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ABSTRACT

Thé_energy spectrum of an odd nucleon coupled to a triakial rotating
core has béen calculated as a function of the deformation 8, the asymmetry
:Y ana the Féfmi energy XF' Results are preéenteq in a series of plots
with the.bdd,nucleon regtricted to a single j-shell and.the paramefers
covering  the_area which is of most interest for fransitional odd-A |
nuclei invthe A=;135 and the A=190 mass'fegion.'fThe results apply to
unique-parity spectra which are based either oﬁ particle or hole stéﬁes:
in a j=ll/2 shell, but hold also for j=9/2 and j=13/2. In»add‘ition,
results on moments and transition probabilities.are;given. The quaéi—»
particle;rotor Hamiltonian is derived with special emphasis'onvthe pafticle-
hole symmetry. The anélytic solution for the evén~triaxial rotor at
y = 30° is giVen. Concerning the odd-A spéctrum, charécteristics which
can be tested experimentally are diséussed, and‘a qualitatiQe physical
interpreﬁation is given. In particular, band'structﬁres in.the triaxiai

region and their approximate classification are pointed out.



1. INTRODUCTION ,
Onerof'the new results obtained from heavy;ion_experiments is the
excitation of high-spin rotation-like bands in nuc;éi well beyond the
established rotational regions. These results suggest‘that the céncept
of colleétive'nuclear rotation has a wider range of validity than assumed
in the ﬁast aﬂd is also applicable in the transifional regions betweén
rétationai and closed-shell nuclei; It has‘been shown recentiy by
Stephens that the yrast bands of a number of trénsitioﬁal odd-A nuclei
can be undersﬁobd in terms of an odd hucieoﬁvin‘é:high-j_shell coupled
to a'rotatingvcore.l) ' One of the objectives of fhé-pfesent work 157¢o
show that this concept'holds more genérally for wholé families 6f uﬁidue—
- parity states including high-spinvdhd low-spin étates,
The unique parity states in heavy odd-A nuclei,von which the
present invesfigation is fécussed, are a very intéresting group of states, _
.sincg thgy represent a ''simple case" in otherwisévm§re cpmblicated spectra.
The configdratioﬁ of the odd nuciéon in thesevsfates éoﬁsists of an almoé;

pure high-j shell (h 113}2, etc.) whicﬁbdoés not mix with:neighboring

11/2°
shells due to its opposite parity. The family of stqtes belonging to
such a_j—sheli is easily identified in‘the experiﬁéﬁ;ai speétra, gince
their members. decay predominantly within the family. ‘In some favored
cases,‘rather;complete families of uniquevparity sfaﬁes are now known
with high-épiﬁ~$tates obtained froﬁ heavy-ion experiments and low-spin
states observed in B-decay. | |
Becaﬁsevof the pure configuration'of the odd nucleon, the energy

spectrum of a family of unique-parity states givés,rather direct information

on the shapevaﬁd the collective motion of the core. The main point of
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the present>WOrk will be that the odd-A spectra“are particularly sensitive
to triaxial shapes and that certain families of unique—parity states
contain detailed evidence for triaxial nuclear deformations. Becauée
of the 1afgér level density of odd-A nuclei at low emnergy, this evidenée
goeslfaf beyond what can be obtained‘from even nuclei. Some of the |
results héve already been reported.z) In the present publication,;a more
complete account of this work is given. |

The shapes of tranéitional nuclei are known to be rather»soft.
They fluctuate about average shapes which are of poderate deformation
(0.1 < B <’0.2) and triaxial (O° <y < 60°). Thertheory of the collectivgb
motion of ﬁhe nuclear surface and the coupling of an odd nucleon to this
motion héé been formulated by Bohr and Mottelson.3) :A complete dynamical
solution of their equations is'fairly'cémplicated already for eﬁen
nuclei4’5) an& will be more cumbersome for the odd;A case. In the
pfesent_work, therefore, the Davydov approximation6) is used which fixes
the collective wavefﬁnction at its average valhes,vassuming a rigid triaxial
shépe- This is certainly a serioug 1imitation whicﬁ needs some comments.

The use of a fixed shape affects the odd—A:solution at two points:
(i) at thg_énérgies and wavefunctions of the core, and (ii) at the
coupling of thé odd nucleon to the core. Concerﬁiﬁgithe first point,
it shou1d Be'recalled_that,on the one hand, the épectrum af a riéidﬂ
.-tfiaxial rotor approximately reproduces the lowest excited statés of .
eveﬁ transitional nuclei, e.g., in the A=¥190 and A=¥135 mass.regionst
In‘partiCular, it accounts for the low¥1ying second 2+ sfates which are
characteristig for triaxial shapes. On the othervﬁand, there are

systematic deviations which reflect the softness of these nuclei.
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Especially, one observes an overall compression of the experimentgl
spectra as compared with that of a:rigid triaxial rbtor and, in the
calculated odd-A spectra, this de§iation will, of éourse, show up in a
parallel way.+

It'should be nqticed, however, that the secon& point-éonéerning
the particle-core coupling is the mofe impbr;ant féc£or witﬁvrespect fo
the odd-A Spe;trumvbecause it>determines tﬁe level ofaer, an&, at this -
poiht, the appfoximatioﬁ of fixed triaxial shépes turns out to be well
supportedvby'the comparison with experiment. The odd-A spectrum changés
drastically when going from prolate-type (0° < y < 30°)'to oblate—typé
(30° < y < 60°) shapes. Such a transition is observgd in the A€=1§0 mass:
,region.an& is well described assuming rigid‘triaﬁial_shapes. In fact,
it will be the surprising result of the pfesent invéstigation that rather
complex families of uﬁiqUe*parity states can belréproduced with.fixéd |
B and vy values derived from neighboring evén.nuclei and that, apparently,
the core paraméters are not much influenced by addipg the ddd ﬁucieon.
Based én this observatibn, it will be concluded Ehat a number of
transitional nuclei are iess soft fhan expected froﬁ'existing theoreticalv
calculations §f potential energy surfaces. |

There exists previous work on odd-A triaxié}'rbtprs. In some of
the publiéations,7) the adiabaticlépbroximation isvabpiied whi;h éohsideré

the odd nucleon to be in a definite single-particle state. This restriction

+One could use the empirical core energies in the odd-A calculation to
reduce this discrepancy. In the present work, the solution of the
pure triaxial model is preferred since it allows a more general
presentation. '
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is certainly inadequate for weakly deformed nuclei where the coupling
of the odd nucleon to the intrinsic shape is relatively small and the

Coriolis ﬁiking large. It is therefore important to take at least one

complete j-shell for the single-particle configuration space so that the

odd nucléon is free to orient its angular momentum'relative.to the
core of to move uncorrelated to tﬁe intrinsic shépe. It is this point
which insures that ‘the model contains the weak—;oupling limit as well
as the strong-coupling limit and is able to describe the various inter—'
mediate regions. The first calculation of this type has been dpne by -
Pashkevich and Sardaryéna). The present calculation is basically the
same, but treéts the odd nucleon as a BCS—quasipaftiélé, ﬁhus accounting
for the Pauli principle in partially filled shells;' Only one-ﬁuasiparticle
statés are considered. This limits the applicabiiity of the model to
low—éxéitéd'states below 24, whefe A denotes the pairing gap. |

' The present report is'divided into two parts. Part I, given in
this paper, preéents the Basicvequationé and Symmetries 6f the model and
provides a geperal'sufvey over the model solution.’ Special emphasis is
put on the-pﬁ&sical interpretation. In Part II, the model calculation
will be compared with some representative experimeﬁial cases in the
A=135 and A=190 mass region. The‘ques;ion of softness and how the

present result relates to other work on transitional nuclei will be

~discussed thefé. For convenience, a Table of Contents of the following

chapters of Pért I is given here:

2., The Theoretical Model

2.1. Single-particle and single-hole states
2.2. The quasiparticle-rotor Hamiltonian
2.3. The symmetries

2.4. The diagonalization
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2.5. Moments and transition probabilities
2.6. The parameters

-3._ Numerical Results and the Physiéai Interpretation

3.1. Some properties of the triaxial core

The odd-A energy spectrum

Calculated moments and transition probabllities
The physical interpretation-

3 5 Classification of states and band structures

www
-L\wl\)
o .

