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The Variation of Optimal Bandwidth and Buffer
Allocation With the Number of Sources

Scott Jordan, Member, IEEE, Kalpana Jogi, Chunlin Shi, and Ikhlaq Sidhu, Member, IEEE

Abstract—We consider a single node which multiplexes a large
number of traffic sources. We ask a simple question: how do the
optimal allocations of bandwidth and buffer vary with the number
of sources? We investigate this issue using previous results on the
probability of overflow for an aggregate of i.i.d. flows, e.g., over-
flow resulting from effective bandwidth models. We wish to deter-
mine the variation of the minimum cost allocations of bandwidth
and buffer with the number of sources, given a cost per unit of each
resource. We first consider a class of ON/OFF fluid flows. We find that
the optimal bandwidth allocation above the mean rate and the op-
timal buffer allocation are both proportional to the square root of
the number of sources. Correspondingly, we find that the excess cost
incurred by a fixed buffer allocation or by linear buffer allocations
is proportional to the square of the percentage difference between
the assumed number of sources and the actual number of sources
and to the square root of the number of sources. We next consider a
class of general i.i.d. sources for which the aggregate effective band-
width is a decreasing convex function of buffer and linearly pro-
portional to the number of sources. We find that the optimal buffer
allocation is strictly increasing with the number of sources. Corre-
spondingly, we find that the excess cost incurred by a fixed buffer al-
location is an increasing convex function of the difference between
the assumed number of sources and the actual number of sources.

Index Terms—Cost minimization, dimensioning, resource allo-
cation.

I. INTRODUCTION

A. Background

There is now a rich literature on the use of effective band-
width to estimate the bandwidth and buffer requirements of net-
work traffic sources, particularly for sources with real-time loss
and delay constraints. In this paper, we ask a simple question:
how do the optimal allocations of bandwidth and buffer vary
with the number of sources? We investigate this issue using
previous results on the probability of exceeding a delay bound
for an aggregate of i.i.d. flows sharing a single queue, e.g., that
resulting from effective bandwidth models. We wish to deter-
mine the variation of the minimum cost allocations of bandwidth
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and buffer with the number of sources, given a cost per unit of
each resource.

For background, we briefly outline the use of effective band-
width models for resource allocation and dimensioning. Many
effective bandwidth models considered a single traffic flow or
the flow resulting from the multiplexing of multiple identical
sources. Typically, the loss probability of the flow is estimated
by the probability that the buffer content in an infinite buffer
queue will exceed a threshold. The resulting loss probability es-
timate is thus interpreted as the probability of exceeding a delay
bound. Many papers have shown that the loss probability esti-
mate asymptotically obeys

(1)

as the buffer approaches infinity for a fixed bandwidth, where
is the buffer threshold, is a positive constant called the

asymptotic decay rate, and is a positive constant called the
asymptotic constant. Similar asymptotic expressions have been
proven for a wide variety of source models, c.f. [1]–[7]. Other
effective bandwidth models directly considered multiplex i.i.d.
traffic flows in the many sources regime, in which the number
of sources , the total bandwidth allocation , and the total
buffer allocation all approach infinity with fixed ratios. Sim-
ilar asymptotic results to (1) have been shown, c.f. [8]–[16].

The most common use of such results is to predict the loss
probability given a specific bandwidth and buffer allocation. In
addition, many papers have used these results to formulate ad-
mission control policies, c.f. [17], [18]. A typical approach, if
a class of flows have identical traffic characteristics and share a
common quality of service (QoS) requirement that the loss prob-
ability should not exceed , is to accept a new connection if and
only if the available bandwidth exceeds the effective bandwidth
that results from (1).

Our focus, however, is in on dimensioning. We are interested
in the minimum cost allocation of bandwidth and buffer that can
accommodate flows with a maximum loss probability of .
As many previous researchers have demonstrated, a set of flows
can achieve a maximum loss probability using various combina-
tions of total shared bandwidth and buffer, c.f. [19]. Only a few
algorithms, however, have been proposed to solve the joint band-
width and buffer allocation problem, c.f. [20], [21]. Our goal in
this research effort is to understand how the optimal combination
of bandwidth and buffer might vary with the number of flows.

