
UC San Diego
Technical Reports

Title
Automatic Protocol Inference: Unexpected Means of Identifying Protocols

Permalink
https://escholarship.org/uc/item/65x0x6nv

Authors
Ma, Justin
Levchenko, Kirill
Kreibich, Christian
et al.

Publication Date
2006-02-21

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/65x0x6nv
https://escholarship.org/uc/item/65x0x6nv#author
https://escholarship.org
http://www.cdlib.org/

Automatic Protocol Inference:

Unexpected Means of Identifying Protocols

Justin Ma
∗

Kirill Levchenko
∗

Christian Kreibich
†

Stefan Savage
∗

Geoffrey M. Voelker
∗

∗

Dept. of Computer Science and Engineering
†
University of Cambridge

University of California, San Diego, USA Computer Laboratory, UK

{jtma,klevchen,savage,voelker}@cs.ucsd.edu christian.kreibich@cl.cam.ac.uk

Abstract

Network managers are inevitably called upon to associate

network traffic with particular applications. Indeed, this op-

eration is critical for a wide range of management functions

ranging from debugging and security to analytics and policy

support. Traditionally, managers have relied on application

adherence to a well established global port mapping: Web

traffic on port 80, mail traffic on port 25 and so on. However,

a range of factors – including firewall port blocking, tunnel-

ing, dynamic port allocation, and a bloom of new distributed

applications – has weakened the value of this approach. We

analyze three alternative mechanisms using statistical and

structural content models for automatically identifying traf-

fic using the same application-layer protocol, relying solely

on flow content. In this manner, known applications may be

identified regardless of port number, while traffic from one

unknown application will be identified as distinct from an-

other. We evaluate each mechanism’s classification perfor-

mance using real-world traffic traces from multiple sites.

1 Introduction

The Internet architecture uses the concept of port numbers

to associate services to end hosts. In the past, the Internet

has relied on the notion of well known ports as the means

of identifying the application-layer protocol a server is us-

ing [10]. However, in recent years, a number of factors have

undermined the accuracy of this association.

In particular, the widespread adoption of firewalling has

made some ports far easier to use than others (i.e., the com-

monly “open” ports such as TCP port 80, used for HTTP

traffic, TCP port 25, used for SMTP, and UDP port 53, used

for DNS). Thus, to ensure connectivity, there is an increas-

ing incentive to simply use these ports for arbitrary applica-

tions, either directly or using the native protocol as a tun-

neling transport layer. Other applications allocate ports dy-

namically to eliminate the need for application layer demul-

tiplexing. For example, streaming media protocols, such as

H.323 and Windows Media, Voice-Over-IP services such as

SIP, and multi-player games like Quake routinely rendezvous

on ports dynamically selected from a large range. The pop-

ular Skype service initializes its listening port randomly at

installation, entirely abandoning the notion of well known

ports for normal clients [2]. Finally, some applications use

non-standard ports explicitly to avoid classification. Peer-to-

peer (P2P) applications routinely allow users to change the

default port for this purpose and some use combinations of

tunneling and dynamic port selection to avoid detection [21].

We can expect this trend of unordered port use to increase

further in the future.

Unfortunately, this transformation has created significant

problems for network managers. Accurate knowledge of the

spectrum of applications found on a network is crucial for

accounting and analysis purposes and classifying traffic ac-

cording to application is also a key building block for val-

idating service differentiation and security policies. How-

ever, classification based on well known port numbers re-

mains standard practice. While newer tools are being devel-

oped that exploit packet content in their analyses, all of these

require ongoing manual involvement – either to create sig-

natures or to label instances of new protocols.

In this paper we tackle the problem of automatically clas-

sifying network flows according to the application-layer pro-

tocols they employ. We do this “in the nude,” that is, relying

solely on flow content. While flow-external features such as

packet sizes, header fields, inter-arrival times, or connection

contact patterns can be used to aid classification, we argue

that only the flow content itself can deliver unambiguous in-

formation about the application-layer protocols involved. We

make the following contributions:

• We propose a generic architectural and mathematical

framework for evaluating the performance of flow clas-

sifiers.

• We introduce three classification techniques for captur-

ing statistical and structural aspects of messages ex-

changed in a protocol: product distributions, Markov

models, and common substring graphs.

• We compare the performance of these classifiers us-

ing real-world traffic traces and highlight the individual

strengths and weaknesses of the three methods.

1

Starting from the assumption that all traffic to the same

destination host and listening port must have a common

application-layer protocol1, we first explore the problem

space and position our work in Section 2. We introduce pro-

tocol inference in a generic way in Section 3 and show how

our three classifiers fit in this problem space in Section 4.

We have implemented the classifiers in a single framework,

allowing side-by-side evaluation of the classifiers; this is re-

counted in Section 6. We present our evaluation in Section 7

and discuss the challenges we have observed in undertaking

application-layer traffic classification using exclusively flow

content, and conclude the paper in Section 9.

2 Background

Traditionally, network-level application analysis has de-

pended heavily on identification via well known ports [3, 19,

6]. As new application patterns, particularly P2P use, under-

mined this assumption, measurement researchers began to

identify the problem and seek workarounds. One class of so-

lutions focuses on deeper structural analyses of communica-

tions patterns, including the graph structure between IP ad-

dresses, protocols and port numbers over time and the distri-

bution of packet sizes and inter-arrival times across connec-

tions [12, 13, 24]. These approaches depend on the unique-

ness of a particular communication structure within a partic-

ular application. While it has been shown to work well for

particular application classes (e.g., Mail vs P2P) it is most

likely unable to distinguish between application instances

(e.g., one P2P system vs another).

Another line of research has focused on payload-based

classification. Early efforts focused on using hand-crafted

string classifiers to overcome the limitations of port-based

classification for various classes of applications [11, 5, 21].

Thus, the Jazz P2P protocol could be recognized by scanning

for ‘‘X-Kazaa-*’’ in transport-layer flows. Moore and

Papagiannaki have shown how to further augment such sig-

natures with causal inference to improve classification [16].

However, the manual nature of this approach presents sev-

eral drawbacks. First, it presupposes the network manager

knows what protocols she is looking for. In fact, new appli-

cation protocols come into existence at an alarming rate and

many network managers would like to be alerted that there

is “a new popular application on the block” even if they have

no prior experience with it. Second, even for well known

protocols constructing good signatures is a delicate job – re-

quiring expressions that have a high probability of matching

the application and few false matches to instances of other

protocols. The latter of these problems has recently been ad-

dressed by Haffner et al. [8], who automate the construction

of protocol signatures by employing a supervised machine

learning approach on traffic containing known instances of

1Different flows may carry various additional protocols in case of tun-

neling.

each protocol. Their results are quite good, frequently ap-

proaching the performance of good manual signatures.

Our work builds further upon this approach by removing

the requirement that the protocols be known in advance. By

simply using raw network data, our unsupervised algorithms

classify traffic into distinct protocols based on correlations

between their packet content. Thus, using no a priori infor-

mation we are able to create classifiers that can then dis-

tinguish between protocols. The basic unit of communica-

tion between processes on Internet hosts, be it a large TCP

connection or a single UDP packet, is a session. A session

is a pair of flows, each a byte sequence consisting of the

application-layer data sent by the initiator to the responder

and the data sent by the responder to the initiator. Each ses-

sion is identified by the 5-tuple consisting of initiator ad-

dress, initiator port number, responder address, responder

port number, and IP protocol number. Flows are identified by

the same 5-tuple and the flow direction, either from the ini-

tiator to the responder or from the responder to the initiator.

