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Post-Radiotherapy PET Image
Outcome Prediction by Deep
Learning Under Biological Model
Guidance: A Feasibility Study of
Oropharyngeal Cancer Application

Hangjie Ji1, Kyle Lafata2,3,4, Yvonne Mowery2, David Brizel2, Andrea L. Bertozzi5,6,

Fang-Fang Yin2 and Chunhao Wang2*

1 Department of Mathematics, North Carolina State University, Raleigh, NC, United States, 2 Department of Radiation

Oncology, Duke University Medical Center, Durham, NC, United States, 3 Department of Radiology, Duke University Medical

Center, Durham, NC, United States, 4 Department of Electrical and Computer Engineering, Duke University, Durham,

NC, United States, 5Mechanical and Aerospace Engineering Department, University of California, Los Angeles, Los Angeles,

CA, United States, 6 Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States

Purpose: To develop a method of biologically guided deep learning for post-radiation
18FDG-PET image outcome prediction based on pre-radiation images and radiotherapy

dose information.

Methods: Based on the classic reaction–diffusion mechanism, a novel biological model was

proposed using a partial differential equation that incorporates spatial radiation dose

distribution as a patient-specific treatment information variable. A 7-layer encoder–decoder-

based convolutional neural network (CNN) was designed and trained to learn the proposed

biological model. As such, the model could generate post-radiation 18FDG-PET image

outcome predictions with breakdown biological components for enhanced explainability.

The proposed method was developed using 64 oropharyngeal patients with paired 18FDG-

PET studies before and after 20-Gy delivery (2 Gy/day fraction) by intensity-modulated

radiotherapy (IMRT). In a two-branch deep learning execution, the proposed CNN learns

specific terms in the biological model from paired 18FDG-PET images and spatial dose

distribution in one branch, and the biological model generates post-20-Gy 18FDG-PET image

prediction in the other branch. As in 2D execution, 718/233/230 axial slices from 38/13/13

patients were used for training/validation/independent test. The prediction image results in

test cases were compared with the ground-truth results quantitatively.

Results: The proposed method successfully generated post-20-Gy 18FDG-PET image

outcome prediction with breakdown illustrations of biological model components.

Standardized uptake value (SUV) mean values in 18FDG high-uptake regions of

predicted images (2.45 ± 0.25) were similar to ground-truth results (2.51 ± 0.33). In

2D-based Gamma analysis, the median/mean Gamma Index (<1) passing rate of test
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images was 96.5%/92.8% using the 5%/5 mm criterion; such result was improved to

99.9%/99.6% when 10%/10 mm was adopted.

Conclusion: The developed biologically guided deep learning method achieved post-20-

Gy 18FDG-PET image outcome predictions in good agreement with ground-truth results.

With the breakdown biological modeling components, the outcome image predictions

could be used in adaptive radiotherapy decision-making to optimize personalized plans

for the best outcome in the future.

Keywords: biological modeling, deep learning, image outcome prediction, radiotherapy, 18FDG-PET

INTRODUCTION

Radiotherapy is a central component of the standard of care for

many cancers. In the current era of image-guided radiotherapy
(IGRT), medical imaging plays a critical role in radiotherapy

practice regarding patient assessment, treatment volume

definition, on-board patient positioning, and outcome

assessment (1). In particular, imaging-based radiotherapy

outcome assessment can capture early therapeutic responses

for adaptive therapy to enhance radiotherapy efficacy (2). In
addition, long-term therapeutic outcomes from image-based

analysis provide useful information in treatment intervention

of each patient towards optimized cancer care (3). Thus, medical

imaging analysis for radiotherapy outcome assessment has

become an irreplaceable component in precision medicine.

Technologies of medical imaging analysis have revolutionized

image-based radiotherapy outcome reporting. Radiographic
assessment of post-radiotherapy tumor morphological changes

(i.e., Response Evaluation Criteria in Solid Tumors [RECIST])

was standardized to describe the response to therapy (4).