To define optimality, we assume that there are costs associ-
ated with each unit of bandwidth and buffer. The ratio of the
cost per unit bandwidth to the cost per unit buffer should re-
flect the relative demand for bandwidth to buffer from all of the
traffic flowing through the router. This ratio might be based on

1063-6692/04$20.00 © 2004 IEEE
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Fig. 1. Optimal bandwidth allocations versus N .

average traffic estimates of various classes of traffic. If a pricing
policy is used, then the costs can be interpreted as shadow costs
(Lagrangian multipliers) that result from the pricing policy, c.f.
[19], [22], [23]. The ratio of the prices can also be interpreted
directly as the slope of the buffer–bandwidth tradeoff curve at
the desired operating point. It has been shown that this tradeoff
curve is convex for a wide range of sources with effective band-
widths [21]. We define the optimal combination of bandwidth
and buffer as the minimum cost choice that achieves the desired
QoS. In this paper, we equate QoS with estimated loss proba-
bility, but it is simple to add a limit on buffer in order to enforce
a maximum delay constraint. This approach, of course, does not
address other possible QoS measures.

The many-sources regime might lead one to believe that total
bandwidth and buffer allocated to a single class should be in
constant proportion as the number of sources vary. We show,
however, for a class of ON/OFF fluid flows, that the optimal band-
width allocation above the mean rate and the optimal buffer al-
location are both proportional to the square root of the number
of sources and thus that bandwidth and buffer should not be al-
located in constant proportion. We believe that these results are
the first to characterize the variation of optimal bandwidth and
buffer allocations with the number of sources.

B. Motivating Example

As a motivating example, consider a single node which mul-
tiplexes compressed real-time voice sources, modeled as ON/OFF

fluid flows with exponentially distributed ON and OFF times with
respective means of 340 and 780 ms and a peak rate of 8 kb/s. We
require that the overflow probability should not exceed 0.01. We
normalize all quantities: time is represented in units equal to the
mean on time, bandwidth is represented in units of the peak rate,
and buffer is represented in units of the average number of ar-
riving bits per ON/OFF cycle. We set the ratio of cost per unit band-
width to buffer to 1 (which, due to normalization, implies that
8 kb/s of bandwidth is equally expensive as 340 bytes of buffer).

Using analytic expressions for overflow probability derived
by Anick et al. [24], we can numerically derive the minimum
cost bandwidth and buffer allocations. The results are shown in
Figs. 1 and 2, as a function of the number of sources . The
mean bandwidth has been subtracted, and the quantities have
been normalized by the number of sources.

Fig. 2. Optimal buffer allocations versus N .

Fig. 3. Cost difference between optimal policy and FB policy for a fixed ^N .

Fig. 4. Cost difference between optimal policy and IB policy for a fixed ^N .

We note that the optimal buffer per source and the optimal
bandwidth per source (above average) appear to be decreasing
convex functions of the number of sources.

Now consider two common resource allocation policies. A
Fixed Buffer (FB) policy allocates a fixed amount of total buffer
and adjusts the bandwidth (depending on the number of sources)
to satisfy the loss constraint. An Incremented Buffer (IB) policy
allocates a constant amount of buffer per source and adjusts the
bandwidth to satisfy the loss constraint.

The results in Figs. 1 and 2 do not correspond to either an FB
or an IB policy. The optimal resource allocation policy is nei-
ther to fix the buffer length and then add bandwidth nor to add
bandwidth and buffer in constant proportion. Indeed, we can nu-
merically compare the optimal allocation policy to these two al-
ternate policies. The results are shown in Figs. 3 and 4, where
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the buffer allocations for FB and IB were initially calculated for
750 sources, and then the number of sources was varied from
500 to 1000. We note that the cost difference appears to be in-
creasing and convex with the difference between the actual and
nominal number of sources .