All sessions occur with respect to some application proto-

col, or simply protocol, which defines how session data are

interpreted by the communicating processes. By observing

the network we can identify communication sessions, but we

typically cannot directly infer the session protocol. How we

might do so is precisely the problem of protocol inference:

Problem: Given a session, identify its protocol.

We emphasize that a session consists only of the data ex-

changed between two ports on a pair of hosts during the ses-

sion’s lifetime; it does not include packet-level information

such as inter-arrival time, frame size, or header fields.

Protocol inference can naturally be divided into two

phases. The first is a “learning” or “training” phase, in which

a description of the protocols is constructed, and the sec-

ond is an operational phase, in which unknown sessions are

classified. Before describing these two phases, we introduce

some preliminary concepts.

2.1 Protocol Models

Any protocol inference algorithm must rely, explicitly or im-

plicitly, on a protocol model, which is a set of assumptions

about how a protocol manifests itself in a session. In this pa-

per, we consider three protocol models: product distributions

(Sec. 4.1), Markov processes (Sec. 4.2), and Common Sub-

string Graphs (Sec. 5), which lead to three different protocol

inference algorithms. All three models share the following

two assumptions about protocols.

Assumption M1. A protocol is a distribution on sessions of

length exactly n.

Assumption M1 tells us that a session protocol may be in-

ferred from n bytes of the session flows; in our experiments,

we fix n to be the first 64 bytes. Furthermore, Assump-

2

tion M1 posits that there is an unchanging distribution ac-

cording to which sessions of a protocol are drawn. It is this

distribution that defines the protocol.

Assumption M2. Within each session, the data sent by the

initiator to the responder is independent from the data sent

by the responder to the initiator.

Assumption M2 is a much stronger assumption that, in gen-

eral, does not hold in the real world. Consider, for example,

the DNS protocol. A DNS query contains a 16-bit identifica-

tion field that is copied into the reply, clearly violating the in-

dependence assumption. As a practical matter however, As-

sumption M2 greatly simplifies our algorithms. In particular,

it allows us to treat each flow in the session independently.

Assumptions M1 and M2 do not, by themselves, admit an

efficient description of a protocol, which is necessary for an

inference algorithm. Each of our protocol models makes ad-

ditional assumptions that allow the protocol to be efficiently

represented within the protocol model.

2.2 A priori Information

The problem of protocol inference may be qualified by the

type of information about protocols available a priori. We

recognize three such variants of the problem:

Fully described. In fully described protocol inference, each

protocol is given as a (possibly probabilistic) grammar.

Identifying the protocol used by a session is a matter of

determining which known description best matches the

session.

Fully correlated. In fully correlated protocol inference,

each protocol is assumed to be defined by some (pos-

sibly probabilistic) class of grammars, but the exact

grammar is unknown. The grammar of each protocol

must be learned from a set of session instances labeled

with the protocol.

Partially correlated. In partially correlated protocol infer-

ence, each protocol is also assumed to be defined by

some (possibly probabilistic) class of grammars, but the

exact grammar is unknown. However unlike the fully

trained case, only limited information is available about

the which sessions have a common protocol.

The focus of this work is on partially correlated protocol

inference, meaning that the training data consist of a set of

unlabeled sessions with additional information of the form

“Session A and Session B are using the same protocol.” This

auxiliary information is partial because not all sessions us-

ing the same protocol are identified as such, and only pos-

itive equivalences are given. In Section 6 we describe how

such training data may be obtained using mild real-world as-

sumptions about protocol persistence on host ports. Because

all given correlations are positive (i.e., information that two

sessions share the same protocol) but partial, it is impossible

to infer any negative correlation between cells through the

absence of positive correlation (unlike the fully correlated

case). This means that technically, identifying all sessions

with a single protocol would be consistent with the provided

data. For this reason, it becomes necessary for the protocol

model to differentiate distinct protocols, a requirement we

discuss in Section 3.

3 Protocol Inference

As mentioned previously, protocol inference consists of two

phases. In the first phase, a compact description of each

protocol is constructed from the training data. The correla-

tion information in the training data allows us to group ses-

sions into protocol equivalence classes consisting of sessions

known to use the same protocol. We then construct a tenta-

tive protocol description, called a cell, in accordance with the

protocol model. Because some cells may describe the same

protocol, we cluster similar cells and merge them to create

a more stable protocol description. The resulting cells define

distinct protocols, and are used in the second phase to clas-

sify new sessions. To implement the above algorithm, a cell

must support the following the following four operations.

Construct. Given a set of sessions of a protocol equiva-

lence class, construct a protocol description in accor-

dance with the protocol model.

Compare. Given two cells, determine their similarity,

namely the degree to which we believe them to repre-

sent the same protocol.

Merge. Combine two cells believed to represent the same

protocol. This operation should be the equivalent of

constructing a new cell from the original protocol

equivalence classes of the merged cells.

Score. Given a cell and a session, determine the likelihood

that the session is using the protocol described by the

cell.

3.1 Phase I: Training and Abstraction

Relying on the above operations, we can describe the first

phase more rigorously.

1. Combine training data sessions into protocol equiva-

lence classes based on the given correlations.

2. Construct a cell from each equivalence class.

3. Cluster similar cells together based on the result of the

Compare operation between pairs of cells.

4. Merge clustered cells into a single cell.

The resulting cells form the protocol descriptions used in

the second phase, described in Section 3.2.

3

Steps 1, 2, and 4 are fairly straightforward in view of the

four cell operations described earlier. Step 3, however, re-

quires further elaboration. The objective of step 3 is to cor-

rectly combine cells representing the same protocol into one.

What reason have we to expect cells representing the same

protocol to be similar with respect to the Compare operation

and those representing different protocols to be dissimilar?

We rely on the following assumption.

Assumption C3. There exists a session number threshold σ

and a similarity threshold τ such that all cells constructed

from protocol equivalence classes containing at least σ ses-

sions have similarity greater than τ if the underlying proto-

cols are the same and less than τ if the underlying protocols

are different.

Assumption C3 tells us that protocol session distributions

are fairly dissimilar with respect to the similarity measure

defined implicitly by the Compare operation. Moreover, it

tells us that the session correlations from which the equiv-

alence classes are derived are sufficiently independent to

make this dissimilarity observable. The degree to which As-

sumption C3 holds true depends both on the similarity mea-

sure and the types of correlations between sessions in the

training data.

Relying on Assumption C3, step 3 can greedily cluster

sufficiently large cells (that is, those constructed from proto-

col equivalence classes) together without fear that cells rep-

resenting different protocols will be clustered together.

Assuming each protocol is represented by at least one

large-enough protocol equivalence class, the result of Phase I

is a set of cells where each protocol is represented by exactly

one cell.

3.2 Phase II: Classification

Given a set of cells that we assume represent distinct proto-

cols, classifying a new session is fairly straightforward us-

ing the Score operation. To determine the most likely choice

of protocol for the session, we simply find the cell with the

highest Score with respect to the session.

The result of phase two is a an association between a ses-

sion and a protocol description (cell), which is not quite the

same as saying that the session is using some known pro-

tocol, say HTTP. However since protocols are in one-to-one

correspondence with cells, we can infer that two sessions are

using the same protocol if and only if they are associated

with the same cell.