"4, Conclusion
2, .. THE THEORETICAL MODEL
2.1. single-particle and single-hole states

ThefmbdelvinVestigated in this paper conéists of an odd nucleon _
~ coupled';o a rotating triaxial core. The,o&d nuciedn is consideréd’as
a quasiﬁarticlé that represents either a particle or a hole or a super-
‘position of bofh, Its configuration space'will bé.festricted to a
single jF;heli which is either fiiled or pnfilled or paftly filled by
core particles. The quasiparticle will be describéd witﬁin the BCS
approximétibﬁ;v The basic equétions (2.6), (2.11), and (2.15).are.wri¢ten,
in a (2 x2)-matrix noﬁation'which accounts in an”explicit wéy for the |
particle and the hole-eQuétion~and the coupling‘of-boﬁh by the pairing,.
interactiéﬁf " The parﬁiéle-hole sxmmetry (2.22) of1§he_ﬁddel can Be.
conveniently discussed in this presentation. 4

Particle and hole states can be éxpressed in the formg)'

. . o |
|39) = 20 |.o,>‘ S - Qa9
and : ‘ '
37'y = 3L 16, (2.1b)
SRS A : _
respéctively, where 'a;Q and ajQ are creation and annihilation

operators for a particle in the j-shell, and | 0) denotes the ground-

state of an even nucleus with mass A. The energy of the states in the
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- spherical j¥she11 are conveniently defined relative to the Fermibenergy

X One haS.(ej - AF) for particle states,.and-(XF - ej) for hole states.

Fc

The matrix elements of a single-particle operatqr F; fbr particle and hole

states are related by the particle-hole conjugationg)
-1 -1 . R A o
(372, |F} 3 9, = —cr(jQIIFljﬂz) + (QlF[O)GQlQi , (2.2)
where ¢ 1s determined by the symmetry of F . under the time reversal

TFT = c¢F . o (2.3)

i}

;Fdr the deformation potential Vp of the core see [Eq. (2.7j s whiph'

splits the‘degeneraté levels of the j-shell, one obtains

Q . (2.4)

o R
& ?Qilvp|j 2,0 = - <30,V 39,0 + <o|vp|o>5Ql .,

Beside the deformation_interaction VP, the pairihg interaction is taken

into account by the_pairihg potential A which couples particlé and hole

‘states

2.9

(lelzlj-IQé) = (3'191|2+|j92> = A8, ., | (2.5)
C : \ 172 . ’ -

Here,"A-is the usual gap parameter.

In the present'work, the core is treated as»a'collective rotor.

 The potentials Vﬁ ‘and A and the inertia parameters in Eq.- (2.12), which

characterize the core, can be considered as arising from an underlying
microscopic theory. Within the present approach, however, they are

determined phenomenologically.
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2.2. The Quasiparticle-Rotor Hamiltonian

On the basis of relations (2.4) and (2.5), the Hamiltonian of the
. i oo }

odd nucleo’n is obtained in the form

| 1 11

The energy of the spherical shell €5 is set = 0 in the following. The

deformation potential

| (2.7)

is geherated‘by the ellipsoidal shape of the core with the semi-axes

5 ' 2'”‘, . ‘ ' . ._ . - .
_RK = vRo <1 + \lzg-ﬁcos (Y - j;-K)) ' K_f 1,2,3 . .(2-8)

The deformation.parameterv 8 and the asymﬁetry parameter y determine the_
shape, k(r) détérmines thf radial dépeﬁdgnce ovap; qu are'épﬁérical
harmonics, and Rb- is the nuclear radius. The Pauli;ﬁatrices in Eq. (2.6)
refer to the particle and the hole spéce. 'The two subspaces are defined

explicitly by the vectors

| .' | . . | . -
Ijn.)s.p. = X(Si])v(—;)<0>, - ' - (2.9a)
. N5 [0
l3ed, . = x(QJ)(r)( ), (2.9b)
.h. v 1
where x§§)(:) is give; by

XP @O = @y L (2.10)
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The term f6|Vp|6) of Eq. (2.4) has been omitted_in.Eq. (2.6), since it
can be absorbed into AF‘ and a constant term added to'ﬂb;

The rbtational Hémiltonian of the covre is
JCR = t]_R. 1 ) (2.11)
whgre
| o 3 - | - ,
-(IK‘ jK) . :
bp = — - (2.12)
In Eq. (2.1'1),_11: is assumed that

..s.h.(jgl'J{RIjQZ)s.h. - s.p.(jglllejQZ)_s.P. ’ (2.;13) -

'im‘pl_yi'ng‘ that the energy of the rotating core does not depend on whether |
the odd nucleon is represented by a particle or a hole. In Eq. (2.12)
I.< and jK_ are the components of the total and the siriglé-particle

angular momentum, respectively. The threevmoments'-of-in_ertia are chosen as
S = S, s’ 0 -F 0, k=123, (2.14)

throughout this work, unless stated differently. _i The dependence of 'jnc
on the shape asymmetry Yy is that of irrotational f]‘.owv; ‘the overall»Valu_e :
j'o will be adjﬁéted. It coincides with the normal_ moment-of-inertia of .

'axi.ally symmetric deformed nuclei at y=0° and y= 60°_. .

2.3, The Symmetries

The total Hamiltonian

B A U (2.15)
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" is invariant under 180°-rotations about the intrinsic axes (DZ symmétfy

group). These symmetries allow the wavefunction to be written in the form

21+1 '(Ij °‘) p(D 5 () (I-3) (@ Q)
‘l z: ( an+() Dy k -m)

K,Q,T : (2.16)

where the summation is restricted to k| < +1, IQ[§ j» (K+3) e§en,_ |
(Q+3j) V_ev-en,‘ and T= %1; D(M(P denote rot#tionéi D-fﬁnétions, "The o
indéx T distinguishes between particle and holé States, and d labels
all states for a certain total angular momen tum _II‘. |

There a.re more symmetries in the problexﬁ arising from pef:mut:atiohs '
of the iﬂtrinsic axes and particle-hole cénjugatioﬁ. The six different

ways of labeling the intrinsic axes correspond to isibx'equiValent domains -

in (B,Y)—space

vy = zy', £y +120° = vy' + 240°

with 0° & Y" < 60° and B >0. Each domain describes vt_:he. same set of
possible shépés. Table 1 shows the y-values for whiéh axially s&mmetric
oblate and prolate shépes occur and gives the corréspbnding s-vymme‘tfy axes.
For the potential Vp. which depends on the particular jchoice ‘of ‘thg axes,

cyclié permutations give rise to the symmétry relations

VP(B,Y’A63’¢3) = VP(B’Y + 12003619¢1) = Vp(B?Y + 24001.92:¢2) ’
(2.17)

where the subscript at 6,¢ defines the axes to which the polar angles

are related. Another symmetry relation derived from Eqs. (2.7) and (2.17)