Our goal in this paper is to explain the forms of the curves in
Figs. 1–4.

C. Principal Results

We first consider a single node which multiplexes a large
number of i.i.d. ON/OFF fluid flows with exponentially distributed
ON and OFF times, under a maximum overflow probability
constraint on the class. We use Taylor series expansions of the
overflow probability to determine a representation of the feasible
combinations of bandwidth and buffer. The costs are then used
to determine the optimal choice of bandwidth and buffer. Our
principal result is that the optimal bandwidth is given by

(2)

and the optimal buffer is given by

(3)

where is the mean rate per source and and are positive
constants that depend upon the statistics of a single traffic source
and upon the ratio of the cost per unit bandwidth to the cost per
unit buffer.

These results imply that, as the number of sources increase,
the minimum cost solution (under fixed per unit bandwidth and
buffer costs) is to not add bandwidth and buffer in a constant
proportion, but instead to first add the mean bandwidth of each
source and then to add additional bandwidth and buffer in an ap-
proximately constant proportion. Furthermore, we demonstrate
that the cost savings of this optimal allocation over an alloca-
tion that maintains a fixed buffer per source is proportional to
the square of the percentage difference between the assumed
number of sources and the actual number of sources and to the
square root of the number of sources.

We base our analysis upon an estimate of overflow probability
derived by Morrison [25], which is a direct exploitation of ana-
lytic expressions presented in [24]. These results can be viewed
as refinements to the early large deviations results presented in
[8]. Large deviations results in the many-sources regime can
produce more accurate estimates of loss probability, particu-
larly with regard to the asymptotic constant, c.f. [15], [16], [26].
However, our goal in this study is to obtain an asymptotic rela-
tionship between the optimal bandwidth and buffer allocation
and the number of sources. This requires a simple representa-
tion of overflow probability as a function of both bandwidth and
buffer. In contrast to large deviations results in the many-sources
regime, in which bandwidth and buffer are scaled linearly with
the number of sources, Morrison’s results apply to indepen-
dently chosen bandwidth and buffer, for a wide range of buffer
sizes that bracket those in (2) and (3).

It is worth stressing at this point that we are certainly not
proposing that Morrison’s expression for the overflow proba-
bility, or our Taylor series expansion of it, be used to predict

Fig. 5. Network model.

overflow probability, as we do not believe any Taylor series ex-
pansion would be an accurate predictor of overflow probability.
We validate our results using numerical investigations which
show that the errors introduced by either the Morrison approxi-
mation or the Taylor series do not affect our principal results.

We next consider a single node which multiplexes a more
general class of i.i.d. flows, provided that the aggregate effec-
tive bandwidth is a decreasing convex function of buffer and
linearly proportional to the number of sources. Without relying
on any particular expression for effective bandwidth, our goal
is to explore the variation of the optimal bandwidth and buffer
allocations with respect to the number of sources for a more gen-
eral class of sources than the ON/OFF sources considered earlier.

We use the form of the aggregate effective bandwidth func-
tion to prove two principal results. First, we prove that the op-
timal buffer is strictly increasing in . Second, we prove that the
excess cost incurred by a fixed buffer allocation over an optimal
allocation is an increasing convex function of the difference be-
tween the assumed number of sources and the actual number of
sources. Both results are consistent with our results for ON/OFF

sources, but less specific.
In Section II, we consider ON/OFF sources. In Sections II-A

and II-B, we review our network model and Morrison’s expres-
sions for overflow probability and illustrate buffer-versus-band-
width tradeoffs with some numerical examples. In Section II-C,
we derive the Taylor series expansions for overflow probability.
In Sections II-D and II-E, we derive the minimum cost band-
width and buffer allocations and present our principal results
for ON/OFF sources. In Section III, we consider general sources.

