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TRANSIENT BEHAVIOR OF THE 
BERKELEY BUBBLE CHAMBER MOTOR GENERATOR MAGNET SYSTEM 

DURING EMERGENCY PROCEDURE 

·Alper Garren and Warren Heckrotte 

Radiation Laboratory 
University of California 

Berkeley, California 

June 19, 1958 

ABSTRACT 

The transient behavior of the electriGal system for the Berkeley 
bubble-chamber magnets under certain emergency procedures is examined 
theoretically. Conditions for nonoscillating behavior of the magnet current 
are derived. 
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TRANSIENT BEHAVIOR OF THE 
BERKELEY BUBBLE CHAMBER MOTOR GENERATOR MAGNET SYSTEM 

DURING EMERGENCY PROCEDURE 

Alper Garren and Warren Heckrotte 

Radiation Laboratory 
University of California 

Berkeley, California 

June 195, 1958 

l. Introduction 

The bubble-chamber magnets are powered by one or more motor 
generator sets. In case of certain kinds of malfunctioning the system will 
automatically turn off the power in the motor and the power that energizes 
the generator field and short-circuit the generator field windings, causing 
the field to decay exponentially. In this note we consider the magnet current 
as a function of time after the power turnoff. The resulting behavior will 
also be a function of the time constants of the generator field and the magnet 
circuit, of the mechanical energy stored initially in the flywheel, and of the 
electrical energy stored initially in the field of the magnet. Curves of the 
current v's time are given for two cases of immediate interest, and for 
another case to illustrate a different type of possible behavior. Finally a 
relationship between the parameters of the system is derived that determines 
whether the current will. reverse itself.· 

2. Statement of Problem 

The system is shown schematically in Fig. l. For times after the 
power shutoff (at t = 0) the parameters are 

t = L /R · = time·constant of generator field g g g . 

t = L /R = time constant of magnet with leads 
m· m m 

<j> =flux through generator armature = <Po exp (-t/tg) 

/11 = moment of inertia of flywheel 

V = voltage of generator 

w ;; angular velocity of armature and flywheel 
1. 

T. = torque on flywheel from generator 
g ' 

T = torque on flywheel from motor 
m 

T = t/t g 



power 
off 
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Rm magnet 
----JV'IIIol'll----.. / 

I~ Lm 

flywheel 

MU-15494 

Fig. 1. Schematic diagram of the circuit for the bubble chamber 
motor generator magnet system. 



., 

-6- UCRL-8333 

(J = t /t ' g m 1) = 
p = 

(J-- 1 
2 

We ignore mechanical friction. The current through the generator field 
circuit indicated at the left of Fig. 1 is supposed to decay according to 

L ..d.lg + R I = 0, 
g --err-'. g g 

I = I 0 exp (-t/t ) , g g g 

where the subscript zero denotes the conditions at t = 0. This mean.s that we 
have assumed that the mutual inductance between the armature and the field 
circuit is zero on the average, and that the fluctuations in flux are short 
compared with \v The flux through the armature is assumed proportional 
to I , so that we·~have 

g ' 

. <j> = <Po exp (-t/t ~ . 
g ' 

(l) 

The voltage of the generator equals the number of lines of fluX: cut by the 
armature coils per sec,· 

V;:;. w<j>, 

and this voltage drives the current I through the m_agnet: 

. di 
w<j> = Lm dt + R I 

m 
(2} 

The torque from the generator on the flywheel tends to slow down the 
latter, and is given by T g = -I<j>. (3) 

The rate of change of angular momentum of the flywheel 1s given by 

dw 
dt = T + T g m T = 0 for T ~ 0 . 

m 

3. Initial Conditions 

(4) 

Before the power that drives the motor and the g~ne::t;:ator field is turned 
off, the system is in a steady state, so that we have I = w = 0 for t < 0. 
Fr;om Eqs. (2) and (4) we get 

wo <Po = R I 
mO <Po 

0 = T +T T 
g m 

At t = 0, T = 0 so that we have 
m 

m 

R 
m

1
0 

= 
U) 

0 (5) 

= -T. = I o <Po g 
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wo = 

Thus the initial conditions are 

4. Equation of Motion of the System for t ;:::.o 
I 

From Eqs. (1), (3), and (4) we have 

'fY\.w =- l<l>o exp (-t/tg)' 

