., agricultural chemicals, air pollution, head
trauma, and lifestyle [such as disturbance of sleeping]). Im-
portantly, from work on experimental models of neurode-
generation, exposure to many disease-linked environmental
factors is known to increase ROS/RNS production and thus
overcomes the brain’s antioxidant capacity, resulting in
oxidative/nitrosative stress (10, 108). Accordingly, in this
review, we propose the hypothesis that elevated production
of ROS/RNS is a critical pathogenic mediator of common
sporadic cases of neurodegenerative disorders via triggering
post-translational modifications on specific proteins, thus
mimicking pathological manifestations of rare genetic mu-
tations. To support this notion, we highlight classical findings
and new studies with particular focus on impairment of mi-
tochondrial metabolism and function. We show that aber-
rantly S-nitrosylated (or nitrated) proteins can contribute to
disease pathogenesis.

RNS Generation in the Central Nervous System

In mammalian cells, three isoforms of nitric oxide synthase
(NOS) predominantly generate NO, involving enzymatic
conversion of l-arginine to l-citrulline and NO (15). The
mammalian brain expresses all three isoforms: neuronal NOS
(nNOS or NOS1), inducible NOS (iNOS or NOS2), and en-
dothelial NOS (eNOS or NOS3). As their names indicate,
nNOS is primarily present under basal conditions in a discrete
population of neurons, and eNOS is in the brain vasculature,
although it does exist in neurons to some degree. In contrast,
acute inflammatory stimuli induce expression of iNOS
mainly in astrocytes and microglia. All NOS proteins exist as
homodimers and bind to calmodulin for NO production;
however, while nNOS and eNOS require an increase in in-
tracellular calcium concentration for calmodulin binding,
iNOS can bind to calmodulin at physiologically low calcium
concentrations. Thus, after induction, iNOS constitutively
generates NO.

In the brain, when produced at physiological levels, RNS/
ROS generally support normal neuronal signaling, function,
and survival, whereas elevated production of RNS/ROS can
contribute to protein misfolding, mitochondrial/bioener-
getic dysfunction, ER stress, synaptic injury, and other
forms of neuronal damage (82). For example, mild activa-
tion of N-methyl-d-aspartate (NMDA)-type glutamate re-
ceptors at neuronal synapses causes calcium influx that
physiologically activates nNOS, which is tethered to the
NMDA receptor complex via PSD-95. Thus, physiological/
phasic synaptic activity is important for maintaining normal
neuronal function, including mitochondrial metabolism and
memory formation. By contrast, excessive/tonic stimula-
tion of NMDA receptors, particularly at extrasynaptic sites,
initiates overactivation of nNOS, leading to pathological
production of RNS; moreover, ROS levels can also be el-
evated by NMDA receptor stimulation (61, 77) (Fig. 1).
Further along these lines, in vivo studies found that genetic
ablation of nNOS provides some degree of neuroprotection
against NMDA toxicity (5), ischemic injury (49), and toxin-
induced PD-like neuropathology (97). Moreover, with ag-
ing or neurodegenerative disorders, high concentrations of
NO from NOS can contribute to neurotoxicity via inhibition
of mitochondrial respiration and activation of cell death
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pathways (16). For example, iNOS-mediated NO production
contributes to aggregated a-synuclein, causing a decrease in
mitochondrial respiratory capacity, downregulation of the
mitochondrial fusion protein, OpaI, and a selective loss of
dopaminergic neurons (129). In addition, iNOS-derived NO
may elicit neuronal glutamate release that further augments
NMDA receptor-dependent excitotoxicity, involving addi-
tional generation via nNOS activation, and thus contributing to

mitochondrial damage and neuronal injury (123). Consistent
with these findings, genetic ablation of iNOS ameliorates
neuropathological abnormalities in models of both PD and AD
(66, 84). Notwithstanding these reports, one study showed that
deletion of iNOS actually aggravates behavioral deficits and
neuropathology in a mouse model of AD, suggesting that NO-
mediated effects depend on disease context, redox milieu, and
additional as yet unknown factors (67, 140).

NO-Dependent Post-Translational Modifications

Protein S-nitrosylation

NO was initially demonstrated to exert its biological func-
tion via activation of guanylyl cyclase (GC), followed by the
production of cyclic guanosine monophosphate (50, 78, 90).
However, emerging evidence suggests that, in large part, pro-
tein S-nitrosylation mediates NO-dependent signal transduc-
tion pathways (even regulating GC activity), affecting both
physiological and pathophysiological processes (33, 48, 82). S-
nitrosylation is a reversible post-translational modification in
which an NO group is covalently attached to a specific cysteine
thiol to form an S-nitrosothiol (SNO). Mechanistically, we fa-
vor this reaction proceeding through the chemical intermediate
of a nitrosonium cation (NO+, which is not present in a free
state at physiological pH). This intermediate reacts with a free
cysteine thiol (or more properly thiolate anion, –S-) (48, 68,
82). For this reaction to occur, a transition metal is needed for
electron transfer, although oxidation may potentially take place
very slowly in vitro in the absence of a transition metal. For
example, copper ions may act as an electron acceptor to fa-
cilitate the transfer of [NO+] equivalents (brackets to indicate
this generally represents a chemical intermediate rather than the
free cation) (36). It should be noted, however, that some au-
thorities have proposed direct thiyl radical/�NO radical re-
actions to mediate protein S-nitros(yl)ation (128). Moreover,
S-nitrosylating enzymes (nitrosylases) and denitrosylating
enzymes (denitrosylases) generally control the reactions
in vivo when physiological amounts of NO are involved.
Enzymatically mediated S-nitrosylation may not be required
when excessive levels of NO are present that can aber-
rantly S-nitrosylate a protein. NO-related species engender
S-nitrosylation on specific/critical thiol groups of proteins
(forming SNO-proteins). Additionally, low molecular
weight (LMW) compounds, such as l-cysteine, glutathione,
and co-enzyme A, can be used to produce SNO-cysteine,
S-nitroso-glutathione (GSNO), and S-nitroso-co-enzyme A
(SNO-CoA), respectively (3, 13) (Fig. 1). Moreover, we and
others have found a prominent role for transnitrosylation, that
is, transfer of an NO group from one SNO-molecule to an-
other reactive cysteine residue on an acceptor protein; this
reaction likely represents a major mechanism for genera-
tion of SNO-proteins in vivo (56, 76, 80, 83) (Fig. 2). Im-
portantly, in protein–protein transnitrosylation reactions,
the donor SNO-protein and the acceptor protein serve as the
S-nitrosylating and denitrosylating enzymes, respectively,
thereby acting as signaling molecules to regulate SNO-
dependent pathways. Notably, when the NO group leaves the
protein, the prior SNO-induced alteration in local structure or
conformation may potentially allow the same thiol group to
react with less reactive ROS (42). ROS are often generated in
excess quantities under pathophysiological conditions, and

