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TRANSIENT BEHAVIOR OF THE
BERKELEY BUBBLE CHAMBER MOTOR GENERATOR MAGNET SYSTEM
' DURING EMERGENCY PROCEDURE

‘Alper Garren and Warren Heckrotte

Radiation Laboratory
University of California
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June 19, 1958

ABSTRACT

The transient behavior of the electrical system for the Berkeley
bubble-chamber magnets under certain emergency procedures is examined
theoretically. Conditions for nonoscillating behavior of the magnet current
are derived. ‘



-4- ' UCRL-8333

TRANSIENT BEHAVIOR OF THE
BERKELEY BUBBLE CHAMBER MOTOR GENERATOR MAGNET SYSTEM
DURING EMERGENCY PROCEDURE:

- Alper Garren and Warren Heckrotte

" Radiation Laboratory
University of California
Berkeley, California

June 195, 1958

1. Introduction

The bubble-chamber magnets are powered by one or more motor
generator sets. In case of certain kinds of malfunctioning the system will
automatically turn off the power in the motor and the power that energlzes
. 'the generator field and short-circuit the generator field windings, causing
the field to decay exponentially. In this note we consider the magnet current
as a function of time after the power turnoff. The resulting behavior will
also be a function of the time constants of the generator field and the magnet
circuit, of the mechanical energy stored initially in the flywheel, and of the
electrical energy stored initially in the field of the magnet. Curves of the
_ current vs time are given for two cases of immediate interest, and for
another case to illustrate a different type of possible behavior. - Finally a
.relationship between the parameters of the system is der1ved that determines
whether the current will reverse itself.

2. Statement of Pfoblerri

'The system is shown schematically in Fig. 1. For times after the
power shutoff (at t = 0) the parameters are

tg = L. /Rg"—‘ time constant of generator field
t =L_/R_ =time constant of magnet with leads.
m- m’ " m :
¢ = flux through generator armature = ¢0 exp (—t/tg)_
7’” = moment of inertia of flywheel
V = voltage of generator -
w = angular velocity of armature and flywheel
. Y
T,g = torque on flywheel from generator

Tm = torque on flywheel from motor

=t/t
T /g
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Fig. 1. Schematic diagram of the circuit for the bubble chamber

rriotoz_' generator magnet system.
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: —— g.- 1
) L 2, 2 >
7= tg/tm’ n= J%mwo /% LmIO ? o
’ K = O'/T]

- We ignore mechanical friction. The current through the generator field
circuit indicated at the left of Fig. 1 is supposed to decay according to

,dI . 3 = = ' -
L dtg St Rglgll‘O,, | Ig Igojexp ( t/tg),
where the subscript zero denotes the conditions at t = 0. This means that we
have assumed that the mutual inductance between the armature and the field
circuit is zero on the average, and that the fluctuations in flux are short
compared with t,. The flux through the armature is assumed proport1ona1
to Ig’ so that we”have

o megexp (t/t) . o (1)

The voltage of the generator equals the number of 11nes of flux cut by the
armature co1ls per sec,

. V= wé,
and this voltage'drives the current I thlrough the magnet:
| S dI. : S

The torque from the generator on the flywheel tends to slow down the
latter, and is given by, Tg = -Ié. 7 (3)

'Th_e rate of change of angular momentum of the flywhe.el is givén by
’m i"i:T.+T' ;o T =0for T =2 0. '(4)
g m m ‘ o

3. Initial Conditions

S Before the power that drives the motor and the generator field is turned
off, the system is in a steady state, so that we have I =w =0 for t < 0.
From Eqgs. (2) and (4) we get

: RmIO
“0% " Rmlor %= = - o
| - | , R sy
0=.Tg +-Tm; Tfn:~Tg'= '10 ¢0.