Functional imaging modalities have now shifted outcome

analysis from morphological description to physiological

characterization. PET tracks the in vivo radioactive tracer
distribution, for example, estimating glucose metabolism (18F-

FDG) or measuring tissue hypoxia (18FMISO) (5). MR functional

imaging, including dynamic contrast-enhanced MRI (DCE-

MRI), diffusion-weighted MRI (DWI), and diffusion tensor

MRI (DTI), can measure tissue properties such as blood

volume/perfusion (6), cellular density (7), and cell movement

direction (8). To non-invasively quantify in vivo physiology,
functional imaging relies on mathematical models to extract

quantitative parameters from phenotype image data. These

mathematical models, which are often referred to as

mechanism-based models, describe complex physiological

processes using basic biological theories and fundamental laws

in physical/chemical interactions (9, 10). The derived parameters
of mechanism-based models can serve as surrogates of individual

physiology functions to facilitate developing a personalized

therapeutic approach.

Treatment response assessment using functional imaging is

often reported as posttreatment changes relative to pretreatment

baseline values. Image-based treatment outcome prediction, i.e.,

forecasting posttreatment image volumes before treatment
initiation, has become an emerging topic in clinical oncology (11).

The potential clinical application of image-based treatment

outcome prediction in radiotherapy is conceptually promising:

given an individual’s pre-radiotherapy image, post-radiotherapy

image predictions could be available at the treatment planning
stage. Guided by these predictions, clinicians could simulate

alternative treatment plans, such as target delineation revision

and plan parameter tuning (beam angle, energy selection, etc.),

for normal tissue sparing and could select a plan that predicts

improved response to radiotherapy. This scenario can be applied

to adaptive radiotherapy: the predicted intra-treatment images
can be used to determine whether a revised radiotherapy plan

would be advantageous. Additionally, when new intra-treatment

image data are collected, the updated predictions can guide the

adaptive planning strategy for optimal radiotherapy outcomes

for individual patients (10). Driven by the rapid growth of

computation power, deep learning techniques have recently

become a practical approach for image-based treatment
outcome prediction (12–14). However, few investigators have

reported functional image outcome prediction in radiotherapy

applications. Aside from the colossal computational workload

due to image dimension requirement, the current mechanism-

based models focus on spatial decoding of physiology within an

image volume; for outcome prediction, a mechanism-based
model must incorporate patient-specific treatment information

to simulate spatiotemporal physiology evolution during a

treatment course. Although pilot studies have reported the

feasibility of post-radiotherapy functional image outcome

prediction using treatment information (15), the adopted deep

learning network ignored the biophysical modeling and

generated its prediction via a “black box”; thus, the achieved
prediction was reported at a fixed time point without any

biological interpretation about how radiation dose affects the

outcome. Radiotherapy outcome prediction with breakdowns

from biological modeling is an unmet need.

In this work, we design a biologically guided deep learning

framework for intra-treatment 18FDG-PET image outcome
prediction in response to oropharyngeal cancer intensity-

modulated radiotherapy (IMRT). Based on the classic

reaction–diffusion mechanism in disease progression, we

propose a novel partial differential equation (PDE) as a

biological model that incorporates spatial radiation dose

distribution as a patient-specific treatment information

variable. An encoder–decoder-based convolutional neural
network (CNN) is designed and trained to learn the proposed
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model, which governs the dynamics of tissue response to

radiotherapy. Thus, with the explainability of the biological

model, the developed deep learning model can generate post-

radiotherapy 18FDG-PET image outcome predictions with

breakdown biological components.

MATERIALS AND METHODS

Biological Modeling
We hypothesize that the standardized uptake value (SUV)

change in 18FDG-PET in response to radiation can be
described in a reaction–diffusion system, which represents a

family of mathematical models widely used in describing

pattern formations and evolving densities in physical,

ecological, and biological systems (16). In the context of

modeling tumor growth and therapeutic response dynamics,

reaction–diffusion models have been applied to both preclinical

and clinical works (9, 17, 18). Disease progression, in general, can
be summarized by Eq. (1), which describes the malignancy

proliferation (reaction) and spread (diffusion) (10):

Ut = aDU + bU (1)

where U is the spatial distribution of disease (i.e., SUV intensity

distribution in this work) and Ut =
∂U
∂ t

is the time derivative term

describing the change of U in time. The term aDU = a( ∂
2 U
∂ x2

+
∂
2 U
∂ y2

) describes the spreading of abnormal cell activities, where

a > 0 is the diffusion coefficient. The linear term bU represents

the proliferation of localized malignancy. To incorporate tissue
response to radiotherapy in the model in Eq. (2), we propose a

new response term for the dose-induced changes of U,

Ut = aDU + bU + F DUð Þ (2)

where F(DU) is an N unknown operator that depicts U's local

response to radiotherapy. Here we assume that the response term

depends on the product of U and the radiotherapy plan’s spatial

dose distribution D. We also assume that the operator F depends

on DU as the tissue response to cell killing from localized high

radiation (10), and we will use a CNN to learn this operator.

