
UC San Diego
UC San Diego Previously Published Works

Title
Automated Analysis of Drawing Process to Estimate Global Cognition in Older Adults: 
Preliminary International Validation on the US and Japan Data Sets

Permalink
https://escholarship.org/uc/item/65v88501

Journal
JMIR Formative Research, 6(5)

ISSN
2561-326X

Authors
Yamada, Yasunori
Shinkawa, Kaoru
Kobayashi, Masatomo
et al.

Publication Date
2022

DOI
10.2196/37014
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/65v88501
https://escholarship.org/uc/item/65v88501#author
https://escholarship.org
http://www.cdlib.org/


Original Paper

Automated Analysis of Drawing Process to Estimate Global
Cognition in Older Adults: Preliminary International Validation on
the US and Japan Data Sets

Yasunori Yamada1, PhD; Kaoru Shinkawa1, ME; Masatomo Kobayashi1, PhD; Varsha D Badal2,3, PhD; Danielle

Glorioso2,3, MSW; Ellen E Lee2,3,4, MD; Rebecca Daly2,3, BA; Camille Nebeker5, EdD, MS; Elizabeth W Twamley2,3,4,

PhD; Colin Depp2,3, PhD; Miyuki Nemoto6, PhD; Kiyotaka Nemoto6, MD, PhD; Ho-Cheol Kim7, PhD; Tetsuaki

Arai6, MD, PhD; Dilip V Jeste2,3,8, MD
1Digital Health, IBM Research, Tokyo, Japan
2Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
3Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, United States
4VA San Diego Healthcare System, San Diego, CA, United States
5Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States
6Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
7AI and Cognitive Software, IBM Almaden Research Center, San Jose, CA, United States
8Department of Neurosciences, University of California San Diego, La Jolla, CA, United States

Corresponding Author:
Yasunori Yamada, PhD
Digital Health
IBM Research
19-21 Nihonbashi Hakozaki-cho, Chuo-ku
Tokyo, 103-8510
Japan
Phone: 81 80 6706 9381
Email: ysnr@jp.ibm.com

Abstract

Background: With the aging of populations worldwide, early detection of cognitive impairments has become a research and
clinical priority, particularly to enable preventive intervention for dementia. Automated analysis of the drawing process has been
studied as a promising means for lightweight, self-administered cognitive assessment. However, this approach has not been
sufficiently tested for its applicability across populations.

Objective: The aim of this study was to evaluate the applicability of automated analysis of the drawing process for estimating
global cognition in community-dwelling older adults across populations in different nations.

Methods: We collected drawing data with a digital tablet, along with Montreal Cognitive Assessment (MoCA) scores for
assessment of global cognition, from 92 community-dwelling older adults in the United States and Japan. We automatically
extracted 6 drawing features that characterize the drawing process in terms of the drawing speed, pauses between drawings, pen
pressure, and pen inclinations. We then investigated the association between the drawing features and MoCA scores through
correlation and machine learning–based regression analyses.

Results: We found that, with low MoCA scores, there tended to be higher variability in the drawing speed, a higher pause:drawing
duration ratio, and lower variability in the pen’s horizontal inclination in both the US and Japan data sets. A machine learning
model that used drawing features to estimate MoCA scores demonstrated its capability to generalize from the US dataset to the

Japan dataset (R2=0.35; permutation test, P<.001).

Conclusions: This study presents initial empirical evidence of the capability of automated analysis of the drawing process as
an estimator of global cognition that is applicable across populations. Our results suggest that such automated analysis may enable
the development of a practical tool for international use in self-administered, automated cognitive assessment.
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Introduction