I -- \rl\/<l>o) exp (t/tg)w 

Differentiating this latter equation, we obtain 

• 
I = "'" :b1_ (. .. w 

<l>o w + tg 
exp (t/tg) , 

and substituting Eq s. (1}, (7), and (8) in Eq. (2), we get 

+ :m) W+ ~:~ (exp (-2t/tg~w = 0 . .. . ( 1 w + -t-
g 

UCRL-8333 

; (6) 

(7) 

(8) 

(9) 

This is the equation of motion for w. When it is solved, the current may be 
obtained from Eq. (7). 

It is convenient to put the equations in dimensionless form. With the 
help of Eq. (5) and ulitizing our definitions given in Section (2), Eq. (9) 
becomes 

+ (l + cr) 
2 

~< exp {-2'T)n = o, 

where n = w/w
0

. · The current is given by 

I 
_j:_ = r = exp (7) 

0 

and the initial conditions are 

(J 
- 2 

T] 

2 
K -

(J 

(9') 
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. We must solve Eq. (9 1 ) with initial conditions (6 i ), and theri. use (7 1 ) to 
obtain the current. 

5. Solution of Equation of Motion 

It is convenient to replace the independent variable T by s, where 

l/(1 + cr) 
s = exp [- ( l + u h] , exp (- T) = s , and 

d 
dT - -(l+u)s~ 

ds ' 

by which the equation of motion 9 1 ) is transformed to 

~2 s-2u/(l + u) Q = 0. 
+~ 

This is a Bessel equation, the soluti~n of which is 
1 

_ .,- . ( 1/(l+u)) 
n - '\J s z i( 1 + u > K s . = exp {-± (I + u }7·} Z t (I +a ) ( < e -T ) 

( ll) 

where Z (x) = aJ v(x) + [3 N (x), and J , N are Bessel functions of the first 
and seco'hd kind respectively, and a, [3" con~tants to be determined by the 
initial conditions. if we differentiate Eq. (ll) with respect to T, and use 
the formula 

dZ (x) 
v 

dx 
v 

- -x Z)x)+Zv_ 1 (x), 

we obtain 

( 12) 

We now solve for a and [3 by using the initial conditions: 

0 0 = 1 =·a J +1 ( k) t f3N +
1
. (K) 

. p. p 

1 (~l = 
K -

K (T 
{13) 

where 
q .,. 1 

p =-2- (T = 2p + 1 . (14) 

1 E. Jahnke and F.Emde, Tables of Functions (Dover, New York, 1945); 
p. 147 



-9- UCRL-8333 

The determinant of these equations is
2 

a rid we obtain 

J (K) 
p 

1T 
a= 2 

p--1T - 2 

K ( Np (K) 

K (J p (K) 

2 
= 

K 

Np+l (K~ -
2p+l 

(K )) 
K 

J - 2p+1 p+l 

Inserting these in Eqs. (11)and (12), we obtain from Eqs. (7') and (6 1 ), 

n (r) ~0 = .~ K exp [ -(p+l) r]{rp(K) - 2;+1 Np+l (K l] Jp+l (Ke -T) 

( 15) 

- [Jp( <)- 2;+1 Jp+l (<)] Np+l (<e- T)} 

.'\'_('1')·- i
0 

=; (2p+l)exp(-(p+l)r] {[NP(<)- 2;+l Np+I(<)]JP(<e-r) 

- [J (I<)- _K- Jp+
1 

(K)] Np (Ke- 7
)). (16) 

p . 2p+1 

Equations ( 16) express the time dependence of the angular velocity and 
current after power shutoff. Beside the dimensionless time i = t/t2:, the 

. formulas involve p and K, which in turn are determined by the phys'1cally 
more meaningful parameters cr and 11· 

6. Condition for Positive Current 

It may be useful to know whether the magnet current'will change sign 
while it is decaying, and if so, how many times. The answer is given by the'. 
following theorem: 

Theorem I 

The current will change sign n times if and only if there are just n 
positive, nonzero rootp ofF (x) = 0 that are les's than K., i.e. f < K <f +

1
, p p,n p,n 

2 "b"d 1 1 . ' p. 144. 
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f is the nth positive root of F (x} = 0 and p,n - p 

