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ABSTRACT 

The energy spectrum of an odd nucleon coupled to a triaxial rotating 

core has been calculated as a function of the deformation 8, the asymmetry 

y and the Fermi energy AF. Results are presented in a series of plots 

with the odd nucleon restricted to a single j-shell and the parameters 

covering the area which is of most interest for transitional odd-A 

nuclei in the A= 135 and the A= 190 mass region. ·The results apply to 

unique-parity spectra which are based either on particle or hole states 

in a j = 11/2 shell, but hold also for j = 9/2 and j = 13/2. In addition, 

results on moments and transition probabilities are given. The quasi­

particle-rotor Hamiltonian is derived with special emphasis on .the particle­

hole symmetry. The analytic solution for the even triaxial rotor at 

y = 30° is given. Concerning the odd-A spectrum, characteristics which 

can be tested experimentally are discussed, and a qualitative physical 

interpretation is given. In particular, band structures in the triaxial 

region and their approximate classification are pointed out • 
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1. INTRODUCTION 

One of the new results obtained from heavy-ion experiments is the 

excitation of high-spin rotation-like bands in nuclei well beyond the 

established rotational regions. These results suggest that the concept 

of collective nuclear rotation has a wider range of validity than assumed 

in the past and is also applicable in the transitional regions between 

rotational and closed-shell nuclei. It has been shown recently by 

Stephens that the yrast bands of a number of transitional odd-A nuclei 

can be understood in terms of an odd nucleon in a high-j shell coupled 

. 1) to a rotat1ng core. One of the objectives of the present work is to 

show that this concept holds more generally for whole families of unique-
'I 

parity states including high-spin and low-spin states. 

The unique parity states in heavy odd-A nuclei, on which the 

present investigation is focussed, are a very interesting group of states, 

since they represent a "simple case" in otherwise more complicated spectra. 

The configuration of the odd nucleon in these states consists of an almost 
' c 

pure high-j shell (h1112 , i 1312 , etc.) which does not mix with neighboring 

shells due to its opposite parity. The family of states belonging to 

such a j-shell is easily identified in the experimental spectra, since 

their members decay predominantly within the family. In some favored 

cases, rather complete families of unique parity states are now known 

with high-spin states obtained from heavy-ion experiments and low-spin 

states observed in 8-decay. 

Because of the pure configuration of the odd nucleon, the energy 

spectrum of a family of unique-parity states gives rather direct information 

on the shape and the collective motion of the core. The main point of 

, 
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the present work will be that the odd-A spectra are particularly sensitive 

to triaxial shapes and that certain families of unique-parity states 

contain detailed evidence for triaxial nuclear deformations. Because 

of the larger level density of odd-A nuclei at low eriergy, this evidence 

goes far beyond what can be obtained from even nuclei. Some of the 

2 results have already been reported. ) In the present publication, a more 

complete account of this work is given. 

The shapes of transitional nuclei are known to be rather soft. 

They fluctuate about average shapes which are of moderate deformation 

(0.1 < 8 < 0.2) and triaxial (0° < y < 60°). The theory of the collective 

motion of the nuclear surface and the coupling of an odd nucleon to this 

3 motion has been formulated by Bohr and Mottelson. ) A complete dynamical 

solution of their equations is fairly complicated already for even 

4 5 nuclei ' ) and will be more cumbersome for the odd-A case. In the 

present work, therefore, the Davydov approximation6) is used which fixes 

the collective wavefunction at its average values, assuming a rigid triaxial 

shape. This is certainly a serious limitation which needs some comments. 

The use of a fixed shape affects the odd-A solution at two points: 

(i) at the energies and wavefunctions of the core, and (ii) at the 

coupling of the odd nucleon to the core. Concerning the first point, 

it should be recalled that, on the one hand, the spectrum of a rigid 

triaxial rotor approximately reproduces the lowest excited states of 

even transitional nuclei, e. g., in the A= 190 and A= 135 mass regions. 

+ In particular, it accounts for the low-lying second 2 states which are 

characteristic for triaxial shapes. On the other hand, there are 

systematic deviations which reflect the softness of these nuclei. 
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Especially, one observes an overall compression of the experimental 

speCtra as compared with that of a rigid triaxial rotor and, in the 

calculated odd-A spectra, this deviation will, of course, show up in a 

t parallel way. 

It should be noticed, however, that the second point concerning 

the particle-core coupling is the more important factor with respect to 

the odd-A spectrum because it determines the level order, and, at this 

point, the approximation of fixed triaxial shapes turns out to be well 

supported by the comparison with experiment. The odd-A spectrum changes 

drastically when going from prolate-type (0° < y < 30°) to oblate-type 

(30° < y < 60°) shapes. Such a transition is observed in the A= 190 mass 

region and is well described assuming rigid triaxial shapes. In fact, 

it will be the surprising result of the present investigation that rather 

complex families of unique-parity states can be reproduced with fixed 

8 and y values derived from neighboring even nuclei and that, apparently, 

the core parameters are not much influenced by adding the odd nucleon. 

Based on this observation, it will be concluded that a number of 

transitional nuclei are less soft than expected from existing theoretical 

calculations of potential energy surfaces. 

There exists previous work on odd-A triaxial rotors. In some of 
7 . . 

the publications, ) the adiabatic approximation is applied which considers 

the odd nucleon to be in a definite single-particle state. This restriction 

t 
One could use the empirical core energies in the odd-A calculation to 
reduce this discrepancy. In the present work, the solution of the 
pure triaxial model is preferred since it allows a more general 
presentation. 

... 
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is certainly inadequate for weakly deformed nuclei where the coupling 

of the odd nucleon to the intrinsic shape is relatively small and the 

Coriolis mixing large. It is therefore important to take at least one 

complete j-shell for the single-particle configuration space so that the 

odd nucleon is free to orient its angular momentum relative to the 

core or to move uncorrelated to the intrinsic shape. It is this point 

which insures that the model contains the weak-coupling limit as well 

as the strong-coupling limit and is able to describe the various inter-

mediate regions. The first calculation of this type has been done by 
. 8 

Pashkevich and Sardaryan ). The present calculation is basically the 

same, but treats the odd nucleon as a BCS-quasiparticle, thus accounting 

for the Pauli principle in partially filled shells. Only one-quasiparticle 

states are considered. This limits the applicability of the model to 

low-excited states below 26., where 6. denotes the pairing gap. 

The present report is divided into two parts. Part I, given in 

this paper, presents the basic equations and symmetries of the model and 

provides a general survey over the model solution. Special emphasis is 

put on the physical interpretation. In Part II, the model calculation 

will be compared with some representat,ive experimental cases in the 

A= 135 and A= 190 mass region. The question of softness and how the 

present result relates to other wo.rk on transitional nuclei will be 

discussed there. For convenience, a Table of Contents of the following 

chapters of Part I is given here: 

2. The Theoretical Model 

2. L Single-particle and single-hole states 
2.2. The quasiparticle-rotor Hamiltonian 
2.3. The symmetries 
2.4. The diagonalization 
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2. 5. Moments and transition probabilities 
2. 6. The parameters 

3. Numerical Results and the Physical Interpretation 

Some properties of the triaxial core 
The odd-A energy spectrum 

3.1. 
3.2. 
3.3. 
3.4. 
3.5. 

