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Abstract

The form of the most general orbifold breaking of gauge, global and supersymmetries

with a single extra dimension is given. In certain theories the Higgs boson mass is ultraviolet

finite due to an unbroken local supersymmetry, which is explicitly exhibited. We construct:

a 1 parameter SU(3)×SU(2)×U(1) theory with 1 bulk Higgs hypermultiplet, a 2 parameter

SU(3)×SU(2)×U(1) theory with 2 bulk Higgs hypermultiplets, and a 2 parameter SU(5) →

SU(3) × SU(2) × U(1) theory with 2 bulk Higgs hypermultiplets, and demonstrate that

these theories are unique. We compute the Higgs mass and compactification scale in the

SU(3) × SU(2) × U(1) theory with 1 bulk Higgs hypermultiplet.

http://arXiv.org/abs/hep-th/0107004v2


1 Introduction

The origin of symmetry breaking, one of the key questions of particle physics, is largely unknown.

In four dimensions, symmetries can be spontaneously broken by scalar fields, fundamental or com-

posite. In higher dimensional theories, a very different geometrical view is possible: symmetries

can be broken by the boundary conditions on a compact space. While this idea has been known

for many years [1], its early application was restricted to string motivated theories with certain

six dimensional compact spaces [2].

It is remarkable that, until recently, there was no attempt to discover the simplest exten-

sions of the standard model, or the minimal supersymmetric standard model (MSSM), in which

symmetries, such as supersymmetry, Peccei-Quinn symmetry and grand unified gauge symme-

try, were broken by this Scherk-Schwarz mechanism. While several such theories now exist

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], the question of their uniqueness is unknown, and is

addressed in this paper.

We consider theories based on a single compact extra dimension. We study the spacetime

symmetries of this dimension in section 2.1, and construct the most general form for the breaking

of supersymmetry, global symmetry and gauge symmetry in section 2.2.

In section 3 we exhibit the form of the local 5d gauge symmetry and supersymmetry which

are unbroken by orbifolding. These unbroken symmetries depend on the location in the bulk – for

example they are different at the two fixed points of the orbifold. These unbroken symmetries

are crucial since they dictate the form of both bulk and brane interactions. There has been

considerable recent debate [15] about whether the mass of the Higgs boson in certain theories of

this type is finite. In section 3.5 we argue that these unbroken local 5d symmetries ensure that

there are no quadratic ultraviolet divergences in the Higgs mass.

In section 4 we make a complete classification of theories with 5d local supersymmetry with

one or two Higgs doublets in the bulk, with gauge group either SU(3)×SU(2)×U(1) or SU(5).

There are very few such theories, and we briefly describe some possible locations for the matter

fields. Only a single SU(3)×SU(2)×U(1) theory with a single bulk Higgs has been constructed

in the literature [7], and this theory is found to be an important special case of a 1 parameter

family of such theories. We explore electroweak symmetry breaking in this family in section 5,

with particular attention to the Higgs boson mass and the compactification scale.

The two Higgs theories, with gauge group SU(3) × SU(2) × U(1) and SU(5), are shown in

section 5 to each form unique two parameter families of models. The form of SU(5) breaking

is unique, and the form for supersymmetry breaking involves a single free parameter, and is

therefore also highly constrained. Conclusions are drawn in section 6.
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2 The Classification

In this section we construct a classification of supersymmetric field theories in 5 dimensions,

where the physical space of the fifth dimension is an orbifold of finite size.

2.1 5 dimensional spacetime

We begin by considering the fifth dimension to be the infinite line R1. What are the most general

spacetime transformations acting on this line, which can be used to compactify the spacetime

by identifying points transforming into each other under these operations? One of them is a

translation T (2πR) which induces y → y + 2πR. When we identify the points connected by

this transformation, that is y + 2πR with y, it compactifies R1 to the circle S1 = R1/T . The

other possibility is a parity Z(y0) which reflects the line about y = y0. An identification using

this operation, that identifies −(y − y0) with y − y0, produces an orbifold which is the half line,

R1/Z2. This identification involves the choice of a special point, y0, which is a fixed point under

the transformation. This parity alone does not compactify the space. No further independent

spacetime identifications can be made on the line (if there are several commensurate translations,

we take T to be the one of lowest R). In this paper, we are interested in the case that both

translation and parity identifications are made. In this case the physical space can be taken to

be 0 ≤ (y − y0) ≤ πR, corresponding to the orbifold S1/Z2.