4 Statistical Models

In this section we describe our first two protocol models. As-

sumptions M1 and M2 tell us that a protocol may be viewed

as a pair of distributions on byte strings (flows) of length n.

With this in mind, it is natural to view a protocol model en-

tirely in a statistical setting. Before recasting cell operations

in statistical terms, we introduce the concept of relative en-

tropy and likelihood with respect to a distribution.

Definition. Let P and Q be two distributions2 on some

finite set U . The relative entropy between P and Q is

D(P |Q) =
∑

x∈U

P (x) log
2

P (x)

Q(x)
.

Relative entropy is a measure of “closeness” between two

distributions. However, it is not a true metric. For more in-

formation on relative entropy and some of its interpretations,

see for example the text by Cover and Thomas [4]. In this

paper, we use symmetric relative entropy, defined as

D(P,Q) = D(P |Q) + D(Q|P)

=
∑

x∈U

(P (x)−Q(x)) log
2

P (x)

Q(x)
.

There are other, semantically more natural ways of defin-

ing the distance between two distributions. However sym-

metric relative entropy turns out to be the easiest measure

to compute for the special distributions defined by our two

statistical protocol models.

We can now define cell operations defined from Section 3

in statistical terms. A cell consists of a pair of distributions

(
⇀

P,
↼

P), the first representing the flow distribution from initia-

tors to responders and the second the flow distribution from

responders to initiators within the protocol.

Construct. Given a set of sessions of a protocol equivalence

class, create a cell (
⇀

P,
↼

P) where
⇀

P is the distribution of

flows from initiators to responders in the set of sessions

and
↼

P is the distribution of flows from responders to

initiators in the set of sessions.

Compare. Given two cells (
⇀

P,
↼

P) and (
⇀

Q,
↼

Q), their dis-

tance is D(
⇀

P,
⇀

Q) + D(
↼

P,
↼

Q). Note that this treats each

session direction as independent, per Assumption M2.

Their similarity is simply the negation of their distance.

Merge. Given two cells as two pairs of distributions, the re-

sult of the Merge operation is the weighted sum of the

distributions, equivalent to the result of a Construct op-

eration on the protocol equivalence classes from which

the original cells were constructed.

Score. Given a cell (
⇀

P,
↼

P) and a session (
⇀

x,
↼

x), the score is

the probability that both flows of the session are drawn

randomly from the pair of distributions defined by the

cell. Since the flow distributions in each direction are

independent (by Assumption M2), this is just
⇀

P (
⇀

x) ·
↼

P (
↼

x).

2
P being a distribution on a finite set U means that P (x) ≥ 0 and the

sum of P (x) over all x in U is 1.

4

Unfortunately explicitly representing a pair of flow dis-

tributions is not feasible (each distribution consists of 256n

points!), nor is it possible to reasonably learn such distribu-

tions approximately with a polynomial number of samples.

We assume, therefore, that these flow distributions have a

compact representation as a product of n independent byte

distributions or as generated by a Markov process, as we de-

scribe next.

4.1 Product Distribution Model

The product distribution model treats each n-byte flow dis-

tribution as a product of n independent byte distributions.

Each byte offset in a flow is represented by its own byte dis-

tribution that describes the distribution of bytes at that offset

in the flow. Unfortunately, this assumes that each byte of the

flow depends only on its offset from the beginning of the

flow and not on any of the other bytes. The following exam-

ple illustrates the significance of this assumption.

Product Distribution Example. For the sake of example,

let n = 4 and consider the distribution on flows from the

initiator to responder for the HTTP protocol. If the byte

strings “HEAD” and “POST” have equal probability, then

the strings “HOST” and “HEAT” must occur with the same

probability; clearly this is an invalid assumption.

Despite relying on such an unrealistic assumption, the

product distribution model has proven to be quite effective.

It is also remarkably simple.

4.1.1 Construct

Each individual byte distribution is set in accordance with

the distribution of bytes at that offset. For example, byte dis-

tribution i for the initiator to responder direction would rep-

resent the distribution of the i-th byte of the initiator to re-

sponder flow across the sessions in the protocol equivalence

class.

4.1.2 Compare

The relative entropy of two product distributions P1×P2 and

Q1 ×Q2 is just the sum of the individual relative entropies;

that is,

D(P1×P2 |Q1×Q2) = D(P1|Q2) + D(P2|Q2).

In fact, this is why the relative entropy of two cells, which

consist of two independent distributions on flows per As-

sumption M2, is just the sum of each direction’s relative en-

tropy.

4.1.3 Merge

The merge operation simply returns a convex combination of

the underlying distributions. That is, if Pi is the i-th byte dis-

tribution in one flow direction of the first cell and Qi is the

i-th byte distribution in the same flow direction of the sec-

ond cell, then the resulting cell’s i-th distribution in that flow

direction is λ Pi + (1− λ)Qi, where λ is the number of ses-

sions in the protocol equivalence class from which the first

H E A D

P O S T

1 1 1

1 1 1

0 0 0

0 0 0

1

1

Figure 1: A Markov process for generating the strings “HEAD”

and “POST” with each string chosen according to the value of H

and P in the initial distribution. Irrelevant nodes have been omitted

for clarity.

cell was constructed divided by the total number of sessions

in the protocol equivalence classes of the first and second

cells.

4.1.4 Score

Let (
⇀

P0 × · · · ×
⇀

Pn−1,
↼

P0 × · · · ×
↼

Pn−1) be a product dis-

tribution cell and (
⇀

x,
↼

x) be a session. Then the probability of

this session under the distribution defined by the cell is

n−1∏

i=0

⇀

Pi(
⇀

xi) ·
n−1∏

i=0

↼

Pi(
↼

xi).

4.2 Markov Process Model

Like the Product Distribution Model, the Markov Process

Model relies on introducing independence between bytes in

order to reduce the size of the distribution. The Markov pro-

cess we have in mind is best described as a random walk on

the following complete weighted directed graph. The nodes

of the graph are labeled with unique byte values, 256 in all.

Each edge is weighted with a transition probability such that

for any node, the sum of all its out-edge weights is 1. The

random walk starts at a node chosen according an initial dis-

tribution π. The next node on the walk is chosen according to

the weight of the edge from the current node to its neighbors,

that is, according to the transition probability. These transi-

tion probabilities are given by a transition probability matrix

P whose entry Puv is the weight of the edge (u, v). The walk

continues until n nodes (counting the starting node) are vis-

ited. The flow byte string resulting from the walk consists of

the names (i.e., byte values) of the nodes visited, including

self-loops.

The probability distribution on length-n flows defined by

the above Markov process is defined by the initial distribu-

tion π which consists of 256 values, and the transition prob-

ability matrix P which consists of 2562 values. To better un-

derstand this distribution, consider the example used for the

product distribution model.

Markov Process Example. Again, for the sake of exam-

ple, let n = 4 and consider the distribution on flows from

the initiator to responder for the HTTP protocol. Let the

5

H E A D

P O S T

1 ? 1

1 1 1

0 0 0

0 0 0

1

G !

1

?
1

Figure 2: Attempting to add the string “GET” to a Markov process

for generating the strings “HEAD” and “POST.”

byte string “HEAD” occur with probability p and the byte

string “POST” with probability q. The corresponding graph

is shown in Figure 1, where the initial distribution is π(H) =
p, π(P) = q, and π(u) = 0 for u != H,P.