FIG. 1. NO-dependent signaling contributes to neuro-
degeneration. While physiological production of NO af-
fords neuroprotective effects, pathologically high levels of
NO mediate signaling pathways that contribute to neuronal
damage and synaptic loss. In general, low levels of NO (i)
activate sGC to produce cGMP and (ii) trigger neuropro-
tective S-nitrosylation (SNO) events such as S-nitrosylation
of NMDARs (forming SNO-NMDAR), mediating cell pro-
tective functions of NO (left). In contrast, in neurodegen-
erative diseases, the increased activity of iNOS and nNOS
due to neuroinflammation and overstimulation of extra-
synaptic NMDARs, respectively, results in excessive NO
production (right). In several neurodegenerative disorders,
high levels of NO contribute to mitochondrial dysfunction
and protein misfolding via aberrant protein S-nitrosylation
in which cysteine residues undergo SNO modification. In
general, these aberrant reactions do not occur with physi-
ological levels of NO but can occur with higher levels
when a partial SNO-facilitating amino acid motif is present
near the target cysteine. Additionally, NO can react with
superoxide (O2

-) to generate peroxynitrite (ONOO-), me-
diating neurotoxicity through nitration of tyrosine residues
(Tyr-NO2), lipid peroxidation, and other pathological re-
actions. cGMP, cyclic guanosine monophosphate; iNOS,
inducible nitric oxide synthase; NMDAR, N-methyl-d-
aspartate-type glutamate receptor; nNOS, neuronal nitric
oxide synthase; NO, nitric oxide; NOS, nitric oxide syn-
thase; sGC, soluble guanylate cyclase; SNO, S-nitrosothiol.
Color images are available online.
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this can result in sulfenic acid (–SOH) derivatization of the
thiol. This adduct can be further oxidized to yield hyperox-
idation products, namely sulfinic acid (–SO2H) and sulfonic
acid (–SO3H) derivatives, suggesting that these more stable
(and, in the case of –SO3H, irreversible) hyperoxidative
modifications can also participate in NO-initiated patholog-
ical processes (20, 42, 110).

SNO (S-nitrosylation reaction) specificity

Although most cellular proteins contain multiple cysteine
residues, NO groups only target a specific population of thiols
to form SNO-proteins (48, 65, 67, 82, 124). Several contrib-
uting mechanisms have been implicated in governing SNO
specificity: acid–base and hydrophobic motifs, proximity to
the NOS complex, and protein–protein transnitrosylation.
Concerning the acid–base motif, our group originally proposed
that the presence of the charged acidic and basic amino acid
sidechains that are located in close proximity to the target
cysteine lowers its pKa to facilitate SNO formation (48, 122).
Notably, later proteomics and structural studies confirmed that
the acid–base SNO motif can support protein S-nitrosylation
when it exists within a 6–8 Å distance from the target site in a

tertiary protein structure (29, 73). In addition, a hydrophobic
environment, as occurs in lipid membranes or within a par-
ticular protein structure, aids in SNO formation because hy-
drophobicity promotes the formation of the nitrosylating
species (124).

Importantly, with excessive generation of RNS, as occurs
during normal aging or in many neurodegenerative disorders, a
partial SNO motif will support S-nitrosylation of a cysteine
residue, which is not targeted for S-nitrosylation by physio-
logical levels of NO-related species. Thus, elevated production
of RNS often leads to aberrant formation of SNO-proteins,
appearing only under disease conditions. Additionally, locali-
zation of a SNO target cysteine in a protein complex containing
NOS can facilitate S-nitrosylation. In this case, high local
concentrations of NO may (i) result in auto-S-nitrosylation
of NOS, possibly via the transition metal pathway; or (ii)
contribute to the generation of nitrosylating species that S-
nitrosylate nearby proteins (82, 120, 124). For example,
tethered via a PSD-domain, nNOS is located in a complex
with the NMDA receptor. Calcium influx through the NMDA
receptor-associated ion channel stimulates nNOS activity,
resulting in S-nitrosylation of both the NMDA receptor and
PSD-95 (65, 67, 82).

Also, as introduced above, accumulating evidence im-
plies that protein–protein transnitrosylation plays a major
role in cellular SNO formation (Fig. 2). In this case, the
protein–protein interaction underlies precisely regulated
transfer of the NO group from the donor (transnitrosylating)
protein to an acceptor (denitrosylating) protein. As an ex-
ample, we demonstrated that SNO-caspase-3 acts as a
transnitrosylase toward XIAP, resulting in the formation of
SNO-XIAP and thus inhibition of the protein’s anti-
apoptotic activity; concurrently, denitrosylation of the ac-
tive/cleaved form of caspase-3 results in its reactivation
(83). Interestingly, interfering with this caspase-3–XIAP
interaction, for example, by using a pro (uncleaved)-form of
SNO-caspase-3 or D148A mutant XIAP, inhibited the
transnitrosylation reaction, consistent with the notion that
specific protein–protein interaction is required for the
transnitrosylation reaction to occur.

Additionally, transnitrosylation reactions occur not only
from one SNO-protein to another protein but also from
LMW-SNOs to proteins (Fig. 2) (48, 82, 124). Enzymes that
can mediate denitrosylation include S-nitroso-glutathione
reductase (GSNOR), SNO-CoA reductase (SCoR), thior-
edoxin (Trx), and Trx-related protein 14 kDa (3, 13, 124). As
an example, the active site cysteine of Trx can facilitate de-
nitrosylation of target SNO-proteins, including SNO-
caspases and SNO-GAPDH, leading to the liberation of an
NO group and the formation of an intermolecular disulfide
bond between Trx and the target protein (12, 18).