Let ϕ be a column vector representing all fields of the theory. The action of these transfor-

mations on the fields can be written as

T (2πR)[ϕ(y)] = T−1ϕ(y + 2πR), (1)

Z(0)[ϕ(y)] = Zϕ(−y), (2)

where we have chosen y0 = 0. Acting with Z twice produces the identity, so that this is a Z2

transformation, with Z2 = 1. An identification under these operations are made by imposing

the conditions T (2πR)[ϕ(y)] = ϕ(y) and Z(0)[ϕ(y)] = ϕ(y), that is

ϕ(y + 2πR) = Tϕ(y), (3)

ϕ(−y) = Zϕ(y). (4)

This identification makes sense only when the bulk action is invariant under the operations

ϕ(y) → T (2πR)[ϕ(y)] and ϕ(y) → Z(0)[ϕ(y)], since otherwise physics is not the same on all

equivalent pieces of the line of length πR.

The simultaneous imposition of both T (2πR) and Z(0) is not automatically consistent, be-

cause the spacetime motion induced by T (2πR)Z(0) is identical to that induced by Z(0)T −1(2πR).
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Figure 1: A diagrammatic representation of Z(0) and Z(πR) as reflections about y = 0 and

y′ = 0, with y′ = y − πR.

Consistency therefore requires that the field transformation is the same nomatter which choice

is made; thus we require TZ = ZT−1, or

ZTZ = T−1. (5)

Thus the most general spacetime symmetries can be taken to be a reflection y → −y, under

which the fields transform as a Z2, and a translation, under which the fields transform as Eq. (1)

with any symmetry T of the action, as long as Eq. (5) is satisfied.

The compound transformation T (2πR)Z(0), induces the spacetime motion y− πR→ −(y−

πR), which is a reflection about the point y = πR. Its action on the fields is Z ′ = TZ, and from

Eq. (5) we discover that Z ′2 = 1, so that T (2πR)Z(0) = Z(πR) is a reflection about πR which

also induces a Z2 transformation on the fields. One can choose to describe the compactification in

terms of the identifications Z(0) and T (2πR) or equivalently by Z(0) and Z(πR); the orbifolds

S1/Z2 and R1/(Z2, Z
′
2) are equivalent [7]. While the physical space is the line segment 0 < y <

πR, we have found it convenient to assemble four such equivalent neighboring segments into a

circle of circumference 4πR, as shown in Figure 1. The utility of this construction is to provide

a diagrammatic view of Z(0) and Z(πR) as reflections about orthogonal axes with fixed points

O and O′.

In general Z and Z ′ do not commute. In the special case that they do, T 2 = 1, so that T is

also a Z2 transformation. Acting twice with T (2πR) induces a complete revolution of the circle

of Figure 1, so that, in this commuting case, the eigenfunctions of Eqs. (3, 4) are single valued
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on this circle:

T = +1

{

(+,+) : cos [ny/R]

(−,−) : sin [ny/R]

T = −1

{

(+,−) : cos [(n + 1/2)y/R]

(−,+) : sin [(n+ 1/2)y/R]
(6)

where (±,±) refer to the (Z,Z ′) parities.

Given a specific field content of a theory, a complete list of the possible forms for Z and Z ′ can

be obtained. As an illustrative example, consider a theory with N complex scalars, assembled

into a vector φ. A basis can be chosen such that Z = P is a diagonal matrix. However, in this

basis Z ′ is in general non-diagonal:

Z ′(αi) = UP ′U †, (7)

where P ′ is diagonal. The N ×N unitary matrix U(αi) describes the relative orientation of the

field bases which diagonalize Z and Z ′, and depends on a set of continuous parameters αi.

The number of physical parameters αi is less than N2, and depends on the numbers of positive

and negative eigenvalues in P and P ′. Two cases will be of particular importance to us. If either

P or P ′ is proportional to the identity, then U can be rotated away, and there is no need to

introduce any αi parameters. Next consider the case of N = 2. The only non-trivial case is when

neither P or P ′ is proportional to the unit matrix: P = P ′ = σ3. A general U matrix would

have the form U = exp(i
∑3

i=0 αiσi), where σ0 is the unit matrix and σ1,2,3 are the Pauli spin

matrices. However, the parameters α0,3 drop out of Z ′, while a basis rotation which preserves

Z = σ3 allows α1 to be rotated away. Hence the only non-trivial 2 × 2 case is described by a

single parameter α:

Z = σ3, Z ′(α) = eπiασ2σ3e
−πiασ2 . (8)

The description in terms of (Z, T ) is somewhat simpler, since T = e2πiασ2 = R(2πα), the 2 × 2

rotation matrix for angle 2πα. In this case the field φ can be expanded in a set of Kaluza-Klein

(KK) eigenfunctions of Eqs. (3, 4):

φ(x, y) = R
(

α
y

R

) ∞
∑

n=0

(

cos [ny/R]φ+n(x)

sin [ny/R]φ−n(x)

)

=
∞
∑

n=−∞

(

cos [(n+ α)y/R]

sin [(n+ α)y/R]

)

φn(x), (9)

where φn is given by

φn(x) =















1
2
(φ+n(x) + φ−n(x)) for n > 0

φ+0(x) for n = 0
1
2
(φ+n(x) − φ−n(x)) for n < 0.