With the aging of populations worldwide, early detection of
cognitive impairments has become a research and clinical
priority. In particular, early identification of prodromal dementia
is essential for providing secondary prevention and
disease-modifying treatments [1-4]. The cognitive screening
tests most commonly used by clinicians are the Mini-Mental
State Examination (MMSE) [5] and the Montreal Cognitive
Assessment (MoCA) [6]. Both tests are designed to assess global
cognition, and validated cutoff scores are used for detecting
impairment [7,8]. One limitation of these tests is that they
require administration by trained professionals. According to
the World Alzheimer Report published in 2021 [1], 83% of
clinicians reported that the COVID-19 pandemic has delayed
access to cognitive screening tests. Consequently,
self-administered, automated assessment may be more important
in situations, like the current COVID-19 pandemic, that impose
limitations on in-person evaluation in a clinical setting. Another
limitation of these tests is related to issues with their use in
multilingual populations, such as cross-linguistic artifacts in
translation [1,9,10]. Recently, several nonlinguistic cognitive
tests have been investigated to overcome the influence of
language differences by mitigating the need for translation
[11,12]. In sum, there is a clear need to develop a
self-administered, automated assessment tool that can be used
internationally, which would greatly increase the accessibility
of screening in a variety of settings and populations. This would
be particularly important for removing barriers to diagnosis and
mitigating the gap between countries in the diagnostic
coverage—the rate of diagnosis of dementia was estimated to
be only 25% worldwide, with less than 10% in low- and
middle-income countries [1].

Drawing ability is a promising means for developing such an
automated cognitive assessment tool. Drawing tests have been
widely used for screening cognitive impairments and dementia
(eg, trail making [13] and clock drawing [14]), and automated
analysis of the drawing process has shown that features
characterizing the drawing process are sensitive to cognitive
impairments and diagnoses of dementia [15-18]. For example,
reduction in the drawing speed and increases in its variability,
as well as increased pauses between drawing motions, have
been reported as statistically significant features for assessment
of impaired global cognition [19,20], as well as for detecting
Alzheimer disease (AD) and mild cognitive impairment (MCI)
[21-24]. Machine learning models based on these drawing
features have succeeded in estimating measures of global
cognition [25,26] and classifying AD, MCI, and control
individuals [23-25,27]. However, there has been little evidence
of the capability of automated analysis of the drawing process
for assessment of cognitive performance across different
populations, even though applicability across the intended

populations is a requirement for machine learning–based health
care tools, including those for screening of dementia [1,28,29].

In this study, we evaluated the applicability of automated
analysis of the drawing process for estimating global cognition
in community-dwelling older adults across populations in
different nations. Specifically, we collected drawing data with
a digital tablet, along with MoCA scores for assessing global
cognition, from community-dwelling older adults in the United
States and Japan. We then investigated the associations between
the MoCA scores and drawing features across the 2 data sets.
Finally, we built a machine learning model that used the drawing
features to estimate MoCA scores, and we evaluated the model’s
generalizability from the US data set to the Japan data set.

Methods

Ethical Review
The study was approved by the University of California San
Diego Human Research Protections Program (HRPP; project
number 170466) and the Ethics Committee of the University
of Tsukuba Hospital (H29-065). All participants provided
written consent to participate in the study after the procedures
of the study had been fully explained.

Participants
The participants were community-dwelling older adults recruited
in San Diego County, California and in Ibaraki prefecture, Japan.
For the US data set, the participants were residents of the
independent living sector of a continuing-care senior housing
community and were recruited through short presentations using
an HRPP-approved script and flyer. For the Japan data set, the
participants were individuals recruited through local recruiting
agencies or community advertisements in accordance with the
approved protocol. Both data sets represented subsets of larger
cohort studies [24,30]. The participant selection criteria were
as follows: (1) English-speaking (for the United States) or
Japanese-speaking (for Japan) individuals ≥65 years old, (2)
completion of the MoCA, (3) no known diagnosis of dementia,
and (4) no other diseases or disabilities that would interfere with
the collection of drawing data.