Calculated moments and transition probabilities 
The physical interpretation 
Classification of states and band structures 

4. Conclusion 

2. THE THEORETICAL MODEL 
2 .1. Single-particle and siilgle-hole states 

The.model investigated in this paper consists of an odd nucleon 

coupled to a rotating triaxial core. The odd nucleon is considered as 

a quasiparticle that represents either a particle or a hole or a super-

position of both. Its configuration space will be restricted to a 

single j-shell which is either filled or unfilled or partly filled by 

core particles. The quasiparticle will be described within the BCS 

approximation. The basic equations (2.6), (2.11), and (2.15) are written 

in a (2 x 2)-inatrix notation which accounts in an explicit way for the 

particle and the hole equation·and the coupling of·both by the pairing 

interaction. The particle-hole symmetry (2. 22) of the model can be 

conveniently discussed in this presentation. 

and 

9 Particle and hole states c.an be expressed in the form ) 

= 

= 

t A 

ajn I o> 

(-)j+n aj-Q I 6 > 

'· 

respectively, where are creation and annihilation 

(2.la) 

(2.lb) 

operators for a particle in the j-shell, and I 0) denotes the ground-

state of an even nucleus with mass A. The energy of the states in the 

... 
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spherical j-shell are conveniently defined relative to the Fermi energy 

AF, One has (ej - AF) for particle states, and (AF - £j) for hole states. 

The matrix elements of a single-particle operator F for particle and hole 

states are related by the particle-hole conjugation9) 

(2. 2) 

where c is determined by the symmetry of F under the time reversal 

T F T-l = c F 

For the deformation potential V of the core see rEq. (2.7~ , which . p t 
splits the degenerate levels of the j-shell, one obtains 

< .-rn lv j·-ln > 
J 1 p J 2 = 

(2.3) 

(2.4) 

Beside the deformation interaction V p' the pairing interaction is taken 
A 

into account by the pairing potential 6. which couples particle and hole 

states 

(2.5) 

Here, · 6. is the usual gap parameter. 

In the present work; the core is treated as a collective rotor • 

The potentials V and 6. and the in~rtia parameters in Eq. (2.12), which . p 

characterize the core, can be considered as arising from an underlying 

microscopic theory. Within the present approach, however, they are 

determined phenomenologically. 
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2.2. The Quasiparticle-Rotor Hamiltonian 

On the basis of relations (2.4) and (2.5), the Hamiltonian of the 

odd nucleon is obtained in the form 

The energy of the spherical shell e:j is set = 0 in the following. The 

deformation potential 

= + y2-2(~.~>)] 
(2.7) 

is generated by the ellipsoidal shape of the core with the semi-axes 

K = 1,2,3 (2.8) 

The deformation parameter (3 and the asymmetry parameter y determine the 

shape, k(r) determines the radial dependence of V , Y2 are spherical 
' p ~ 

harmonics, an:d R is the nuclear radius. The Pauli matrices in Eq. (2.6) 
0 

refer to the particle and the hole space. The two subspaces are defined 

explicitly by the vectors 

I jr~ > = x~><;l (J s.p. (2.9a) 

I jrl > s.h. = x~><;>(:). (2.9b) 

where is given by 

= (2.10). 
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The term ( olv Ia> of Eq. (2.4) has been omitted in Eq. (2.6)' since it p 

can be absorbed into AF and a constant term added to JCP. 

The rotational Hamiltonian of the core is 

JCR = ~·c J (2.11) 

where 

3 (I - j ) 2 

~ 2: K K = 

2$ K=l 

(2.12) 

In Eq. (2.11), it is assumed that 

(2.13) 

implying that the energy of the rotating core does not depend on whether 

the odd nucleon is represented by a particle or a hole. In Eq. (2.12) 

IK and j K are the components of the total and the single-particle 

angular momentum, respectively. The three moments-of-inertia are chosen as 

j . tl 4 2 2'1r 
K = vo •Jsin (y-TK) K = 1,2,3 (2.14) 

throughout this work, unless stated differently. The dependence of c!JK 

on the shape asymmetry r is that of irrotational flow; the overall value 

Jo will be adjusted. It coincides with the normal moment-of-inertia of 

axially symmetric deformed nuclei at r = 0°. and r = 60°. 

2.3. The Symmetries 

The total Hamiltonian 

(2.15) 
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is invariant under 180°-rotations about the intrinsic axes (D2 symmetry 

group). These symmetries allow the wavefunction to be written in the form 

'¥ IM,a = fTI.1I""'' c(I, j 'a)(n (I) 
~ 161T2 L.J K~"l'r MK 

K,Q,"C 

where the summation is restricted to I K I ~ +I, I Q I ~ j, (K + j) even, 

(Q+ j) even, and "C = ± 1; D~ denote rotational D-functions. The 

index "C distinguishes between particle and hole states, and a labels 

all states for a certain total angular momentum I. 

(2.16) 

There are more symmetries in the problem arising from permutations 

of the intrinsic axes and particle-hole conjugation. The six different 

ways of labeling the intrinsic axes correspond to six equivalent domains 

in (13,y)-space 

y = ± y 1
' ± y 1 + 120°, ± y 1 + 240° 

with 0° ~ y 1 ~ 60° and a > 0. Each domain describes the same set of 

possible shapes. Table 1 shows the y-values for which axially symmetric 

oblate and prolate shapes occur and gives the corresponding symmetry axes. 

For the potential V , which depends on the particular choice of the axes, p . 

cyclic permutations give rise to the symmetry relations 

= 

where the subscript at a,~ defines the axes to which the polar angles 

are related. Another symmetry relation derived from Eqs. (2.7) and (2.17) 

-~-· 
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is 

= (2.18) 

From this relation and particle-hole conjugation,a basic particle-hole 

symmetry can be derived. Defining a transformation · r that transforms 

the set of parameters a, y, AF' A and the axes 1, 2, 3 simultaneously 

according to 

r: <a, y~ AF' A) -+ (a, 60° - y - A , - A) , F . 
,. ,. ,. 

(1, 2, 3) -+ (3, 1, 2) 

one obtains from Eqs. (2.6) and (2.18) 

rt JC r = -3fp p 

and, applying r to Eqs. (2.11), (2.12), and (2.14), 

= JC 
R 

On the other hand, particle-hole conjugation yields 

t . 
-3C ay JCP a = 

y p 

a;~ a = JCR y 

(2.19) 

(2. 20a) 

(2.20b) 

(2.2la) 

(2.2lb) 

using the Pauli matrix ay = (-i i). The combination of Eqs. (2.20) and 

(2.21) leads to the important particle-hole symmetry of the total 

Hamiltonian (2.15) 

(a r) t 3C (a r) = 3C 
y y (2.22) 
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This symmetry, expressed in words, says that a particle coupled to a 

core with parameters B, y, AF has the same energy spectrum as a hole 

coupled to a core with parameters BJ 60°- y, -AF. The permutations of 

the intrinsic axes and the sign change of 6 under transformation r have 

no effect on the energy spectrum. 