(10)

The special cases α = 0 (1/2) give T = σ0 (−σ0), so that T 2 = 1. In these cases Z and Z ′

commute, so that the above eigenfunctions Eq. (9) reduce to Eq. (6).
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2.2 General form for orbifold symmetries

We consider N = 1 supersymmetric gauge theories in 5d with gauge group G. The vector

multiplet contains components V = (AM , λ, λ′, σ) and the theory contains a set of hypermultiplets

with components H = (φ, φc†, ψ, ψc†). There may be multiple copies of a hypermultiplet of given

gauge charge, and therefore, since supersymmetry allows only kinetic terms in the bulk, the bulk

Lagrangian can possess some flavor symmetry H . From the 4d viewpoint the theory possesses

two supersymmetries, with transformation parameters Ξ = (ξ1(y), ξ2(y)), which we take to be

local transformations. The bulk Lagrangian possesses a global SU(2)R symmetry under which

Ξ = (ξ1, ξ2), Λ = (λ, λ′) and Φ = (φ, φc†) form doublets.

The symmetry Z(0) induces y → −y and the supersymmetric kinetic terms then force relative

signs for the parities P of the components inside V or H. In particular one discovers that, from

the 4d viewpoint, Z necessarily breaks N = 2 supersymmetry to N = 1 supersymmetry. The 5d

supersymmetric multiplets are then conveniently assembled into 4d supersymmetric multiplets

with the P charges: V = (V (+),Σ(−)) and H = (H(+), Hc†(−)), where V (Aµ, λ) is a 4d vector

multiplet, whereas Σ(σ + iA5, λ′), H(φ, ψ) and Hc(φc, ψc) are chiral multiplets. This action of

Z within an N = 2 multiplet we define as the set of charges Σ3. However, this does not give the

complete action of Z. There may be different overall phase rotations for different hypermultiplets,

PH . Finally, even within a hypermultiplet, Z can act differently on different components of an

irreducible gauge multiplet. We label this by PG, which we take to be an element of the gauge

group. If PG is the unit matrix there is no gauge symmetry breaking, otherwise there is. Hence

we write

Z = Σ3 ⊗ PH ⊗ PG. (11)

The most general possibilities for PH and PG are given by P 2
H = P 2

G = ±1 so that Z2 =

(PH ⊗ PG)2 = 1 (not just P 2
H = P 2

G = 1). An example of the case with P 2
H = P 2

G = −1 is

provided by G = SU(2) with two iso-doublet hypermultiplets H± = (H±, H
c†
± ). In this case, to

have a non-trivial boundary condition in the gauge space (PG 6= 1), we have to take PG = iσ3

in the space of fundamental representation. (PG = σ3 is not an element of SU(2).) Therefore,

P 2
G = −1. Then, to have Z2 = 1, we also have to assign P 2

H = −1 for H±, for instance,

as H± → ∓iH± and Hc
± → ±iHc

±. The combined transformation, PH ⊗ PG, is written as

H± → ±σ3H± and Hc
± → ∓σ3H

c
±, which cannot be reproduced in terms of the parity matrices

PH and PG satisfying P 2
H = P 2

G = 1, since with P 2
H = P 2

G = 1 the induced transformation is

always the same for H± and Hc
±. Indeed, in this SU(2) case, the transformations for H± and

Hc
± must be opposite under PH ⊗ PG, in spite of the fact that H± and Hc

± belong to the same

representation, 2, under the SU(2). Similar situations also occur, for instance, in the case of

G = SO(10) with vector representations. However, all explicit models we discuss in this paper

are described by P 2
H = P 2

G = 1, because the gauge breaking considered in these models are only
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SU(5) → SU(3)×SU(2)×U(1). Therefore, we call PH and PG as parity matrices, but it should

be understood that the eigenvalues for them can be ±i in general.

The argument for Z(0) applies identically to the symmetry Z(πR), but the basis which

diagonalizes Z ′ is in general different from that which diagonalizes Z. Choosing Z diagonal, we

immediately find that Z ′ must take the form

Z ′ = UΣ3U
† ⊗ V P ′

HV
† ⊗WP ′

GW
†, (12)

where P ′
H,G are diagonal matrices with P ′2

H = P ′2
G = ±1, U, V are unitary matrices, and W is an

appropriate matrix making the action invariant under the operation Z(πR) (for instance, W is

a unitary (orthogonal) matrix for G = SU(n) (SO(n))). Note that U is an element of SU(2)R.