Thus, Eq. (2) is the core time-dependent PDE that models the
post-radiotherapy biological response of abnormal tissue

metabolism as SUV intensity (i.e., U) evolves in time.

Deep Learning Design
Formally, our problem is defined as follows: given a set of pre- and

post-radiation 18FDG-PET image pairs f(U
pre
k ,U

post
k )gk=1,2,…m and

the imposed radiation dose distribution images {Dk }k=1,2,…m where

m is the total number of image pairs, our goal is to learn the

unknown response operator F and coefficients a, b in the model in

Eq. (2) with the collected data of the form f(U
pre
k ,U

post
k ,Dk)

gk=1,2, …m. Accordingly the learned model can predict a post-

radiation 18FDG-PET image U
post
k given the pre-radiation image

U
pre
k and the associated spatial dose distribution Dk. In addition,

since the learned model describes the evolution dynamics of Uk

between the two states U
pre
k and U

post
k frames of Uk between U

pre
k

and U
post
k can be simulated to study the intermediate stages of

disease progression.

While a large body of work has focused on solving reaction–

diffusion models like Eq. (2), i.e., finding U based on known

coefficients and operators, little research has been devoted to the
inverse problem of learning the model’s coefficients and

operators from observed U data. The numerical treatments of

the inverse problem are typically complicated, as the observed

data usually cannot provide sufficient information to determine a

unique model, and regularizations are needed to produce

meaningful model estimates. As such, we propose a deep
neural network framework to learn the model in Eq. (2) from
18FDG-PET images taken before and after radiation. Applying

the forward Euler method on the PDE in Eq. (2), we obtain the

discretized update rule:

Un+1 = Un + haDUn + hbUn + hF DUnð Þ (3)

where h is the time step, Un is the approximate solution of the

stateU at the time tn=nh, and the Lssssaplacian operator D can be

approximated by a discrete operator D2
xy represented by a nine-

point refined stencil (19):

D2
xy =

1=4 1=2 1=4

1=2 −3 1=2

1=4 1=2 1=4

0

B

B

@

1

C

C

A

(4)

A deep neural network NF is designed to approximate the

response operator F:

NF :y ! NF y ; qð Þ (5)

where q represents the free parameters. For simplicity, we

assume that the operator F only depends on, y=DU, the

product of the dose distribution D and the 18FDG-PET image

state variable U. A diffusion–proliferation operator G is used to

combine both the diffusion and proliferation terms with

undetermined coefficients a and bs

G Unð Þ = aD2
xyU

n + bUn (6)

Given a group of three images consisting of the initial state
18FDG-PET image U0

k = U
pre
k at t = 0 prior to radiation, dose

distribution map Dk, and the ground-truth final state 18FDG-

PET image U
post
k at t = T (post-radiation), from Eqs. (3)–(6), we

obtain the intermediate states Un+1
k by

Un+1
k = Un

k + hG Un
kð Þ + hNF Dk ∘U

n
k ; qð Þ (7)

for n = 0,1,…, Nt − 1. Here, Dk ∘U
n
k represents the element-wise

product of the dose distribution map Dk and the 18FDG-PET

image Un
k at the time step tn, Nt is the total number of steps, and

the step size h=T/Nt. As a feasibility study, we consider the final

time T = 1 and set the number of steps Nt = 4 in this work.

The similarity between the predicted post-radiation 18FDG-

PET image U
Nt

k and the associated ground-truth image U
post
k is

F

G

G F
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defined based on the l2 norm loss function:

L qð Þ =
1

mo
m

k=1

∥U
Nt

k − U
post
k ∥

2
2 (8)

wherem is the number of samples. By minimixing L(q), the deep
neural network can learn the weights q that characterize the
response operator F and the undetermined coefficients a and b.

Figure 1 illustrates the designed deep neural network

architecture. The network’s input space is composed of pre-

radiation 18FDG-PET image Upre and planned dose distribution

map D as a set. The network is split into two branches: one that

uses a CNN to learn the response operator NF(DU
n) and the

other one with only two trainable parameters to apply the
diffusion–proliferation operator G [in Eq. (6)] on Un.