At t =0, Tm'-‘; 0 so that we have

. _ - 2 '
Mo, = Tgo = “Io®o = “Rinlg [wg
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_ . s W 2,4 N
@ = @, I=Ip  I5=0, &g =-R 1°/W]a (6)

4, Equation of Motion of the System for t 20
]

From Egs. (1), (3), "and (4) we have

W\w = _..Iqso exp (-t/tg),

I = - 0] /dg) exp (t/tg) .. (7)
Differentiating this latter eqﬁatioﬁ,”"we obtain
1=- X G+ 2 ) exp (t/tg), )
¢g tg .
and substituting Eqs. (1), (7), and (8) in Eq. (2), we get
Gt |— +=] w0+ — ,(exp (—Zt/tg))w = 0. (9)
R | |

- This is the eQuation of motion for w. When it is solved, the current may be
obtained from Eq. (7). '

It is convenient to put the equations in dimensionless form. . With the
help of Eq. (5) and ulitizing our definitions given in Section (2), Eq. (9)
becomes : : ' .

a%e

t(1+o) S+ &% exp(-2m)Q = 0, (91
2 : dr _ '
dr : , . .
where Q = w/wo. " The current is given by
- _ 1 _ aQ\ /[ aq) ‘,

and the initial conditions are .

| S\ ‘ 2 4
=0: =1, (& - & ool K 7Y
T=0: @p=1, <d7>01.__ 7 = - 5 | (6')
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-We must solve Eq. (9') with initial conditions (6'), and then use (7') to
obtain the current. : ‘

5. Solution of Equation of Motion

It is convenient to replace.thé independent variable T by s, where

s = exp [_-(l +o)r] ., exp (-7) =s /(1 + ‘0’), and
| “ | | | (10)
, 2 : : 2
d _ d a=  _ 2,2 d d
?_— —'(1+U)SE’ _2"‘ (1+0) (S 2+SH§),
: : dr ds :
by which the equation of motion (9')is transformed to
) -’ . . Z 1 . )
' &n K \ 20/(1+06), _
> + T5o] § Q = 0.
' ds : /
This is a Bessel equation, the solution of which isl'
| Q=Ns 2z ' (K él/(-l to)) = - e);p -5(1 +0_).’}">-' Z ‘ (k.e_'r)v
' s(1+a) 1" 7 - 2 S T3 to) ,
‘ ' (11) .

where Zv(x) = aJy(x) + B N (x), and J, N are Bessel functions of the first
and second kind respective‘fy, and a, B constants to be determined by the
initial conditions. If we differentiate Eq. (11) with respect to 7, and use
the formula : - ‘

. dZv(x)

- .V ;
dx ' x Zv(x) tZ

(X) b

v-1

we obtain

dQ ' 1 . =T . - T ’
— = -k .exp{- (l+o) 7 e Z (ke ") . (12)
dr , ' { 2 } z(o-1)
We now solve for a and B by using the initial conditions:
QO =1 :-af]-p'i‘_l (K)+ﬁNp+l (K)
1 fa) | o« | ST .
i Kd_T‘)o.‘ v = T KRN, (), e
where o -1 , : ‘
p= ‘2-" , c=2p+t1. ' (14)
1

E. Jahoke and F.Emde, Tables of Functions (Dover, New York, 1945),
p. 147 o ' ' :
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The determinant of these equations is2

Jp+l (x) N (x)

and we obtain

‘ . (15)
-7 . K
Pz - (J_p Wt Ten "")
' In’sertinbg these in Eqgs. (llk) and (12), we obtain from Eqs. (7!) and_(6'),
Q ('r) = %(_) ‘_',12‘-_ k exp [_(p+1)TJ{E\Ip(-K) ——ZT:-;—I Np+l(K)] Jp+l(Ke"r)
. ) v v .