-

W
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is

V(B850 = <V (B, 605-Y,:92;¢2) : (2.18)

From this relation and particle—holé'conjugatioh5a basic particle-hole
symmetry can be derived. Defining a transformation ‘I that transforms
the set of parameters 8, v, Aps B and the axes 1, 2, 3 simultaneously

according to

P (Ba Y Ap, 8) > (B, 60°-7, = A, - A) |
A A oa PPN - (2.19)

fe r = -x | . (2.20a)
ffae v = x . o (2.20b)

o Hyo, = =3, | (2.21a)
of a0 = X o - | (2.21b)

oy R ° N * e

using the Pauli matrix cy = (-i i). The combination of Eqs. (2.20) and

(2.21) leads to the important particle-hole symmetry‘of the total

Hamiltonian (2.15)

+ . := o . : | S
@D @D - e
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This symmetry, expressed in words, says that a particle coupled to a
core with parameters 8, v, AF has the same energy spectrum as a hole
coupled to a core with parameters B, 60° -y, —AF. ‘The permutations”oﬁl

the intrinsic axes and the sign change of 4 under transformation I' have

no effect on the energy spectrum,

2.4, The Diagonalization
The Hamiltonian (2.15) is diagonalized in three steps. The first

two steps bring J&, into diagonal form

e

B3 = (" ©(2.23)
-e
v .
by the unitary transformation o
S U -v\
8 = | |
S/ \V U ‘
Tﬁe unitary transformation S diagonalizes the pqﬁential Vp
1 L ' o .
D IAT (3 C 2280
| , <391|vp|392> S0 = vyt o a2)

yielding the single-particle energies €, The sum in Eq. (2.24),is
restricted to |Qzl'§§j and even integers for (j+Q,).  The matrices (ev),

U and V are diagonal; their matrix elements are the quasiparticle-energies

e, = Y&, =A%+ 4’ @)

Y

and the BCS-occupation probabilities

o

w



| e - - ,
2 _ 1 _ v F . S
N z(l. = ) R (2.269)
N
2 2 f

'respectively‘ .The total wavefunction (2.16) is now spanned by new basic

2I+1 [ (1) NI-3 (D) -
‘}-——16"2 (DMK [v) + ()" pyp | ‘v)> . (2727)
. ! .
ey o= z : Sggg Xg%;

Q

states

IKv)

with _

and ‘the sum restricted to H2|§§j and even integers for (j+0). 1In'this_new'.

spacé; Hk is obtained as

- ' ' B g 4hKKf n
. + ’ SV uv HV UV . . »
KK' hKK' B
o ’ huv v wv - Suy '
where
' .
hﬁl\f = (Rulhp[k'v) (2.29
"and
guv- = .uu uv f vu vv ’ | _ | (2.29b)
n = u v -v u .
v e U VIR TRRY) :

In the actual calculations, expression (2.28) will be apprbximatéd by
‘ ‘ ' v .
- o
ot . uv HV ) -
BB = , (2.30)

TRV TEV)
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50 -that the final diagonalization of ¥ = J(’p+JCR comes down to

K'v,n
K'yv :
with the_ vsumma_tion restricted' to ]K'I S I, (j+K") even, and 1 §\) LS
(j+—%).. There are (I+%) -+ (j+%) eigenmalues E(I?j) with total amgular‘
momentum I for the rotor-plus—particle system and - an equivalent set of
eigenvalues for the rotor—plus—hole system for which the minus sign in

Eq. (2.31)_holds; The two sets of eigenvalues are connected by the

particle-hcle symmetry (2.22) which gives

F’

(I'j)(B,Y. Ap ; particle) = E(i'j)(3,60°Aey,-A 3 hole) ; (2.32)

vExptession (2.30) which neglects the coupling_between-qudeiperticles
and qmasiholes.hclds exactly if therFermi_energy.is’placed well above or |

- well below the single j-shell, since then.ngv==0.:u3ut even in the case
when the Fetmi emergy penetrates the energy regicn}ofbthe single-particle

states, the approximation hf% nuv =0 1is justifiedvsince

nu0‘= 0 _ v for u=wv ':_'; :‘ ‘l (2.33a)

n
=)

n

b for u # v and eﬁ-fev|<-2A y

and, on the other hand,

K o KK for w#v and |e -e|>28,

(2 33b)

—

wherev hff 'ls an averaged diagonal matrix‘element - The latter estimate

(KK ' \ LD L pmD @
Z (huv Sv E ey O 6uv> E = B9 Ruyn - (2.31)



.

-15- |
is based on the fact that the Coriolis and centrifugal terms

B . |

KK' ) 2

LN E -2 (Ru [ T3, [K'v) + (R | 5, [_K'\)))/%?K
k=1 ' ' :

'.predominantly couple neighboring single~particle ététeé and second

neighbors which differ less than 2A in energy --.ét least for weakly

deformed nuclei (0.1 < B < 0.2) which are considered in this work.

2.5, Moments and Transition Probabilities

The Quadrupole operator

- 0© ® - .

£, = £, +9, L S (2.30)
consists of two parts, one referripg to the core
. 1 ‘ : .

- O© <.<)< ) | .

= q - . _ _ (2.35)
B 2u 2u 1 | |

and the other referring to the odd nucleon

1 ' |
® _ @, Jl6n 2 < ' >
= ‘e r° 'y _ . - (2.36)
2u 5 2u \- -1 o

where e(p>==e  for protons and e(p)==0 for neutrons. The intrinsie

quadrupole tensor of the core is given by

(x)

499 = Q cos(y '%") ’
| Q | | -
qg;g = qéf;\ = /; sin(y —‘%gjn) s .(2.37)
® W - |
920 7 91 T 0



where « = 1,2,3 denotes the axis to which the projection u is related,

and

3

A , .
RTZ 8 o ' (2.38)
v 5m ° .

is the inti_‘inSic charge quadrupole moment, Ro’ the nuclear radius , and Z

‘the charge number. The magnetic dipole operator is defined as

- + -"g"-g\._’ 1\ : -
Ko fniobonetme)il()  em

- for j = £+%, and with gR_= %’ 8, =_0.6 8 ee’ and. g2=1’ for protons
andlbg2 = 0 for neutronms.
It can be shown that the operatoi‘s g and c/q ti'atisform under _the

particle-hole transformation (oy'l‘) as
t - -0 2
(,1)" &, (o,1) QZHIT S (2.40)
CRY Jt(oyr_) =M . C(2.41)
These relations represent a generalized particle-hole conJugatlon in the

combined quasiparticle-core system. Equations (2. 40) and (2 41) can be

.vproved by using the definitions (2. 19) and the symmetry r q(K)_ _ (%)

q2u

which involves _the transformation Y - 60° -y and a cyclic permu}tation
of the intrinsic axes. Due to the symmetries (2.40) and (2.41),all
reduced matrix elements of Qz‘J chénge sign when \g'oing from a particle

case with parameters B, y, A_ to a hole case with parameters B, 60° -y

F

—AF, but reméin unchanged for the magnetic operatof ﬁ

For particle states, the reduced matrix elements of Q(ZCL), Q(p), and -
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- .
M are obtained in the form

(e 19 Lo = Qo

= I'a',Io "0 5: (2f42a)
af ” Q(p) Il I,a)‘-= Flfie,ia 9%.p. * v : (2.42b)
and,.fbf (I',u') # (I;G)’