Table 1 summarizes the participants’ characteristics. We
collected and analyzed drawing data and MoCA scores from a
total of 92 community-dwelling older adults in the United States
and Japan. The US data set included 55 participants aged 67-98
years (female: 39/55, 71%; age, mean 83.4, SD 6.9 years). The
Japan data set included 37 participants aged 65-80 years (female:
19/37, 51%; age: mean 73.3, SD 4.5 years). Regarding the
demographics, the proportion of female participants did not

differ statistically between the 2 data sets (χ2
1=3.63, P=.06),

while the age and years of education were higher in the US data
set than in the Japan data set (age: t90=7.79, P<.001; years of
education: t90=5.25, P<.001).
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Table 1. Participants’ characteristics (n=92).

P valueJapan (n=37)United States (n=55)Characteristics

<.001a73.3 (4.5)83.4 (6.9)Age (years), mean (SD)

.06b19 (51)39 (71)Sex (female), n (%)

<.001a13.8 (2.0)16.3 (2.3)Education (years), mean (SD)

.98a24.4 (2.6)24.4 (3.2)Montreal Cognitive Assessmentc, mean (SD)

.008a96.9 (50.1)d131.9 (65.1)dTrail Making Test part B time (seconds), mean (SD)

.07a0.9 (1.5)d1.7 (2.5)dTrail Making Test part B errors, mean (SD)

aCompared using 2-sided t tests.
bCompared using a chi square test.
cTotal possible score ranges from 0 to 30.
dData were missing for 1 participant because of incomplete trials.

Data Analysis
All participants performed the Trail Making Test part B
(TMT-B) [13] and MoCA. The TMT-B drawing data were
collected using a Wacom Cintiq Pro 16 tablet (sampling rate:
180 Hz; drawing area size: 252 × 186 mm; pen pressure levels:
8192; pen inclination resolution: 1 degree) and custom Windows
software that we developed. The software was written in the
C# language and was used to capture raw drawing data from
the tablet via the Wacom Wintab .NET library (version: 1.2).
The raw data consisted of a time series of the pen tip's x- and
y-coordinates, the pen pressure, the pen's horizontal and vertical
inclinations, and the distance of the pen tip from the drawing
surface. All data were captured at the tablet's sampling rate.

The TMT-B was selected as a representative cognitive task that
involves drawing motions and is commonly used in clinical
practice for screening AD and MCI [31,32]. It requires
participants to draw lines that alternately connect a total of 25
numbers and letters in their respective sequences [13]. For the
MoCA, we used the original paper-and-pencil version [6] for
the US participants and its Japanese version [33] for the Japan
participants. The total possible score on the MoCA ranges from
0 to 30, where lower scores indicate lower global cognition.
Both TMT-B and the MoCA were administered by
neuropsychologists or trained study staff who were blind to the
study hypothesis during data collection. The US data set was
collected between May 2019 and January 2020. The Japan data
set was collected between December 2018 and May 2019.

Next, we extracted drawing features from the drawing data and
examined their associations with the MoCA scores. Specifically,
we investigated the following 6 automatically extracted drawing
features: the drawing speed and its variability, the pressure
variability, the variabilities of the pen’s horizontal and vertical
inclinations, and the pause:drawing duration ratio. These features
were selected because they have been reported as significant
indicators of changes in cognitive or motor functions
[15,16,24,34]. The drawing speed represented the speed of the
pen tip on the surface during drawing motions. The drawing
speed variability was calculated using the coefficient of variation
to remove the influence of the absolute value, as the drawing
speed itself was also a feature. For the pressure variability, we

used the median absolute deviation, which is more robust against
outliers than the standard deviation. In contrast, the variabilities
of the pen’s horizontal and vertical inclinations were calculated
using standard deviations. The pause:drawing duration ratio
was defined as the ratio of the total duration of pauses between
drawing motions (ie, between strokes and within a stroke) and
the total duration of drawing motions on the surface. Pauses
within a stroke were detected when the pen tip remained inside
a 0.25-mm radius on the drawing surface for more than 100
milliseconds.

To investigate the associations of each drawing feature with the
MoCA scores, Pearson correlation coefficients were computed
after controlling for the age, sex, and years of education for the
entire data set and for the US and Japan data sets separately.
The 3 sociodemographic variables were considered as
covariates, because they have been suggested to affect
performance on cognitive screening tests, including the MoCA
[35]. The following Python 3.8 libraries were used for the
correlation analysis: pandas (version 1.2.4), NumPy (version
1.20.1), SciPy (version 1.6.2), and pingouin (version 0.4.0).