It seems we have avoided the problem we had with the

product distribution. However if we try to add the string

“GET ” we quickly run into problems (see Figure 2). Now

the byte strings “GEAD” and “HET ” are also generated by

our process!

4.2.1 Construct

The initial distribution π for some flow direction is con-

structed in the straightforward manner by setting it to be the

distribution on the first byte of all the flows (in the appro-

priate flow direction). The transition probabilities are based

on the observed transition frequencies over all adjacent byte

pairs in the flows (again, in the appropriate direction). That

is, Puv is the number of times byte u is followed by byte v

divided by the number of times byte u appears at offsets 0 to

n − 2.

4.2.2 Compare

The relative entropy of two Markov Process Distributions is

somewhat involved. For brevity, we omit the proof of the fol-

lowing fact. Let π and ρ be the initial distribution functions

of two Markov Processes and let P and Q be correspond-

ing transition probability functions. The relative entropy of

length-n byte strings generated according to these processes

is

∑

u

π(u) log
2

π(u)

ρ(u)
+

∑

u,v

ξ(u) · P (u, v) log
2

P (u, v)

Q(u, v)
,

where

ξ(u) = π(u) +

n−2∑

i=1

∑

t1..ti

π(t1) ·

i∏

j=1

P (tj−1, tj) · P (ti, u).

4.2.3 Merge

Just as in the case of the Product Distribution Model, the

merge operation involves a convex combination of the initial

distributions and the transition probability matrix of the two

sessions in each of the two directions.

4.2.4 Score

To the probability of a string x0, . . . , xn−1 according to

some Markov process distribution given by initial distribu-

tion π and transition probability matrix P , is given by a

straightforward simulation of the random walk, taking the

product of the probability according to the initial distribution

and the edge weights encountered along the walk:

π(x0) ·

n−1∏

i=1

P (xi−1, xi).

5 Common Substring Graphs

We now introduce common substring graphs (CSGs). These

differ from the previous two approaches in that they capture

much more structural information about the flows they are

built from. In particular, CSGs

• are not based on a fixed token length but rather use

longest common subsequences between flows,

• capture all of the sequences in which common sub-

strings occur, including their offsets in the flows,

• ignore all byte sequences that share no commonalities

with other flows,

• track the frequency with which individual substrings, as

well as sequences thereof, occur.

A common subsequence is a sequence of common sub-

strings between two strings; a longest common subsequence

(LCS) is the common subsequence of maximum cumulative

length. We denote the LCS between two strings s1 and s2 as

L(s1, s2) and its cumulative length as |L(s1, s2)|.
The intuition for CSGs is as follows: if multiple flows car-

rying the same protocol exhibit common substrings, compar-

ing many such flows will most frequently yield those sub-

strings that are most common in the protocol. By using LCS

algorithms, not only can we identify what these commonal-

ities are, but we also expose their sequence and location in

the flows. By furthermore comparing many of the resulting

LCSs and combining redundant parts in them, frequency pat-

terns in substrings and LCSs will emerge that are suitable for

classification.

We will now formalize this intuition. A CSG is a directed

graph G = (N,A, P, ns, ne) in which the nodes N are la-

beled and the set of arcs A can contain multiple instances

between the same pair of nodes: a CSG is a labeled mul-

tidigraph. P is the set of paths in the graph. We define a

path p = (n1, ..., ni) as the sequence of nodes starting from

n1 and ending in ni in the graph, connected by arcs. P (n)
is the number of paths running through a node n. (If con-

text doesn’t make it clear which graph is being referred to,

6

Figure 5: Example of a CSG for the HTTP requests comprising a single website download. The numbers in each node represent the number

of paths going through it.

Figure 3: Constructing a CSG: introduction of a new path with sub-

sequent merging of nodes. (a) A CSG with a single, three-node path.

(b) An LCS (in white) is inserted as a new path. (c) New node A al-

ready exists and is therefore merged with the existing node. (d) New

node D overlaps partially with existing nodes B and C. (e) Nodes

B, C, and D are split along the overlap boundaries. (f) Identically

labeled nodes resulting from the splits are merged. The insertion is

complete.

we will use subscripts to indicate membership, as in NG,

PG, etc.) A CSG has fixed start and end nodes ns and ne.

Each path originates from ns and terminates in ne, i.e.,

PG(ns) = PG(ne) = |PG|. We ignore these nodes for all

Figure 4: Scoring a flow against a CSG. The labels of nodes A, B,

and C occur in the flow at the bottom. The shaded area in the graph

indicates all paths considered for the scoring function. While the

path containing A-C would constitute the largest overlap with the

flow, it is not considered because A and C occur in opposite order

in the flow. The best overlap is with the path containing A-B: the

final score is (a + b)/f .

other purposes; for example, when we speak of a path with

a single node on it, we mean a path originating at the start

node, visiting the single node, and terminating at the end

node. Along the path, a single node can occur multiple times;

that is, the path may loop. The node labels correspond to

common substrings between different flows, and paths rep-

resent the sequences of such common substrings that have

been observed between flows. CSGs grow at the granularity

of new paths being inserted. For ease of explanation we liken

nodes with their labels, thus for example when the say that a

node has overlap with another node, we mean that their la-

bels overlap, and L(n1, n2) is the LCS of the labels of nodes

n1 and n2. |ni| denotes the length of the label of node ni. La-

7

bels are unique, i.e., there is only a single node with a given

label at any one time.

We make extensive use of a variant of the Smith-

Waterman local alignment algorithm for subsequence com-

putation [22]. Given two input strings, the algorithm returns

the longest common subsequence of the two strings together

with the offsets into the two strings at which the commonali-

ties occur. Our software implementation of Smith-Waterman

requires O(|s1| · |s2|) space and time given input strings s1

and s2. Significant speed-ups are possible by leveraging FP-

GAs or GPUs [17, 23]. We use linear gap penalty with affine

alignment scoring and ignore the possibility of byte substi-

tutions, i.e., we compute only exact common subsequences

interleaved with gap regions.

To fulfill the requirements of a cell (
⇀

P,
↼

P), we put two

CSGs into each cell, one per flow direction. We will now

describe the realization of the four cell methods in CSGs.

5.0.5 Construct

Insertion of a flow into a CSG works as follows. A flow is

inserted as a new, single-node path. If there are no other

paths in the CSG, the insertion process is complete. Other-

wise, we compute the LCSs between the flow and the labels

of the existing nodes. Where nodes are identical to a com-

mon substring, they are merged into a single node carrying

all the merged nodes’ paths. Where nodes overlap partially,

they are split into neighboring nodes and the new, identical

nodes are merged. We only split nodes at those offsets that

don’t cause the creation of labels shorter than a minimum

allowable string length.

For purposes of analyzing protocol-specific aspects of the

flows that are inserted into a graph, it is beneficial to dif-

ferentiate between a new flow and the commonalities it has

with the existing nodes in a graph. We therefore have imple-

mented a slightly different but functionally equivalent inser-

tion strategy that uses flow pools: a new flow is compared

against the flows in the pool, and LCSs are extracted in the

process. Instead of the flow itself we then insert the LCSs

into the CSG as a path in which each node corresponds to

a substring in the LCS. The node merge and split processes

during insertion of an LCS are shown in Figure 3.