In addition, GSNOR- and SCoR-dependent metabolism of
LMW-SNOs can prevent the formation of SNO-proteins due
to decreased transnitrosylation from these LMW-SNOs. In
contrast, GSNOR-deficient mice show greatly increased
protein S-nitrosylation, producing phenotypes in part re-
sembling advanced aging and presymptomatic processes of
neurodegenerative disorders, such as protein misfolding and
mitochondrial dysfunction (104). Moreover, in the kidney,
decreased SCoR activity results in increased S-nitrosylation
of pyruvate kinase M2, which inhibits the final steps of gly-
colysis. This inhibition results in a metabolic switch from

FIG. 2. Transnitrosylation effects enzymatic deni-
trosylation from one protein and S-nitrosylation of an-
other recipient protein. (A) Transnitrosylation entails
transfer of an NO group from one thiol to another thiol. For
example, LMW-SNOs, such as GSNO or SNO-CoA, can
transnitrosylate target proteins to generate a new SNO-protein
(designated ‘‘LMW compound—protein transnitrosylation’’).
(B) SNO-proteins thus generated can transfer the NO group to
another protein via ‘‘protein–protein transnitrosylation.’’
Here, the NO donating protein serves as an S-nitrosylase,
whereas the NO accepting protein acts as denitrosylase
(having removed the NO group from the donating SNO-
protein); thus, this reaction occurs in an enzymatic manner.
GSNO, S-nitroso-glutathione; LMW-SNOs, low-molecular-
weight S-nitrosothiols; SNO-protein, S-nitrosylated protein;
SNO-CoA, S-nitroso-co-enzyme A. Color images are avail-
able online.

820 NAKAMURA AND LIPTON



glycolysis to the pentose phosphate pathway, reportedly in-
creasing antioxidant capacity to enhance cell survival (150).
Despite being expressed in the brain, the possible role of
SCoR in protein S-nitrosylation in the nervous system is as
yet unknown (57, 150).

Tyrosine nitration

After production from NOS, �NO can very rapidly react
with another free radical, superoxide, to produce ONOO-

(100). Apparent decomposition of peroxynitrite generates
�NO2, which can promote tyrosine nitration with the forma-
tion of 3-nitrotyrosine, often associated with aberrant and
pathological NO signaling (11, 34, 51) (Fig. 1). Chemically,
tyrosine nitration is thought to be generated by a two-step,
free radical-mediated process: a one-electron oxidation of
tyrosine, producing tyrosyl radical, is followed by a
radical-radical coupling reaction of the tyrosyl radical and
�NO2, thus attaching a nitro group (–NO2) to the three-
position of the phenolic ring of the tyrosine residue. Although
nitration appears to favor certain tyrosine residues, the
mechanism for selective tyrosine nitration remains largely
unknown (34). Notably, peroxynitrite can also facilitate
disulfide bond formation between vicinal cysteines, as can
S-nitrosylation of one of the cysteines (68, 101). In addition,
similar to other post-translational modifications such as
protein S-nitrosylation, tyrosine nitration is thought to affect
the conformation and activity of target proteins. For example,
nitration of a-synuclein, Ab, and Tau accelerates their ag-
gregation and occurs in human brains with neurodegenerative
disorders (38, 59, 103), consistent with the notion that the
augmented NO/nitration pathways contribute to disease
pathogenesis. Additionally, tyrosine nitration of a-synuclein
is associated with an autophagic response in peripheral blood
cells of individuals with idiopathic PD (96). Interestingly,
peroxynitrite can also react with free thiol to yield the sul-
fenic acid (–SOH) derivative, at least in vitro (101), sug-
gesting that peroxynitrite-mediated oxidative modifications
of cysteine residues (i.e., forming –SOH, –SO2H, or –SO3H)
can also occur, and this may potentially contribute to the
disease process. In recent years, mitochondrial function has
been reported to be influenced by increasing numbers of S-
nitrosylated or nitrotyrosinated proteins [e.g., MEF2C (88,
108), Bcl-2 (6), PPARc (119), and mitochondria-associated
caspases (12, 117)]. Therefore, in the following sections, we
focus on protein S-nitrosylation and tyrosine nitration that
directly affect mitochondrial metabolism, morphology, and
mitophagy (Fig. 3).

Impairment of Mitochondrial Metabolism
in Neurodegenerative Diseases

Mitochondrial metabolism in the brain

Neurons demand substantial energy for the maintenance of
membrane potential and synaptic function. Hence, efficient
energy production from functional mitochondria represents
a vital cellular event for neuronal/synaptic activity, plasticity,
and survival. Additionally, mitochondria are known to regu-
late apoptosis and cellular calcium storage, making them an
even more important organelle for neurons. Consistent with
these notions, dysregulation of mitochondrial metabolism/
function is linked to the pathogenesis of neurodegen-

erative diseases. The first evidence to support such a con-
cept came from a human study whereby the inadvertent use
(via illicit drug contamination) of 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine, a prodrug to MPP+, interfered with mi-
tochondrial respiration and increased ROS/RNS production
in dopaminergic neurons, thereby causing parkinsonian-like
symptoms in the patients (62). Subsequently, over the next
several decades, numerous studies demonstrated that mito-
chondrial dysfunction, including not only impairment in res-
piration/energy (i.e., ATP) production but also mitochondrial
DNA defects, abnormal Ca2+ handling, imbalance in redox
homeostasis, alterations in mitochondrial morphology, and
aberrant mitochondrial quality control, may contribute to and
even underlie the pathogenesis of neurodegenerative condi-
tions. For instance, our group demonstrated that PD-related
environmental toxins decrease mitochondrial respiration in
dopaminergic neurons derived from human induced pluripotent
stem cells (hiPSCs), and the presence of genetic factors

FIG. 3. Representative SNO-proteins mediating mito-
chondrial dysfunction in neurodegenerative disorders.
Emerging evidence suggests that neurotoxic levels of NO
trigger aberrant S-nitrosylation of key proteins, including
TCA cycle enzymes, mitochondrial fission protein Drp1,
and mitophagy-related proteins PINK1 and Parkin, con-
tributing to impairment of mitochondrial metabolism, mi-
tochondrial dynamics, and mitophagy. As a consequence,
these SNO reactions promote excessive mitochondrial
fragmentation, accumulation of damaged mitochondria, and
bioenergetic compromise, thus contributing to synaptic
damage, characteristic of many neurodegenerative disor-
ders. Drp1, dynamin-related protein 1; PINK1, PTEN-
induced putative kinase protein 1; PTEN, phosphatase and
tensin homolog; TCA, tricarboxylic acid. Color images are
available online.
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aggravate such impairment (108). Interestingly, this type of
mitochondrial dysfunction resulted, at least in part, from the
formation of SNO-MEF2C.