2.4. The Diagonalization 

The Hamiltonian (2.15) is diagonalized in three steps. The first 

two steps bring Jfp into diagonal form 

by the unitary transformation 

The unitary transformation S diagonalizes the potential 

= £ 
v 

v 
p 

yielding the single-particle energies £ • The sum in Eq. (2. 24), is v 

(2.23) 

(2.24) 

restricted to ln2 1 ~ j and even integers for (j + n
2
). The matrices (e ), 

v 

U and V are diagonal; their matrix elements are the quasiparticle energies 

(2.25) 

and the BCS-occupation probabilities 
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1 ( E - A ) v2 v F 
= 2 1-\) e 

\) 

(2. 26a) 

2 2 u = 1-V 
\) \) 

(2.26b) 

respectively. The total wavefunction (2.16) is now spanned by new basic 

states 

IKv> (2.27) 

with 

I ±v > = 

and the sum restricted to I Q I ~ j and even integers for (j + Q). In this new 

space, KR is obtained as 

CKK' ~~\) 
. KK' 

~v) -h 

,f3t K ~ 
~\) ~\) 

= R KK' KK' h 11~ \) h ~~\) ~\) ~\) 

(2.28) 

where 

KK' 
( K~ I hR I K I\)) h = , 

~\) 
(2.29 

and 

~~\) = u u +v v ' ~ \) ~ \) 
(2.29b) 

.. = v u -::. 11~ \) .U. -v 
'11-··. \) ~ \) 

In the actual calculations, eXpression (2.28) will be approximated by 

KK' 

\) f3t j( ~ ~ (h"v l;"v (2.30) R KK' h 
~\) 
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so that the final diagonalization of Jf = Jfp +JfR comes down to 

"·. ' (hKKIJ. vI ) (I ) L...J ~IJV ± ev oKK, oiJV tK' ,j 
· v,n 

= (2.31) 
K',v 

with the summation restricted to I K' I ~ I, (j + K') even, and 1 ~ v ~ 

(j + !z). There are (I+ !z) • (j + !z) eigenvalues with total angular 

momentum t for the rotor-plus-particle system and·an equivalent set of 

eigenvalues for the rotor-plus-hole system for which the minus sign in 

Eq. (2.31) holds. The two sets of eigenvalues are connected by the 

particle-hole symmetry (2.22) which gives 

E(I,j) ((3 y A 
n . ' ' F 

(2.32) 

Expression (2~ 30) which neglects the coupling between quasiparticles 

and quasiholes holds exactly if the Fermi energy is placed well above or 

well below the single j-shell, since then n = 0. But even in the case 
IJV 

when the Fermi energy penetrates the energy region of the single-particle 

KK' 
states, the approximation h n :::>< 0 is justified since IJV IJV 

nJJv = 0 for IJ = v ,. (2.33a) 

n!Jv e! 0 for IJ ;. v and I£ - £ I < 2~ IJ v 

and, on the other hand, 

KK' KK for IJ ;. v and I£ - £ I > 2~ h << hu. ' IJV IJ ' v 
(2.33b) 

where KK 
hu is an averaged diagonal matrix element. The latter estimate 

., 

., 

·~ 
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is based on the fact that the Coriolis and centrifugal terms 

KK' 
h 
~\) 

= 

3 

~ (-2 <K~ I I j I K'v> + < K~ I j 2 I K'v>)j2t<. ~ K K . K ~K 
K=l 

predominantly couple neighboring single-particle states and second 

neighbors which differ less than 26 in energy -- at least for weakly 

deformed nuclei (0.1 < 8 < 0.2) which are considered in this work. 

2.5. Moments and Transition Probabilities 

The quadrupole operator 

= t2 (C) + .t")(P) 
2~ ~2~ 

consists of two parts, one referring to the core 

.Q (C) 
2~ J 

and the other referring to the odd nucleon 

£) (p) 
~2~ = e (p)~ 165lT 2 

r Y2~ eJ 

(2.34) 

(2.35) 

(2.36) 

where e (P) = e for protons and e (p) = 0 for neutrons. The intrinsic 

quadrupole tensor of the core is given by 

(K) 
q 20 = Qo cos ( Y - 23lT K) 

(K) q (K) ' Qo ( 27T ) (2. 37) q 22 = = ./2 sin y - 3 K 2-2 

(K) 
q 21 = (K) 

q2-l = 0 
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where K = 1,2,3 denotes the axis to which the projection ll is related, 

and 

= 
3 

(2.38) 

is the intrinsic charge quadrupole moment, R the nuclear radius, and Z 
0 

the charge number. The magnetic dipole operator is defined as 

(2.39) 

Z free 
for j = R. ± ~. and with gR = A , gs 1:: 0. 6 gs , and gR.= 1 · for protons 

and g = 0 for neutrons. R, 

It can be shown that the operators e and ·c:4, transform under the 

particle-hole transformation (o r) as y 

(o r)t Q2 (or) 
y ll y = (2.40) 

t -. 
(o f) c),{_ (o r) 

y y . (2. 41) 

These relations represent a generalized particle-hole conjugation in the 

combined quasiparticle:-core system. Equations (2. 40) and (2. 41)- can be 

proved by Using the definitions (2.19) and the symmetry ft q~j f = -q~? 

which involves the transformation y -+ 60°- y and a cyclic permutation 

of the intrinsic axes. Due to. the symmetries (2.40)and (2.4l),all 

reduced matrix elements of Q2ll change sign when going from a particle 

case 

-).F' 

with parameters a, y, ).F to a hole case with parameters S, 60°..:.. y' 

but remain unchanged for 
-+ 

the magnetic operator M. 

For particle --states, the reduced matrix elements. of Q (C) Q (p), and 
2ll ' 2ll 

'·.~ 
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-+ 

M are obtained in the form 

<I' ,a' II Q <c> II I,a> = F (C) 
I 1 a', I a Qo (2.42a) 

<I' ,a' II q<P> II I,a> = F (2) q 
I' a' , I a s.p • (2.42b) 

. ., . 

and, for (I'~a') ~ (I,a), 

( I' ,a' II M II I ,a) = F ~1~ I (~ - g J.) 
I a , a s.p. R 

(2.42c) 

where q and ~ are the single-particle values for the quadrupole 
s.p. s.p. 

moment and the magnetic moment 

= 2j -1 2 q - 2j + 2 ( r > s.p. 
(2.43) 

(gR, ± 
gs- gR. ) 

j ~ = 
s.p. 2.ll. + 1 ' . (2.44) 

2 - ( 3) 1/3 2 and ( r ) = n + 2 • A [ fm ] for the (n,j,i) shell. In Eqs. (2.42), 

the effect of the rotating core on the matrix elements is contained in the 

the F-factors which are given by 

F(C) ~(2I' +1)(2I+l) L' w(~:~:~a, 2 ) . I'-K'C' 2 I) = (-) q2v/Qo 
-K' v K 

K,K',rl,v 

(2.45a) 