Thus the action of Σ3 and UΣ3U
† is the same on the SU(2)R singlets: (ψ, ψc) → (ψ,−ψc) and

(Aµ, σ + iA5) → (Aµ,−(σ + iA5)), but differs on the SU(2)R doublets Λ and Φ. From the

discussion preceding Eq. (8), there is no loss of generality in taking Σ3 = σ3 and U = eπiασ2

acting on the SU(2)R doublet space. On the other hand, the forms for V and W are highly

model dependent. For example, if the flavor group H = U(1)N , then V = 1. If H contains

SU(2) factors, then in the corresponding 2 × 2 blocks, V is either σ0 or eπiβσ2 , depending on

whether the two hypermultiplets of the same gauge charge have equal or opposite P parities.

Throughout this paper, we consider theories with local supersymmetry in the bulk. However

the above classification is unchanged in the non-supersymmetric case, as long as the action of

Σ3 is reinterpreted. It acts as (Aµ, A5) → (Aµ,−A5) and (ψ, η) → (ψ,−η), where ψ and η are

the components of any 5d Dirac fermion.

3 Symmetries and Symmetry Breaking

Every non-trivial entry in Eqs. (11, 12) causes symmetry breaking. One of the two supersym-

metries is broken by Σ3, and the other is broken by a non-trivial U . The flavor symmetry H is

broken by PH , P
′
H , V and the gauge symmetry G by PG, P

′
G,W .

3.1 Supersymmetry breaking

If the extra dimension is not compactified, the theory is invariant under the local supersym-

metry transformations δψ(x, y) = ΞT (x, y) /∂Φ, · · · with Ξ(x, y) = (ξ1(x, y), ξ2(x, y)) an arbitrary

function of spacetime. Compactification with the orbifold boundary conditions of Eqs. (11, 12)

reduces the set of local supersymmetry transformations. The action of Z and Z ′ in SU(2)R space

is given by Eq. (8) so that the theory is invariant under supersymmetry transformations with

6



the form of Eq. (9)

Ξ(x, y) =

(

ξ1(x, y)

ξ2(x, y)

)

= R
(

α
y

R

) ∞
∑

n=0

(

cos[ny/R] ξ+n(x)

sin[ny/R] ξ−n(x)

)

. (13)

Although this is a significant restriction, the theory still possesses local 5d supersymmetry. From

the low energy viewpoint, the number of 4d supersymmetries is the number of independent modes

of Eq. (13) having Ξ = Ξ(x) independent of y. There is at most a single zero-mode, since the

action of both Z and Z ′ necessarily involves σ3. In fact, an unbroken 4d supersymmetry only

results if α = 0, in which case it is the mode:

Ξ(x) =

(

ξ+0(x)

0

)

. (14)

For α 6= 0, Eq. (13) has no zero-mode and hence no 4d supersymmetry survives into the infrared.

One supersymmetry is broken by 1/R, the other by α/R. For any α 6= 0, the nth mode is

proportional to (cos[(n + α)y/R], sin[(n + α)y/R])ξn(x), and has an axis which rotates with y.

For α = 1/2, the 4d supersymmetries on the branes at y = 0 and y = πR are orthogonal.

3.2 Global symmetry breaking

The global symmetry H arises from a repetition of hypermultiplets with the same gauge quantum

numbers. If H is generated by T α, then the identification by Z(0) breaks those generators

for which [PH , T
α] 6= 0. Similarly an identification by Z(πR) breaks those generators having

[V P ′
HV

†, T α] 6= 0. The unbroken global group H ′ is generated by the set of generators which

commutes with both PH and V P ′
HV

†.

3.3 Gauge symmetry breaking

With a non-compact fifth dimension, the theory is invariant under gauge transformations of G:

δAaM = ∂M ǫa(y) + · · ·, with arbitrary gauge transformation parameters ǫa(y). Compactification

with non-trivial PG implies that the gauge fields split up into two sets Aa = (Aa+ , Aa−), which

are (+,−) under y → −y. The + modes have generators which commute with PG: [PG, T
a+ ] = 0.