F (x) = 
p 

+ [ X F (x) = J (x) - -·-
p p 2p+ 1 

F- (x ) = [ J (x) + x 
p -p 2p+1 

J p+ 1 (x)] p _?. 0 

\ 
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1 .s:: p·. ~ 0 -2 ( 18) 

Hence the current. will not change sign at all provided we have K < f · 
1

, . 
where f l' is the smallest positive root of F (x)=O. Since we havepk = u IT] 

the condh10n may also be written p 

(]" (]" 
< f 1 or T] > -f-

T] p, 1 p, 

We have evaluated the f 1 numerically for u = 0, i, · 1, 2, 3,. 4, 5, 
(P = -1, -{-, 0, i, 1, 3/f,' 2 ). The results are shown in Table I. 

Table J 
Minimum value of .·1, = W . hiW 

1 
· to assure positive current, as . . j mec e ec a functlon of u = T T . ·. g· m 

--------··------ .. ---·-·---·-·-------········•" ····-····· .. _,_ ...................... -------·-----------·-·-·---····-----·-

f TJ - ulf 
2 

(]" p T] p, 1 min- · p, 1 m1n 

0 1 0 -00 0 - 2 

1 1 1.420 -o~-3-52 0.12'4. 2 -4 

1 0 2A05 0. 796 0.634 

2 1 2.028 0.986 0.972 ? 

3 ' 1 3.832 1.097 1.203 

4 312 3A07 1.174 1.378 

5 2 5.136 1.233 l. 520 

00 00 00 2.000 4.000 
---·~·· .... -· .............. 

2 
shown in Fig. 2. If TJ

2 ~ W h/ W 
1 

.is above A plot of ra· · vs · u is 
the cur=-ve, o~na given u I · . F;~ e ec = t t , the current w11l no c ange s1gn. g m 
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7. Behavior of the Flywheel 

Referring to Eq. (16 ), we see that the situation for w is very similar to 
that for I. The theorem that applies tow is the following: 

The.orem:·II 

The angular velocity will change sign n times if and only if there are 
just n positive~ nonzero roots of the equation F~(x) = 0 that are less than 
K • 

Note that this condition is identicp.l to that for the current for p ~ 0. 
For - ~ ~ p < 0, · however, the roots fp,, n of Ft'(x) :: 0 are less than or equal · 
to the roots fiJ, n of Fi) (x) = 0, so. that in this case for a given p or u a 
larger value of n is required to insur~ norireversal of w than is needed to 
insure nonreversa.i of current (since we have K = u/TJ). 

The condition for completely stopping the flywheel is given by Theunem III, 
which follows from 'Theorem II. 

TheoremHII 

The angular velocity goes to zero. as T ~ oo if and only if K equals one . . + . 
of the roots of Fp (x) = 0. 

The proofs of Theorems II atid III are obvious, once that of Theorem I 
is understood. 

It is also worth noting, from Eq. (7), that since I~ w, the zeroes of I 
occur at the maxima and minima of w. 

The flywheel is critically damped if ·(a) it never oscillates and (bf it 
goes to zero as t ~ coo. This occurs only if K equals the first root of 
F+ (x) = 0. p . 

8 .. Asymptotic Behavior 

For very large times the current approaches zero and the angular 
velpcity approache9 some constant value (possibly zero). Considering the 
angular velocity, we have 

. ( + 1) N ~ y- P ~ exp [ (p+ 1 )'T] ·. 
p+l 

·.,-T. . 
when y. = Ke ~ 0; so that we also have· 

w ~·A exp[.,.Z(p+1)T] + B =A exp [-(u+l)t/t] + B ·-

= A exp {-t/[t t /(t + ·t )], + B . 
. '·g m. g . m r 
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Thus the angular velocity approaches its constant value with time constant 

· .. ' .. ·. t =t /[2(p+l)] =t t /(t +t: )o 
w g g m g .m •· .. 