Interestingly, while adult neurons mainly rely on mito-
chondrial oxidative phosphorylation (OXPHOS) for ATP
production, glial cells predominantly leverage glycolysis for
this purpose (72). In the adult brain, glucose is the major
source of energy/ATP production, although ketone bodies
may be utilized during development or glucose starvation.
Additionally, neuronal stimulation in adult brains can tem-
porarily trigger neuronal glycolysis (28). Concerning glucose
metabolism in the brain, the Magistretti group proposed an
interesting model termed the astrocyte–neuron lactate shuttle
(72, 92), whereby astrocytes generate lactate via glycolysis
and export lactate to neurons for conversion into pyruvate,
feeding into the tricarboxylic acid (TCA) cycle, which ap-

pears to be critical, at least under basal conditions (Fig. 4).
These findings suggest that disturbances in either astrocytic
glycolysis or neuronal oxidative metabolism can lead to
impairment in energy metabolism in the brain.

Emerging evidence suggests that pathological interactions
between aberrant NO signaling and mitochondrial metabo-
lism contribute to synaptic abnormalities and eventual cell
death during neurodegenerative diseases. Along these lines,
elevated levels of NO can lead to aberrant S-nitrosylation of
enzymes in the TCA cycle as well as proteins in the electron
transport chain (ETC), compromising their enzymatic ac-
tivity (81). For instance, direct S-nitrosylation and/or nitra-
tion of key subunits in complexes I, II, IV, and V in the ETC
inhibit their respiration activity and consequently their ability
to generate ATP. In this review, we highlight the relationship
between aberrant NO signaling and TCA cycle enzymes/

FIG. 4. Protein S-nitrosylation and energy metabolism in the brain. In adult brains, high glycolytic activity in
astrocytes produces lactate, which is transported to neurons through the ANLS system. Lactate taken up into neurons is
converted to pyruvate for mitochondrial oxidative metabolism (OXPHOS). To facilitate TCA cycle activity, neurons can
also leverage the PPP to produce pyruvate. Additionally, during intense neuronal stimulation or under conditions of
nutrient depletion, neurons may utilize glycolysis or fatty acid (ketone body) metabolism for the production of pyruvate/
acetyl-CoA. Glutamate metabolism also helps maintain the TCA cycle in neurons via production of a-ketoglutarate.
NADH generated from the TCA cycle is further utilized in the ETC to produce ATP. S-nitrosylation (SNO) of key
enzymes in glycolysis, fatty acid metabolism, glutamate metabolism, the TCA cycle, and the ETC affects all these
processes. aKGDH, a-ketoglutarate dehydrogenase; ACO, aconitase; ANLS, astrocyte–neuron lactate shuttle; CS, citrate
synthase; ETC, electron transport chain; IDH, isocitrate dehydrogenase; MDH, malate dehydrogenase; NADH, reduced
nicotinamide adenine dinucleotide; OXPHOS, oxidative phosphorylation; PDH, pyruvate dehydrogenase; PPP, pentose
phosphate pathway; SCS, succinyl CoA synthetase; SDH, succinate dehydrogenase; TCA, tricarboxylic acid. Color images
are available online.
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metabolites; the effects of NO-dependent post-translational
modifications on mitochondrial OXPHOS have been exten-
sively discussed in multiple recent review articles [see re-
views (37, 81, 95)].

Effects of NO signaling on the TCA cycle

Enzymatic activities required for the TCA cycle to run in
the forward direction include aconitase (ACO), isocitrate
dehydrogenase, a-ketoglutarate dehydrogenase (aKGDH),
succinyl-CoA synthetase, succinate dehydrogenase (SDH),
fumarase, malate dehydrogenase, and citrate synthase. Re-
cent S-nitrosoproteome analyses identified all the TCA cycle
proteins as potential targets of S-nitrosylation (7, 25, 30, 64,
93, 115, 127) (Fig. 4). Generally, S-nitrosylation of these
TCA proteins is inhibitory, thereby decreasing reduced ni-
cotinamide adenine dinucleotide (NADH) production needed
for activity of complex I and the ETC to generate ATP. For
instance, S-nitrosylation of ACO occurs at cysteine residues
responsible for the formation of the Fe–S cluster in the en-
zyme, possibly disrupting iron–sulfur binding (112). As a sec-
ond example, the aKGDH complex, comprising three enzymatic
components, aKGDH (E1), dihydrolipoamide succinyltrans-
ferase (E2), and dihydrolipoamide dehydrogenase (E3), pro-
duces succinyl-CoA, NADH, and FADH2, using FAD, NAD+,
lipoic acid, Co-A, and thiamine pyrophosphate as cofactors.
S-nitrosylation of the aKGDH complex reportedly can occur on
the E1 component leading to reversible inhibition (25), although
another study showed that S-nitrosylation of the E1 component
augments the aKGDH activity (127). Moreover, S-nitrosylation
can also occur on the E3 component of the aKGDH complex
(35), possibly inhibiting the enzymatic activity of E3 (143).
However, since most of these studies used exogenous NO do-
nors for monitoring the aKGDH activity, further studies using
models of neurodegenerative diseases are needed to determine
how endogenously produced NO might affect the aKGDH ac-
tivity. In addition, peroxynitrite induces nitration of all three
subunits in the aKGDH complex, inactivating the enzyme (118).

In contrast to these inhibitory effects of NO, at least in
cancer cells, S-nitrosylation at Cys501 of the mitochondrial
chaperone TRAP1, which acts as an SDH inhibitor, facilitates
TRAP1 degradation, thereby increasing SDH levels and ac-
tivity (105). Direct effects of S-nitrosylation of SDH remain
unclear (127). Interestingly, because SDH also functions as
complex II in the ETC, SNO-TRAP1-dependent regulation
of SDH may simultaneously affect the activity of both the
TCA cycle and ETC. Notwithstanding these prior protein
S-nitrosylation/nitration findings, human brains with neuro-
degenerative diseases, such as AD, have been reported to
manifest decreased TCA cycle enzymatic activity, including
ACO, isocitrate dehydrogenase, and aKGDH (17). Hence,
these findings are consistent with the hypothesis that S-
nitrosylation and possibly oxidation of TCA cycle-related
proteins compromise mitochondrial TCA cycle activity,
contributing to the development of neurodegenerative con-
ditions because of bioenergetic compromise.