II. ON/OFF SOURCES

A. Network Model

We consider a single queue fed by i.i.d. ON/OFF fluid
sources, as shown in Fig. 5. Both the ON and OFF times are
assumed to be exponentially distributed. Without loss of gener-
ality, we measure time in units equal to the average on period
of a source and measure bandwidth in units equal to the peak
rate of a source. We denote the average OFF time by . The
mean rate per source is thus equal to .

In numerical examples, we use the parameters given in
the motivating examples above. Using our normalization,
with bandwidth measured in multiples of 8 kp/s and buffer
measured in multiples of 340 B, this gives 0.4359 and

0.3036.
A fixed buffer and a fixed bandwidth is reserved for this

class of traffic. We denote the buffer per source by
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and the bandwidth per source by and assume that the
bandwidth per source lies strictly between the mean rate and the
peak rate, namely that

Finally, we denote the bandwidth above the mean rate per
source by as

In numerical examples, unless explicitly mentioned we set
, and the maximum probability of overflow
.

We briefly restate the expressions for overflow probability de-
rived by Morrison [25]. His derivation starts with earlier work
by Anick et al. [24], which states that the equilibrium prob-
ability that the buffer content exceeds in an infinite buffer
system can be expressed as

(4)

where are eigenvalues of the buffer dynamics, and are
constants that depend on these eigenvalues. There are a total
of terms, corresponding to the range in the number
of on sources for which overflow occurs. Morrison based his
approximation to on the largest terms in (4).

Assuming that the number of sources is large , the
bandwidth per source and that either the total buffer

or , Morrison shows that the main
contributions arise from the largest eigenvalues. This leads to an
asymptotic expression for the overflow probability as follows:

(5)

where

(6)

(7)

(8)

(9)

(10)

(11)

Morrison also considered the case where , ,
and . He develops an approximation by again ex-
panding around most significant terms, although these no longer
correspond to the largest eigenvalues. He shows that the largest
terms of the resulting expression agrees with the largest terms

Fig. 6. Overflow probability for a range of N .

Fig. 7. Buffer versus bandwidth contours for a range of p.

of (5). Although it has not been proven that this approximation
is uniformly accurate throughout the range from to

, we will use this expression as our starting point.

B. Numerical Examples

To illustrate the basic problem considered in this paper, we re-
turn to our motivating example to illustrate the effect of varying
the number of sources, the buffer, and the bandwidth. In Fig. 6,
the overflow probability is plotted for a range of

for a fixed bandwidth per source .
The figure illustrates the relationship between overflow prob-

ability , total buffer , and the number of sources , assuming
that the resource-allocation policy assigns bandwidth propor-
tional to the number of sources. As discussed by many previous
researchers, overflow probability decreases with , when there
is a fixed bandwidth per source and either a fixed total buffer
or a fixed buffer per source. These observations represent two
paths through these overflow versus buffer curves.

An alternative view is shown in Fig. 7, in which the over-
flow probability is varied for a fixed number of sources . Each
curve represents a contour of the overflow probability function
and shows which combinations of bandwidth and buffer pro-
duce the same overflow probability. Note that there is a substan-
tial range of slopes along each contour. The optimal resource
allocation policy will choose bandwidth and buffer to equate
the slope of the contour with the corresponding price ratio. Al-
ternate policies such as FB or IB do not take into account the
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Fig. 8. Buffer per source versus bandwidth above average per-source contours
for a range of N .

prices of each resource and, therefore, may produce quite dif-
ferent allocations. The range in slopes means that there is a sig-
nificant achievable cost savings of the optimal resource-alloca-
tion policy over FB or IB policies.

Buffer versus bandwidth contours for fixed but varying
are shown in Fig. 8. The majority of the bandwidth allocation is
due to the mean rate, which must be allocated (at loss overflow
probabilities) under any resource-allocation policy. We therefore
plot the bandwidth per source above the mean rate. Multiplexing
gains mean that larger correspond to larger bandwidth and
buffers, but with decreasing increments. When plotted per
source, multiplexing gains mean that larger correspond to
lower bandwidth and buffers per source. Note again that there
is a large range of slopes, indicating that the optimal policy can
adjust the allocations significantly. A fixed buffer policy would
constitute a curve through the set, while an incremented buffer
policy would constitute a horizontal line. The cost minimizing
choices of bandwidth and buffer are also shown.