We also developed a supervised machine learning model that
used drawing features to estimate MoCA scores, and we then
evaluated the model’s applicability across data sets. The analysis
workflow is illustrated in Figure 1A. Specifically, the model
was trained on the US data set and tested on the Japan data set.
For the machine learning model, we used the random forest
algorithm to capture nonlinear relationships, given that nonlinear
interactions between drawing features and cognitive impairments
were observed in previous studies [23,24]. The random forest
hyperparameters in this study were as follows: search range of
2, 3, and 4 for the maximum tree depth; 2, 3, 4, and 6 for the
maximum number of features; 1.0, 0.75, and 0.5 for the
proportion of the maximum number of samples to train each
base regressor; and 2, 3, 4, and 5 for the minimum number of
samples required at a leaf node. The number of trees was set to
500, and all other parameters were kept at their default values.
The hyperparameters were tuned through 10-fold
cross-validation within the training data set. We statistically
evaluated the observed performance through permutation testing
(1000 iterations) by randomizing the MoCA scores. To better
interpret the results, the importance of each feature in the
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resultant model was also evaluated using the Shapley Additive
Explanations (SHAP) method [36]. Specifically, we compared
the mean absolute SHAP values of each feature. The following

Python 3.8 libraries were used to perform the machine learning
analysis: scikit-learn (version 0.23.2) and SHAP (version
0.40.0).

Figure 1. Study overview: (A) workflow of the automated analysis in which drawing data were collected with a digitizing tablet and pen, 6 drawing
features were extracted from the drawing data, and a regression model for estimating Montreal Cognitive Assessment (MoCA) scores was trained on
the US data set and tested on the Japan data set; (B) plot of the drawing speed variability with respect to the MoCA score for the US and Japan data
sets, in which each point represents 1 participant and the solid line represents the regression line for the combined data set; (C) plot of the estimated
and actual MoCA scores in the Japan data set, in which each point represents 1 participant and the solid line represents the regression line; (D) comparison
of the features’ importance with standard deviations, as assessed via the mean absolute Shapley Additive Explanations (SHAP) values.

Results

The mean MoCA score was 24.4 (SD 3.0; range for participants:
16-30; possible range: 0-30), and the scores did not differ
statistically between the 2 data sets (t90= 0.02, P=.99; Table 1).
For the collection of drawing data, each session took an average
of 119.7 (SD 64.6) seconds per participant. The mean TMT-B
time and number of errors were 117.9 (SD 61.7) seconds and
1.4 (SD 2.2), respectively. The TMT-B time was longer in the
US data set (t88=2.72, P=.008), while the number of errors did
not differ statistically between the 2 data sets (t88=1.82, P=.07).
Two participants (US: 1; Japan: 1) could not complete the
TMT-B trial. To include them in the analysis, we used features
extracted from their partial drawing data.

For the correlation analysis between the MoCA scores and each
drawing feature in the entire data set, we found that 4 of the 6
features were significantly associated after controlling for age,
sex, and years of education (absolute Pearson r=0.33-0.49,
P≤.002; see Figure 1B for a correlation example and Table 2

for the full list). With lower MoCA scores, there tended to be
higher variability in the drawing speed and pen pressure, a
higher pause:drawing duration ratio, and lower variability in
the pen’s horizontal inclination. As listed in Table 2, these
tendencies were also observed when the 2 data sets were each
analyzed separately. After correction for multiple comparisons,
all the statistically significant correlations remained for the
entire data set and the Japan data set (Benjamini-Hochberg
adjusted P<.05), whereas those for the US data set lost
significance (Benjamini-Hochberg adjusted P>.05).