Effects of NO signaling on other aspects
of mitochondrial metabolism

NO may also affect mitochondrial metabolism through S-
nitrosylation of proteins associated with fatty acid b-
oxidation, producing acetyl-CoA from fatty acids for the

TCA cycle. For instance, basal levels of NO promote
S-nitrosylation of very long-chain acyl-CoA dehydrogenase,
possibly enhancing fatty acid metabolism, whereas high
levels of NO can aberrantly S-nitrosylate mitochondrial
carnitine/acylcarnitine transporter, potentially impairing
fatty acid b-oxidation (30, 130). While glucose as a fuel plays
a major role in homeostatic adult brain metabolism, as dis-
cussed above, it has been suggested that neurons may also use
fatty acids as a fuel under specific circumstances, for exam-
ple, during early developmental stages or nutrient depletion
(106, 113). The brain may not favor fatty acid metabolism,
possibly because neuronal fatty acid b-oxidation is linked
to high levels of oxidative stress, and intermediates of
b-oxidation are toxic to the brain mitochondria (114). Ad-
ditionally, analysis of the S-nitrosoproteome has identified
mitochondrial enzymes involved in ketone body utilization
(ketolysis), including succinyl-CoA:3-ketoacid coenzyme A
transferase 1 that catalyzes the rate-determining step in ke-
tolysis, as substrates for S-nitrosylation (30). Future studies
will be necessary to examine whether S-nitrosylation of
proteins involved in b-oxidation or ketolysis serves as an
important regulator of energy metabolism during periods
when fatty acid metabolism influences brain function.

Moreover, S-nitrosylation of several key enzymes in gluta-
mate metabolism and clearance, including glutamate trans-
porter 1 or excitatory amino acid transporter 2, glutamate
dehydrogenase (GDH), mitochondrial aspartate aminotrans-
ferase (mAspAT), and glutamine synthetase (GS), appears to
regulate mitochondrial metabolism (102). During glutamate
catabolism, GDH and mAspAT catalyze oxidation of gluta-
mate to produce a-ketoglutarate, which enters into the TCA
cycle as a substrate for aKGDH; however, S-nitrosylation can
inhibit the activity of GDH and mAspAT, thus potentially de-
creasing a-ketoglutarate availability.

Defects in Mitochondrial Dynamics Contribute
to Neurodegenerative Diseases

Mitochondrial dynamics

Mitochondria constantly undergo fusion and fission (col-
lectively termed mitochondrial dynamics) under physiological
conditions. These processes result in distinct mitochondrial
morphologies. The dynamic nature of mitochondrial fusion and
biogenesis (resulting from fission) ensures proper distribution
of mitochondria to subcellular locations, including neuronal
axons, presynaptic terminals, and postsynaptic dendritic spines.
Critically, in these spines, Ca2+ homeostasis and ATP pro-
duction are required for normal synaptic maintenance and
transmission. Additionally, mitochondrial dynamics modulate
apoptosis, ROS generation, mitophagy, and bioenergetics (19,
126). Along these lines, an imbalance in mitochondrial fission
and fusion has been linked to a variety of human diseases,
including neurodegenerative disorders (23, 125).

While many proteins affect mitochondrial morphology,
four large GTPases constitute the core machinery for mito-
chondrial dynamics: mitofusin 1 (Mfn1), Mfn2, optic atrophy
1 (OPA1), and Drp1 (Fig. 5). Mfns and OPA1 mediate mi-
tochondrial fusion; Mfn1 and Mfn2 are responsible for the
fusion of outer mitochondrial membranes, and OPA1 supports
the fusion of inner mitochondrial membranes. By contrast,
Drp1 acts as a mitochondrial fission protein. To initiate mi-
tochondrial fission, Drp1 translocates from the cytosol to
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mitochondria, binds to mitochondria fission factor, and oli-
gomerizes to form a ring-like structure at the mitochondrial
scission site. Constriction of the Drp1 ring structure upon GTP
hydrolysis then initiates mitochondrial fission, producing two
mitochondria from a single mitochondrion. Drp1 contains
several functional domains that execute mitochondrial fission,
including a GTPase domain, a dynamin-like middle domain,
and a GTPase effector domain (GED). The intermolecu-
lar interactions of the GED domain facilitate the assembly
of higher order structures, for example, Drp1 dimers and
tetramers (147, 154), thus stimulating assembly-driven
GTPase activity.

Several lines of evidence indicate that dysregulated Drp1
activity leads to an imbalance in mitochondrial dynamics,
contributing to the development of several neurological con-
ditions. In humans, a dominant-negative mutation (A395D) in
the Drp1 gene was encountered that causes lethality in the
newborn (138). With this mutation, mitochondria display

elongated structures due to decreased mitochondrial fission.
Consistent with this human case, Drp1-deficient mice dem-
onstrate elongated mitochondria, abnormalities in synapse
formation, and embryonic lethality (52, 133). Thus, these re-
sults argue that basal Drp1 activity supports physiological
mitochondrial fission for maintenance of proper mitochondria
distribution and bioenergetics in neurons, as well as in other
cell types. Additionally, normal levels of fission can facilitate
removal of small mitochondria through mitophagy as dis-
cussed in the following sections.

S-nitrosylation of Drp1 in neurodegenerative diseases

Models of neurodegenerative disorders simulated by the ap-
plication of AD-related Ab oligomers, exposure to PD-related
environmental toxins (e.g., rotenone, 6-hydroxydopamine), or
expression of mutant huntingtin (mHtt) to mimic Huntington’s
disease (HD) all induce Drp-1 dependent, excessive mito-
chondrial fragmentation, in part via an increase in ROS/RNS
(9, 40, 70). Along these lines, our group and subsequently
others found that Drp1 activity became overactivated by S-
nitrosylation and possibly further oxidation of Drp1 at Cys644
(1, 2, 22, 47, 55, 63, 79, 85, 104, 134, 135). While S-nitrosylated
Drp1 (SNO-Drp1) appears in the brains with various neurode-
generative disorders, as discussed below, studies with AD
models exemplify the pathophysiological relevance of forma-
tion of SNO-Drp1 (2, 22, 99, 134, 135). In response to oligo-
meric Ab or nitrosative stress, Drp1 is S-nitrosylated within the
GED domain, facilitating dimerization and allosteric upregu-
lation of the GTPase activity (22). Accordingly, SNO-Drp1
formation leads to excessive mitochondrial fragmentation,
bioenergetic failure, and consequently synapse loss/neuronal
injury (Fig. 5) (22). Recent studies further identified Cdk5 and
possibly protein disulfide isomerase as S-nitrosylases toward
Drp1, enhancing SNO-Drp1 formation through direct transni-
trosylation (63, 99, 132). Notably, expression of a Drp1 mutant
lacking the S-nitrosylation site ameliorated synaptic loss in-
duced by Ab oligomers, consistent with our hypothesis that
SNO-Drp1 plays a causal role in the pathogenesis of AD. In
agreement with this notion, we and subsequently others found
significantly increased levels of SNO-Drp1 in the postmortem
human AD brains (22, 135). Intriguingly, we also showed that
elevated levels of glucose, as seen in metabolic syndrome
(MetS) and type 2 diabetes mellitus (T2DM), increase NO
production and subsequent SNO-Drp1 formation coordinately
with Ab oligomers (2). Because T2DM/MetS represents a key
risk factor for the development of AD (14), these results provide
mechanistic insight into the epidemiological association be-
tween these metabolic and cognitive diseases. By contrast,
calorie restriction (CR) delays the onset of neurodegenerative
phenotypes in some mouse models (41), and it has been sug-
gested that NO-dependent signaling pathways may mediate, at
least in part, the anti-aging effects of CR (116). Whether CR
decreases S-nitrosylation of Drp1 or other mitochondrial-related
proteins remains as an open question.