•• 

F(A) ~(2I'+l)(2I+l>E' (I'a',Ia,A) I'-K' (- )j-Q I * = (-) . w K'rl' ,Krl 
K,K',rl,rl',v (2.45b) 

*~(I'>. I)( j 

L -K' v K -(l' 

A j) I-j (I 
1 

A + (-) 
v Q -K' v 
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for .A= 1,2. The summations are restricted as in Eq. (2.16). The amplitude 

(I I a I, Ia,.A) 
w K 1 Q 1 KQ 

t 
= 

(j) 
SQI Kl 

(2.46) 

includes all the information on the wavefunction. From the reduced matrix 

elements (2.42), one obtains for the spectroscopic quadrupole moments and 

the magnetic moments 

Q(sp) c 2 
:) <Ia Jl Q II Ia) = I a 

0 

+C 1 
: ) < I a II M II I a l llia = gRI 

-I 0 

and for the reduced E2- and Ml-transition probabilities 

B (E2; I a -+ !a 1 
) = _L_ ·1 < I 1 a 1 II Q II I a > 1

2 / ( 2 I + 1) 16TT 

B(Ml;Ia-+I 1 a 1
) = I<I 1 a 1 11MIIa>I 2 /(2I+l) 

. Mixing ratios are defined as 

o(Ia-+ I 1 a 1
) = O. 7 E 2 ~ 5 < I

1
0\

1 
IIQIIIa) 

Y · 16 TT < I 1 0\ 1 IIMII Ia) 

'(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

where EY = (EI - EI 1 ) is the transition energy in MeV. The expressions 

(2.47)- (2.51) correspond to particles coupled to the rotor; the results 

for holes are obtained by applying the particle-hole transformations (2.40) 

and (2. 41) which reverse the sign of Q (sp) and o, but leaves all other 

quantities unchanged. 
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2.6. The Parameters 

The free parameters of the model are a, y, and AF. The general 

dependence of the energy spectrum and the transition probabilities on 

these parameters will be discussed in the next chapter. For a particular 

odd-A nucleus, a and y will be determined from the lowest excited states 

of the adjacent even nuclei, and AF will be estimated from the Nilsson 

level scheme. All other parameters are chosen as a smooth function of the 

mass A, e.g. k and 6., or as a function of a and A, e.g. ~0 • 

The strength k of the deformed field of the core is taken as 

co 

k = . dr r 2 (f(r)) k(r) f 
. 2 

0 

= 206 [MeV] 
Al/3 

(2.52). 

consistent with the splitting of the h1112 shell in the Nilsson level 

scheme. The inertia parameter ~0 is determined by the relation 

= 204 [MeV] 
a2 • A7/3 

(2.53) 

which is derived from the general empirical rule 

(2.5 ± 1) • 10- 3 
• z2 

• A-l [MeV• (eb) 2
] • 

+ + E + • B(E2; 2 + 0 ) :::: 
2 . 

(2.54) 

As shown by Grodzins10), relation (2.54) holds for first excited 2+ states 

almost throughout the nuclear mass table. Both relations (2.52) and (2.53) 

have been derived assuming axially symmetric deformations. In this work, 

however, they are considered to hold also for triaxial deformations. 

. + + 
The slight y-dependence of E + and B(E2; 2 + 0 ) in the Davydov model 

2 

can be neglected in view of the uncertainty involved in relation (2.54). 
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The pairing potential is chosen as 

1::. = 135 .[MeV] 
A 

(2.55) 

consistent with odd-even mass differences in the mass region 100 < A < 200. 

-1 -~ Choosing an A dependence for 1::. rather than the more general 1::. == 12 • A 

relation9 ) has the advantage that it preserves a general scale property 

of the model. Using the inertia parameter (2.53) as energy unit, one 

obtains from Eqs. (2.52), (2.53), and (2.54) 

kl3 1.01 • (l3. A2/3)3 = ' (h2 /2._}0) 
(2.56) 

and 

A 0.66 ··(13•A2/ 3) 2 
= . 

(h 2 /2Jfo> 
(2.57) 

It is seen that the model now contains both 13 and A only in the 

combination 

b (2.58) 

The energy spectrum of the model obtained for a certain mass A can 

therefore be applied also to other mass regions using,the scale trans-

formation~ (2.53) and (2.58). 

Finally, it should be noticed that the model solution depends 

only weakly on the angular momentum of the j-shell. The solution for 

a j = 11/2 shell presented in the next chapter therefore is a good 

approximation for other j-shells, e.g., for the j = 9/2 and j = 13/2 

shell. 

.. 
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3. NUMERICAL RESULTS AND THEIR PHYSICAL INTERPRETATION 

In this chapter the energy spectrum, moments, and transition 

probabilities of the triaxial odd-A system are giv~n as functions of 

the model parameters S, y, and AF. The equations of the model are solved 

numerically, and the results are presented in a series of plots providing 

a survey over that part of the model solution which turns out to be of 

most interest for actual transitional nuclei. The results are then 

interpreted in a qualitative way; good analytic approximations have not 

yet been found. 

3.1. Some Properties of the Triaxial Core 

Since the features of the odd-A system are closely related to those 

of the even core, some properties of the core will be discussed briefly 

at this point and listed for further reference. More details are given, 

e.g., in the work of Davydov6) and in Davidson's book11
). 

The moments-of-inertia ~K (K = 1,2,3) defined by Eq. (2.14) are 

shown as functions of y in fig. 1, and the corresponding lowest states 

of the triaxial even rotor are given in fig. 2. Besides the normal 

+ rotational band, a second 2 state and other additional states are seen 

to come down in energy as a function of y, marking the triaxial region. 

The energies of the first and second 2+ state can be expressed analytically6) 

= 9 + /s1- 72 sin2 (3y) 

4 sin2 (3y) 

and the transition probabilities to the groundstate are 

(3.1) 
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( 2 2+ 0+) 5 Q2 
• ...!... [1 ± B E ; 1 2 + = "'i"6i' 0 10 

' 
3- 2 sin (3y) J 

Jg- 8 sin (3y) 
(3.2) 

In Eqs. (3.1) and (3.2),the upper sign refers to the 21 state and the 

+ lower sign to the 22 state. 

A general analytical solution exists for the even triaxial rotor 

at y = 30°. Since this solution provides some insight into the triaxial 

dynamics and is not found in the literature, it will be given here. 

Since two moments-of-inertia are equal j 2 = j 3 at y = 30°, as seen in 

fig. 1, the Hamiltonian (2.12) becomes axially symmetric about the 1-axis 

for y=30° (although the shape does not!) and cari. bewritten as 

= a[R: + 4(R~ + R~)] 

+ 
Due to the symmetry, the angular momentum R has 

... 
a sharp projection a on the 1-axis; a has to be an even integer. 

The energy spectrum is obtained in the form 

and the wavefunctions are 

'!' IM,a 
= .... / 21 + 1 

ll6rr2 (1 + 0 . ) · a,o 

t· 

The general expression for the E2-transition probabilities is 

(3. 3) 

(3.4) 



.. 