Since many flows will be inserted into a CSG, state man-

agement becomes an issue. We limit the number of nodes

that a CSG can grow to using a two-stage scheme in com-

bination with monitoring node use frequency through a least

recently used list. The list keeps the recently used nodes at

the front, while the others percolate to its tail. A hard limit

imposes an absolute maximum number of nodes in the CSG.

If more nodes would exist in the graph than the hard limit al-

lows, least recently used nodes are removed from the graph

until the limit is obeyed. To reduce the risk of evicting nodes

prematurely, we use an additional, smaller soft limit, exceed-

ing of which can also lead to node removal but only if the

affected nodes are not important to the graph’s structure. In

order to quantify the importance of a node n to its graph G

we define as the weight of a node the ratio of the number of

paths that are running through the node to the total number

of paths in the graph:

WG(n) =
PG(n)

|PG|

We say a node is heavy when this fraction is close to 1. As

we will show in Section 7.1, only a small number of nodes in

a CSG loaded with network flows is heavy. Soft limits only

evict a node if its weight is below a minimum weight thresh-

old. Removal of a node leads to a change of the node se-

quence of all paths going through the node; redundant paths

may now exist. We avoid those at all times by enforcing a

uniqueness invariant: no two paths have the same sequence

of nodes at any one time. Where duplicate paths would occur,

they are suppressed and a per-path redundancy counter is in-

cremented. We do not currently limit the number of different

paths in the mesh because it has not become an issue in prac-

tice. Should path elimination become necessary, an eviction

scheme similar to the one for nodes could be implemented

easily.

5.0.6 Compare

In order to compare two CSGs, a graph similarity measure

is needed. The measure we have implemented is a variant of

feature-based graph distances [20]: the two features we use

for the computation are the weights and labels of the graph

nodes. Our intuition is that for two CSGs to be highly simi-

lar, they must have nodes that exhibit high similarity in their

labeling while at the same time having comparable weight.

We have decided against the use of path node sequencing as

a source of similarity information for performance reasons:

the number of nodes in a graph is tightly controlled, while

we currently do not enforce a limit on the number of paths.

When comparing two CSGs G and H we first sort NG and

NH by the length of the node labels, in descending order. It-

erating over the nodes in this order, we then do a pairwise

comparison (ni, nj) ∈ NG × NH , finding for every node

ni ∈ NG the node nj ∈ NH that provides the largest la-

bel overlap, i.e., for which |L(ni, nj)| is maximized. Let the

LCS yielding ni’s maximum overlap with the nodes of NH

be denoted as Lmax(ni, NH). The sorting of the nodes al-

lows us to abort the search once we are considering nodes

that are shorter than the best match we have previously en-

countered, so this algorithm is in O(|NG| · |NH |). The score

contributed by node ni to the similarity is then the ratio of

the best overlap size to the node label’s total length, multi-

plied by PG(ni) to factor in ni’s importance. The scores of

all nodes are summarized and normalized, resulting in our

8

similarity measure S(G, H) between two graphs G and H:

S(G, H) =

∑

ni∈NG

PG(ni)
|Lmax(ni, NH)|

|ni|
∑

ni∈NG

PG(ni)

5.0.7 Merge

The way the merge operation proceeds depends on whether

the CSG that is being merged into another one needs to re-

main intact or not. If it does, then merging a CSG G into

H is done on a path-by-path basis by duplicating each path

p ∈ PG, inserting it as a new LCS into H , and copying over

the redundancy count. If G is no longer required, we can just

unhook all paths from the start and end nodes, re-hook them

into H , and make a single pass over G’s old nodes to merge

them into H .

5.0.8 Score

To be able to classify flows given a set of CSGs loaded with

traffic, one needs a method to determine the similarity be-

tween an arbitrary flow and a CSG as a numerical value in

[0, 1]. Intuitively we do this by trying to overlay the flow into

the CSG as well as possible, using existing paths. More pre-

cisely, we first scan the flow for occurrences of each CSG

node’s label in the flow, keeping track of the nodes that

matched and the locations of any matches. This is an exact

string matching problem and many algorithms are available

in the literature to solve it [7]. We are currently using a sim-

ple memcmp()-iterative approach. The union of paths going

through the matched nodes is a candidate set of paths among

which we then find the one that has the largest number of

matched nodes in the same order in which they occurred in

the input flow. Note that this gives us the exact sequence,

location, and extent of all substrings in the flow that are typ-

ical to the traffic the CSG has been loaded with—when us-

ing a single protocol’s traffic, we can expect to get just the

protocol-intrinsic strings “highlighted” in the flow. Finally,

to get a numerical outcome we sum up the total length of the

matching nodes’ labels on that path and divide by the flow

length, yielding 1 for perfect overlap and 0 for no similarity.

Figure 4 describes the process.

6 Classification Framework

In this section we present a cell-based framework for classi-

fying traffic based on the notion and assumption of construct-

ing protocol models as presented in Sections 2 and 3. Our

purpose here is to describe in concrete terms how to imple-

ment a classification system based on our models. Moreover,

the modularity of this framework allows us to evaluate dif-

ferent protocol models (e.g., Product Distributions, Markov

Processes, and Common Substring Graphs) while allowing

them to share common components such as surrounding cell

construction, clustering, and matching implementations. Fig-

ure 6 summarizes the overall operation of Phase I (see Sec-

tion 3), training cells starting with processing input sessions

to merging clusters of cells.

Equivalence Classes: We begin with the first step of

grouping sessions into equivalence classes to construct cells,

as illustrated in Figure 6a. For our implementation we as-

sume that all communication sessions sharing the same ser-

vice key belongs to the same protocol. Here, we define a ser-

vice key as the 3-tuple (responder address, responder port,

and transport protocol). We believe this key produces a sen-

sible equivalence class because hosts typically communicate

with servers at specified address-port combinations. In our

experience, the granularity of this equivalence class is coarse

enough to admit enough sessions in each class to form sta-

tistically significant models. Moreover, it is fine enough so

that it does not approach the generality of more coarse (and

potentially more inaccurate) equivalences such as treating all

sessions destined for the same port as the same protocol—the

very assumption that we argue is losing traction with today’s

protocols.

Augmenting Equivalence Classes with Contact His-

tory: We augment service key equivalence classes by mak-

ing a real-world assumption about the protocol persistence

between an initiating host and a responding port. In particu-

lar, we assume that within a short time period, if an initiating

host contacts multiple responders at the same responder port,

then the cells corresponding to those service keys must be

using the same protocol. Thus, we keep a contact history ta-

ble that maps initiator-address/responder-port pairs to cells,

and merge under the following circumstance: whenever host

A contacts the responder at B : p, and contacts another re-

sponder at C : p, then we merge the cells corresponding to

service keys B : p and C : p. This approach is partly in-

spired by previous work such as BLINC [14], although our

application of external sources of equivalence information is

relatively mild and not used during the classification process

at all.

Cell Promotion, Comparison, and Merging: After in-

serting session into their respective cells, we need to promote

them in preparation for clustering (Figure 6b). However, ob-

serving a single session within a cell is insufficient to accu-

rately infer the underlying protocol. Thus, we find it useful to

allow the cell to receive enough traffic to construct a reason-

able model. For our implementation, we set the promotion

threshold to a minimum of 500 flows (not sessions) per cell.

Finally, we perform clustering on the cells with the goal of

forming compact descriptions of the observed protocols. We

currently perform an agglomerative clustering to construct a

hierarchy of cells, iteratively merging the closest pair of cells

according to the comparison operation.