- [Jp(K) - m Jp+1 ()] Np+l (KQ )} s

$r) = - = §@erD) exp [-(p+1) 7] {[Npm e N (] 3 (ke )
l’ ‘. ’ K . -7 ‘ . .
- [Jp(K) - ZpAl Jp+l ()] Np (xe )} . | o (16)

Equations (16) express the time dependence of the angular velocity and
current after power shutoff. Beside the dimensionless time .7 = t/t_, the
. formulas involve p and k, which in turn are determined by the phys%cally
more meaningful parameters o and n. '

6. Condition for Positive Current

It may be useful to know whether the magnet current will change sign
while it is decaying, and if so, how many times. The answer is given by the
following theorem: '

Theorem 1

The current will change sign n times if and only if there are just n

. s — p 3 Lk <
positive, nonzero roots of Fp(x) = 0 that are less than «., i.e. fp, oK fp, n+1’

%ibid., p. 144.



-10- , ' UCRL-8333

where f 0 is the nth positive root of ‘Fp(x) =0 and

| [P, 6 = [0 -2y T 6], 20
F () = o Vo
Frob) =T b+ o T oy ], b <pgo. s

Hence the current will not change sign at all provided we ‘have « <f )
where f , 1s the smallest positive root of F (x) 0. Since we have k -0/11
the conc?ftlon may also be written :

T <t or n> O
n pi l ) fp, 1
‘We have evaluated the f numerically for c.=0,%, 1, 2, 3, 4, 5,
(p— -3, i, , ;, , 3/ ]2 The results are shOWn in Table I.
Table I
Minimum value of n = W /W _ to assure positive current, as
mech’ elec :
a function of o =7 /T
gh'm
7 P 51 min = 9/ T min
0 -4 0 e 0
5 -1 1.420. — - -0:352 . 0.124
1 0 . 2.405 0.796 0.634
2 1 2.028 | 0.986 0.972
3 1 3832 0 1.097 . 1.203
4 3/2 3.407 “1.174 1.378
5 2 5.136 o 1.233 1.520
w0 w w0 2.000 . 4.000
A plot of T];nin' vs ‘o is shown in F1g 2. If nZ W /Wel is above
the curve, for a given o =t /t , the current will no{ncehange s1 gn
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current positive
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o case (3)

\;‘IT:smullesf zero of Fp(X)

1g.22

-Condition for positive c%rrent. 2
. Emech/Eelec : M/ Lnl™

o = tg/tm' = LgRm/RgL
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7. Behavior of the ”Fly\}vheel

Referring to Eq. (16), we see that the situation for w is very similar to
that for I. ~ The theorem that applies to w is the following:

The,orem”II :

The angular ve10c1ty will change. s1gn n tlmes if and or11y if there are
just n positive, nonzero roots of the equation F} (x) - 0 that are less than

K.

Note that this cond1t1on is 1dent_tca1 to that for the current for p 20.
For - 3 £ p<.0, however, the roots fp p of F (x) 0 are less than.or equal:
to the roots fp, n of F (x) = 0, so:thatin th1s case for a given por o a
1arger value of 7Mis requlred to insure nonreversal of w than is needed to
insure nonreversal of current (s1nce we have K = O'/n)

The condition for completely stopp1ng the flywheel is g1ven by Theorem I1II,
wh1ch follows from Theorem 11,

Theorem JIT _ ‘ - ‘ .
' The angular veloc1ty goes to zero as T~ o if and only if K.ecjuals one
of the roots of F (x) ' .

The proofs of Theorems I and III are obv1ous once that of Theorem 1
is understood. s ' :

It is also worth notivng, from Eq (7), that since I~ w, the zeroes of I
occur at the maxima and miinima of w. : '

The flywheel is critically: dampéd if (a) it never oscillates and (b) it

goes to zero as t = «o.. This occurs only if k equals the first root of

(X)

8. Asymiptotic Behavior

For very large times the current approaches zero and the angular
velocity approaches some constant value (possibly zero). Considering the
angular velocity, we have ' -
-(p+ ).

3 NS : 1
Tor1¥) = yP7 ~exp [-(pt1)r], Npw1 T ~exp [(p+1)7]

when y. = Ke',*'r_.,'-* 0; ;so t‘_hat,‘er’. also-have: . .