-23-

I2 I2 
= (-) 

(5/16•) (2!2 + 1) {Cl 2) q(1) + II ( I 1 2) (1) B(EZ; 11 a 1 
+ I 2a 2) (Ho )(1+0 ) a q 20 

a
1

,o a2,o 1 -a2 0 20 
-al -a2 0 

[c~ I2 2) c~ I2 2) + (-l)Il c~ I2 2) l q w 
1
2 + + .. 

a
1 

-a2 2 a1 -a2 -2 -a1 -a 2 2 

where, according to Eq. (2.37), the intrinsic quadrupole moments related 

" (1) (1) _ Qo 
to the !-axis are obtained as q 20 = 0 and q 22 - ..;z· for y = 30°. 

The spectroscopic quadrupole moments vanish for all states (I,a) at y = 30° 

Q(sp) = 0 
I a 

(3.6) 

since they are proportional to q ~ld. It is convenient to introduce the 

12 so-called wobbling quantum number ) n = I-a, since states with same n 

are connected by large B(E2)-values (3.5). Inserting a= I-n, Eq. (3.3) 

reads 

E = a [I (I + 4) + 3n ( 2 I - n) ] I,n (3.3a) 

where (I-n) has to be an even integer > 0. The quantum number n labels 

a series of rotational bands with I = n, n+2, n+4, • • • (n > 0) parallel, to 

the Yrast band with I = 0,2,4, ••• (n = 0). In connection with the low-

excited odd-A spectrum, one is interested in the lowest states of the 

+ core spectrum, in particular, in the first and second 2 state. For 
+ 

these two states, the precession of , R " about the !-axis is illustrated 

(3.5) 

+ + " 
in fig. 3. For the 21 state (n = 0) R shows maximal alignment with the 1-axis, 

+ whereas for the 22 state (n = 2) 
+ 
R has a zero projection on the i-axis and 

is confined to the (2, 3) plane. The usual characterization of the 2; 
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state as a y-bandhead having a K = 2 projection on the 3-axis holds only 

approximately in the region 0° < y < lS 0
• 

3.2. The Odd~A Energy Spectrum 

The odd-A energy spectrum is obtained as a numerical solution of 

Eq. (2. 31). The single-particle energies Ev (v = 1, 2, ••• j + ~) which 

enter that calculation are given as functions of y ·in fig. 4. They 

represent· the splitting of the pure· j = ll/2 shell in the field of the 

triaxial core. Going from the prolate to the oblate side·at a fixed a 

by changing y from 0° to 60°, the single-particle energies change smoothly 

without crossing each other. The single-particle wavefunctions have a 

sharp r.l quantum number a.t y = 0° and y = 60° • but represent a mixture of 

different r.l-states in the triaxial region. The thin lines.in fig. 4 show 

the energies Ev as they change with a at y = 0° corresponding to a Nilsson 

level scheme. 

The energy spectrum of the odd nucleon coupled to the rotating core 

is shown in figs. 5-7 for different sets of the parameters a, y, and >.F. 

These sets have been chosen to cover that part of the parameter space 

4 2/3. 7 <13•A <, 0° < y < 60°' >.F < e2 which is of most interest for 

actual transitional nuclei in the A= 13S and the A= 190 mass region. 

The plots S- 7 apply to particle spectra; due to the particle.,..hole 

symmetry (2.22) the corresponding hole spectra are obtained by changing 

y, >.F into (60°- y), - >.F. 

In figs. Sa, Sb, Sc the odd-A spectrum is shown as a. function of 13, 

in fig. Sa for axially symmetric deformations and >.F = e: 1 , in fig. Sb and 

Sc for y = 30° with >.F = e1 and >.F = e2, respectively. In the weak coupling 

.. 
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region I13·A2/ 3
1 < 4, the wavefunctions contain rather pure core states, and 

the spectrum consists of almost degenerate core excitation multiplets. 

Beyond this region, structures develop which differ appreciably from weak 

coupling. For axially symmetric deformations~ these structures have been 
1 . 

discussed by Stephens), and fig. Sa is included here as a starting point. 

On the oblate side (13 < 0) a strongly-coupled rotational band with spin 

sequence j , j + 1, j + 2 is seen, whereas on the prolate side (13 > 0) 

a decoupled rotational band appears with spin sequence j, j + 2, j + 4 

and energy spacings which are approximately those of the core; for large 

f3 • A 2/
3

1 an Q = ~ band with a decoupling factor a= 6 is seen to develop. 

It is important to note that all other levels rise steeply in energy with 

increasing deformation and leave the energy region below 30 h 2/:;f
0 

with 

relatively small level density. The larger level density observed in 

experimental cases will be one indication for the presence of triaxial 

shapes. 

The spectrum at y = 30° 1 shown in fig. Sb and Sc, differs from fig. 

Sa mainly due to additional low-excited states emerging from the second 

2; state of the core. These levels behave differently from those of 

the first 2~ state. As seen in fig. Sb, the 9/2 and the 11/2 levels 

stetmning from + . . the 21 state rise more steeply with increasing t3 and 

exchange at a deformation 13 • A 2/
3 

"" S with the corresponding levels coming 

from the 2+ state. This level exchange leads to pronounced variations 
2 

in the decay properties of the first and second excited j and (j - 1) 

levels and therefore provides another test for the present model. 

In fig. Sc the Fermi energy AF = £ 2 has been placed on the second 
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single-particle level which has a good n = 9/2 for y = 60° as seen in 

fig. 4. The penetration of AF into the system of single-particle energies 

which is equivalent to filling the j-shell mainly causes a lowering of 

the (j- 1 = 9/2) state and states depending thereon with spins j + 1, 

j + 3, • • • . The dropping of the (j -'1) state when filling a j-shell is 

observed throughout the nuclear table, and the quasiparticle description 

applied in this work is a simple means to account for this behavior. 

In figs. 6a and 6b, the dependence of the spectrum on y is shown, 

in fig. 6a for I3·A2
/

3 = 7 and AF = e: 2 • It is observed that the odd-A 

spectrum is not symmetric about y = 30° as the core spectrum, shown in 

fig. 2, but that it changes in a characteristic way from the decoupled 

structure at y = 0° to the strongly-coupled structure at y = 60°. The 

spectrum at y = 60° consists of an n = 11/2 groundband and n = 9/2 and 

n = 7/2 excited bands. It is the variety of intermediate situations as 

y changes which gives each y-region a definite signature and opens a 

wide field for testing the model in actual nuclei. For example, the 

favored Yrast states having spins j, (j + 2), ••• are crossing with those 

having spins (j + 1), (j + 3), ••• in the region 20° < y < 30°; the group 

of low-spin states (I < j) moves in a specific way against the group of 

high-spin states (I> j) with the (j- 2)-state, e. g., crossing the (j + 1) 

and the (j +2)-state in the region 30° < y < 40°; second and third states 

of each spin are seen to come down in energy in the region 20° < y < 40° 

(parallel to the corresponding states of the core seen in fig. 2) producing 

a number of near-crossings of states with the same spin, each marking a 

certain y. The positions of these near-crossings, however, also depend 

.. 
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strongly on S and A.F. Placing the Fermi energy at A.F = e: 2 , as done in 

fig. 6b, the lower part of the spectrum merges into an n = 9/2 groundband 

at y = 60° rather than an n = 11/2 band; the n = 11/2 band now appears as 

an excited band. 