Summary: The Cell framework is a realization of the pro-

tocol inference approach described earlier, but it provides

a modular platform for evaluating various aspects of the

9

Figure 6: The Cell framework. (a) Flows are mapped to flow keys, stored in a hashtable. Each flow key points to a cell; the cells are only

lightly loaded and have not yet been promoted. (b) More flows have been added, multiple flow keys now point to the same cells. The first

cells have been promoted for merging. (c) Cells have begun merging.

traffic classification problem. Cell construction could ben-

efit from more elaborate schemes of inferring equivalence

classes. Moreover, the framework would provide us the flex-

ibility to experiment with a variety of machine-learning ap-

proaches outside of agglomerative clustering to merge cells.

However, the most important aspect for this paper is that

the framework allows us to flexibly evaluate the viability

of Product Distributions, Markov Processes, and Common

Substring Graphs as protocol models independent of the

schema for constructing equivalence classes, or the clus-

tering algorithms used after construction. We demonstrate

in our evaluations that using Product Distributions, Markov

Processes, and Common Substring Graphs with simple ap-

proaches such as contact graphs and agglomerative cluster-

ing yields promising classification results.

7 Evaluation

We implemented the cluster construction and flow matching

components of the Cell framework in C++ using 3800 lines

of code. The CSGs were simultaneously developed in the

Cell framework and the Bro IDS [18] to allow for more flex-

ible testing of input traffic. We ran all experiments on a dual

Opteron 250 with 8 GB RAM running Linux 2.6.

We collected a several traces ranging from 30 minutes to

2.5 hours from a department backbone switch during the

period of November 30, 2005 through February 7, 2006.

In order to obtain session data out of raw packets, we re-

assembled TCP flows and concatenated UDP datagrams, us-

ing Bro. Session lifetimes are well defined for TCP through

its various timeouts; for UDP we used a timeout of 10 sec-

onds. Next we filtered out all flows containing no payload

(essentially failed TCP handshakes) because we cannot clas-

sify them using a content-based flow classifier. We then used

Ethereal 0.10.14 [1] as an oracle to provide a protocol label

for each of the flows in the trace. Additionally, we filtered

any flows that Ethereal could not identify because we want

to compare our classifications to a ground truth provided by

an oracle. Specifically, whenever Ethereal labeled a flow as

simply ‘TCP’ or ‘UDP,’ we filtered it out of the trace. From

the combined traces, flows labeled ‘TCP’ composed 0.6%

of all flows. Moreover, although flows labeled ‘UDP’ com-

prised 25% of traffic, 88% of the UDP-labeled flows (22%

of all traffic) were instances of the Slammer worm, and the

remainder composed 3% of all flows.

After preprocessing, we stored the first k bytes of each

reassembled flow in a trace ready for consumption by the

Cell classifier. For this paper we set k = 64, as was done

by Haffner et al. [9]. Note that at such short flow prefixes,

correct UDP packet flow reconstruction is typically not an

issue since a flow mostly consists of just one packet.

7.1 CSG Parameterization

CSGs have four parameters: soft/hard maximum node lim-

its, eviction weight threshold, and minimum string length.

We used a soft/hard node limit of 200/500 nodes, a mini-

mum weight threshold of 10%, and 4-byte minimum string

length. To validate that these are reasonable settings, we se-

lected 4 major TCP protocols (FTP, SMTP, HTTP, HTTPS)

and 4 UDP ones (DNS, NTP, NetBIOS Nameservice, and

SrvLoc) and for each of them picked a destination service

hosting at least 1000 sessions. We manually inspected the

services’ traffic to ensure we did indeed deal with the in-

tended protocol. In three separate runs with minimum string

lengths of 2-4 bytes, 8 CSGs were loaded with each session’s

first message while we recorded node growth and usage. Fig-

ure 7 shows the number of nodes in each graph during the

construction. The protocols exhibit fairly different growth

behaviors, but all of them tolerate the 200-node soft limit.

HTTP repeatedly pushes beyond the limit but never loses

nodes beyond the eviction weight threshold. Figure 8 shows

the frequency distribution of each CSG’s nodes after 1000

insertions. In all CSGs except for the FTP one, at least 75%

of the 200 nodes carry only a single path. The FTP CSG only

grew to 11 nodes in the 2-byte run, explaining the cruder dis-

tribution. Minimum string length seems to matter little. Thus,

our CSG settings seem tolerant enough not to hinder natural

graph evolution.

7.2 Classification Experiment

In our classification experiment, we examine how effective

our three algorithms (Product, Markov process, and CSGs)

are at classifying flows in a trace. We proceed in two phases.

The first clustering phase accepts a training trace for training

and produces a definitive set of clusters for describing proto-

cols in the trace. The second classification phase then labels

the flows in a testing trace by associating them with one of

10

0 250 500 750 1000
0

50

100

150

200

250

TCP/21

#
 n
o
d
e
s

4 bytes

3 bytes

2 bytes

0 250 500 750 1000
0

50

100

150

200

250

TCP/25

0 250 500 750 1000
0

50

100

150

200

250

TCP/80

0 250 500 750 1000
0

50

100

150

200

250

TCP/443

0 250 500 750 1000
0

50

100

150

200

250

UDP/53

Iteration

#
 n
o
d
e
s

0 250 500 750 1000
0

50

100

150

200

250

UDP/123

Iteration

0 250 500 750 1000
0

50

100

150

200

250

UDP/137

Iteration

0 250 500 750 1000
0

50

100

150

200

250

UDP/427

Iteration

Figure 7: CSG node growth during insertion of 1000 sessions, for various minimum string lengths.

0 1 2 3 4 5

x 10
4

50

60

70

80

90

100

TCP/21

%
 n
o
d
e
s

4 bytes

3 bytes

2 bytes

0 1 2 3 4 5

x 10
4

50

60

70

80

90

100

TCP/25

0 1 2 3 4 5

x 10
4

50

60

70

80

90

100

TCP/80

0 1 2 3 4 5

x 10
4

50

60

70

80

90

100

TCP/443

0 1 2 3 4 5

x 10
4

50

60

70

80

90

100

UDP/53

Node Frequency

%
 n
o
d
e
s

0 1 2 3 4 5

x 10
4

50

60

70

80

90

100

UDP/123

Node Frequency

0 1 2 3 4 5

x 10
4

50

60

70

80

90

100

UDP/137

Node Frequency

0 1 2 3 4 5

x 10
4

50

60

70

80

90

100

UDP/427

Node Frequency

Figure 8: CSG node frequencies after 1000 insertions, for various minimum string lengths.

the definitive clusters produced in the first phase. The pur-

pose of this experiment is to simulate the process by which a

network administrator may use our system—by first building

a set of cells to describe network traffic, and then classifying

subsequent traffic using those cells. We describe each phase

in more detail as follows.

7.2.1 Clustering Phase

Clustering is the process of producing a set of clusters

(merged cells) that succinctly describes the traffic in a trace

according to a clustering metric. In the current implemen-

tation, this involves inserting the input trace into cells and

merging cells according to host contact patterns as described

in Section 6. Then, the cell framework promotes cells that

meet the promotion threshold, and prunes the rest from the

cell table. In these experiments we promote cells that con-

tain at least 500 flows. Afterward, we create a hierarchy of

cell merges using a simple agglomerative (bottom-up) clus-

tering. The distance metric is relative entropy for Product

and Markov (Section 4), and approximate graph similarity

for CSGs (Section 5.0.6). Each iteration of clustering merges

the pair of cells with the lowest distance to produce a new

cell, and recomputes the distance between the new cell and

the others.