C. Taylor Series Expansions

In this section, we develop Taylor series approximations for
the overflow probability (5).

Theorem 1: A Taylor series representation of ,
in , , and , is given by (12), shown at the bottom of the
page, where

(13)

Proof: We start by expanding the constituent parts of (5)
expressed in (6)–(11). The general approach is to expand the
expression using

(14)

for .
Substituting (14) into the first term of (6), we obtain

Using the Taylor series expansion

(15)

this reduces to

(16)

provided that .
Using the Taylor series expansion

(17)

the second term in reduces to

Together these two terms give

(18)

We next consider (7). Substituting (14), this gives

which, using (17), reduces to

(19)

We continue with (8). We can combine terms to express this as

(20)

An approximation for the first log term was found above to be
(16). Multiplying by and reducing, we obtain

(12)
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The second term in (20) can be expressed as

Using (15), this becomes

Putting together these expressions for the two terms in (20),
we find

(21)

We continue with (10). The numerator reduces to

and the denominator reduces to

Using (17), this can be expressed as

(22)

We continue with (11). A similar approach using (17)
results in

(23)

Finally, we consider (9). Using (17), (18), and (22), the term
can be represented as

The second term of (9) thus becomes

Finally, using (23), we can obtain

(24)

This completes the development of Taylor series expansions
for (6)–(11). We now use these expressions to derive the Taylor
series expansion for the overflow probability (5). Using (18) and
(19), the first term can be expressed as

Using (21), the second term can be expressed as

Fig. 9. Accuracy of overflow representations.

Similarly, using (18), the third term can be expressed as

Using (24), the fourth term can be expressed as

Finally, combining these four terms, we get (12).
We will use this expression for overflow probability to derive

the optimal resource-allocation scheme in the following sec-
tions. The benefit of this Taylor series representation is that it
is amenable to analysis.

However, we stress that our goal in this paper is to explain
the forms of the curves in Figs. 1–4. We do not expect that any
Taylor series expansion would be an accurate predictor of over-
flow probability. To underscore this point, we numerically com-
pare the Taylor series expansion (12) with Morrison’s approx-
imation for overflow probability (5) and with the exact expres-
sion (4) in Fig. 9.

The Taylor series approximation to Morrison’s representa-
tion is reasonably good. A better approximation can be obtained
by retaining one more term in each expansion above; however,
these additional terms do not affect the principal results given
in (2) and (3) and therefore we do not include them in our anal-
ysis. There is a substantial error in Morrison’s approximation
to the exact AMS result, however, as discussed above, more re-
cent large deviations results in the many-sources regime typi-
cally assume that bandwidth and buffer are scaled linearly with
the number of sources and cannot be used to derive our results.

In Fig. 9, we also show the overflow probability that results
from a least-squares curve fit in the form of (12) to the exact
AMS results. The accuracy of this result may indicate that, if
such a Taylor series could be derived directly, it would produce
the same form.

D. Optimal Resource Allocation

In this section, we will derive the optimal allocation of band-
width and buffer to a class of ON/OFF fluid flows under a max-
imum overflow constraint. Our principal result is as follows.

Theorem 2: Suppose that each unit of buffer incurs a cost
and each unit of bandwidth incurs a cost . Assume that
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is decreasing and jointly convex in and . The
bandwidth and buffer allocations that minimize cost subject to
a maximum overflow probability of are

(25)

where and and are the solutions to

(26)

(27)

where , , , and are the constants given above.
Proof: We start with the constraint ,

with given by (12). Taking logarithms on both
sides and rearranging, we obtain

(28)

Furthermore, this solution minimizes the cost if and only if
(iff) the slope of the contour at a fixed is equal
to the price ratio, namely iff

(29)

Differentiating (12) and substituting into (29) gives

(30)

Now suppose that and for some
and . By substitution into (28), we obtain

(31)

Similarly, by substitution into (30), we obtain

(32)

Let and be the solutions to (26) and (27), and let and
be the solutions to (31) and (32). Then, and

. It can be shown that and
.