The current, on the other hand, behaves differently according to CJ ~ l, 
p z 0. For CJ > l, p > 0 then we have 

Np(Ke-T)-+- eP'r, I_... e-T = e-t/tg 
I 

so ·that the time constant is the same as that of the generator field, 
for··a- < 1, p < 0 ·then 

-(J'r I = e · == exp (- t tm) 

T . g But 

so the·· time constant is the same as that of the magnet circuit, t . To sum 
up, for very la.rge times the angular velocity and the current app~oach their 
asymptotic values -with time constants 

t =tt /(t +t ), 
w g m g m 

and 
t = t or t I g m 

whichever is larger. 

' 
9. Applications 

The .time dependence after power shutoff of the current and angular 
velocity has been computed from Eqs. (16) for the following three cases: 

Case I. 15-inch bubble chamber magnet powered by #4 motor generator set 

t = 2.2 sec ~ 
g > Both assumed equal to 2 sec for the calculation: 

tm = 1. 7 sec J 

(J = t /t ~ l 
g m w 1~ 2 

rnech 2 wo 
5; 

·(J - 1 ·o, T] = = = p = = 
-- w 

elec 1 L 1
0 

2 2 
2 

(J 1 
K -- = 5 T] 

'T = t/t = t /2. g sec 
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The results are plotted in Fig. 3. The angular velocity is hardly reduced 
at all, therefore the simplified expression that is obtained by integrating· 
Eq. (2) with w = wo, . 

I 

Io 

t 
m 

- .,-t---t~ 

m g 
exp (-t/t ) m 

t 
g 

exp (-t/tg) , (20) 

1s fully justified, ·and in fact for this case the curve obtained from Eq. (20) 
is about 'identical with that obtained from (16 ). Also the lack of O$cillation 
can be predicted from Fig. 2 -- the point CJ ~~ 1, 11 = 5 is far above the 
critical curve. Unfortunately neither curve fits the data too well after 
about 4 seconds. 

Case IL '72-inch bubble chamber powered by two L 5-megawatt motor gen
erator sets, f/8 and /19. 

tg = 3 sec 

t = 5. 8 sec m 

(J = t /t 
g m p = (J - 1 

2 

fY'l = 2 X L054 X 10
5 

lb-ft
2 

;,;: 8.91 X 10
3 

•·-· kg-meter
2 

w0 = 514rpm = 53,8 radians/sec 

W = l.-wlw 
2

::: 12.8 X 106 J"oules. mech 2'''-:: 0 

R =" 0.12 n, L = R t = 0.12 X 5.8 -= 0.696 henry. m m mm 

10 = 5, 000 amp: 

w - 1 2 6 elec - 2 Lm!O . = 8, 7 X 10 joules. 

11
2 = 12.8/8.7 = L47; 11 = L213; K = (J/ 11 =;. 0.4122. 

Again we are well above the critical curve of Fig. 2, so that the 
current should stay positive, _as it does (see Fig. 4). Although there is 
now a significant decre~se in angular velocity, it is not enough to 
significantly affect the magnet current, and again the current calculated 
from Eq. (16) is almo.st the- same as that calculated from (20). 

Case IlL Hypo1hetitial " Example.· 

We chose the hypothetical example u = 1, 11
2 = 0.25 ih order to illustrate 

a case in which the current does change sign. From Fig. 2· we would 
predict a sign change for thi$ choice of parameters, and in Fig. 5 we see 
that it does. Note that the zero of the current occurs at the same time as 
the a·ngular velocity reaches its minimum, This is because we have r;..:.·w 
(See Eq~(7)), 
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1.0 ---------------------------------------
0 0.8 -3 
~ 
~0.6 
3 
~ 

0 -.90.4 
t-o-4 

::::::: 
~ 
t-o-4 0.2 

0 ' . 

0 

2.0 4.0 6.0 . 8.0 I 0.0 
r=t/tg 

MU-15496 

·Fig. 3. Case I. Curves representing predicted current (solid line) 
and angular velocity (broken line) versus time for u = 1, 11 = 5. 
This corresponds approximately to the values for the #4 motor 
generator set ( 15-inch bubble chamber). ·The X points indicate 
measured values of the current. !g = 2 sec. 
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----------------------------------

2.0 4.0 6.0 8.0 10.0 
T = t/tg 

MU-15497 

Fig. 4.- Case II. Curves representing predicted current (solid line) and 
angular velocity (broken line) versus time for a = 0.5, - T] = 1.213. 
This corresponds approximately to the values for the #8 and #9 
motor generator sets (72-inch bubble chamber). tg = 3 sec. 
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l.o.-------,--------r-----,-------,-------, 