Specifically, the second branch of the network architecture

mimics the traditional finite difference method and applies the

discrete Laplacian operator and the linear operator on Un with

predicted a and b. Both branches are then merged by the rule in

Eq. (7), which feeds the output Un+1 forward to the next cycle.
This process is then repeated for Nt time steps to generate a

predicted post-radiation 18FDG-PET image, which will be

compared against the ground-truth post-radiation 18FDG-

PET image.

The branch that learns the response operator NF(DU
n)

consist of a total of 7 convolutional layers and is built upon U-
Net’s encoder–decoder architecture (20). The architecture

consists of a contracting path that extracts sufficient semantic

context from D∘Un and a symmetric expanding path that

produces the up-sampled output. The contracting path starts

with two applications of 3 × 3 convolutions, each followed by a

batch normalization layer and a ReLU operation. Then a 2 × 2

max-pooling operation is performed for down-sampling where

the number of feature channels is doubled. Then another two 3 ×

3 convolutions operations are applied, each followed by batch
normalization and a ReLU activation. The expanding path

consists of an up-sampling of the feature map, followed by two

3 × 3 convolutional layers, again with batch normalization and

ReLU operations. Finally, a 1 × 1 convolution is applied to map

the 16-component feature to a single feature channel that

reconstructs the transformed image corresponding to NF(DU
n).

Patient Data and Network Training
In this work, 64 eligible oropharyngeal cancer patients who

received curative-intent IMRT in our department were
retrospectively studied under an institutional review board

(IRB)-approved 18FDG-PET imaging study (21). All patients

were prescribed 70 Gy at 2 Gy/day fraction with concurrent

chemotherapy. Prior to treatment initiation, each patient

underwent an 18FDG-PET/CT scan for target delineation.

After 20-Gy delivery, each patient underwent a second 18FDG-
PET/CT scan as an intra-treatment evaluation for consideration

for adaptive planning. These post-20-Gy 18FDG-PET

acquisitions were treated as the post-radiation scans in

the modeling.

All 18FDG-PET/CT exams were acquired by a PET/CT

scanner (Siemens, Erlangen, Germany) in our department.

PET acquisitions were performed using 400 × 400 matrix size

FIGURE 1 | A partial differential equation (PDE)-informed deep neural network design. Layers are color-coded by operations with associated feature numbers.

L
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in a standard field of view (FOV) of 54 cm, and slice thickness

was 2 mm. CT acquisitions were performed using 512 × 512

matrix size in an extended FOV of 65 cm (in-plane resolution =

1.27 mm), and slice thickness was 3 mm. PET images were

reconstructed by the ordered subset expectation maximization

(OSEM) algorithm with attenuation corrections using the CT
acquisition information. The post-20-Gy 18FDG-PET/CT images

were registered to the corresponding pre-radiation images using

Velocity™ software (Varian Medical Systems, Palo Alto, CA,

USA). Registrations started with rigid bony structure alignment,

and a multi-pass deformable registration algorithm was adopted

to improve soft tissue alignment near the anterior body surface.
In the process of IMRT planning, all treatment plans were

optimized and calculated using the Eclipse™ treatment

planning system (Varian Medical Systems, Palo Alto, CA,

USA) with a 2.5-mm dose calculation grid size. All 18FDG-

PET images and spatial dose distribution maps of 20-Gy

treatment were resampled to the CT simulation image grid size.
Of all 2D 18FDG-PET axial images, those with sufficient

18FDG uptake in the pre-radiation acquisition were selected by

SUVmax > 1.5 excluding brain regions (22). Overall, 718 axial

slices collected from 38 patients were used for neural network

training, 233 axial slices from 13 patients were used for

validation, and 230 axial slices from 13 patients were used for

independent tests. During the neural network training, the loss
function was defined as based on the l2 norm in Eq. (8). Gradient

updates were computed using batch sizes of 10 samples, and

batch normalization was performed after each convolutional

layer. The training utilized the Adam optimizer for up to 400

epochs, while an early stopping strategy on the loss function

evaluated on the validation samples was adopted with a patience
of 100 epochs. The overall training time was about 15 min in a

TensorFlow environment using an NVIDIA TITAN™ Xp

graphic card.