Hence the compactified theory possesses only a restricted gauge symmetry with gauge parameters

constrained to satisfy [12]

ǫa±(−y) = ±ǫa±(y). (15)

On making a KK mode expansion, Aa+ have zero-modes while Aa− do not, so that the low

energy 4d gauge group is G+, generated by T a+ . We frequently say that compactification using

the parities PG has induced the gauge symmetry breaking G → G+. An alternative viewpoint

7



is that the theory on the compact space possesses a restricted set of gauge transformations,

Eq. (15), which are not broken. They do not include zero-mode transformations of G/G+.

A precisely analogous argument applies for the gauge symmetry breaking induced by P ′
G:

G → G′
+. If W = 1, so that PG and P ′

G are simultaneously diagonalizable, then the zero-

mode gauge bosons correspond to the generators which commute with both PG and P ′
G, and are

therefore (+,+) modes. The lightest gauge boson mode for other generators have masses of order

1/R. These modes are either (+,−), (−,+) or (−,−). For W = 1, the mode eigenfunctions are

given by Eq. (6).

In the case that W (γ) has a non-zero Euler angle, γ, further gauge symmetry generators

are broken [WP ′
GW

†, T a] 6= 0, with some previously massless gauge bosons acquiring mass γ/R.

In this case the KK modes of the local gauge transformations have forms which depend on

the continuous parameter γ. Thus in general the total structure of gauge symmetry breaking,

G→ G′, is very rich.

3.4 The brane action

The action has both bulk and brane contributions

S =
∫

d4x dy [L5 + δ(y)L4 + δ(y − πR)L′
4] . (16)

The form of the bulk action is very tightly constrained by the unbroken local 5d gauge and

supersymmetry transformations discussed above. What interactions are allowed on the branes

at y = 0, πR?

The constraints imposed by the local symmetries are found in the following way: the brane

actions L4,L
′
4 are the most general allowed by the gauge and supersymmetry transformations

that act at y = 0, πR. At y = 0 these transformations are:

ǫa+(x)T a+ , Ξ(x, 0) =

(

ξ(x)

0

)

, (17)

while, at y = πR, for the case W = 1, the transformations are

ǫa
′
+(x)T a′

+ , Ξ(x, πR) = R(πα)

(

ξ′(x)

0

)

. (18)

For W 6= 1, the form of the gauge transformations at y = πR may be more complicated. For

α 6= 0 the supersymmetries on the two branes are different — for α = 1/2 they are orthogonal.

What restrictions are imposed on the brane actions L4,L
′
4 by the global symmetries SU(2)R

and H? These symmetries may be accidental symmetries of the bulk — a consequence of 5d

local supersymmetry — so that the brane actions need not respect them. However, if orbifolding
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leaves some part of the global symmetry unbroken, we may choose to impose this on both the

bulk and brane actions.

The orbifold transformations Z(0, πR) may contain non-trivial contributions from the global

symmetries H and SU(2)R. However, this does not restrict the form of L4,L
′
4. It only says that

H and/or SU(2)R must be symmetries of the bulk action L5. Of course the brane action at

any point can only involve fields that are even about that point (or derivatives of odd fields).

However, a brane interaction at y = 0 can transform non-trivially under Z ′ or, equivalently, T .

This transformation simply serves to fix the brane action at y = 2πnR in terms of that at y = 0

— it does not constrain the action at y = 0.

We conclude that the global symmetries H and SU(2)R do not necessarily place any restric-

tions on L4,L
′
4, which may be taken to be the most general set of interactions invariant under

the gauge and supersymmetry transformations at y = (0, πR).

3.5 Calculability

The short distance divergence structure of the theory must reflect the unbroken local gauge

symmetry and supersymmetry. Since the action was taken as the most general respecting the

local symmetries, all short distance radiative corrections must take the form of local operators

which are already present in Eq. (16). Thus any quantity which is forced by the local symmetries

to vanish at tree level will have finite UV radiative corrections. Such quantities need not vanish;

they may be generated by IR physics.

As an example, consider the case of G = SU(3) × SU(2) × U(1) with a single Higgs doublet

hypermultiplet in the bulk [7]. The zero-mode structure is precisely that of the one Higgs doublet

standard model. There has been considerable debate recently about the radiative structure of

the zero-mode Higgs boson mass [15], with some arguing that it is finite and some that it

is quadratically divergent. The exact unbroken local supersymmetry, given by Eq. (13) with

α = 1/2, is sufficient to guarantee that the mass of the zero-mode Higgs boson is radiatively UV

finite to all orders in perturbation theory. Those who claim divergent behavior have apparently

not realized that there is an unbroken 5d local supersymmetry in the theory. The Higgs mass

is non-zero because at distances larger than 1/R there are non-local IR contributions. In the

low energy effective theory (in this case the standard model) these contributions appear to be

quadratically divergent (the usual top loop contribution to the Higgs mass). However, at shorter

distances the locality of the fifth dimension becomes operative and removes the divergence. In

calculating explicit loop diagrams, this is seen most transparently by going to position space for

the extra dimension, as in Ref. [8]. When using momentum space, the internal propagators are

expanded in KK modes, and the sum of these KK modes must be done in a way which preserves

the local supersymmetry. A simple way of doing this is to include the contributions from all

9



modes.