Wil e - 5 G g @
where ¢ . and ﬁ p, are the single-~particle véiues for ;hé quadrupoi§ 
momeﬁt and the‘magnetic moment N | |

iqu.p; - - %%{%%.<r2} L ::-_ | '  (2.43)
.and (2 (n + 2) [fm ] for the (n,jsﬂ) éhélig' In Eqs. (2.42),

the effect of the rotating core on the matrix elements is contained in the

the F-factors ﬁhich'are given by

L@ (Ia,Iazj eyl 21 -
F Vrh +n(n+1)§ W gig. ke -)* .( %vq ,

-K'v K
K K'

(2.45a)

Y oxrr KQ
K,K',Q,0'v (2.45b)

<»I' A I><.j YI\ o pg (T A TN A TS I
* )+ o j( =>< )/Cos)
“K'vEK/\-0" v =K' v =K/ \-Q' v -Q -30 3]

r \/<21'+1>(21+1)§ WO I8N (TR <>jQ .
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for A=1,2, The summations are restricted as in Eq. (2.16). The amplitude

- @GYe) ' o o
(T'a',Ia,2)  _ (i) (1',3) o A Gy (1,1 -
- Y g'ar,kQ B E Satk' fk'e',a' (uK'uK: - ) VK'VK) 5 ax t‘KK,a o
| | ' R g

includes all the information on the wavefunction. From the reduced matrix
elements (2.42), one obtains for the speétroscopic'quédrupole moments -and

the magnetic moments

(sp) I 2 I o . | - |
Q' = (Ie || Q]| 1) , (2.47)
¢ -1 0 I | - R
(1 1I>_ 12 o .
. = gI+ (Io||M [|Ia) s - (2.48)
Ia R -1 0 I , S : .

and for the reduced E2- and Ml-transition probabiiities»-

B(E2; Io + Ia') = [cret el |2/ i+ (2.49)

BMI; Ta » I'a') = [(I'a'||M|100|2 /214 D) . (2.50)
. Mixing ratios are defined as
' Crtat il L :
S(Ia > T'a") = 0.7E2 §7o 2 lollz) 551y ~
. ., Y (I'a'”vM”IG)_ o B

whete EY = (EI - EI,) is the transition energy in'ﬁéV. ‘The expressions
(2.47) - (2.51) correspond to particles coupled to the rotor; the results
- for holes are obtained by applying the particle-hdle transforﬁations (2.40)
‘and (2.41) which réverse. the.sign of Q(SP) and G,vbut_leéves all other

quantities unchanged.

(2.46) L
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2.,6. The Parameters

The ffee'pafameters_of'the:model are B, v, and AF. The general
dépendence of the enérgy spectrum and the transition probabilities on
tﬁesevparameters will be discussed in the nextvchaptEr. For a-particuiar
odd-A nucleus, B and y will Be determined from‘the'ldwest excited states
ofithé édjacent even nuclei, and AF will be estiﬁate& from the Nilsson
level schéme. ‘All other parﬁmeters are chosen as a smooth function of the
mass A, e.g’.‘ k and A, or as a function of B8 aﬁd A, e.g.v jo' ' |

. The strength k bf the deformed field of the core is taken as

00

k = fdr' 2Em) k@ = 2% v (2.5
( ) A1/3 | __ )

0

consistent with the splitting of the‘hll/2 shell in the Nilsson level

scheme. The inertia parameter‘j¢b 1s determined by the relation

h2 '
= —204 __ Iyev) | (2.53) .

2 g2« A7?

which is derived from the general empirical rule

B+ B(E2; 2° » 01) = (2.5% 1 - 107 22 - a7t (Mev- (eb)?]
' (2.54)
Asvshpwn by Grodzinslo), relation (2.54) holds for first excited'é+ states
almﬁst thféuéhout the nuclear mass table. Both relafions (2.52) ané (2.53)
have beén dérived-assuming axially symmetric deformétions. In this work, |
howgver, they are considered to hold also for triaxial deformations.

The slight y-dependence of E2+ and B(E2;2+:+O+) in the Davydov model

can be neglected in view of the uncertainty involved in relation (2;54);
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The pairing potential is chosen as

_ 1
b= 72

consistent with odd-even mass differences in the mass region 100 < A < 200.

1
it}

Choosing an A'-1 dependence for A rather than the more general A = 12 <A

relationg) has the advantage that it preserves a general scale property

of the model. Using the inertia parameter (2.53)’aslenefgy‘unit, one

obtains from Egs. (2.52), (2.53), and (2.54)

—kE = j01- (s 2%, (ause)

®?/2 4 ) - -
and | : B

A - o (8 aYH L (s

w2 g) - |

It is seen that the model now contains both 8 ‘and A only in the

combination

b = 8- a2/3, , (2.58)

The energy spe;trum of the model obtained for é céftaih mass A can
therefore be applied also to other mass regions usiné}the séale frans—
formations (2.53) and (2.58).

Finaliy, it sﬁouid be noticed that the modei~solution depends -
ohly we;klyvon the angular momentum of the j-shell. The solution for
a j =]J]2 shell presented in the next chapter therefore is a good
approximatioﬁ for other j-shells, e.g., for the j=9/2 and j =i3/2‘

sheli.

MeV] - (2.55)
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3. NUMERICAL RESULTS AND THEIR PHYSICAL INTERPRETATION

iﬁ this'éhapter the energy spe;frum, momenfs, énd transition
probabiliﬁiesvof_the tfiaxia1 odd-A_system are givgn as fuﬁctions of
tﬁe model pérametérs 8, v, and AF,' The equations of the model are solved
numeriéally, and the results are presented in a serigs_of plots providing
" a survéy‘ovér that part of the model solution which turns out to_Be of
most'intérest for actual transitional nuclei. The results are then
intérprefed:in a qualitative way; good analytic apprdximations‘have not

yet been found.

3.1. Some Properties of the Triaxial Core )

‘Since the features of the odd-A systeﬁ are élosely related fq those
of the even cbre,vsoﬁe propértiés of the core will be discussed briefly v
at this point and listed fqr further reference. More details are given,
e.g., in the work of Davydové) and in Davidson's boﬁkll).

The ﬁloments—of—in'ertia‘}ﬁK (¢ = 1,2,3) defined by Eq. (2.14) are
~ shown as fuﬁctiOns of vy in fig. 1, and thevcorrespbnding lowest states
of the triaxialveven rotor are given in fig..2. Besides the normal
rotational band, a second 2+ state and other additionél states are seen
to come doWn‘in energy as a function of y, marking the triaxial region.

The energies of the first and second 2+ state can be expressed'ahalyticallyé)

. _ 60’ 9 F/81-7281n2(3y)

. (3.1)
2* %40 4sin?(3y)~

1,2

and the transition probabilities to the groundstate are
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o+ Lk 5 2 1 3-2sin 3y | |
B(E2;2) »,70) = 157 & * 1o [“ ] . (3.2)

V9 -8sin (3y)

In Eqs. (3.1) and (3.2),'the upper sign refers to thé 21. state and ;he'
lower sign to the 2; state. |

A gene;al analytical solution exists for the even triaxial rofor
at y= 30 °. Since this solution provides some insight into the triaxial
dynamics aﬁé is not found in the literaturé, it will be giveq here,
Since two moments—-of-inertia are equal jZ = ‘93 at y= 30°, 'fas 'seen“ in
fig. 1, the Hamiltonian (2.12) becomes axially symmétfic about the ‘i—axi's

for y =30° (although the shape does not!) and can be written as -
o 2 02 21
hR = a[R1 + 4(R2 + R3)]

with a = 3h2/?§o. Due to the symmetry, the angular momentum R has
a sharp projection o on the i-axis; o has to be an even 'integér.