Fig. 10. Optimal buffer versus optimal bandwidth.

It follows that

The theorem follows.
These results imply that, as the number of sources increase,

the minimum cost solution (under fixed per-unit bandwidth and
buffer costs) is to not add bandwidth and buffer in constant pro-
portion, but instead to first add the mean bandwidth of each
source, and then to add additional bandwidth and buffer in ap-
proximately constant proportion.

We believe that the dependence of the optimal bandwidth and
buffer on are properties of the form of the overflow prob-
ability with respect to the number of sources, bandwidth and
buffer—not on the Taylor series expansion (12). The terms we
chose to include in the Taylor series are exactly those that af-
fect the forms for the optimal bandwidth and buffer given in
(2) and (3). Inclusion of any additional terms do not change the
first-order dependence on .

The result is predicated upon the assumption that
is decreasing and jointly convex in and .

While this has not been proven analytically for the expression
in (12), similar results have been uniformly empirically found
to hold in the literature, including the numerical cases investi-
gated in this paper. In addition, a similar result has been proven
for overflow probabilities given by large deviations results in
the many-source regime [27].

For numerical illustration and validation, the optimal band-
width (above average) and buffer allocations per source were
shown in Figs. 1 and 2, as a function of the number of sources
(for ). Also shown are least-squares curvefits to a
form, as predicted by (25). The fits are extremely good, over a
wide range of .

In Fig. 10, we plot the optimal bandwidth (above average) and
buffer allocations per source versus each other. As illustrated
in Fig. 8, the optimal allocations per source decrease with in-
creasing . If the price ratio of bandwidth to buffer is decreased
from to , then the optimal allocation shifts to a
higher bandwidth and lower buffer. However, the form of
remains true.
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E. Comparison to Alternative Schemes

In this section, we compare the costs of the optimal resource
allocation to methods in which the total buffer allocated to the
class is either constant or linearly proportional to the number of
sources. We demonstrate that the cost savings of the optimal al-
location over either of these alternative resource-allocation poli-
cies is proportional to the square of the percentage difference
between the assumed number of sources and the actual number
of sources and to the square root of the number of sources.

We define our two alternatives formally as follows. Define
as the nominal number of sources upon which the initial band-
width and buffer allocation is calculated. Correspondingly, de-
note and as the minimum cost allocation of buffer and band-
width and such that .

Denote the current number of sources as , and the error
in the estimate of the number of sources as .
The FB resource-allocation policy allocates a buffer of

and a bandwidth of , where is the value that satisfies
. The IB resource-allocation policy al-

locates a buffer of and a bandwidth of , where
is the value that satisfies .

The cost of the optimal policy is , where
and are the optimal bandwidth and buffer allocations,

as shown above. Expressing the bandwidth allocation as
, we can break out the cost as

Similarly, the cost of an alternate policy is

where .
The cost savings is therefore

We should expect that the cost savings will be a function both
of the nominal number of sources and of the error in the
estimate of the number of sources . Our principal result is
given in the following theorem.

Theorem 3: Consider either the FB or IB policy given above,
with as the nominal number of sources upon which the initial
bandwidth and buffer allocation is calculated. Let represent
the associated cost when the number of sources is , as given
above. Then the cost savings of the optimal policy over the al-
ternate policy is

(33)

Proof: For the FB policy, we have

provided that .

For the IB policy, we have

provided that .
Now all of these policies (the optimal, FB, and IB) lie on the

same buffer-versus-bandwidth curve .
Furthermore, the optimal allocation is tangent to the minimum
cost line. We use a Taylor series expansion about for
as follows:

(34)

The cost savings thus depends on the shape of the buffer-
versus-bandwidth curve. We approximate this contour by
starting with the representation of it expressed in (28). Drop-
ping the terms, and substituting , we can restate
this as

where

Assuming that and , we find that
, , and . Since ,

it follows that

and thus

Differentiating twice with respect to and using
gives (after a lot of algebra)

Consequently,

and thus

since .
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Fig. 11. Resource allocations for alternative policies.