More recent studies have identified multiple cellular mech-
anisms acting upstream or downstream of SNO-Drp1 to en-
hance its neurotoxic effects. First, as an upstream effector of
SNO-Drp1 in AD, marked downregulation of microRNA-132
results in elevated NO production due to increased expression
of nNOS (137). This leads to aberrant S-nitrosylation of crit-
ical neuronal proteins, including not only Drp1 but also Cdk5

FIG. 5. Mechanistic schema of SNO-Drp1-mediated
excessive mitochondrial fragmentation. Mitochondria can
undergo fusion and fission, referred to as mitochondrial
dynamics. Opa1 and Mfns typically mediate mitochondrial
fusion, whereas Drp1 facilitates mitochondrial fission. Ba-
lanced mitochondrial dynamics play an important role in
maintaining a proper mitochondrial network in neurons.
Oligomerized Ab in AD, mHtt expression in HD, and scrapie
in TSE can all induce aberrant S-nitrosylation of Drp1 that
hyperactivates its GTPase activity, resulting in excessive
fragmentation of mitochondria. Fragmented mitochondria
result in injured cristae and bioenergetic compromise with
decreased ATP production, thereby contributing to neuronal
injury and synaptic loss in neurodegenerative diseases. Ab,
amyloid-b; AD, Alzheimer’s disease; HD, Huntington’s dis-
ease; Mfn, mitofusin; mHtt, mutant huntingtin; Opa1, optic
atrophy 1; TSE, transmissible spongiform encephalopathy.
Color images are available online.
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and GAPDH. Additionally, as a downstream event of SNO-
Drp1-dependent excessive mitochondrial fragmentation, an-
other study found that ROS released from fragmented
mitochondria trigger elevated cytokine production in im-
mune cells (107). Since many cytokines stimulate NO
production, this finding may represent a positive-feedback
loop involving SNO-Drp1 and neuroinflammation during
Alzheimer pathogenesis.

Interestingly, several research groups have now reported
SNO-Drp1-mediated mitochondrial fragmentation and asso-
ciated synaptic injury in models of other neurological disease
conditions, pointing to the possibility that S-nitrosylation of
Drp1 may serve as a common mediator of synaptic damage
neurodegenerative processes. For example, in models of HD
and transmissible spongiform encephalopathies (TSEs) (47,
144), the formation of SNO-Drp1 was shown to contribute
to mHtt or scrapie-induced mitochondrial dysfunction and
synaptic injury. In the case of HD, aberrant expansion of a
trinucleotide CAG repeat in the htt gene translates into the
expanded polyglutamine repeat of mHtt protein, resulting in
toxic misfolding of mHtt. The misfolded mHtt initially af-
fects the striatum, triggering an adult onset, neurodegenera-
tive movement disorder. As the disease progresses, the
neuropathology also occurs in the cerebral cortex. Consistent
with this aspect of disease progression, expression of mHtt in
the striatum and cortex was found to correlate with increased
SNO-Drp1 formation in HD transgenic mouse and human
postmortem HD brains. Using cell-based models, we further
demonstrated that expression of non-nitrosylatable mutant
Drp1 mitigates mHtt-induced mitochondrial fragmentation
and synaptic damage. Hence, these findings suggest that
SNO-Drp1 acts downstream of mHtt, mediating signaling
cascades contributing to degeneration of synapses and neu-
rons in HD. Since S-nitrosylation of Drp1 appears to be
associated with AD, HD, TSE, and possibly PD, character-
ization of SNO-Drp1-dependent pathways in other disease
states could further strengthen the unifying role of SNO-Drp1
as a critical mediator of mitochondrial pathology in neuro-
degenerative disorders.

As another example of SNO-regulated mitochondrial dy-
namics, a knock-in mouse line, in which endogenous type 1
ryanodine receptor (RyR1) was replaced with its non-
nitrosylatable mutant (C3636A), demonstrated a decrease in
mitochondrial fragmentation, thereby rescuing neuronal cell
death in the hippocampus of a kainic acid-induced model of
temporal lobe epilepsy (75). S-nitrosylation of RyR1 is
known to increase Ca2+ release through the RyR1 channel in
the ER (31). Hence, it will be important for future experiments
to study the possible interaction between the SNO-RyR1/
ER/Ca2+ pathway and SNO-Drp1-mediated mitochondrial
fragmentation.

NO-Induced Dysfunction in Mitophagy/Autophagy
Neurodegenerative Disorders

NO/SNO and mitophagy

Mitophagy involves a selective elimination of damaged
mitochondria through the autophagy–lysosomal degradation
pathway. Impairment of this cellular defense machinery results
in the accumulation of dysfunctional mitochondria typically
associated with excessive production of ROS, eventually
leading to mitochondrial-dependent neuronal cell death. Nu-

merous studies have suggested that PINK1 and Parkin, whose
gene mutations are linked to familial forms of PD, regulate the
process of mammalian mitophagy (94), although Parkin/
PINK1-independent mitophagy also exists (139). PINK1 rep-
resents a mitochondrially targeted serine/threonine kinase,
whereas the cytosolic protein Parkin possesses ubiquitin E3
ligase activity. Under basal conditions, PINK1 protein levels
remain low due to its high turnover rate; however, when the
mitochondrial membrane potential drops, a sign of mito-
chondrial damage, PINK1 accumulates on the outer membrane
of the damaged mitochondrion. PINK1 then phosphorylates
ubiquitin, facilitating the selective recruitment of Parkin to the
mitochondrial membrane, which enhances Parkin’s E3 ligase
activity (58). Consequently, Parkin ubiquitinates mitochon-
drial membrane proteins to recruit autophagy-related proteins,
such as microtubule-associated protein 1A/1B-light chain 3
and p62, thus initiating mitophagy (Fig. 6). Notably, defects in
Parkin/PINK1-dependent mitophagy have been linked not
only to PD but also to many other neurodegenerative diseases,
including AD, ALS, and HD [reviewed in ref. (136)].