The dependence of the odd-A spectrum on A.F' with A.F passing the 

whole range of the single-particle energies, is shown in fig. 7 for 

y = 30° and A2~3 = 7. It should be noticed that the spectrum does not 

depend on A.F as long as A.F lies outside the j-shell. Penetrating the 

j~shell has the strongest effect on the low-spin states with I= (j -1), 

(j - 3) and on the (j - 2) and (j - 4) state when A.F approaches e: 3• The 

symmetry in fig. 7 about A.F = 0 is a consequence of the particle-hole 

symmetry (2. 22) which gives E(S, y = 30°, A.F) = E(S, 60°- y = 30°, -A.F). 

3.3. Calculated Moments and Transition Probabilities 

Some moments and transition probabilities, calculated according to 

the equations of section 2.5k, are given as functions of y in figs. 8 -10 

for 13·A2~3 = 5 and A.= e: 1 • All plots refer to odd-neutron nuclei. The 

spectroscopic quadrupole moments Qsp and the E2-transition probabilities 

therefore contain only contributions of the core. Since the single-

particle contribution in the case of odd protons adds less than 10%, 

plot 8 and 9 apply approximately to odd-proton nuclei also. In the case 

of nucleon-holes coupled to the rotor one has to change y + (60°- y), 

~ ~ Qsp + -Qsp, 
1\F + -1\F' o + -o; the B(E2) values remain unchanged. 

The Qsp of the odd-A nucleus, shown in fig. 8 for some of the 

lowest states, are all negative in the whole region 0° ~ y ~ 60°. This 

is in contrast to the Q8 p of even triaxial nuclei, where e.g. the Qsp 
2+ 

1 
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change from -2/7 Q at y = 0° to +2/7 Q at y = 60° and vanish for y = 30° 
0 0 

as stated by Eq. (3.6). The difference in the behavior is caused by the 

odd particle which, as a general rule, tends to adjust itself to the 

core in such a way that the core adds to the single-particle quadrupole 

moment with the same sign. It will be discussed in the next section 

that this adjustment corresponds to a minimum of the potential energy. 

The E2-transition probabilities given in fig. 9 vary strongly as 

functions of y and therefore provide another possibility for testing 

the model. The change from strongly collective values to small values 

of single-particle strength is especially pronounced for the (j + 2) -+ j, 

(j + 1) -+ j, and (j - 2) -+ j transitions. For the (j + 2) -+ (j + 1) and the 

(j- 1) -+ (j.;.. 2) transition, the B(E2)-values vanish at certain y's; 

these y-points are the same at which crossings of the corresponding 

energies occur and where the signs of the mixing ratios o (I1 -+ I 2) change, 

as seen in fig. 10. Instead of the mixing ratios '(2.51), fig. 10 gives 

the ratios 

o' = 
< I 2 II Js/16Tr Q II I 1 > 

{ I2 II M II Il > 

, 

which are independent of the transition energy. They have a dimension and 

The quantities Q and JJ are 
o · s.p. 

defined in Eqs. (2.38) and (2.44), and gR = Z/A. ~ 

The signs of o follow a simple rule expressed in Table 2. This 

rule has been deduced from the numerical results and holds for all 

sizable transitions within the low-excited level system. The rule is 

independent of y and is found valid at least for 3 < B • A2/ 3 and AF ~ £ 2• 

'j 
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It was confirmed on the basis of some limiting approximate solutions; a 

more general justification has still to be given. 

The magnetic moments of the lowest states are rather well described 

by the expression J.i ::;: gR ( I - j ) + J.i s.p. and do not show any marked 

dependence on the model parameters. With the choice gs = 0.6 lsree, 

measured magnetic moments are usually well reproduced. Ml-transition 

probabilities can be derived from fig. 9 and fig. 10 using the relation 

. 2 
B (Ml; I a + I 1 a 1 ) = o 1 

• B (E2; I a + I 1 a 1 ). 

3.4. The Physical Interpretation 

The dynamics of the coupled system of the odd nucleon and the 

rotating core are based on three physical mechanisms: 

(i) The dynamics of the triaxial core which are determined by 

the three moments-of-inertia and which prefer rotation about 

the axis with the largest moment-of-inertia in order to 

minimize the rotational energy. 

(ii) The coupling of the odd nucleon to the core which prefers 

maximal mass overlap (since the nucleon in the high-j shell 

has an oblate density distribution which is axially symmetric 
+ 

about the direction of its angular momentum j, strongest 

coupling occurs with an oblate core at y = 60°). 

(iii) The interaction between the angular momenta of the odd 
+ + 

nucleon j and the rotating core R due to centrifugal 

and Coriolis forces; the corresponding energy is minimal 
+ + 

for parallel alignment of j and R. 
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-+ -+ 
If alignment of j and R can be achieved, the. odd nucleon does not 

contribute appreciably to the rotational energy of the system, and the 

lowest rotational band is essentially that of the core, but with a spin 

sequence j , j + 2, j + 4 These bands are cal.led decoupled. If, 
-+ -+ 

however, mechanisms (i) and (ii) force j and R to stand perpendicular 

on each other, strongly-coupled rotational bands with spin sequence 

j , j + 1, j + 2, • • • show up. 

The moments-of-inertia and the way theydepend on y play a decisive 

role in the question which of the two situations occur. Since, due to 
-+ 

mechanism (ii), j tends to align with the 2-axis which becomes the 

oblate symmetry axis at y = 60°, the question is in particular how the. 

moment-of-inertia vS'z changes with y. For the moments-of-inertia (2.14) 

used in this work, ~2 -+ 0 when y -+ 60°, as shown in fig. 1. This means 
A 

that, as y approaches the oblate shape, rotation about the 2-axis becomes 
-+ 

increasingly unfavorable and that R is pushed into the {i, J)-plane 
-+ 

perpendicular to j. As a result, strongly-coupled bands build up in 

the oblate region as seen in fig. 6. 

The moment-of-inertia about the symmetry axis of an axially 

symmetric core vanishes for symmetry reasons, but no such argument 

exists in the triaxial region. The actual moments-of-inertia could 

differ from the values (2.14). If one would use, e.g., moments-of-

inertia 

K=l,2,J t 

which depend on y in the same way as those of a rigid body, the odd-A 
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spectrum would look quite different, as illustrated in fig. 11. Since 

then~~ig # 0 for all y, the decoupled level order would persist in 

the whole range 0° < y < 60°. This clearly demonstrates that the 

characteristic variation of the odd-A energy spectrum as given in fig. 6 

and the variety of level crossings decisively depend on the moments-of-

inertia (2.14) chosen to be of irrotational type. The comparison of the 

model with experiment will therefore provide a test not only for triaxial 

shapes, but to the same extent a test of the moments-of-inertia. 