NE

W —»‘A-'éx'p[ 2(p+l)'r] +‘i3 = :A éxpf'[-r'(g+1")’t/t_ ] +B =

= ,A exp {-t‘/y[t:'gtr:rfl/_'(tg +,"tm)] ~ t B
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Thus the angular velocity approaches its constant value with time constant
t, = to/[2etD)] =t .t /le, +e )

The current, on the other hand, behaves differently according to o Z 1
p 2 0. For o >1, p>0 ‘then we have

J (ke T)=> e PT, N '(Ke_T) > ePT 1T = e_t/tg )

p P \ o

so that the time constant.is the same as that of the generator field, . 7_. But
for0'<1 p <0 ‘then . 8

J- (K'e—.'T) v_)v e"p'Tyl N (Ke-'T) — e"p'r,> I __)e-(Zp‘}'l)T

p , p. ‘ o "

=e 0T = exp (-t/tm)

so the" time constant is the same as that of the magnet circuit, t_. To sum
up, for very large times the angular velocity and the current approach their
" asymptotic values with time constants

t = tgtm/(tg +t.),

and

o
f

t or tfn , whichever is larger.

9. Appiications

The time dependence after power shutoff of the current and angular
velocity has been computed from Eqs. (16) for the following three cases:

Case I. 15-inch bubble chamber magnet powered by #4 motor generator set

t_ = 2.2 sec )

g S Both assumed eqﬁal to 2 sec for the calculation:
t_ =1.7 sec | ’ ' ' :
m J
o = tg/tm = 1

' mech oo -1

mn :'—_ = = 5, p= > = 0’

: elec

PR
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The results are plotted in Fi'g, 3. The angular velocity is hardly reduced
at all, therefore the simplified expression that is obtained by integrating -
Eq. (2) with w = wg,

t ot

Ii = : n'it exp v(-t/tn'[;) - ';E—%—— exp (-t/tg) . (ZO.)

0 m g - m'ig

is fully justified, and in fact for this case the curve obtained from Eq. (20)
'is about-‘identical with that obtained from (16). Also the lack of oscillation
can be predicted from Fig., 2 -- the point ¢ =1, 1 =5 is far above the
critical curve. Unfortunately neither curve fits the data too well after
about 4 seconds. : . : '

Case II. 72- 1nch bubble chamber powered by two 1.5- megawatt motor gen-
erator sets 8B and #9 .

=
o
fl
o
I
[}
Bl

t =3sec. . o=t [t =
g g m

t = 5.,8_s‘e'c

M = 2 X 1.054 X 10° 1b-ft° = 8.91 X 10° * kg-meter”

n

w 514 rpm = 53.8 radiéns/sec

0 ;
_ 1~ ’ 2 _ i ' . 6 N .
mech = EWO = 12.8 >< 107 joules.

R_=012Q L _=R_t =012X 58=0.69 henry.

IO = 5,000 amp;
' 2

=1 Lmlo ‘= 8,?.X‘106vjou1es,b

elec

nz = 12. 8/8 7 =1.47; m=1.213; «=o0/%=0.4122.

Again we are well above the critical curve of Fig. 2, so that the
current should stay positive, as it does (see Fig. 4). Although there is
now a significant décréase in angular velocity, it is not enough to
significantly affect the magnet current, and again the current calculated
from Eq. (i6}is almost the same as that calculated from (20).

Caseé II. Hypoﬂ-ie.t-i‘c%al - Example.. - |

We chose the hypothetical example ¢ = 1, T]Z = 0.25 in order to illustrate
a case in which the current does change sign. From Fig. 2'we would
predict a sign change for this choice of parameters, and in Fig. 5 we see
that it does. Note that the zero of the current occurs at the same time as
the angular velocity reaches 1ts m1n1mum This'is because we have I~y
(See Eq:(7)). E o
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o
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» o
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.