-1.0 L----___J,---------'-------'-------'------' 
0 2.0 4.0 6.0 8.0 10.0 

""[ = t/tg 

MU-15498 

Fig. 5. Case III. Curves representing predicted current (solid 
line) and angular velocity (broken line) versus time for u = 1, 
r1 = ~- 5. Hypothetical case illustrating oscillatory behavior{ 
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As for the discrepancy mentioned in Case (1) between this theory and 
the measured data, possibly this can be attributed to a mutual inductance 
between the generator circuit and the magnet circuit. In this case the 
equation for the former would be 

di 

Lg dtg = - Rgig ::-vt\ ~! 
and_sin~~~It is negative this term tends to make dig/dt less negative, 

sb that i (and <j>.) decays less rapidly. This in turn increases the left 
side of ~q. (2), %rhich makes di/dt less ·negative, so that I decays more 
slowly. · 
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' APPENDIX 

Proof of. Theorem on Changes of Sign of the Current 

We will now prove the theorem stated above. Referring to Eq. (l6)for 
the current, we are led to consider the function 

l\! p (x, y) = (N (x) -
p 

X 

2p+l 
Np+l (x)] Jp (y)- (Jp(x)-2;+1 1 p+1(x)] Np(y). 

( 19) 

If we put x = K andy = Ke -·7', then ljJ = (
2 
~ 1) exp [ (p+ 1 )l't] I(T)/I(T0 ), 

•" - - p 'TT p 
so that 'the sign of ljJ is the same as that of I. In a given case x = K is fixed, 
andy = Ke-~ varies between x = K and zero. We need to know how many 
times, if any, ljJ (x, y) changes sign as the system point (x, y)moves from 
( K, K) to (K, 0) algng the x = Kline, and this requires that we investigate the 
qualitative behavior of ljJ (x, y) in that sector of the x, y plane bonded by the 
y=O axis and the x = y lirfe, and lying in the positive quandrant (see Fig. 6 ). 

The first feature to notice is that· on the 45° line ljJ has a const~nt, 
p 

positive value: 

2 
'TTX 

= 2 
2p+l 

Now we want to find the boundaries between the regions of positive and 
negative ljJ . These boundaries are curves on which we have ljJ = 0. 
Obviously they cannot cross the line x = y, where we have ljJ = 12./ (2p+ l ). 
However, we can show that they do cross they = 0 axis. TJ> show this we 
will have to consider the cases p > 0 and - i < p < 0 separately .. 

In this case, for y - 0, 1p (y) becomes finite or zero while N (y) 
becomes negatively infinite. Hence we have p 

ljJ (x, 0) ~ - [J (x} - _x_ J (x )] N (O) = ± oo 
p p 2 p+ 1 p+ 1 . p 

according to 

Clearly the ljJ (x, y) = 0 curves must cross the x axis where ljJ (x, 0) 
changes from p+oo to -oo, that is, where we have F (x) = 0. p 

p 

I 
I 
I 
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+00 -oo -oo fp,4. 

MU-15499 

Fig. 6. · Map of the ljJ (x, y) function. .For a particular case the 
system point mo~s down the line from A to Bas -r goes from 
0 to oo. The + and - signs indicate the regions where ljJ is .. p 
positive and negative. · .· . 
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We use the formulas 

N {y) sin p 'IT = J (y) cos pTr - J {y), and for 
p p -p 

= {iy,)P +2 ( 1 )p +2 
Y --- o: J p(y) o.p. + 0 (yP ) ; J -P(y) = olY-p)! +-:O(y -p ). 

Sin:e p<O, J {y) -+ oo , J . {y) -+ 0 as y -+ ·o , 
p -p 

so that we have' N (y) ~ J (y) cot p Tr -+ - oo as y -+ '0 , , 
p p 

and 

<Pp (x, y) -y-,-{ ~Np(x) - Zp:l Np+l (x)] - [Jp(x)- z;+l Jp+l (x)] cot p ~} Jp(y) 

= - esc (p1r)[J (x) + Zx+l J 1 (x)] J (y) =- esc (p1r) F (x) J (y) 
-p p -p- p p p 

Hence we have tj; (x·, 0) = ± oo according to F (x) ;e: 0, and again the,tj; = 0 
p . p p 

curves cross the x axis at the zeroes ofF {x). 
p 

Next we will show that the tj; = 0 curves tend to the right as y increases, 
that is, they have positive slope:p 'To show this we will first show 

(1) The tj; = 0 curves are never horizontal (except possibly at infinity). p . 
, Pro6I: Supposeal(! = 0 curve has z.ero slope at some point (x,y). 