After producing a clustering hierarchy, we replay the

merge operations to find the clustering that yields the low-

est error according to a quality-of-clustering metric. There

are various measures in the literature for evaluating the

quality of a clustering [15]. However, for our purposes we

choose a simpler metric that mimics the decision process of

a constrained network administrator: majority-first. Comput-

ing the majority-first metric emulates the network adminis-

trator’s task of labeling each cell with a protocol under the

following constraints: (1) the administrator may only assign

protocol X to a cell if the majority of flows belong to proto-

col X , and (2) the administrator can assign a protocol to at

most one cell.

We calculate the majority-first misclassification rate by

summing the number of correct classifications for each pro-

tocol Xi, subtracting that sum from the total number of

flows, and then normalizing the difference by the number

11

of flows. More formally, let mij be the number of protocol

Xi flows belonging to cell j if protocol Xi constitutes the

majority of flows for that cell, but let mij = 0 if protocol Xi

is not in the majority for cell j. Then the majority-first error

rate e follows:

e = 1− (
∑

i

(max
j

mij)/(total flows))

The resulting majority-first misclassification rate is the as-

signment of protocols to cells that maximizes the number of

valid matches.

Under these constraints it is still possible to have proto-

cols that we cannot assign to any cell, possibly overestimat-

ing the misclassification error compared to other quality-of-

clustering metrics. For example, we may overestimate the

classification error of clustering where cells c1 = { 60 flows

X, 40 flows Y } and c2 = { 51 flows X, 49 flows Y}. Ac-

cording to majority-first, X is a valid protocol label for ei-

ther cell, but we label c1 with X because it contains more

X flows than c2. Because protocol Y is not in the major-

ity for either cell, we cannot assign it. The resulting error

would be 1 − 60/200 = 70%. A different metric such as

the clustering error by Meilaă [15] would assign label Y
to cell c2, and thereby result in a misclassification error of

1 − 109/200 = 45.5%. Nevertheless, the important prop-

erty of the majority-first metric is that it penalizes clusterings

where a particular protocol is in the majority for multiple

cells.

We use the merge threshold that yields the lowest

majority-first error to produce the definitive set of clusters

for the classification phase. Although we simulate a super-

vised learning process with this experiment in principle, the

entire experiment runs from start to finish (including merge-

threshold selection) requiring no manual intervention. Using

other quality-of-clustering metrics to produce a best cluster-

ing is an area of future research.

7.2.2 Classification Phase

The goal of this phase is to associate each incoming flow

with the cell that corresponds to the flow’s protocol. To per-

form this classification, we load the definitive clusters back

into the framework and label each test flow with the cluster

that yields the best matching score.

After we label each flow with the protocol of the clos-

est matching cell, we compute the misclassification rate. We

note that the misclassification rate of this classification here

should not be confused with the misclassification rate of the

clustering described in Section 7.2.1.

7.3 Classification Results

Table 1 summarizes the misclassification rates for our frame-

work under the three protocol models. Here we trained a 2.5

hour trace (7.2 million flows) while testing on a 1 hour trace

(2.5 million flows). “Total” error encompasses all misclassi-

fied flows, including flows belonging to protocols that were

absent from the training trace. “Learned” error represents the

percent of all flows that were misclassified and belonged to

a protocol present in the training trace. Finally, “unlearned”

error is the percent of all flows that belonged to protocols ab-

sent from the training trace (not surprisingly, this last number

stays consistent across all protocols). Table 2 shows the traf-

fic composition for select test trace protocols that we focus

on in our discussion.

total learned unlearned

Product 5.66% 5.26% 0.39%

Markov 8.5 % 8.18% 0.39%

CSG 14.00% 13.61% 0.39%

Table 1: Misclassification for three protocol models training on a

2.5 hour trace and testing on a 1 hour trace.

Proto Flows %

DNS 1,285,718 50.8

NTP 306,031 12.1

HTTP 208,707 8.2

NBNS 185,569 7.3

SMTP 122,059 4.8

SNMP 67,078 2.7

YPSERV 40,525 1.6

Total 2,530,558

Table 2: Select protocols from the 1-hour testing trace.

Tests with product distributions yielded the lowest classi-

fication error at 5.66% total error, while results for Markov

processes were somewhat worse at 8.5% total error. Classifi-

cation error for Content String Graphs was the largest at 14%

total error (partly because we limited the maximum flows per

cell to improve runtime performance). For all models except

CSGs, classification results improve slightly with a longer

training trace. Table 3 presents misclassification, precision,

and recall rates for select protocols within the 1 hour test

trace.

Product Distribution performed well over all protocols,

particularly popular ones such as HTTP, NTP, NBNS. This

model benefited strongly from the presence of invariant pro-

tocol bytes at fixed offsets within the flow. However, the

largest number of misclassified flows resulted from false

positive identifications for DNS. The precision and recall

numbers are high for DNS because it composed the major-

ity of flows in the 1 hour trace (1.3 million). Nevertheless,

much of the misclassification error came from binary proto-

cols being misidentified as DNS because of the uniformity

of its byte-offset distributions (due in part to its high preva-

lence). Another interesting source of false positives was the

YPSERV flow, whose content consisted primarily of NULL-

bytes. Other protocols that heavily used NULL-bytes (e.g.,

TLS and NFS) were frequently misidentified as YPSERV.

12

Protocol Product Markov CSG

Misclass% Precision% Recall% Misclass% Precision% Recall% Misclass% Precision% Recall%

DNS 3.03 94.63 99.90 2.88 94.97 99.7 4.15 96.42 95.41

HTTP 0.17 98.54 99.94 0.41 97.71 97.6 0.35 97.54 99.89

NBNS 0.01 99.84 99.90 0.65 91.95 99.9 2.24 79.98 93.55

NTP 0.04 99.88 99.93 1.94 99.20 84.6 5.86 89.60 58.61

SMTP 0.09 98.62 99.57 0.02 99.78 99.9 0.02 99.85 99.79

SNMP 0.12 99.40 95.99 <0.01 99.99 100.0 0.02 99.40 100.00

YPSERV 1.66 51.81 100.00 1.90 0.00 0.00 2.16 44.01 99.30

Table 3: Misclassification, precision and recall rates of select learned protocols (those present in the training trace).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 300 400 500 600 700 800

P
e

rc
e

n
t

M
is

c
la

s
s
if
ie

d

Merge Threshold

Trace 1
Trace 2
Trace 3

Figure 9: Misclassification rate for Product Distribution over merg-

ing threshold for training on three different hour-long traces, and

testing on the 30-minute trace. The rate includes protocols that were

not present in the training trace.

The misclassification rate for Markov is slightly better for

DNS than Product Distribution. Nevertheless, the greatest

weakness of Markov is misclassification of protocols con-

taining many NULL-bytes such as YPSERV, more so than

Product. Unlike Product, Markov cannot take advantage of

byte offset information—hence protocols that contain long

runs of NULL bytes, regardless of their offset, are undesir-

ably grouped together.