Substituting this back into the Taylor series (34) and using
, we obtain

Finally, using , we have

For numerical illustration, in Fig. 11, we plot the bandwidth
(above average) and buffer allocations per source for the optimal
policy, for the FB policy and for the IB policy.

The FB policy constitutes a curve through the set of con-
tours, and the IB policy constitutes a horizontal line. We have
set the nominal number of sources upon which the initial band-
width and buffer allocation is calculated to be 750 and then
varied the actual number of sources about this value. Corre-
spondingly, when , all allocations are identical by def-
inition. When varies from this nominal value, the FB policy
changes only the bandwidth so that the new allocation is on the
new buffer-versus-bandwidth contour. The incremented buffer
policy varies the buffer linearly and sets the bandwidth so that
the new allocation is also on the new contour.

An examination of Fig. 8 shows that the slope of each con-
tour, at a fixed buffer per source, is decreasing with increasing

. It follows that the optimal policy will decrease the buffer al-
location per source with in order to maintain a constant slope.
Similar reasoning regarding the total buffer concludes that the
optimal policy will increase the total buffer allocation with .
Thus, for our set of parameters, the optimal policy lies strictly
between the FB and IB policies.

The analysis for the cost comparison explains Figs. 3 and
4, which show the cost differences between the optimal policy,
FB, and IB. As in Fig. 11, is varied about the nominal value
of . All three policies are generated directly using
the exact AMS results for overflow probability. The Taylor se-
ries analysis above (33) predicts that the resulting cost savings
should be quadratic in for a fixed (for small values of

). Least-squares quadratic curvefits are shown on the fig-
ures, and we find the cost differences agree well with this form.
The asymmetry can be attributed to the presence of a third-order
term, which was neglected in the analysis.

Fig. 12. Cost difference between optimal policy and FB policy for a fixed
(N � N̂=N).

In Fig. 12, we plot the cost differences between the optimal
policy and FB, but with a fixed percentage error between the
nominal and actual number of sources .

The Taylor series analysis (33) predicts that the resulting cost
savings should be proportional to the square root of for a fixed
percentage error. The plot agrees quite well with this form. A
plot of the cost difference between the optimal policy and IB is
almost identical.

III. GENERAL SOURCES

Our goal in this section is to explore the shape of the variation
of the optimal bandwidth and buffer allocations with respect to
the number of sources for a more general class of sources.

A. Network Model

We again consider a single queue fed by sources. As above,
we denote the aggregate bandwidth by , the aggregate buffer by

, and the maximum acceptable overflow probability by . In
contrast to the assumption in previous sections that the sources
are i.i.d. ON/OFF fluid flows, we now consider any estimate of
overflow probability that is a function of , ,
and . For a single source, given an allocated buffer of , we
denote the bandwidth required to obtain a loss probability of

by

and call this quantity the effective bandwidth of one source. We
restrict our analysis to overflow estimates that result in an
effective bandwidth that is a decreasing convex function of .
Furthermore, we assume that the bandwidth required to obtain
a loss probability of for multiplexed flows, called the effec-
tive bandwidth of the multiplexed stream, is given by times
the effective bandwidth of one source as follows:

The convexity property is satisfied by many effective band-
width derivations in the literature [21], [27]. The assumption
that effective bandwidth scales linearly with respect to the
number of sources, however, is clearly inaccurate, as demon-
strated in the literature on effective bandwidth and in the
previous section. The literature on multiplexing, however, has
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Fig. 13. Illustration of cost difference.

often proposed the view that multiplexing gains come from
two sources. First, variance in the distribution of the rate of
sources at a fixed time give rise to efficiencies when multiple
sources share a common bandwidth (even with no buffer).
Second, variation over time in the rate of a single source gives
rise to efficiencies when that source is buffered (and therefore
smoothed). We view the results in this section as descriptive of
the second type of multiplexing gain (smoothing).