An initial study from our group provided some of the first
evidence that NO could affect neuronal mitochondrial dy-
namics and mitophagy (9). In that study, NO triggered ex-
cessive fragmentation of mitochondria, and these injured
mitochondria were engulfed in autophagosomes. Additional
evidence has revealed that NO signaling plays a critical role
in mitophagy at multiple steps. For instance, under normal
conditions, PINK1 recruits nNOS to mitochondria, and
physiological levels of NO from nNOS enhance Parkin
translocation to mitochondria to increase mitophagy (46).
However, until recently exactly how pathological levels of
NO impair mitophagy remained unclear. Our group recently
demonstrated that following mitochondrial insult, aberrant
S-nitrosylation of PINK1 at Cys568 inhibits its kinase ac-
tivity and disrupts Parkin translocation to the mitochondrial
membrane, thus impairing Parkin/PINK1-dependent mito-
phagy in dopaminergic neurons derived from hiPSCs (87)
(Fig. 6). Intriguingly, we found that SNO-PINK1 formation
occurs at the presymptomatic stage in mouse PD models,
consistent with the notion that SNO-PINK1 contributes to
mitophagy deficits early in the pathogenesis of PD.

In addition, SNO-Parkin levels have been reported to be
greatly elevated in the postmortem human brains of patients
diagnosed with PD (26, 145). Moreover, in cell-based and
animal models, exposure of neurons to PD-related mito-
chondrial toxins (e.g., MPP+ or rotenone) or oligomeric a-
synuclein triggers aberrant S-nitrosylation of Parkin, leading
to abnormal mitochondrial morphology and mitophagy (89,
141, 148) (Fig. 6). Mechanistically, in the later stages of PD,
S-nitrosylation of Parkin results in an increase in its
ubiquitin-E3 ligase activity; intriguingly, this is followed
temporally by a decrease in this activity (26, 145). Accord-
ingly, the SNO-Parkin thus produced contributes not only to
deficits in mitophagy but also to the accumulation of mis-
folded proteins, such as synphilin-1 (26, 89, 145). In addition,
S-nitrosylation of Parkin inhibits its binding to Drp1, thus
decreasing Parkin ubiquitination of Drp1 and relatively in-
creasing Drp1 levels. The resulting increase in SNO-Parkin-
dependent Drp1 activity coincides with the appearance of
excessively fragmented mitochondria in neurons exposed to
mitochondrial toxins (148), implicating SNO-Parkin in ab-
errant mitochondrial dynamics.
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Further concerning the role of SNO-Parkin in mitophagy, a
recent study demonstrated that the initial increase in Parkin
activity following its S-nitrosylation promotes ubiquitination
of mitochondrial proteins destined for mitophagy, whereas
the subsequent decrease in Parkin ubiquitin E3 ligase activity
decreases mitophagy (89). Moreover, SNO-Parkin and SNO-
Drp1 are present in the GSNOR knockout model of aging/
senescence, and these S-nitrosylated proteins contribute to
impairment of mitochondrial dynamics and mitophagy (104).
Since this experimental model exhibits early signs of neu-
rodegeneration, for example, aggregated a-synuclein, the
formation of SNO-Parkin and SNO-Drp1 may represent an
early pathogenic event in neurodegenerative diseases.

Prior studies have also found that prolonged nitrosative
stress results in tyrosine nitration of Parkin, thus inhibiting
mitophagy (89). Nonetheless, in a different in vivo model
system, another group demonstrated that peroxynitrite acti-
vates mitophagy, possibly through nitration of Drp1 (32).
Hence, the precise role of nitration on mitophagy merits fur-
ther study. In addition to nitration of Drp1 and Parkin (32, 89),

recent work has also suggested that nitrotyrosine formation
on other proteins may affect mitophagy. For example, ni-
tration of Mn superoxide dismutase (SOD2) inhibits its ac-
tivity; the resulting increase in ROS may contribute to an
imbalance in mitochondrial redox homeostasis and increased
mitophagy (27). However, the exact mechanism by which
nitrated MnSOD upregulates mitophagy remains unclear, as
does the potential pathological role of this event.

SNO-proteins and autophagy

Macroautophagy (referred to here as autophagy) elimina-
tes unwanted cellular components via a lysosomal degrada-
tion pathway that helps maintain proper cellular homeostasis
and proteostasis. As described above, mitophagy is a special
form of autophagy that clears damaged mitochondria. In
neurons, autophagic dysregulation (via either increased or
decreased activity) disrupts the normal neuroprotective
function of autophagy, thus contributing to various disease
states including a number of neurodegenerative disorders. In

FIG. 6. Mitophagy and protein
S-nitrosylation. Mitophagy repre-
sents an autophagic process for re-
moval of damaged mitochondria.
Initially, translocation and stabili-
zation of PINK1 on damaged mi-
tochondria facilitate recruitment of
Parkin to the mitochondrial mem-
brane from the cytosol. Once trans-
located, PINK1 phosphorylates
Parkin as well as ubiquitin to enhance
ubiquitination of mitochondrial outer
membrane proteins. Mitochondria
thus marked are subsequently en-
gulfed by autophagosomes for lyso-
somal degradation. Hence, when
normally functioning, mitophagy
ameliorates neurotoxicity by remov-
ing damaged or dysfunctional mito-
chondria. S-nitrosylation of PINK1
inhibits its kinase activity and thus
attenuates mitophagy. In addition,
S-nitrosylation of Parkin alters its
ubiquitination activity, allowing
accumulation of damaged mitochon-
dria. Note that SNO-Parkin forma-
tion can also facilitate an increase in
misfolded proteins, in part, because
they are not properly ubiquitinated
and removed by mitophagy or the
ubiquitin-proteasome system. LC3,
microtubule-associated protein 1A/
1B-light chain 3; Ub, ubiquitin.
Color images are available online.
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this context, aberrant protein S-nitrosylation of autophagy-
related proteins can affect autophagy. Two classical path-
ways that regulate autophagy involve the c-Jun terminal ki-
nase ( JNK)/Bcl-2/Beclin 1 cascade and the IjB kinase
(IKK)b/AMPK/mTORC1 cascade. During autophagy, JNK1
activation leads to Bcl-2 phosphorylation, which decreases
Bcl-2–Beclin 1 interaction and allows Beclin 1 to participate
in autophagosome formation. In addition, activation of IKKb
results in phosphorylation of AMPK, which inactivates
mTORC1 (a potent inhibitor of autophagy); this occurs in a
tuberous sclerosis complex (TSC) 2-dependent manner.
Using cell culture models of HD, Rubinsztein and colleagues
presented evidence that inhibition of JNK1 and IKKb, pos-
sibly via protein S-nitrosylation of each, mediates an inhib-
itory effect on autophagy (109).