Whether a quantity is finite and calculable simply depends on whether a local operator can be

written which contributes to it. In any theory with the local supersymmetry Eq. (13), all magnetic

dipole moment operators vanish at tree level and will therefore be radiatively finite. Recently a

finite one-loop contribution to b → sγ has been computed [16] in the theory of Ref. [7]. On the

other hand the electroweak ρ parameter arises at tree level from the supersymmetric operator

δ(y)
∫

d4θ (H†egVH)2, and hence is subject to quadratically divergent radiative corrections.

In calculating radiative corrections to such quantities as the Higgs boson mass and b → sγ

one may wonder whether contributions from gravitino exchange are important. Since we have

local supersymmetry in the bulk, such interactions are certainly present. They cannot change the

above arguments about finiteness, and now we argue that they contribute only very small amounts

to the finite quantities. The local symmetry structure of the theory becomes apparent at distances

smaller than 1/R, and hence all contributions from shorter distances are cut off. However, the

gravitino interactions are weak at scale 1/R and do not make a substantial contribution. At some

higher energy scale the gravitational interaction becomes strong, but these local interactions

cannot contribute significantly to the finite quantities.

4 Simple Models with Bulk Higgs

In this section we consider simple supersymmetric models with G = SU(5) or G = SU(3) ×

SU(2) × U(1), with the Higgs doublet(s) in the bulk. The breaking of electroweak symmetry

is then linked to the physics of the bulk. In SU(5) theories, a crucial role of the bulk is to

accomplish doublet-triplet splitting. In the non-unified case, the Higgs is also a near zero-mode.

In all cases we consider the role the bulk plays in breaking supersymmetry.

In general we are interested in non-trivial U, V,W so that Z and Z ′ are not simultaneously

diagonalized. However, some of the simple theories do have [Z,Z ′] = 0, while in other theories

the lack of commutativity is small, so that it is convenient to think first about the commuting

case.

After global and gauge symmetry breaking, there are a collection of H ′ × G′ irreducible

hypermultiplets (φ, ψ;φc, ψc). Given the gauge and global parities PG, P
′
G, PH and P ′

H of Eqs. (11,

12), the fermion ψ has four possibilities for its (P, P ′) parities: ψ(p, p′) with p, p′ = ±1. The

(P, P ′) parities of all other components of the hypermultiplet are now fixed in terms of PR ≡

exp(2πiασ2) = (+1,−1) for α = (0, 1/2):

[φ(p, PRp
′), ψ(p, p′); φc(−p,−PRp

′), ψc(−p,−p′)] . (19)

There are four different types of hypermultiplet according to whether p = ± and t ≡ pp′ = ±. If

PR = +1 supersymmetry is unbroken, and there is a zero-mode chiral multiplet only for parities

10



of equal signs (t = +1). If PR = −1 supersymmetry is broken, and for parities of equal signs

(t = +1) the zero-mode is a fermion, while for parities of opposite signs (t = −1) the zero-mode

is a scalar.

Similarly, after gauge symmetry breaking, a gauge boson may have any combination of pari-

ties, Aµ(p, p′), but the other components of the 5d vector multiplet are then given:

[

Aµ(p, p′), λ(p, PRp
′); (σ + iA5)(−p,−p′), λ′(−p,−PRp

′)
]

. (20)

The KK mode expansion for any of these fields is given by its (P, P ′) quantum numbers according

to Eq. (6). If t = +1 (−1) the KK modes have mass mn = n/R ((n + 1/2)/R). The fermion

masses of the tower are Dirac type.

It is remarkable that in 5d the most general possible supersymmetry breaking is described

by just a single parameter α. For arbitrary α, but keeping β = γ = 0, the eigenfunctions of the

SU(2)R doublets (φ, φc†) and (λ, λ′) pass from Eq. (6) to Eq. (9) with the eigenvalues shifted by

α/R

mn →

{

mn ± α/R non zero-mode

α/R zero-mode.
(21)

The gauginos become Majorana and are shifted in mass relative to their gauge boson partners.

Similarly the hypermultiplet scalars are shifted in mass relative to their fermionic partners. In

both cases the mass of the zero-mode is lifted by α/R, while the excited members of the SU(2)R

doublets get split in mass by ±α/R relative to the corresponding SU(2)R singlet states.