Interestingly, CSGs performed well classifying protocols

that Product Distributions misclassified, such as TLS (not

shown). By contrast, CSGs incurred high misclassification

rates for binary protocols that Product Distribution success-

fully classified, such as NBNS, NTP, and YPSERV. Never-

theless, the classification accuracy is respectable considering

that we limited the number of flows in each CSG cell to 500.

7.4 Parameter Space

Finally, we answer the question of whether our approach is

sensitive to the merge threshold—i.e., is it possible to come

up with a single threshold to apply to clustering traffic for

different time periods. If classification errors remain con-

sistent across different trace, this would suggest that pure

online-clustering with a fixed merging threshold is viable

with our system (as opposed to the previous experiment’s

approach of searching for the best threshold). Although our

experience is limited, the results are promising.

Here we focus on Product Distributions and train on each

of three hour-long traces. For a specified merge threshold, we

merge cells until the minimum distance between any merged

cell is greater than that threshold. This becomes the definitive

set for the test phase. Then, we test the clusters against the

30-minute trace to measure misclassification rates.

Figure 9 shows that the total error rate (including mis-

classification on protocols absent from the training trace) re-

mains relatively consistent across the test traces. The largest

difference is roughly 4.5 percentage points between Trace 1

and Trace 3. The error rates afterward remain within 2 per-

cent of each other.

8 Discussion

As we have shown in this paper, protocol inference using

only flow content is a multi-faceted challenge. While prod-

uct distributions have achieved the best over result, a look at

individual protocol classification results suggests that each

of the three methods has different strengths and weaknesses.

Given that we only looked at the first 64 bytes of a flow,

the results are quite promising, in particular since such short

length means that the flow reassembly requirements are min-

imal even though we do content-based analysis. Another les-

son learned is that binary protocols are not generally easy

to classify because of sequences of null-bytes that are com-

mon multiple protocols, at similar locations. We note that the

purpose of this work was not an investigation of the runtime

performance of the three models, but the challenges they face

in the classification task.

9 Conclusion

Protocol inference is as much a game of carefully chosen as-

sumptions, like stepping stones across a stream, as it is one

of clever algorithms and measurements. Our first contribu-

tion is to split the problem into three nearly-parts: session

protocol correlation, protocol modeling, and cell clustering.

Within this framework, we have presented a fairly simple

mechanism for deriving protocol correlations from raw traf-

fic data that is remarkably effective; we described and imple-

13

mented three protocol models, each revealed to have its own

strengths and weaknesses, and a straightforward clustering

algorithm for unifying protocol descriptions. The resulting

system demonstrates that it is possible to drive a protocol in-

ference system using only the partial information available

in network traces without relying on additional data.

Acknowledgments

We would like to thank Vern Paxson for his helpful input on

substring-based traffic analysis methods, Jim Madden and

David Visick for their help understanding the UCSD net-

work, Sameer Agarwal for insightful discussions on cluster-

ing, and both Michael Vrable and Michelle Panik for feed-

back on earlier versions of this paper. This work was sup-

ported by NSF grant CNS-0433668, Intel Research Cam-

bridge, and the UCSD Center for Networked Systems.

References

[1] Ethereal: A network protocol analyzer.

http://www.ethereal.com.

[2] S. Baset and H. Schulzrinne. An Analysis of the Skype

Peer-to-Peer Internet Telephony Protocol. Technical report,

Columbia University, New York, NY, 2004.

[3] K. Claffy, G. Miller, and K. Thompson. The nature of the best:

Recent measurements from an Internet backbone. In Proc. of

INET ’98, jul, 1998.

[4] T. M. Cover and J. A. Thomas. Elements of Information The-

ory. John Wiley & Sons, 1991.

[5] C. Dewes, A. Wichmann, and A. Feldmann. An Analysis of

Internet Chat Systems. In Proc. of the Second Internet Mea-

surement Workshop (IMW), Nov 2002.

[6] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll,

R. Rockell, T. Seely, and C. Diot. Packet-level Traffic Mea-

surements from the Sprint IP Backbone. IEEE Network,

17(6):6–16, 2003.

[7] D. Gusfield. Algorithms on Strings, Trees and Sequences.

Cambridge University Press, 1997.

[8] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. ACAS: Auto-

mated Construction of Application Signatures. In Proc. of the

ACM SIGCOMM Workshop on Mining Network Data, August

2005.

[9] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. ACAS: Auto-

mated construction of application signatures. In Proceedings

of the 2005 Workshop on Mining Network Data, pages 197–

202, 2005.

[10] IANA. TCP and UDP port numbers. http://www.iana.

org/assignments/port-numbers.

[11] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and

M. Faloutsos. Is P2P dying or just hiding? In IEEE Globe-

com 2004 - Global Internet and Next Generation Networks,

Dallas/Texas, USA, Nov, 2004. IEEE.

[12] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy. Trans-

port Layer Identification of P2P Traffic. In Proc. of the Second

Internet Measurement Workshop (IMW), Nov 2002.

[13] T. Karagiannis, D. Papagiannaki, and M. Faloutsos. BLINC:

Multilevel Traffic Classification in the Dark. In Proceedings

of ACM SIGCOMM, oct 2005.

[14] T. Karagiannis, D. Papagiannaki, and M. Faloutsos. BLINC:

Multilevel traffic classification in the dark. In Proceedings

of the 2005 Conference on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communications, pages

229–240, 2005.

[15] M. Meilă. Comparing clusterings — an axiomatic view. In

Proceedings of the 22nd International Conference on Ma-

chine Learning, 2005.

[16] A. Moore and D. Papagiannaki. Toward the Accurate Identi-

fication of Network Applications. In Proc. of the Passive and

Active Measurement Workshop, mar 2005.

[17] T. Oliver, B. Schmidt, and D. Maskell. Hyper customized

processors for bio-sequence database scanning on fpgas. In

FPGA ’05: Proc. of the 2005 ACM/SIGDA 13th international

symposium on Field-programmable gate arrays, pages 229–

237, New York, NY, USA, 2005. ACM Press.

[18] V. Paxson. Bro: A System for Detecting Network Intruders

in Real-Time. Computer Networks (Amsterdam, Netherlands:

1999), 31(23-24):2435–2463, 1998.

[19] D. Plonka. FlowScan: A Network Traffic Flow Reporting and

Visualization Tool. In Proc. of USENIX LISA, jul, 2000.

[20] A. Sanfeliu and K. Fu. A Distance Measure Between At-

tributed Relational Graphs for Pattern Recognition. IEEE

Transactions on Systems, Man and Cybernetics, SMC-

13(3):353–362, 1981.

[21] S. Sen, O. Spatscheck, and D. Want. Accurate, Scalable In-

network Identification of P2P Traffic Using Application Sig-

natures. In Proc. of the 13th International World Wide Web

Conference, may 2004.

[22] T. F. Smith and M. S. Waterman. Identification of Common

Molecular Subsequences. Journal of Molecular Biology, 147,

1981. http://gel.ym.edu.tw/∼chc/AB papers/

03.pdf.

[23] G. Voss, A. Schröder, W. Müller-Wittig, and B. Schmidt. Us-

ing Graphics Hardware to Accelerate Biological Sequence

Analysis. In Proc. of IEEE Tencon, Melbourne, Australia,

2005.

[24] S. Zander, T. Nguyen, and G. Armitage. Self-learning IP Traf-

fic Classification based on Statistical Flow Characteristics. In

Proc. of the 6th Passive and Active Network Measurement

Workshop, March 2005.

14