The energy spectrum is obtained in the form

v 2 ‘ 2 ‘ :
Ep, = alo®+ 4(rr+1) -a?) 6D
and the wavefunctions are
' » 21 + 1 (1) I "(1)) - |
w = + - . o5,
M,a ‘/16n2(1+6 ) (P + 7 0 68
: a,o ' ' ’

The general expression for the E2~transition probabilities is
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(5/16m) (21, + 1) )11 I, 2\ (g, 1 T2 W

I
1
B(E2; I,a, +1,a,) = 95 F ) q
31T 2% (1+6a1’0)(1+502’0) @ -a, 0/ o ~a; =a, 0 20
I, 1, 2 I, I, 2 I, 1. 2 v 2 '
1 T2 1 I 1 2
. . 2 ")+ 00 RV, e
@ -a, 2 Co\%1 7% -2 : m0p =0y 2

where; according to Eq. (2.37), the intrinsic quadrupole moments related

S : o Q
to the l-axis are obtained as ,q(zlb) =0 and q(zlz) - :'/_;' for y = 30°.

The spectroscopic quadrupole moments vanish for all states (I,0) at y=30°

QP - o (3.6)

Ia _ ’

¢9)

since they aré'proportional to q 20 ° It is convenient to introduce the

so-called wobbling qﬁant:um numberlz)v n = I-a, since states with same n

are connected by large B(E2)-values (3.5). Inserting o = I-n, Eq. (3.3)

reads _
EI n - a[I(T+4) + 3n(21-n)] . _ - (3.3a)

where (I-n) has to be an evén integer > 0. The quantum number n _labéls
a series of rotational bands with I = n, nt+2, nt+4, (n>0) parallel to
the Yrast bar‘id_ 'withv 1=0,2,4, . (n=0). 1In connectién with th.e low-
excif:ed--odd—A spectrum, one 1is interested in the lo_wésf sﬁates of the .

N . + .
core spectrum, in particular, in the first and second 2 state. For

. > .
these two states, the precession of . R about the l-axis is illustrated

+ > ' .
in fig. 3. For the 21‘ state (n=0) R shows maximal alignment with the l-axis,
whereas for the 2; state (n=2) R has a zero projection on the l-axis and
is confined to the (2, 3) plane. The uvsvual charactefizatién of the 2;
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state as é y-bandhead having a K=2 projection on the 3-axis holds only

approximately in the region 0° < y < 15°,

3.2. The 0dd_—A Energy Spectrum

The. odd—A.energy spectrum is obtained as a numerical solutioﬁ of
Eq. (2.31). The single-particle energies €, (\)-?_1“,2, RS ‘whict.r
‘enter that calculation are giveh as: functions of Y in fig. 4. They
r_epresént:‘ the splitting of the pure j=11/2 shell in thé field of the

triaxial core. Going from the prolate to the oblate side-at a fixed B

by changing vy from 0° to 60°, the single-particle energies change smoothly )

without crossing each other. 'i‘he'single—particle_'wévefunctions have a
s‘harp Q quantum number at Y='O° ‘and y=60°, but'rep?eéjent ar.vn.tii.cture. of
different Q-states in the triaxial regi'on.l The fh_in' lines in fig. 4 show
the energigs e\; as the); change with B at Y¥0° c.oi're'sponding‘té é Nilssvon
level scheme. |

The energy spectrum of the odd nucleon coupled to the_fot‘avtivng,c':ore
is shown in figs. 5~ 7 for different sets of _the_pafarﬁeters' B, v, and )‘F'
These sets have been chosen to cover that part of the parameter s.pace'
4<B o A2/3 < 7, 0°<y<60°, Ap < €, which is .of: mc;s.t 'intrerest- for
actual trahsitional_ nuclei in t:he A= 135 and f:he A= 190'mass. region,
The plots 5~ .7 apply to particle spectra; due to the particle-hole -
symmetry (2.22). the corresponding hole spectra a:r-e’ obtaihed by changing
Y, Ap into 60° -v), - Age B
In figs. 5a, 5b, 5c the odd-—A spectrum is shown as a func:ti.c'm of'_'B,

in fig. 5a for _éxially_ symmetric deformations and AF = el-, in fig. 5b and

_5c for y=30° with )\F = €, and )‘F = €y, respéctiyély. I‘n the weak cdupling
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region IBA2/3J < 4, the wavefunctions contain raﬁher pure core étates, and
the spectrﬁﬁ consists Qf ;lmost degénerate core excitation muitiplets.
Beyond this region, structures devel&p which differ appreciably from weak
coupling. For axially symmetric déformations;.these structures.have been
discussed.by Sfephensl), and fig. 5a is 1ncluded here as a starting point,
On the oblate side (8 % 0) a strohgly-Coﬁpled fota;ional band with spin
sequenée i, 341, i+2 ... ié éeen, whereas on the prolaté side (B > O)
a decoupled rotational band appears with spin sequenée j, j+2, j+4 ...
and énergy spacings which are approximately thdsebofkthe core; for largé
;S-AZ/%, an 2.=% band with a decoupling factor a=6 is séen to -develop.
It is important. to note thaﬁ all other levels rise steeply ih energy with
increasing deformation and leave the energy.region beiow’30 hz/aﬁﬁo with
vrelatively small level density. The larger level density observed in
experimen;al cases will be one indication for the presence of triaxial
'shépes;

" The speétrum at y=30°, shown in fig. 5b and 5c, differs from fig.
5a mainly dﬁe to additional low-excited states emerging from the second

2; state of’the core. These levels behave diffefently from those of

+
1

Stemming from the 2

state. As seen in fig. 5b, the 9/2 and the 11/2 levels

+
1

the first 2
state rise more steeply with increasing B8 and
exchange at a deformation B AZ/E3 = 5 with the corresponding levels coming
from thé 2;‘state. This level exchaﬁge leads t§ pronounced variations

in the decay properties of the first and second éxcited j and (j-1)

levels -and therefore provides another test for the present model.

In fig. 5c¢ the Fermi energy AF =g, has been placed on the second
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single-particle level which has a good € = 9/2 for vy = 60° as seen in

- fig. 4. The penetration of AFvinto_the system of single-particle energies
which is equivalent to filling the j-shell mainly causes a lowering of _
the (j-1 = 9/2) state and étates depending thereon with spins j+1, - -
J+3, e 'Thé dropping of the (j-ﬁi) state when.filling a j-shell is
observed throughout the nuclear table, and the quasiparticlé description
applied in fhis work is a simple means tb account fbr this ‘behavior.