B. Optimal Resource Allocation

As above, we assume that each unit of bandwidth incurs a
cost and each unit of buffer incurs a cost . We denote the
optimal buffer allocation by

and the resulting optimal cost by

It follows that the slope of the aggregate effective bandwidth
with respect to the allocated buffer, at the optimal point, must
be equal to the price ratio

whenever .
The constant cost contour and optimal allocation are illus-

trated in Fig. 13.
Our principal result in this section is given in the following

theorem.
Theorem 4: The optimal buffer assignment is strictly in-

creasing with the number of sources when .
Proof: The proof is by contradiction. Suppose that

. It follows that

and therefore that

However, if , then this violates the as-
sumption that is a decreasing convex function.

This theorem can be compared to Theorem 2, which states
that, for ON/OFF sources, the optimal buffer allocation is propor-
tional to . Theorem 4 considers a wider class of flows, but is
weaker than Theorem 2 in that it only guarantees that the buffer
allocation is increasing.

C. Comparison to Alternative Schemes

In this section, we compare the cost of the optimal resource
allocation to an FB policy. The cost of the FB policy, using as
the nominal number of sources upon which the initial bandwidth
and buffer allocation is calculated, is

Denote the cost savings of the optimal policy over the FB
policy by

Our principal result in this section is given in the following
theorem.

Theorem 5: is increasing and convex in
, when .

Proof: Substituting expressions for and
from above, we have

Without loss of generality, assume that . This expres-
sion can be written as

This last expression can be viewed as times the vertical
distance between the aggregate effective bandwidth curve and
the tangent line to the curve at the nominal allocation, evaluated
at sources. This vertical distance is illustrated in Fig. 13.

Using similar expressions for and
, we can represent second-order differences as

(35)
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and as

(36)

In (35), the first integral is an integral of a posi-
tive quantity (since is decreasing and convex and

) over a positive
range (from Theorem 4). The second integral is also an in-
tegral of a positive quantity (since is decreasing) over
a positive range. The sum therefore is positive, establishing
that is increasing in when or more
generally increasing in .

We can establish convexity by considering the third order dif-
ferences. Subtracting the second order differences [(35) from
(36)] and collecting terms, we obtain

The first integral is a positive quantity, since it is the same as
the first integral in (35), with changed to . The second
integral is also a positive quantity, since is decreasing
and convex and . The sum is
therefore positive, and it follows that is convex
in when .

This theorem can be compared to Theorem 3, which states
that, for ON/OFF sources, the equivalent expression for the cost
difference is proportional to the square of . Theorem
5 considers a wider class of flows but is weaker than Theorem
3 in that it only guarantees that the cost difference is increasing
and convex in .

IV. CONCLUSION

We first considered a single node which multiplexes a large
number of ON/OFF fluid flows. Under a maximum overflow prob-
ability, we proved that the optimal bandwidth allocation above
the mean rate and the optimal buffer allocation are both pro-
portional to the square root of the number of sources. This is in
contrast to current approaches which often allocate either a fixed
total buffer or a fixed buffer per source. We compared the op-
timal allocation to these alternative allocations and proved that

the excess cost incurred by a fixed buffer allocation or by linear
buffer allocations is proportional to the square of the percentage
difference between the assumed number of sources and the ac-
tual number of sources and to the square root of the number of
sources. These properties were verified by numerical results.

We next considered a class of general i.i.d. sources for
which the aggregate effective bandwidth is a decreasing convex
function of buffer and linearly proportional to the number of
sources. We proved that the optimal buffer allocation is strictly
increasing with the number of sources. We also proved that the
excess cost incurred by a fixed buffer allocation is an increasing
convex function of the difference between the assumed number
of sources and the actual number of sources. Both results are
consistent with, but weaker than, the corresponding ON/OFF

sources, but hold for a wider class of flows.
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