The random forest model trained on the US data set could
estimate MoCA scores from drawing features for the Japan data

set with an R2 of 0.35 (Pearson r of 0.61, mean absolute error
of 1.75, and root-mean-square error of 2.12; permutation test,
P<.001; Figure 1C). Regarding the importance of each feature
in the model, as indicated by the SHAP values, the variability
of the pen’s horizontal inclination had the highest importance,
followed by the pressure variability and the drawing speed
variability (Figure 1D).
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Table 2. Partial correlations between drawing features and Montreal Cognitive Assessment (MoCA) scores after controlling for age, sex, and years of
education.

Japan (n=37)United States (n=55)All (n=92)Drawing features

P valuePearson r (95% CI)P valuePearson r (95% CI)P valuePearson r (95% CI)

.440.14 (−0.21 to 0.45).530.09 (−0.19 to 0.35).480.08 (−0.14 to 0.28)Drawing speed

<.001−0.58 (−0.77 to −0.31).02−0.33 (−0.55 to −0.06)<.001−0.42 (−0.58 to −0.23)Drawing speed variability

<.001−0.73 (−0.86 to −0.53).02−0.32 (−0.55 to −0.06)<.001−0.49 (−0.63 to −0.31)Pause:drawing duration ratio

.003−0.49 (−0.71 to −0.18).07−0.26 (−0.49 to 0.02).001−0.34 (−0.51 to −0.14)Pressure variability

.030.38 (0.04 to 0.63).030.30 (0.03 to 0.53).0020.33 (0.13 to 0.50)Variability of pen's horizontal inclination

.370.16 (–0.19 to 0.47).060.26 (–0.01 to 0.50).110.17 (−0.04 to 0.37)Variability of pen's vertical inclination

Discussion

Principal Findings
We collected drawing data from 92 community-dwelling older
adults in the United States and Japan, and we investigated the
associations between features characterizing the drawing process
and global cognition as assessed by MoCA. We obtained 2 main
findings, as follows. First, we found drawing features that
showed consistent trends with respect to the changes in MoCA
scores across the US and Japan data sets. Specifically, with low
MoCA scores, there tended to be higher variability in the
drawing speed, a higher pause:drawing duration ratio, and lower
variability in the pen’s horizontal inclination. Our second finding
was that the automated machine learning model trained on the
drawing data in the US data set could estimate the MoCA scores

for the Japan data set with an R2 of 0.35, particularly by
leveraging variability-related features. We used drawing data
from the TMT-B task in this study, but other types of drawing
tasks may have a similar capability. For example, a previous
study showed that MoCA scores could be estimated by using
pause- and speed-based features from a clock drawing task [26],
although the method's applicability across populations was not
evaluated. The use of 2 or more tasks will be a promising area
of future research for more reliable estimation of global
cognition.

Regarding the correlations of drawing features with MoCA
scores across the US and Japan data sets, the correlations
persisted even after controlling for age, sex, and years of
education. In post hoc power analysis, the power exceeded 0.90
with a significance level of .05 (2-sided). The trends were
consistent with those observed in previous studies with
individuals with impaired global cognition [19,20] or patients
with AD or MCI [21-24]. One of our contributions lies in
demonstrating consistent trends between drawing features and
clinical cognitive scores across 2 different populations by using
the same protocol. It is especially notable that the pause:drawing
duration ratio and the drawing speed variability have been
reported as representative features for use in AD or MCI
screening models based on automated analysis of the drawing
process [23,24]. To our knowledge, the models in those previous
studies were not tested for their applicability across different
populations, but our results suggest that these drawing features
may help with the application of screening models across
populations for international use.