Evaluation
The accuracy of post-20-Gy 18FDG-PET image prediction was

evaluated using 230 axial slices’ results from 13 test patients. The

prediction results were first visually inspected as qualitative
evaluation. SUV mean values in high-uptake regions determined

by Otsu’s method (23) were quantitatively compared with the

ground-truth results. Pixel-to-pixel SUV numerical differences

were evaluated by Gamma tests within the body region (24).

Multiple Gamma tests with different SUV difference tolerances

and distance-to-agreement (DTA) tolerances were performed.
While Gamma Index <1 was considered as acceptable pixel-wise

results, Gamma Index passing rates, i.e., the percentage of pixels

with Gamma Index <1, were reported as summarizing metrics.

RESULTS

Figure 2 shows an example case of post-20-Gy 18FDG-PET

image outcome prediction. As seen in the pre-radiation 18FDG-

PET image, SUV hotspots with clear edges were found on the
patient’s right side. After 20-Gy delivery shown by the bilateral

side dose distribution in D, the ground-truth post-20-Gy18FDG-

PET image results demonstrated good therapy response with

reduced hotspot sizes and decreased SUV intensities. The

predicted 18FDG-PET image captured the overall appearance

in the ground-truth results without noticeable artifact marks.

Two hotspots corresponding with the nodal disease were found
in the prediction image at the same locations. The hotspots’ sizes

and SUV intensities were comparable, though the anterior

hotspot intensity appeared to be lower than the ground-truth

result. In the breakdown illustration of biological model terms in

Eq. (3), the diffusion term demonstrated overall uniform

intensity distribution around 0 except in hotspot regions; the
core regions in hotspots had negative diffusion intensities, which

suggested a spatial retraction of abnormal metabolism. The

proliferation term had a similar appearance to the pre-

radiation 18FDG-PET image. The dose-response term indicated

an elevated intensity region that corresponds to the anterior SUV

hotspot; this suggests that the anterior SUV hotspot had a better
response to 20-Gy than the posterior SUV hotspot, which had

limited intensity in the dose-response map. The other areas

within the body had close-to-zero dose-response intensity,

while low intensities were found near the body surface. The

Gamma Index map showed a good quantitative pixel-to-pixel

SUV comparison between ground-truth and predicted post-20-

Gy 18FDG-PET images using the 5%/10 mm criterion.
In the test patient cohort, the SUV mean value of high-uptake

regions in post-20-Gy predicted images was 2.45 ± 0.25, which

was slightly lower than ground-truth results (2.51 ± 0.33, p =

0.015); the dice coefficient results of the segmented high-uptake

regions were 0.89 ± 0.12. Gamma Index passing rate results of all

testing axial slices are summarized in Figure 3. When the 5%/5
mm Gamma criterion was adopted, the median 2D Gamma

passing rate was 96.5%. With the use of looser Gamma criteria,

the passing rate results improved (5%/10 mm, median 99.2%,

average 97.6%; 10%/5 mm, median 99.5%, average 98.6%). The

highest median passing rate was 99.9% (average = 99.6%) when

10%/10 mm was used.

DISCUSSION

In this work, we successfully demonstrated the design of a

biological model-guided deep learning framework for post-20-

Gy 18FDG-PET image outcome prediction in a unique cohort of

patients undergoing IMRT for oropharyngeal cancer. For the

first time, we demonstrated 3 breakdown biological components

of oropharyngeal cancer response to radiation. One of the key
innovations in this work is the biological model in Eq. (2), which

was hypothesized as the mathematical equation that governs the

post-radiation SUV change. The model was derived from the

classic reaction–diffusion system, which has been utilized in

many works of tumor growth and disease progression

modeling (25–27). Although applying reaction–diffusion
models to 18FDG-PET image analysis (particularly to head and

neck cancer) is less reported, some exploratory studies have

demonstrated the validation of reaction–diffusion-type models

Ji et al. Biologically Guided Deep Learning of PET
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in intracranial PET image modeling (28). Compared to the

original reaction–diffusion models, the newly introduced dose-

response term in Eq. (2) was hypothesized as a semantic

component of dose-induced SUV image state changes. Adding
additional terms in reaction–diffusion family models to account

for therapeutic effect has been reported before in breast, lung,

and pancreatic cancer studies (29–31); nevertheless, our

approach of using spatial dose distribution in biological

modeling is a novel design. Compared to the use of

prescription dose levels for outcome assessment/prediction in
many studies, the adoption of spatial dose distribution

maintained heterogeneous radiation deposition information at

the pixel level, which may be a more accurate approach for

image-based outcome prediction with explainability from

existing biology domain knowledge. Nevertheless, the designed

deep learning model relies on the reaction–diffusion system

hypothesis, which has yet to be widely acknowledged as

general domain knowledge of tissue radiation response. In
addition to the image result supports, the reaction–diffusion

system hypothesis can be studied via in vivo functional imaging

(such as diffusion-weighted MRI) and in vitro cell study to

establish the benchmark evidence for oropharyngeal

cancer applications.