The physics involved in the model are studied in fig. 12 for the 

first (j - 2) state in some more detail. The (j - 2) state is distinguished 

as the lowest excited level in a wide region 0° ~ y ~ 35°, as seen in 

fig. 6. Its energy increases smoothly with y suggesting that a rather 

stable coupling structure is underlying. The steady rise in energy 

breaks off only at about y = 45° due to an interchange of structure 

with the Q = (j - 2) Nilsson state. For a prolate core at y = 0°, the 
' 1 

(j - 2) state is described in the rotation-aligned coupling scheme ) by 
+ + . 

an antiparallel alignment of j and R as shown in the upper part of 

fig. 12; the corresponding vector system is free to precess in the 
A A A 

(1, 2)-plane about the 3-axis which is the axial symmetry axis at' y = 0°. 

However, as y changes from 0° towards 60°, the rotation-aligned vector 
A 

system gradually localizes about the 2-axis, since this position is now 

favored by the potential energy due to mechanism (ii). The coupling to 
A 

the 2-axis is illustrated for y 30° in the lower part of fig. 12. It 

should be noticed that the vector diagram is now approximately equivalent 

to that of a K = (G- 2) y-bandhead. 
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The gradual localization of the aligned angular momenta about the 

2-axis occurs in the same way for other favored Yrast states with j ± 2 

j ± 4, ••• and gives them the characteristic of 'K = Ii ± 2, 'K = n ± 4, 

y-bandheads. At this point, K and Q are considered· as averaged 
-+ -+ ~ 

projections of I and j on the 2-axis; they are not good quantum 

numbers, however can be used for an approximate classification. It 

turns out that Stephens' rotation-aligned coupling scheme, which holds 

for y=0°, persists when moving into the triaxial.region, but, in addition 
-+ -+ A 

to the alignment of j and R, both now align with the 2-axis. This has 

an important consequence which distinguishes the triaxial region and can 

be tested experimentally. On the basis of the additional coupling to 
A 

the intrinsic 2-axis, one now expects rotational bands with normal spin 

order to build up on each of the favored Yrast s·tates. The onset of 

this band structure is indeed present in the model solution as well as 

in experimental spectra. It will be discussed in the next section. 

From the coupling picture derived above, one might approximately 

consider the excitation energy of the (j- 2) state as pure rotational 

energy about the 2-axis ~2 taken from Eq. (2.14)): 

2 
(K -n = 2) 

2J2 
3 

= 

In the same kind of classical approximation, one obtains 

B(E2; (j-2)-+j) === s I c2> 
1

2 
16'1T q 22 

(3. 7) 



• 

-33-

using expression (2.37) for the quadrupole moment q ~i. As shown in 

fig. 12, these approximate expressions reproduce the y-dependence of 

the exact excitation energy and B(E2; (j - 2)-+- j) in the right way and 

confirm that rotation about the 2-axis is indeed·the basic mode underlying 

the (j..;. 2) state in the triaxial region. Due to the coupling to the 
A 

2-axis, the B(E2; (j- 2)-+- j) is quite large even at y = 30° where the 

+ . + . 
22 (y-b~:mdhead) -+- 0 (groundstate) transition of the core is forbidden 

as seen from Eq. (3.2). 

3.5. Classification of States and Band Structures 

In the preceding chapters, individual states and their dependence 

on the model parameters have been studied. The question remairis how 

the states can be classified in a systematic way. A related question 

is to which extent band structures known from strongly deformed nuclei 

persist in the transitional region. 

The weak coupling classification in terms of core excited states 

can be used for deformations Ia • A2
/

3 1 < 4, but is inadequate 

2/3 in the region a •A > 4, where the energy spread of the core multiplets 

becomes larger than the core energy spacings (see fig. 5). Most trans­

itional nuclei around A= 135 and A= 190 have deformations 4 < a • A2/ 3 
< 7. 

This indicates that the strong coupling classification in terms of 
-+- -+-

projections of j and I on an intrinsic axis might be more adequate 

for these nuclei. 

As discussed in section 3.4., the odd particle tends to couple to 
A 

the 2-axis of the triaxial core, and, consequently, this axis will serve 
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as an approximate symmetry axis. The approximate quantum numbers K and 

n are defined in fig. 13. Although the model wavefunctions 

'I' IM,a 

K,n 

consist of a mixture of all possible K and n components, it is found 

that most of the lowest energy states have one dominant component 

c<i~,a) which determines their approximate (K,n) classification. 

This is demonstrated in Table 3 for the lowest states at y = 30° and 

0 
• A

2
/

3 = 5 ' ( fi 6 ) ~ , AF = e1 see g. a • The (K,n) classification of these 

states is also shown in fig. 14. Some important, points should be 

emphasized: . 

1. As seen from Table 3, only the very lowest states have dominant 

(K,n) components which represent more than 50% of the wavefunction. It 

is therefore in a very tentative sense that the (11/2) 1 , (13/2) 1 , (15/2) 2, 

(17/2) 2 states, given in the first part of the Table, are considered as 

forming an approximate K = Q = 11/2 band. This is even more so for the 

(K = 15/2, Q = 11/2) and the (i{ = 7/2, Q = 11/2) band classification, which 

relates these states to odd-A y-bands, and for the higher states classified 

as Q = 9/2 states. Nevertheless, this classification will turn out to 

be useful in the analysis of experimental spectra. 

2. Although the (K,n) classification is weakly defined by the 

wavefunctions, another strong coupling feature stating that largest 

B(E2;~)- and B(Ml;~)-values occur between states within a band is found 

to be rather well developed in the model solution. This is demonstrated 
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in fig. 14. It shows that there is a strong coupling pattern underlying 

the calculated odd-A spectrum even for B • A4/3 = 5 and y = 30°. 

3. However, the coupling is not strong enough to insure that the 

main decay channels run within the separate bands. Model states lying 

higher in energy, e.g. those with then= 9/2 classification, but alSo 

higher states of the K = 11/2 and K = 7/2 bands, decay favorably into 

lower neighboring bands. The comparison with experimental cases in 

Part II of this work will give evidence for this band leaking. 

4. The spectrum at y = 60° and B • A
2
/

3 = 5 is also shown in fig. 14 

for comparison. Its low-energy part consists of a r~ther pure K = Q = 11/2 

and a K = Q = 9/2 band. When going into the triaxial region starting 

from y = 60°, the 11/2- and 9/2-band mix with each other and with other 

higher bands, thus gradually losing their (K,n) character. But it will be 

noticed that remainders of these bands, at least the lowest members of 

the 11/2-band, can be identified all over the triaxial region. 

5. As a new feature, additional bands with y-band character 

K = Q ± 2, Q ± 4, • • • come down in energy in the triaxial region and take 

over as lowest excited states for y < 30°. For y approaching 0°, the 

bandheads of these additional bands form the decoupled yrast band • 
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4. CONCLUSION 

The model of an odd nucleon coupled to a rotating triaxial core 

has been investigated with the aim of providing a basis for a systematic 

study of transitional odd-A nuclei. Concerning the coupling of the odd 

nucleon to the core, the model covers the weak-coupling region 

(0 < B • A213 < 4) as well as the strong-coupling region (13 • A
213 

> 7) 

and describes the various intermediate regions as a function of the 

2/3 
def'ormation parameter B • A and the asymmetry parameter y. The y-degree 

of freedom is found to play a decisive role in the particle-core coupling. 