Moreover, subsequent studies found that additional SNO-
proteins were involved in autophagy. For example, S-
nitrosylation of Bcl-2 stabilizes Bcl-2–Beclin 1 interaction
(142) (71), and S-nitrosylation of TSC2 increases mTORC1
activity (69); thus, both of these SNO reactions inhibit au-
tophagy. It has also been demonstrated that S-nitrosylation
and thus inhibition of PTEN, known to affect the mTORC1
activity, promote cell survival (24, 45, 60, 86, 91). A recent
study showed that SNO-PTEN affords prosurvival effects in
part via activation of mTORC1, causing inhibition of au-
tophagy (152, 153). However, other studies have demon-
strated that NO can elicit cytotoxic activity via excessive
augmentation of autophagy. Notwithstanding the SNO-TSC2
study described above (69), NO has also been reported to
activate TSC2 and suppress the mTORC1 activity to increase
autophagy; whether protein S-nitrosylation plays a role in this
setting, however, remains to be established (131). Another
effect of protein S-nitrosylation on autophagy has been re-
ported by Snyder and colleagues. They found that cocaine
stimulates the formation of SNO-GAPDH, which in turn
triggers a Beclin 1-dependent form of autophagy that exerts a
cytotoxic effect (44). Obviously, further studies will be es-
sential to elucidate the differential effects of S-nitrosylation
of all these proteins and potentially others on autophagy,
particularly under conditions relevant to neurodegenerative
diseases.

Additionally, S-nitrosylation of lysosomal proteins may
contribute to impaired autophagy. Obesity, as observed in
high-fat diet mice, leads to downregulation of the GSNOR
activity in the liver, increasing S-nitrosylation of two lyso-
somal enzymes, hexosaminidase subunit b and cathepsin B,
thus inhibiting their activities (98). Moreover, S-nitrosylation
of lysosomal ATPase (Atp6v1a1 subunit) and cathepsin D
has been reported (53, 151). However, whether these SNO-
lysosomal proteins play a causal role in inhibition of autop-
hagy remains uncertain. Importantly, further work is needed
to elucidate the effects of these autophagy/lysosome-related
SNO-proteins on autophagy in general and mitophagy in
particular using experimental models of neurodegenerative
disorders.

Finally, another study demonstrated that nitration of tran-
sient receptor potential melastatin-related 2 (TRPM2) protein
at tyrosine 1485 inhibits its ion channel activity, stimulating
autophagy during injury to brain pericytes; this form of au-
tophagy activation may possibly involve the HIF (hypoxia-
inducible factor)-1/2 pathways (21, 54). Notably, mutation
of the nitration site in TRPM2 attenuates autophagy, con-

sistent with the notion that TRPM2 nitration contributes to
autophagy-dependent pericyte injury. Intriguingly, pericyte
injury is linked to dysfunction of the blood–brain barrier, as
occurs in stroke, AD, and other neurodegenerative disorders
(146). Thus, in future studies, it will be interesting to deter-
mine if nitrated TRPM2 affects autophagy in other cell types,
and consequent cell loss in neurodegenerative diseases.

Concluding Remarks

In the present review article, we have highlighted emerg-
ing roles for S-nitrosylated and tyrosine nitrated proteins in
mitochondrial metabolism, mitochondrial dynamics, and
mitophagy/autophagy with a focus on neurodegenerative
diseases. With recent advancement in the analysis of the SNO-
proteome (30, 115), we anticipate that increasing numbers of
SNO-proteins that directly or indirectly regulate mitochondrial
function will be identified. Interestingly, while many pro-
teins are aberrantly S-nitrosylated in and contribute to the
pathogenesis of neurodegenerative disorders, intervention in
just a few or even a single critical SNO pathway(s), such as
SNO-Drp1, SNO-Parkin, or SNO-PINK1, can alleviate mi-
tochondrial dysfunction and protect cells in models of neu-
rodegenerative diseases. Hence, identification of the SNO-
proteome in each neurodegenerative disorder is only the
beginning, as characterization of critical SNO-dependent
pathways leading to mitochondrial impairment and neuronal
injury will be critical to our understanding of the patho-
physiological role of protein S-nitrosylation in these con-
ditions. Moreover, future studies aimed at abating aberrant
protein S-nitrosylation may lead to new therapies for dys-
regulated mitochondrial dynamics, metabolism, and mito-
phagy in neurodegenerative disorders.
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Abbreviations Used

aKGDH¼ a-ketoglutarate dehydrogenase
Ab¼ amyloid-b

ACO¼ aconitase
AD¼Alzheimer’s disease

ALS¼ amyotrophic lateral sclerosis
CR¼ calorie restriction

Drp1¼ dynamin-related protein 1
eNOS¼ endothelial nitric oxide synthase

ER¼ endoplasmic reticulum
ETC¼ electron transport chain

GC¼ guanylyl cyclase
GDH¼ glutamate dehydrogenase
GED¼GTPase effector domain

GSNO¼ S-nitroso-glutathione
GSNOR¼ S-nitroso-glutathione reductase

HD¼Huntington’s disease
hiPSC¼ human induced pluripotent stem cell
iNOS¼ inducible nitric oxide synthase
JNK¼ c-Jun terminal kinase

LMW¼ low molecular weight
mAspAT¼mitochondrial aspartate aminotransferase

MetS¼metabolic syndrome
Mfn¼mitofusin

mHtt¼mutant huntingtin
NADH¼ reduced nicotinamide adenine dinucleotide
NMDA¼N-methyl-d-aspartate

nNOS¼ neuronal nitric oxide synthase
NO¼ nitric oxide

NOS¼ nitric oxide synthase
ONOO-¼ peroxynitrite

Opa1¼ optic atrophy 1
OXPHOS¼ oxidative phosphorylation

PD¼ Parkinson’s disease
PINK1¼ phosphatase and tensin homolog (PTEN)-

induced putative kinase protein 1
PTEN¼ phosphatase and tensin homolog

RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species

RyR1¼ type 1 ryanodine receptor
SCoR¼ S-nitroso-co-enzyme A reductase
SDH¼ succinate dehydrogenase
SNO¼ S-nitrosothiol

SNO-CoA¼ S-nitroso-co-enzyme A
T2DM¼ type 2 diabetes mellitus

TCA¼ tricarboxylic acid
TRPM2¼ transient receptor potential

melastatin-related 2
Trx¼ thioredoxin

TSC¼ tuberous sclerosis complex
TSE¼ transmissible spongiform encephalopathy
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