As a deep learning approach, a CNN was designed to learn the
proposed biological model. PDEs with known coefficients and

operators can be solved by various numerical methods such as

finite difference methods, finite element methods, and spectral

methods. In the scientific computing field, solving differential

FIGURE 3 | Gamma Index passing rate summary with different gamma criteria. Green line positions represent median value, and box represents 25%/75%

percentile with whiskers indicating 5%/95% percentile.

FIGURE 2 | An example of post-radiotherapy 18FDG-PET image outcome with given pre-radiation 18FDG-PET image and dose distribution map D, with a

breakdown of predicted biological effects (diffusion, proliferation, and dose response in absolute value) in Eq. (2). The 2D Gamma (G) test result was obtained through

acceptance criteria of 5%/10 mm.
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equations using CNN in complex systems has become popular

for efficiency and accuracy (32). Additionally, differential

equations specified by CNN can parameterize the continuous

state transition with non-uniform sampling step sizes (33); that

is, one may use images from different patients with different

acquisition time points. The applied analysis of stochastic
differential equations has demonstrated value for recent

radiomic applications (34, 35); deep learning-based data

assimilation may improve the performance of these techniques

by providing a more accurate estimation of model hyper-

parameters and coefficients. The use of CNN is necessary to

learn the dose-response term F in Eq. (2), which is an unknown
operator that is assumed to be related to the product of spatial

dose distribution and 18FDG-PET image variable (DU); without

an analytical expression, it is difficult to approximate the

operator F by classic numerical treatments of inverse

problems. The proposed CNN in Figure 1 revealed the dose-

response term F(DU) as a whole, while the detailed mechanism
of DU‘s contribution of 18FDG-PET image prediction remains

unclear. Inspired by the classic encoder–decoder U-net

implementation, the CNN architecture in Figure 1 was

dedicated to the problem in Eqs. (3)–(7); with the loss function

defined in Eq. (8), the training process had a fast convergence

(Supplementary Figure 1). It would be of interest to further

study the operator F for its analytical expression and possible
biological explanations. Such works require more advanced

mathematical theories supported by experimental data,

preferably as in vitro implementations, to validate analytical

designs as a biological model calibration process (10).

Based on the Gamma test results in Figure 3, the achieved
18FDG-PET image predictions showed good agreement with
ground-truth images. As a common quality assurance method

in radiotherapy practice, Gamma analysis accounts for both

intensity differences and systematic shifts in image prediction

error. The Gamma test criteria need to consider multiple

uncertainty sources in data processing and clinical preferences.

For instance, the dose-response term results in Figure 2

indicated very small but non-zero intensity values near the
body surface, especially in anterior skin regions. While other

normal tissues demonstrated very limited dose response, the

observed skin regions’ dose response may be noisy results related

to deformable image registration uncertainties, which was

mainly determined by patient weight loss during the

radiotherapy course (36). Radiotherapy margin formulism that
models treatment margin statistics should also be weighted in

image prediction evaluation (37). In addition to these two

potential factors, the adopted Gamma test criteria have

incorporated many other factors, including SUV’s intrinsic

uncertainty, PET image acquisition resolution, PET-CT QA

protocol, and SUV-based metabolic volume definition.

The current results demonstrated accurate image outcome
prediction at the time point of post-20-Gy radiotherapy. The

actual physiological change during the 20-Gy radiotherapy

course is a continuous process, which is an inherent feature in

the proposed model in Eq. (2); in other words, in addition to

post-20-Gy 18FDG-PET image outcomes at t = 1, our model can

predict intermediate stage image outcomes between t = 0 and t =

1. To demonstrate this merit, Figure 4 shows a simulation of

intermediate stage 18FDG-PET image outcome predictions as

biological model solutions from the pre-radiation result at t = 0

to post-20-Gy prediction at t = 1. In general, the four predicted
18FDG-PET images demonstrated a reasonable image state
transition from t = 0 to t = 1 without abrupt changes. While