1(t)/ 1(0) or w (1)/w(0)

[=)
no
1

(o]
(o]

, 5.0 8.0 0.0
T=1t/1g

’ MU-15496

-Fig. 3. Case I. Curves representing predicted current (solid line)
and angular velocity (broken line) versus time for ¢ =1, m = 5.
This corresponds approximately to the values for the #4 motor
generator set (15-inch bubble chamber). "'The X points indicate
measured values of the current. tg = 2 sec, '
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I(7)/1(0) orw (1)/w(0) :,

'0 N T T T T
\
\
N
A
0.81 e 7
0.6+ .
0.4| .
0.2 1
L i 1 . I . —
0 20 40 6.0 8.0 - - 10.0
T=t/tg

MU-15497

Fig. 4. Case II. Curves representing predicted current (solid line) and
angular velocity (broken line) versus time for ¢ = 0.5, "= 1.213.
This corresponds approximately to the values for the #8 and #9
motor generator sets (72-inch bubble chamber). tg = 3 sec.
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"I{T)/ 1(0) or W(T)/ w(o)

s e v e —— e ———————

MU-i5498

Fig. 5. Case III. Curves representing predicted current (solid
line) and angular velocity (broken line) versus time for o = 1,
'm = 0.5. Hypothetical case illustrating oscillatory behavior(
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As for the discrepancy mentioned in Case (1) between this theory and
the measured data, possibly this can be attributed to a mutual inductance
between the generator circuit and the magnet circuit. In this case the

.equat1on for the former would be
' dI

g - m L
Lg dt - Rglg S\dt ¢
and smce ﬂ is negatwe th1s term tends to make dI /dt 1ess negatwe

dt
50 that I (and ¢ ) decays less rapidly. This in turn 1ncreases the left
side of F_gq. (2), syhich makes dI/dt less negative, so that I decays more
slowly. : ' : _ ‘ ‘
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APPENDIX

Proof of . Theorem on Changes of Slgn of the Current

We will now prove the theorern stated above. Referring to Eq (16) for
‘the current, we are led to consider the function

by Goy) = N6 — 525 N ol e O Wb T b NG00

(19)

: _ - , | o
If we put X = kandy = , then qJ m exp [(p+1)r] I('r)/I('TO),

so that the sign of { is the same as that of I. In a given case x = k is fixeg,
and y = ke-T Var1es between x = « and zero. We need to know how many
times, if any, (=, y) changes sign as the system point {x, y)moves from

( x, k) to (x, 0) algng the x = « line, and this requires that we investigate the
qualitative behavior of ¢_(x,y) in that sector of the x, y plane bonded by the
y=0 axis and the x = y lidle, and lying in the positive quandrant (see Fig. 6).

" The first feature to notice is that: on the 45 line ¢ _ has a constant,
positive value: P ' '

| - o ox 2 2
bpbox) = 3y Ty ) NG - Ny G) 30 = 55y - o2 = gy
Now we want to find the boundaries between the regions of positive and
negative y_. These boundaries are curves on which we have Lp =0,
Obviously they cannot cross the line x =y, where we have y /(2p+l)

However, we can show that they do cross the y = 0 axis. TS show thls we’
will have to cons1der the cases p 20 and —% S p <0 separately..

p =0.

In this case, for y = 0, Jp (y) becomes finite or zero while N y)
becomes negatively infinit He h : P
gatively infinite. Hence we have

bp . 0) = - 1I p) - 32T Jpr1 )] NL(0) =% «
according to
()< o

= _x
Fp(x) - [Jp(x) T 2p+l Jp+1

Clearly the ¢_(x,y) = 0 curves must cross the x axis where {_(x, 0)
changes from % to -, that is, where we have Fp(x) = 0, P
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" Fig. 6 - Map of the §_(x,y) functmn For a particular case the

system point mov%s down the line from A to B as 7 goes from
Oto . The +and - signs indicate the regions where L}J
p051t1ve and negatlve '
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_l<p<o
5 S .
We use the formulas

Np(y) sin pm = Jp.(y") cos pm - J_p-(y), and for

-pt+2
P ).