It is observed that the calculated energies, moments, and transition 

probabilities of the coupled core-particle system are subject to drastic 

variations when y changes in the range 0° ~ y ~ 60°. This opens a wide 

field for testing the model experimentally. 

A systematic comparison with unique-parity spectra of nuclei in 

the A= 190 and A= 135 mass region is given in Part II of this work. The 

comparison provides strong evidence that the present model indeed applies 

to transitional odd-A nuclei and that triaxial shapes are a general 

feature of these nuclei. It turns out that the assumption of rigid 

triaxial shapes is a better approximation with respect to the particle-

core coupling than with respect to the collective motion of the core. 

Odd-A transitional nuclei therefore represent the real domain of the 

Davydov approximation. The general solution, given in this paper, may 

serve as a guide for analyzing odd-A data and may stimulate new experimental 

work to verify -- or refute -- the numerous trends for energies and 

transition probabilities predicted by the present work. 

' 
·{. 
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Table 1. Values of y and corre~ponding symmetry axes for axially 

symmetric prolate and oblate shapes. 

y symmetry axis shape 

,. 
oo 3 prolate 

60° 2 oblate 

"' 120° 1 prolate 
,. 

180° 3 oblate 
,. 

240° 2 prolate 
,. 

300° 1 oblate 

* * * * * * 

Table 2. Sign rule for mixing ratios o(I1 + I 2) in odd-A nuclei with 

the odd nucleon representing either a neutron or a proton and 

either a particle or a hole. 

Neutron Proton 

particle hole particle hole 

+ + 

+ + 
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Table 3. Dominant 
(I j=ll/2) 2 

component~ lc K:n I of the wavefunctions for 

8 • A
2
/

3 
= 5 ~ and AF = e:1 • 

Band Spin Energy lcK n·12 
' 

I 
- I 

11/2 I EI/ (ti2 /2j.
0

) K = Q = 11/2 K=Q=9/2 K = 13/2,Q = 9/ 2 

K = 11/2 11/2 0.0 0.74 0.14 --
Q= 11/2 13/2 13.0 0.61 0.21 0.01 

15/2 26.8 0.22 .0.16 0.05 

17/2 
I 

0.09 46.8 0.20 0.16 

15/2 K = 15/2,Q = 11/2 K= 13/2,Q = 9/2 K = Q = 11/2 

i< = 15/2 15/2 12.0 0.62 0.14 0.09 

(i = 11/2 17/2 26.9 0.43 0.14 0.14 

19/2 34.8 0.19 0.11 0.08 

21/2 52.1 0.22 0.14 ·o.1o 

7/2 K=7/2,Q=ll/2 K = 5/2,Q = 9/2 K= Q = 9/2 

K = 7/2 7/2 9.6 0.75 0.12 --
(i = 11/2 9/2 18.1 0.44 0.11 0.33 

11/2 28.3 0.43 0.16 0.22 

13/2 40.4 0.31 0.16 0.13 
.. 

continued. • • 
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Table 3 (continued) 

Band Spin Energy lcK n12 
' 

9/2 K=Q=9/2 K=Q=7/2 K = Q = 11/2 

K.= 9/2 9/2 20.9 0.32 0.18 --
Q = 9/2 11/2 25.8 0.09 0.14 0.13 

13/2 46.5 0.10 0.10 0.18 

13/2 K= 13/2,n = 9/2 K= ll/2,Q = 7/2 K = 9/2,n = 5/2 

'K = 13/2, 13/2 31.'2 0.55 0.16 0.06 

Q=9/2 15/2 38.7 0.19 0.10 0.06 

5/2 K= 5/2,n = 9/2 K=3/2,Q=7/2 K=Q=5/2 

'K= 5/2 5/2 30.0 0.66 -- 0.14 

n = 9/2 7/2 31.6 0.20 0.17 0.04 

9/2 42.3 0.20 0.17 0.06 
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FIGURE CAPTIONS 

Fig. 1. Irrotational moments-of-inertia as functions of y. 

Fig. 2. Low-energy spectrum of an even triaxial core as a function of y. 

+ " 
Fig. 3. Precession of the angular momentum R about the 1-axis of the 

triaxial core at y = 30° for the first and the second 2+ state. 

Fig. 4. Single-particle energies of a j = 11/2 shell in the field of a 

triaxial core. The heavy lines show the variation withy, the 

thin lines the variation with a at y = 0°. The numbers on the 

right and left side give the n quantum number of each state for 

axially symmetric prolate and oblate shapes, respectively.· 

Fig. Sa. The odd-A energy spectrum as a function of a for y = 0°, AF = e:
1

, 

and j = 11/2. The core states underlying the multiplets at a= o 

are indicated. 

Fig. Sb. Same as fig. Sa, but for y = 30° and A = F e: 1 • 

Fig. Sc. Same as fig. Sa, but for y = 30° and AF = e:2. 

Fig. 6a. The odd-A energy spectrum as a function of y for a•A2/3 = s, 

AF = e: 1 , and j = 11/2. 

' 2/3 .. 
Fig. 6b. Same as fig. 6a, but for a •A = 7 and AF = e: 2 • 

2/3 Fig. 7. The odd-A energy spectrum as a function of A for S • A . = 7, 
F 

y = 30°, and j = 11/2. 

Fig. 8. Spectroscopic quadrupole moments of the lowest odd-A states, 

including the second j state, as functions of y for a • A 2/ 3 = S, 

AF = e: 1 , and j = 11/2. 

Fig. 9. Reduced E2-transition 

as functions of y for 

probabilities for the lowest odd-A states · 

2/3 
a • A = S, AF = e:p and j = 11/2. 
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states, including the second j ·state, as functions of y for 

13•A
2

/
3 

= 5, ).F = e:
1

, and j=ll/2. The magnetic unit J.J
0 

= ].J - g j 
s .p. R 

with J.J being the single-particle magnetic moment. s.p. 

Fig. 11. Some lowest energy states of the odd-A spectrum as functions of 

y assuming rigid moments-of-inertia with 13 = 0.3. 

Fig. 12. Schematic illustration of the :lowest (j - 2). state. Vector 
+ + + 

diagrams of j, R, I and their position relative to the intrinsic 

axes of the core (shaded area) are shown for y = 0° and y = 30°; 

the dark disk indicates the mass distribution of the odd nucleon. 

In the central part, the exactly calculated E(j-Z) and 

B (E2; (j - 2) + j) are compared with approximate expressions 

(broken lines) for j = 11/2. 

Fig~ 13. Vector diagram defining the approximate quantum numbers K and n. 

Fig. 14. The (K,Q) classification of the lowest odd-A states with 

13 • A
2

/
3 

= 5, ).F = e:
1

, and j = 11/2 for y = 30° and y = 60°. 

Solid and broken lines mark transitions with the largest 

B(E2;f) and the largest B(Ml;f) for a given level, respectively. 
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