the majority of normal tissue maintained steady SUV intensities

during the presented time evolution, the SUV hotspot

corresponding to the primary oropharyngeal tumor had

shrinkage at its posterior boundary with slightly reduced

intensity. Compared to the ground-truth post-20-Gy 18FDG-
PET image, the prediction image at t = 1 captured the SUV

hotspot’s morphological features, particularly at its posterior

boundary. However, this simulation result cannot be validated

by current clinical results because of the lack of longitudinal
18FDG-PET scans during a radiotherapy course, which is mainly

limited by ionizing radiation risk and potential high financial
cost. On the other hand, longitudinal MRI exams are commonly

utilized for cranial radiotherapy follow-up as standard care, and

the image series can be used to validate the cranial model

continuity in future works.

The current biological model was implemented in a 2D

fashion on axial images. For each test patient, the post-

radiation 18FDG-PET image predictions were generated slice-
by-slice to approximate volumetric rendering. In theory, the

biological model in Eq. (2) and the demonstrated deep neural

network could be implemented as 3D in the spatial domain;

however, the computation workload for 3D implementation,

especially for a generative task with complex nature, requires a

large data sample size with curated data collection. In this work,
64 patients were collected with paired 18FDG-PET exams in a

clinical trial setup, and 1,181 high 18FDG uptake axial slices were

collected and were assigned to neural network training/

validation/tests following a 60%/20%/20% ratio. Given the fact

that 1) image slice thickness (3 mm) is larger than in-plane

resolution (1.27 mm) and 2) paired image acquisitions were

performed with a 2-week time interval, the model was confined
for locoregional computation with a small 3 × 3 in-plane kernel

size, and thus the information extraction was within an axial

“slab” and did not involve information exchange in other slices.

This underlying design made all 2D slices eligible as independent

samples for deep learning training, and the current results from

2D implementation demonstrated good image prediction
accuracy and established the technical feasibility of the

proposed biological model-guided deep learning. 3D-based

modeling would be ideal for brainstorming experiments, but

this data cohort would be a very limited data sample size for

generative deep learning tasks. Future studies using a larger

patient cohort, potentially in a multi-institution collaboration,

are planned to further investigate the proposed framework based
on 3D implementation. Additionally, experiments using small

animals are also planned for future developments of deep learning

in image outcome prediction. Further investigation of the

biological interpretation of the learned dose-response term may

also lead to improved mathematical modeling for this problem.
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As a feasibility study, the current results showed that the

achieved post-20-Gy 18FDG-PET image outcome prediction had
good agreement with ground-truth results. Post-20-Gy 18FDG-

PET has been demonstrated as informing surrogates of

recurrence-free survival and overall survival of human

papillomavirus (HPV)-related oropharyngeal cancer (38). In a

potential clinical application scenario, the current framework

would allow a physician to determine if an 18FDG-PET scan after
20-Gy radiation would facilitate improved adaptive radiotherapy

clinical decision making. The impact of image prediction

accuracy on clinical decision making was not rendered by the

current results of technical development work; future works,

preferably in a prospective fashion, are planned to investigate

such clinical impacts from physicians’ perspectives in clinical
practice. Another crucial step toward this clinical application

scenario is to verify the models’ responses to different radiation

therapy strategies. The current patient cohort from a clinical

study received a uniform treatment regimen; thus, the developed

model may not capture certain individual reactions after a

drastically different radiotherapy approach. For deep learning

developments, it would be ethically challenging to collect patient
data with intentional treatment variations. Following the small

animal experiments discussed above, with dedicated imaging

platforms and radiotherapy machines, one can generate post-

radiation samples with heterogeneous treatment strategies in

multiple imaging sessions. Such experiments may provide

valuable opportunities for studying biological models for

improved deep learning intelligibility.

CONCLUSION

In this work, we developed a biological model-guided deep

learning method for post-radiation 18FDG-PET image outcome
prediction. The proposed biological model incorporates spatial

radiation dose distribution as a patient-specific variable, and a

novel CNN architecture was implemented to predict post-

radiotherapy 18FDG-PET images from pre-radiation results.

Current results demonstrate good agreements between post-

20-Gy predictions and ground-truth results in a cohort of

patients with oropharyngeal cancer. Future developments of
the current methodology design will enhance the applicability

of image outcome prediction in clinical practice.
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