y =~ 0: Jp(y) = g%%ﬁ +0 (y P2y . g (y) _‘%}%’T)_E)! +0.(y
Since p<o0, Jp(f) —> o0 | J_p(’y’) -0 asy—> 0,

so that we haver Np (y) == Jp(y) cotpm—> - o asy - O s
and

4, y) g;_,:"{[.Né'(X) - T Mo 00 - 3,60 - oy p+1<x)] cot'pn} 7L

= - csc (pT\')l[J-p(X) +2—};+—I J_p_l(x)] Jp(_Y) = - csc (pw) Fp(x) Jp(y)

Hence we have Lp (x,0) = £ » according to F_ (x) 2 0, and again the ¢

S curves cross the x ax1s at the zeroes of F (x)

Next we will show that the y_ = 0 curves tend to the right as y increases,
that is, they have positive slope:p To show this we will first show

(1) The LlJ = 0 curves are never horizontal (except poésibly_-at infinity).
Proo?f SupposeaLL = 0 curve has zero slope at some point (x, y).
Then at this point .
9
= p =
LtJp - O0X 0
By using
dZv v _ v .
dx = T x Zv+Zv-l—;{_ Zv—Zv+1’ (a)
we find V '

—

d . X _. x \, ptl - x :
oo [Z2p0) - oot Zpy ) = '(;*z—pﬁ>zp t o 2y st Zpn)

therefore
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i <1+ ' )[N(x)J (y) - J_(x) N ()'] + By =0
5% Zp1 TR AN D E I

X

Now, 'since we have Lpp 0 and( + -Z—F-)—_FT) # 0, it follows that

[NJ6) 3 ) - T Nl =0 ®)
Subtracting this from ¢p = 0, with ¢p given by Eq. (19), we get. | ' [
RCEMUEE NG N SUECEE TS

Now regardmg (b) and (r) as’ equatlons for J (y) and N (y) we have either
J (y) = (y) 0, which is impossible (except at y = oO),v or the determmant
‘ [-Np(x) J (x) +7J (x) Np'+1 (x)] equals zero, which is again 1mpossub1e

except for X = o0, smce the determinant is -2/mwx, Thus the supposition that
a Y_ = 0 curve is horizontal in the finite domaln leads to a contradiction, and
is t}?erefore false. ‘ :

(2) The kJ,J = 0 curves are never vertical (except po._ssibly at infinity).
Proof Suppose a v = 0 curve is vertical at some point (x, y).
Then at this point we have ‘
‘ 9 ¢ v
o= = 0, and

P _ X
By T Ntz Npn ( Tt - Ipu ‘V?>
| o

pot T ZpeT To1

J{E N (Y) p+1(¥)) =0

' Subtractmg this from ¢ =0, we get ' ‘ ‘ ¢

(=]

[N, () - 7 ) - 3 —pi‘-—- (] N, ) =

prl p+l(x)] p+1() [ ¥ p+1
‘ (d)

Regarding’ E (19) with Lp = 0 and (d) taken together as equations for
g g q. g

the quantities in square brackets we have either that the determinant of
the equations is zero ‘ ’ '

TN L)+ N (Y) o1 ) =0,

which is impossible (except at y = =), since this is 2/1ry, or that the
quantities in square brackets‘are zero, :
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N (x) - =— N x)=J (x)-=5——= J . (x}=0,

P 2ptl ptl P 2pt+l p+l
N (x) | T ) ) ,

“which is impossible (except at x = =), since the last expression is 2/mx.
Again we have a contradiction--the y_ = 0 curves cannot be vertical in the
finite domain. p

Now we have proven that the q)p = 0 curves cross the y = 0 axis at the

roots of F (x) = 0, that they never cross the line x = vy, ‘and that they are

Héver hor1z ontal or vertical in the finite domain. Consequently they must
tead to the right as y increases fromy = 0, as shown in Fig. 6. As the
system point moves down a vertical line from («x, k) to (x, 0), the current
will change sign whenever a Lpp = 0 curve is crossed. It is clear from

Fig. 6 that the number of such crossings is equal to the number of roots of
F (x) 0 1ess than k, as stated in the theorem.
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