4.1 Models with G = SU(3) × SU(2) × U(1)

We choose the orbifold symmetries to preserve the gauge group, so that PG and P ′
G are trivial.

All the vector multiplets therefore have p = p′ = 1 in Eq. (20).

The simplest possibility is that there is a single Higgs hypermultiplet in the bulk. From

Eq. (19) we see that if t = pp′ = 1 for this hypermultiplet, there is a single zero-mode Higgsino,

so that this case is forbidden by anomalies. For t = −1 and supersymmetry unbroken, RP = 1,

there is no zero-mode Higgs boson. Such a situation is hard to reconcile with observation:

supersymmetry is unbroken and the Higgs mass squared has a large positive value comparable

to the masses of the KK excitations of the standard model gauge particles. The unique theory

with 1 Higgs hypermultiplet has t = −1 and α 6= 0. The case of α = 1/2 was studied in Ref. [7].

In this theory the Higgs potential depends on only 1 unknown parameter, 1/R, and since the

Higgs mass is finite it can be predicted: mh = 127 ± 8 GeV. A deformation of this theory is

possible by allowing α to deviate from 1/2, so that [Z,Z ′] 6= 0. We study this deformation in

section 5. The unique 1 Higgs hypermultiplet theory may therefore be described by Z, T in the

11



supersymmetry and Higgs flavor spaces as

Z = Σ3 ⊗ 1, (22)

T = e2πi(1/2+θ)σ2 ⊗−1. (23)

In many theories it is useful to consider the Z, T basis, since the symmetry breaking is transpar-

ently summarized by T . The simplest assignment of matter is for quark and lepton superfields to

all be in the bulk with positive T parity so that they all contain a single zero-mode fermion. Thus

the orbifold quantum numbers in the matter flavor space are (ZM , TM) = (+1,+1). Indeed, the

requirement that all charged fermions have Yukawa coupling to the zero-mode Higgs and that

the KK modes would not yet have been discovered makes this all but unique. The only other

possibility known to us has uR and dR superfields located on the branes at y = 0 and y = πR,

respectively, and the rest of the matter in the bulk.

The most general theory with two Higgs hypermultiplets is conveniently described in the

supersymmetry and Higgs flavor spaces by

Z = Σ3 ⊗ σ3, (24)

T = e2πiασ2 ⊗ e2πiβσ2 , (25)

and involves two free parameters: α, β.1 This theory was written down by Pomarol and Quiros

[5], who took the view that α and β were of order unity. At the compactification scale, 1/R,

supersymmetry is broken, so that the theory below 1/R is non-supersymmetric and must contain

a Higgs zero-mode. This happens only for the case α = β, which was the focus of their work

[5, 6]. Such a light Higgs requires a relation between the breaking of supersymmetry, α, and

the breaking of Peccei-Quinn symmetry, β. We have recently advocated an alternative view [14]

where α and β are taken to be extremely small. In this case the effective theory below 1/R is

the MSSM. The parameters α and β force a non-trivial y dependence for the zero-mode Higgs,

hu,d, and gauginos, λ, so that on compactification they lead to the mass terms

L = −
α

2R
(λλ+ h.c.) −

α2

R2

(

h†uhu + h†dhd

)

−
β

R
(h̃uh̃d + h.c.) −

β2

R2

(

h†uhu + h†dhd

)

+
2αβ

R2
(huhd + h.c.). (26)

The first line gives the supersymmetry breaking soft masses determined by α alone, while the

second line gives the Peccei-Quinn breaking terms induced by β alone. The third term is propor-

tional to both supersymmetry and Peccei-Quinn symmetry breaking. It is remarkable that these

1 For Z = Σ3 ⊗ σ0 the two lightest Higgs modes have the same hypercharge.
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mass terms correspond precisely to those of the MSSM. The common scalar and gaugino mass

is α/R, the µ parameter is β/R and the soft parameter B is predicted to be 2α/R. The signs of

the two Peccei-Quinn breaking terms are correlated such that the conventional µ parameter is

negative. It is remarkable that the most general 2 Higgs hypermultiplet theory in 5d, Eqs. (24,

25), leads to the MSSM soft operators, with a unified origin for both supersymmetry breaking

and the µ parameter. The smallness of supersymmetry breaking and the µ parameter are both

due to the smallness of the commutator [Z, T ]. Quarks and leptons can be on either brane,

or, if they are in the bulk, they have orbifold quantum numbers in the matter flavor space of

(ZM , TM) = (+1,+1).