In figé. 6a and 6b,the dependence of the speétrﬁm on y is shown,
in fig. 6# for[}A2/3 =7 and.AFv= €,., It is obset?ed that the odd-A
spectrum is ﬂot_symmeﬁric about y = 30° as the core spectrum, shown in
fig. 2, but that iﬁ changes in a characteristic ﬁayvftom the.deqoupled
structure at.y'= 0° to the strdngly-coupled structufe at y = 6Qf.  The 
spectrum at y = 60° cénsists of an Q = 11/2 groundband and 9) =,§/2 and
Q= 7/2 excited bands., It is the variety of interﬁediate situations_as‘
Y changes which gives each y-region a definite.signatdre and opeﬁs a
vwide field for testing the model in actual nuélei,f For example; the
favored Yrast states having spins j, (j+2), ... afg-créséing with those
having spins (j+1), (j-+3),-.;. in the region 20° < y < 3d°; the group

-of low-spin states (I < j) moves in a specific Way‘agéinst the grbuﬁ of
high—spin.states (I>3j) with the (j - 2)-state, e.g.; crbssing.the G+
and the (j-+2)fstate'in the region 30° < vy < 40°; second and third‘states

of each spin are seen to come down in energy in the region 20° < y < 40° -

(parallel to the corresponding states of the core seen in fig. 2) producing

a number of near-crossings of states with the same spin, each mafking'a

certain y. The positions of these near-crossings, however, also depend
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strongly on é and’AF. Placing the Fergi energy at AF = €5, gé done in
fig. 6b, the lower part of the spectrum merges into an Q = 9/2 groundband'
at Yy = 60° rather than an Q = 11/2 band; fhe £ = 11/2 band now appears as
an excited béﬁd;

The depeﬁdence of the odd-A spectrum on Af,'with AF passing the
whole range of ;he single-particle energies, is‘sﬁown in fig. 7 for
Yy = 30; and Az/@'= 7. It éhould be.noticéd.that the spectrum does not -
depend on AF as long as AF lies outside the j—sheli; Penetrating the
jésheil has the strongest effect on fhe low-spin states with I = (j-1),
(3 -3) and onbthe (j-2)‘and (j - 4) state when AF appréaches 63.'vThe
= 0 is a consequence of.the particle-hole

F
symmetry (2.22) which gives E(B8, y=30°, AF) = E(B, 60° -y = 30°, -AF).

symmetry in fig. 7 about A

3.3. Calculated Moments and Transitioﬁ Probabilities

Some moments and transition probabilitiés,_calculated accor&ing to
the equations éf section 2.5., are given as funcfioﬁs of v in figs. 8-10
for ‘3-A2/3 =5 and A?=el; All plots refer to odd-neutron nuclei. The
spectroscopic quadrupole moments QSp and the E2-transition probabilities
therefore contain only contributionslof'the coré; Since the single-
'patficle contribution in the case of odd protons.adds less than 10%,
pidt 8 énd 9.app1y approximately to odd-proton nuclei alsq. In the case
of nucleon-holes coupled to’thé rotor one has tobchahgé Yy + (60° -7v),
'AF +v-AF,v QSp +'_Q8P, § + -8; the B(E2) valpes remain unchanged.
The Q°P of the odd-A nucleus, shown in fig;_S for some of the

lowest states, are all negative in the whole region 0° <§Y’<§60°. ‘This

is in contrast to the QSP of even triaxial nuclei, where e.g. the Qsi
. _ : 2
1
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change from -2/7 Qo at y=0° to +2/7 Q-0 at y=60° and vanish for y=30°

as stated by Eq. (3.6). The difference in the behavior is caused by the

odd particle which, as a general rule, tends to adjust itself to the ' o

core in such a way that the,core.adds to the single-particle Qusdrupole
moment with the same sign. It will be discussed in the next . section

that this adjnstment corresponds to a minimum of the potential energy.

The Eéstransition probabilities given in fig.v9 vary strongly'ast

functions of f’ and therefore provide another possibility for testing

the model. The change from strongly collective values to small values'

of 31ng1e—particle strength is especially pronounced for the (J-+2) > 3,
(G+1) + j, and (j-2) ~+ j transitions. For the (J-+2) > (j4-1) and the
G-1) - (j-2) transition, the B(E2)—values vanish at certain y's;

these y—points are the same at which crossings of the corresponding
energies occur and where the signs of the mixing'ratios G(Il_+ 12) chsnge,v
as seen in fig. 10. Instead of the mixing ratios‘(2.51), fig. 10 gives -
"the ratios _ : , | | o
PR VG R

(1, |z

which are independent of the transition energy. They have a dimension and

are given in units Qo/(u

6.p. gRj). The quantities Q_ end Hg.p. 3¢

defined in Eqs. (2. 38) and (2.44), and g = Z/A . ' : a ' -

The signs of 8§ follow a simple rule expressed in Table 2 This
rule has been deduced from the numerical results and holds'for all
sizable transitions within the low-excited level system. The rule is

.independent of v and is found valid at least for 3 < B« A2/3 and }‘F s €ye |
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It was confirmed on the basis of some'limiting approximate solutions; a

" more general justification has still to be given.

The magnetic moments of the lowest states are réther well described

" by the expression u EEgR(I--j) + us p and do not show any marked

dependence on the model parameters. - With the choicé' g, = 0.6 é:ﬁe,

measured magnetic moments are usually well reproduced. Ml-transition '
probabilities can be derived from fig. 9 and fig. 10 using the relation

B(M1l; Io + I'a') =5 * B(E2; Ia > I'a').

3.4. The Physical Interpretation

The dynamics of the coupled system of the odd'nucleon and the '
rotating core are based on three physical mgéhanisms:v - v

(1)  The dynamics of the triaxial core which are determined by
‘the three moments—of~inertia and which preférvrotation about
the axis with the largest moment—of—inertia in order to
minimize the rotational energy.

(1i) The coupling of the odd nucleon to thevcore wﬁich prefers
maximal mass overlap (since the nucleon in the high-j shell o
has an oblate density distribution wHiCﬁ is axially'symmetfic
about thé direction of its angular momentum ;} stfongest

" coupling ogpufs with an oblate core at y = 60°), |

(11i) The interaction between the angular momenta of the odd
nucleon ; and the rotating core E due to centrifugal
‘and Coriolis forces; the corresponding‘energy is minimal

: ’ -+ -+
for parallel alignment of j and R.
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If alignment of j and R cen'be achieved, the odd nucleon_does not
contribute appreciably to therrotational'energy of the eystem, and tﬁe
lowest rotational band is essentially thaﬁ of tﬁe core, but with a spin
sequence j, j+2, j+4 ... . These bends are called decoupled. If,
however, mechanisms'(i) and (ii) force ;. andvEl:tdfetand:perpendieular
on each other, strongly—eoupled rotational bands with spin sequence

i, 3+1, 3+2, ... show up.

The moments—ofFinertia and the way they'dependfon Y play a decisive

role in the question which of the two situations oécﬁr;' Siﬁce, due to
mechanism (ii), 3. tends to align with the 2-axis wﬁich.becoﬁes'the'
oblate eyﬁmetry axis at y = 60°, the question'is_ih ﬁarticular ﬁow'the 
moment—of-inertia‘jﬁz chaﬁges with y. For the ﬁome#te—offinertia.(2.14)
ueed in‘this‘work,‘ffé +‘O,when_y-4 6Q°, ae ehown iﬁvfig; 1. Thie meens
that, as Y approaches the oblate shape, rotation about the i-axie becomes

increasingly unfavorable and that R is pushed into the (1, 3)-plane

perpendicqlar to 3: As a result, strongly-coup;ed'bands build upvin
the oblate region as seen in fig. 6. |
The moment—of—1nertia about the symmetry axis efkan axially
"symmetric core vanishes forvsymmetfy reasons, but_ﬁo[sueh arguﬁent
exiets in the triaxial region. " The actual.momeﬁte-of—inertia could

differ from the values (2.14). If one would use,‘e;g.,“moments-bf-

inertia _ . . o i
rig 5. '  onm ' | . ..v
j,( = fo(l +\/-4—n Beos (v - 3 K)) s k=1,2,3

which depend on Yy in the same way as those of a rigid body, the odd-A
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speétrum would look quite different, as illustrated in fig. 11. Since
thengjggig # 0 for all y, the decoupied level order would persist in

the whole range 0° < ¥y < 60°. This clearly demonstrates that the |
characteristic variation of the odd-A énergy’spectrum as given in fig. 6
' and'fhé variefy of 1evel\crossings'decisively depend on the moments-—of-
iﬁertia'(2.14) chosen to be of irrotationai type. The compariéon of_the
_ﬁédel'with experiment will therefore provide a ﬁest_not only for triaxiél
vshapes, but to the same extent a test of the momeﬁts—of;inertia.