We have presented preliminary evidence suggesting that
automated analysis of the drawing process for estimation of
global cognition can be applied across populations. We trained
the machine learning model on drawing data in the US data set,
and we then evaluated its performance on unseen drawing data
in the Japan data set. In this context, the model could estimate

MoCA scores with an R2 of 0.35 (Pearson r of 0.61 and
root-mean-square error of 2.12). Previous studies investigated
models that used a single data set to estimate global cognition
from the characteristics of drawing or other types of behaviors
such as speech. The performance results for those models
included a Pearson correlation coefficient of 0.55 for MoCA
on a model using drawing features [26] and a root-mean-square
error of 3.74 for MMSE on the best model using speech features
in a competition [37]. Our model outperformed those recent
results, although there are notable methodological differences
in terms of the evaluation method and the sample size, for
example. Our model’s improved performance might have
derived from the use of variability-related features, given that
they were ranked as the most important features in our model.
Variability-related features in drawing have recently been
suggested as a potential marker for motor control deterioration
in dementia [19,38,39], but they have rarely been used for
estimating cognitive function, and they have not been tested
across populations. Our results thus suggest that
variability-related features in drawing may be a key behavioral
marker for automatic assessment of global cognition across
different populations.

With the aging of populations worldwide, there is a growing
interest in using digital technology to assess cognitive function
in nonclinical settings like the home for early detection of
dementia [1]. Examples of such research include approaches
using computerized cognitive tests [29,40-42] and using
behavioral data such as drawing, speech, and gait data
[24,32,43-45]. In either approach, a major challenge is to make
the tool suitable for multinational and multilingual populations
[1]. In this context, our results suggest that automated analysis
of the drawing process may offer a promising approach for
developing such a tool for international use.

Furthermore, the approach using behavioral data is expected to
support future efforts toward the development of continuous,
passive monitoring tools for early detection of dementia from
data that can be collected in everyday life [43,45]. For example,
multiple studies have demonstrated the feasibility of detecting
cognitive impairments by using daily walking behavior collected
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from accelerometer sensors in a free-living setting [46-48] and
by using daily conversational speech data [49-52]. To our
knowledge, no study has investigated the associations of
cognitive impairments with daily drawing data that are collected
passively in a free-living setting. However, drawing may be a
promising behavioral modality for reliable estimation of
cognitive impairments: It is a common activity in everyday life,
and drawing data can be easily and robustly collected with a
commercial-grade device.

Regarding the device used for drawing data collection, previous
studies have shown the usefulness of a range of devices,
including a mobile tablet with a stylus [53-57], a smart pad [58],
and a digital pen [23,26,38]; accordingly, our findings may be
applicable to those devices as well. All such devices commonly
allow capture of x-and y-coordinates and pressure data at similar
sampling rates, and previous studies reported similar
associations of pause-, speed-, and pressure-based features with
cognitive measures. In a future study, as pen inclination data
are not always available, we will need to examine whether a
combination of other available data can achieve performance
comparable to that of our model. Furthermore, the variability
of the device placement (eg, holding the tablet with the
nondominant hand) can affect the drawing performance in
free-living settings. We will thus need further research in situ
for the development of realistic applications.

Limitations
This study had several limitations. First, it was limited in terms
of the numbers of participants, drawing tasks, and data sets.

Our findings were based on drawing data from a single task,
and the applicability to other types of drawing data thus remains
unexplored. In addition, the international applicability of our
model was only evaluated between 2 data sets, and the details
of how the model performance is influenced by cultural
differences have not been thoroughly investigated. Together,
our findings have yet to be confirmed with larger samples that
provide cross-cultural insights. Second, we did not investigate
the participants' sensory and physical functions (eg, eyesight,
grip strength), even though those functions might affect drawing
performance. Moreover, other residual confounders might exist.
Third, the drawing data were collected in a laboratory setting
with a tester; accordingly, a future study will need to establish
the validity of fully self-administered tasks. Finally, further
research will also be needed to obtain a mechanistic
understanding of how drawing features relate to the neural
changes underlying cognitive impairments.

Conclusions
In summary, we have presented empirical evidence of the
capability of automated analysis of the drawing process as an
estimator of global cognition that is applicable across
populations. Although no causality could be inferred from our
results with cross-sectional data, the results nevertheless suggest
that automated analysis of the drawing process could be a
practical tool for international use in automated cognitive
assessment. Consequently, this approach may help lower the
barrier to early detection of cognitive impairments in a variety
of settings and populations.
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