Then at this point. P 

By using 

dZv 
---ax = 

we find 

8tj; 
p 

·.·ax = 0. 

v 
- x 2 v - zv+l ' (a) 

dx
d [Zp{x) - .2px+l zp+l(x)] = -(..!. + _x_\z + p+l {Z X z ) 

}{ 2p+l) p X p - Zp+l p+l 

therefore 
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:q.p = - (~ + Zp: 1)[Np(x) J p(y) - J p(x) Np (y)] + p:l 

Now, since ~ehave .pp = Q arid(r+ Zp:~ / 0, . it follows 

[ N (x) J ( y) - J (x} N ( y )] = 0 p p p p 

ljJ = 0. p 

that 

Subtracting this from ljJ = 0, with ljJ given by Eq. (19), we get 
p p 

N '..L 
1 

(x) J (y) - J + 
1 

(x) N , (y) = 0. 
P:r p p p 

'\ 

(b) 

(c) 

Now regarding (b) and (c) as equations for Jp(y) and Np(y), we have either 

J (y) = N (y) = 0, which isimpossible (except at y:r:. co}, or the determinant p p . ' . . 
[ -Np(x) J p+l (x) + Jp(x) Np+ 1 (x)] equals zero, which is again impossible 

except for x = oo, since the determinant is -2/rrx. Thus the supposition that 
a ljJ :::: 0 curve is horizontal in the finite domain leads to a contradiction, and 
is uPere£ore false. . 

(2) The ljJ = 0 curves are never vertical (except possibly at infinity). 
p 

Proof: Suppose a ljJ = 0 curve is vertical at some point (x, y). 
Then at this point we have P 

a lJ.lP = 
ljJ = 0 and P ay , 

Dljl p 
= [Np(x)- 2;+1 N .· ay p+l 

- [J (x)- _x_ 
p 2p+l Jp+l 

Subtracting this from ljJ =0, we get 
p 

(~ Jp+i (yv (x )] . J (y) 
p . 

(x)] (~ N (y) - Np+l (y~ p = 0. 

[Np(x)- 2p:l Np+l (x)] Jp+l (y)- [Jp(x)- 2p:l Jp+l (x)] Np+l(y) = 0. 

(d) 

Regarding ~q. (19) with lj.Jp = 0 and (d) taken together as equations for 

the quantities in square brackets, we have either that the determinant of 
the equations is zero 

-J (y) N +l(y) + N (y) J +l(y) = 0, p p p p 

which ·is impossible (except at y = oo), since this is 2/rry; or that the 
quantities in square brackets are zero, 



-23- UCRL-8333 

Np (x) - 2;+1 Np+1 (x) = Jp (x)- 2p:1 Jp+l (x} = 0' 

N (x) 
p 

Np+l (x) 
= 

J (x) 
p = 

J p+1 (x) 

X 
N (x) J + 

1 
(x) - N + 

1 
(x) J (x) = 0 , 

p p p p 2p+l 

which is impossible (except at x = oo), since the last expression is 2/rrxo 
Again we have a contradiction- -the lj;p = 0 curves cannot be vertical in the 
finite domain. 

Now we have proven that the lj; = 0 curves cross they= 0 axis at the 
p . 

roots of F (x) = 0, that they never cross the line x = y, and that they are 
.. '··.. p . 

never horizontal or vertical in the finite domain. Consequently they must 
tend to the right as y increases from y = 0, as shown in Figo 6. As the 
system point moves down a vertical line from (K, K) to (K, 0), the current 
will change sign whenever a lj; = 0 curve is crossed. It is clear from 

p 
Figo 6 that the number of such crossings is equal to the number of roots of 
F p (x) = 0 less than K, as stated in the theorem. 

Information Division 
h'r 