The pﬁysics invoived in the model are stﬁdied in fig. 12 for the
first (j - 2) state in some more detail. The (j - 2) state is distinguished
as the lowest excited level in a wide region 0° < y S 35°,.las seen in |
fig. 6. Its energy increases smoothly with vy Suggésting‘that a rathe;
stable coupling struééure is underlying. The steady rise in energ&
bbreaks off.only at about y = 45° due to an interchange of structure
‘with the 2 = (j-2) Nilsson state. For a prolate core at y=0°, the
(j - 2) state is described in the rotation—aligﬁed coupling séhémel) by
an antiparallel alignment of ; and E as shown in the upper part of -
fig. 12githe corresponding vector system is free tqvpfécesé in the
(i, a)-plane about the §-axis which 1is the axial.symmetry‘axis at' y=0°.
However, as y changes from O° towards 60°, the rotafion—aligned vector
system gradually localizes about the §-axis, since this position isvnqw~
favored by the potential energy due to mechanism (ii). The coupling to
the ﬁ—axis.is illustrated for y = 30° in the lower part of fig. 12. It
should be noticed that the véctor diagram is now”approximately equivalent

to that of a K = (R - 2) y-bandhead. ' -
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The gradual localization sf the aligned angular momenta aboutbthev
a—axisv occurs in the same way for other favored Yrest states with j 2
j*4, ... and gilves them the characteristic of K =Q¢% 2,. K=0Q¢ _Z;,
Y-bandheads. At this point, K and © are considered'as everaged
projections of»;. and }. on the»ﬁ—axis; they efe not-gbod duantum

numbers, however can be used for an approximdte classificatidn, It

turns out that Stephens' rotation-aligned coupling scheme, which holds

for y=0°, persists when moving into the triaxialiregion, but,.in'addition '

to the alignment of 3. and §; both now align with the.é—axis. This has
an important eonsequence which distinguishes the triexial region and can
be tested.experimehtaliy On the basis of the additional coupling to
the intrinsic 2—axis, one now expects rotational bands with normal spin
order to build up on each of the favored Yrast states. The onset of
this band structure is indeed present in the model solution as weil as
in_experimental spectra. It will be discussed in the peit section..
From.the coupling picture derived above, oﬁe might approxibately
consider the excitation energy of the (j = 2) state-es puré rotationai

energy aBout the i—axiskgggz taken from Eq. (2.14)):

(K- =2)2 3

E(j-) ~ Ej = = . (37)

2 o
3}2 2sin (y-60°)

In the same kind of classical approximation, one.obtains

2 sin? (y - 60°)

BE2 -0+ = g (P

ee s

16n Q 2 4 (3'8)t'
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using expression (2.37) for the quadrupole moment -qﬁig. As shown in-

fig. 12, these approximate eXpressiops feproduce the y-dependence of

thé exact excitation'energy and B(E2; (3 -2)~>3) in the'right way and
confirm fhét rotation about the.ﬁ-axis is indeed the basic mode underlying
ﬁhé_(j;-Z) state in the triaxial region. .Due ﬁo ﬁhe coupling to the
E-axis, ﬁhe B(E2; (j-2)+3) is quite large even at y = 30° where the |

2; (y-bandhéad) + 0+ (groundstate) transition of the core is forbidden

as seen from Eq. (3.2).

3.5, Classification of States and Band Structures

In the'pfeceding chapters, individual states and their depehdence
on the model parameters have been studied. The question remains how
~ the states can bé classified in a systematic ﬁay; A related question
is to which extent band structures known from strbnglybdeformedvnuclei
persiét in the transitiénal region. :

The weak coupling classification in terms of core excited states
can be dsed for deformations |8 - AZ/%| < 4, but is inadequate
in.the region B'Az/%‘> 4, where the energy spréad ofvthe core multiplets
becomes larger than the core enérgy spacings (seé'fig. 5). Most trans-
itional nuclei around A=135 and A=190 havé deformations 4 < B._'.Az/3 <”7.
This indicaﬁes that the strong coupling’classifiéation'in térms oft
projectioﬁs of 3. and .; on an intrinsic axis migﬁt be more adequate
for these nuclei. o

 As discuésed in section 3.4., thé odd particle tends to couple to

the 2-axis of the triaxialvcore, and, consequently, this axis will serve
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as an approximate symmetry axis. The approximate quantum numbgrs_‘f and

Q are defined in fig. 13. Although the model wavefunctions

e © 2 o (R XD ¢ ™ B)
‘ K,Q ' . _ -
consist of a t'nixt‘ure of a11‘ p_ossiblg K and @ ',c‘omponents,, it is found
that most of the lowest energy states havé »onle’dvomin‘ant‘ component
C(TI(-’Z%’O‘) which determines their approximaté (i(-,ﬁ) ‘cl'vass_ification.'
Th1s is demonstrated.bin Table_- 3‘ for the lowest states at.y'= 30° and

23 25, %

B+ A = € (sée fig. 6a). The (K,9) classification of these '

F
states is aléo shown in fig. 14. Some important points should be

emphasized:

1. As seenv from Table 3, only the very lowest states have dominant |
(X, 9) comp'oneﬁts which represent more i:han 50% bf"the wavefunction. vIt‘
is therefore in a very tentative senée that the-b(ll/2)1, (13/2)1, (15/2)2,
(17/2)2 states, given in the first part of the fablé, are considered as
forming gh approxima'te K=0=11/2 band. This ié_ even more so for the
(K = 15/2, ©=11/2) and the (K=7/2, ©=11/2) band classification, which
relates these states to odd-A y-bands, and"for the higher st#tes classified v'
“as Q = 9/2 ;;tates. Nevertheless, this classification will turn ouf to |

be useful in the analysis of experimental spectra.

2. Although the (K,Q) classification is weakly defined by the
wavefunctions, another strong coupling feature stating that largest
B(E2;+)- and B(M1;+)-va1ues occur between states within a band is found

to be rather well developed in the model solution, This is demonstrated.




-35-

in fig. 14. It shows that there is a strong coupling pattern underlying

the calculated odd-A spectrum even for B« A?'/3 =5 and y = 30°.

3. However, the coupling is npt strong enough to insure that the
main decay-éhahﬁels run within.the séparate Bands.:_Médel states lying
higher in energy, e,é, those with ﬁhe Q=9/2 ciassification, but also
highet.sfates 6f the K = 11/2 and E ='7/2 bands, decéy favorably into
lower neighbqring bénds. Iﬁe comparison with experimental éases iﬁ‘

Part II of ﬁhis work will give evidence for this band leaking.

4. The'spectrﬁm at y=60° andf8°-A%/%_= 51s also showﬁ in fig. 14
for compaiison. Its_lowéenergy part consists of a-rgthet-pure K=98=11/2
and a'i = §;=_9/2 band. When going into the triaxial regibn starting
from y = 60°, the 11/2- and 9/2-band mix with gach other and with othér'
higher bands, thds gradually losing their (E;ﬁ) éharatter. But it wili'be
noticed tﬁat remainders of these bands, at ieast tﬁe lowest meﬁbers’of

the 11/2-band, can be identified all over the triaxial region.

5. As . a new feature, additional bands with y-band character
K =’§i{2, 51:4, .e. cOme down in energy in the triaxial region and take
over as lowest excitéd states for y < 30°. For Yy approaching 0°, the

bandheads of.these additional bands form the decoupled'yrast band.
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4, CONCLUSION

The model of an_odd nucleon coupled to a-fotating triaxial core
has been investigated with the aim of providing a basis for a systematic
study of tramsitional odd-A nuclei. .Concerning.thevcoupling of the odd

nucleon to the core, the model covers the weak-coupling region

(0v<'8"A2/3.< 4) as well as the strong-coupling région (B - AZ/3 > 7)

and déscribes thebvarious intermediate regiqns a$ a_£unc£ion_of the
deformation parémeter B e A?'/3
of freedom is found to play a'décisive roie in thé.pérticle-core coupling.
It is observed that the calculated energies, moments, and transition
probabilities of the coupled core-particle systém are sUbject_to drastic
variations when y.changes in the range 0° < y < 60°.. This opehs a wide
field for ﬁesting the model éxperimentally.

A systematic comparison with unique-parity spectra of nuclei in.
thé A=190 and A=135 mass region is given in.Part:II of this work. AThé -
comparison provides stfong evidence that the preéentvmodel indeed applies
to transitiénal odd-A nuclei aﬁd that triaxial shapes are a general
feature of tthe nuclei. It turns out thgt the assumption of rigid
triaxial shapeé is a better approximation with réépeét to the particle-.
core coupiing than with respect to the collectivé‘motion of the core.
Odd-A transitional nuclei therefore represent the:real domain of the
Davydov approximation. The general solution, given in this papéf, may
serve as a guide for analyzing odd-A data and may st£mulate new éxperimental
work to verify'—- or refute —- the numerous trends for energies and

transition probabilities predicted by the present>work.

and the asymmetry parameter y. Thé y-degree
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Values of y and corresponding symmetry‘axes for axially

Table 1.
symmetric prolate and oblate shapes.
Sy symmetry axis shape
05- 3 prolate
60° 2 oblate
-120° 1 prolate
180° 3 oblate
240° 2 prolate
300° 1 oblate

* % % ¥ % *

Table 2; Sigﬁ rule for mixing ratios G(I1 -+ 12) in odd-A nuclei with

the odd nucleon representing either a neutron or a proton and

‘either a particle or a hole.

G(I1 -+ 12) Neutron Proton

E. > E '

,Il I, particle  hole -particle hole
I, >1I, + - - +




Table 3. Dominant components _|C

y =30°, 8+ 7% =5, and A = €

~40-

(I, §=11/2),2
K,

1-

of the wavefunctions for

K .2
Banq Spin Energy ch’Ql
11/2 1 EI/(ﬁZ/zjo) K=0=11/2 K=0Q=9/2 K=13/2,0=9/2
K=11/2 11/2 0.0 0.74 0.14 -
O=11/2 13/2 13.0 0.61 0.21 0.01
15/2 26.8 0.22 0.16 0.05
17/2 46.8 0.20 0.09 0.16
15/2 K=15/2,0=11/2[K=13/2,2=9/2|K=9=11/2
K=15/2 15/2 12.0 0.62 0.14 0.09
Q=11/2 17/2 26.9 0.43 0.14 0.14
19/2 34.8 0.19 0.11 . 0.08
21/2 52.1 0.22 0.14 0.10
7/2 K=17/2,2=11/2 |K=5/2,0=9/2 |K=0=9/2
XK=7/2 1/2 9.6 0.75 0.12 -
0=11/2 9/2 18.1 0.44 0.11 0.33
11/2 28.3 0.43 0.16 0.22
13/2 40.4 0.31 0.16 0.13

continued.
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Table 3 (continued)

- | o,

Band vSpiq : Energy _ ICK,QI

9/2 g |KR=0=9/2  K=0=7/2  K=0=11/2
K=9/2 - | 9/2 20.9 0.32 ~ 0.18 -
T=9/2 | 11/2 25,8 ©0.09 0.14 0.13

13/2 46.5 0.10 ~0.10 0.18

13/2 | | K=13/2,2=9/2|K=11/2,0=7/2|K=9/2,0=5/2
K=13/2. | 13/2 © 3.2 0.55 0.16 0.06
0=9/2 15/2 38.7 0.19 0.10 0.06

5/2 o K=5/2,0=9/2 |K=3/2,2=7/2 |K=Q=5/2
K=5/2 5/2 30.0 ©0.66 SRS 0.14
R=9/2 /2 31.6 0.20 0.17 0.04

| 9/2 42.3 1 0.20 0,17 ~0.06
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FIGURE CAPTIONS

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig..

Sa.

5b.
5c¢c.

6a.

6b.

Irrotational moments-of-inertia as functions of v.

Low-energy spectrum of an even triaxial core as a function of Y.

Preceséion of the angular momentum —l;.about the i—axis of the
‘triaxial core at y=30° for the first ;nd the seéond 2+ state.
Single—pafticle energies of a j=11/2 Sheilvin the fieldvéf a
ﬁriaxial core. The heavy lines show fhe-vafiation with vy, the
thin lines the variation with B at Y==05; The'numbérs on the
right and left side give the  quantum number of eéch state for
a#ially symmetric prolate and oblate shaﬁeé, respectively.-

Thé_odd-A energy spectrum as a function of 8 for Yy=0°, A_ = €)%

F

and j=11/2. The core states underlying the multiplets at 8=0

are indicated,

Same as fig. 5a, but for y=30° and Ap =€ .

Same as fig. 5a, but for y=30° and AF =e,.

/3

The. odd-A energy spectrum as a function of y for B'A2 =5,

)‘F = €, and j=11/2.

/3

Same as fig. 6a, but for gea?’ =7 #nd Ap = €,.

The odd-A energy spectrum as a‘fuﬁction_of‘AF for B °‘A2/3 =7,
y=30°, and j=11/2, |
Spectroscopic quadrupole moments of the lowest odd-A states,
including the second .j state, as funétibns‘of vy for B+ A

AF =€, and j= 11/2,

Reduced E2-transition probabilities for the lowest odd-A states

as functions of y for B - Az/3 =5, Ap =€), and j =11/2,

2/3=5
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Fig. 10. Ratios §' = (I,|l/5/167 Q|| IPAI,||M||T,) for the lowest odd-A
$tates, including the second j state, as functions of Y for

=€, and j=11/2. The magnetic unit_uo =y’

S.P. - gRJ

F

- 2/3
B+ A / =5, A
being the singlefpartiéle magnetic moment.

with .'u .
Fig. 11. Some lowest energy states of the odd-A spectrum as functions of
v Y assuming rigid moments—of—inertia with 8 = 0.3. "

Fig. 12, Schematic illustration of the lowest (j - 2) state. Vector
diagrams of 3, §; ;’and their positionvrélative to the intrinsic
axes of the core (shaded area) are shown fdr y=0° and Y=?30;;
the dark disk indicétes the mass distribuﬁion of the.odd nucleon.
In the'cengral part, the éxactly calculgtea E(j;z)band
B(E2;(j;-2) + j) are compared with approximate expressions
(broken lings) for j = 11/2.

Fig. 13. Vector diagram ‘defining thé approximate quantum numbers K and Q.

| Fig. 14. The (E}ﬁ) classification of the lowest odd—A‘stateQ with

=€, and j=11/2 for y=30° and Yy =60°.

Solid and broken lines mark transitions with the largest

B(E2;¥) and the largest B(Ml;+) for a giVen level, respectively.

[
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