4.2 Models with G = SU(5)

The weakest aspects of conventional 4d grand unified theories are the breaking of the unified

gauge symmetry and arranging the mass splitting of Higgs triplets from Higgs doublets. Assigning

a non-trivial action for the orbifold symmetries in the gauge space, and taking 1/R to be the

scale of gauge coupling unification, opens up new, higher dimensional possibilities for grand

unification, with orbifold breaking of the gauge group and orbifold doublet-triplet splitting. In

the case of 5d, there are two parities Z and Z ′ available for gauge symmetry breaking. If the

gauge group is SO(10), there is no choice for these parities which gives a set of zero-modes for

the 5d vector multiplet corresponding to a successful weak mixing angle prediction. We therefore

confine our attention to the case that the gauge group is SU(5).

To obtain a theory below 1/R with (approximate) 4d supersymmetry and two Higgs doublets,

one should start with two Higgs hypermultiplets in the 5 of SU(5). The most general orbifold

symmetry which breaks SU(5) to SU(3)×SU(2)×U(1), and does not give unwanted zero-modes

from the 5d vector multiplet, or from the two Higgs hypermultiplets, is [14]

Z = Σ3 ⊗ σ3 ⊗ I5, (27)

T = e2πiασ2 ⊗−e2πiβσ2 ⊗

(

I3 0

0 −I2

)

, (28)

where In is the n× n unit matrix. This theory has unbroken, local 5d supersymmetry transfor-

mations of the form Eq. (13). It also has unbroken, local 5d gauge transformations. Those corre-

sponding to the generators of the standard model gauge group, ǫ3−2−1(y), have (Z,Z ′) = (+,+),

while the remaining transformation parameters, ǫX(y), have (Z,Z ′) = (+,−). These transfor-

mation parameters therefore have the appropriate KK mode expansions of Eq. (6). Notice that

the full SU(5) gauge transformations are operative at the brane at y = 0, while only those of

SU(3) × SU(2) × U(1) act at the brane at y = πR.

In the case that α = β = 0 the orbifold does not break 4d supersymmetry or the Peccei-Quinn

symmetry. This is the case introduced by Kawamura [10] and extended to include matter and
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the unification of gauge couplings [12]. It is important to stress that the orbifold symmetries in

Higgs flavor space must take the form

(ZH , TH) = (σ3,−σ0). (29)

Other assignments do not lead to zero-mode Higgs doublets. For example, the σ3 ensures that

the light doublets are vector-like with respect to the unbroken gauge group.

Three generations of grand unified matter (T, F̄ ) can be placed on the brane at y = 0. The

Yukawa couplings to the bulk Higgs fields are also located at this point, and should therefore

be SU(5) invariant.2 These Yukawa interactions do not induce d = 5 proton decay, because the

form of the masses for the Higgs triplets, generated by the orbifolding, possesses a symmetry

which sets the amplitude to zero [12]. The Yukawa couplings lead to the successful b/τ mass

relation for the third generation. Similar relations for the lighter generations can be avoided by

mixing with heavy bulk matter [12].

Alternatively, matter may be placed in the bulk [12, 13]. A single generation requires two

sets of 10 + 5̄ hypermultiplets: T, T ′, F̄ , F̄ ′. On the two dimensional space, (T, T ′) and (F̄ , F̄ ′),

the orbifold symmetry acts as

(ZM , TM) = (σ0, σ3), (30)

for each generation. The σ0 ensures that the light matter is chiral under the unbroken gauge

group, while the σ3 ensures that an entire generation, q, u, d, l, e, is massless. Strictly speaking,

the unification of quarks and leptons is largely lost: T (u, e), T ′(q), F̄ (d), F̄ ′(l). However, the

SU(5) understanding of the quantum numbers of a generation is preserved. This combination

of bulk matter is the smallest which leads to anomaly-free, chiral zero-modes, and it automati-

cally gives the quantum numbers of a generation. There is no proton decay from SU(5) gauge

exchange, and there are no SU(5) fermion mass relations [12]. Whether matter is placed on the

brane or in the bulk, the theory beneath 1/R is the MSSM without supersymmetry breaking or

Peccei-Quinn symmetry breaking.

The only remaining freedom in the structure of the orbifold symmetry Eqs. (27, 28) is a

non-zero value for α and β [14]. Since these parameters break 4d supersymmetry and the Peccei-

Quinn symmetry, they must be extremely small. As in the case of the standard model gauge

group, they lead to the zero-mode mass terms of Eq. (26).

The color triplet Higgsino mass matrix from orbifolding turns off dimension 5 proton decay,

and bulk matter turns off proton decay from the SU(5) gauge interactions and from scalar Higgs

triplet exchange. Hence 1/R could be reduced to the TeV scale.3 While the precise weak mixing

angle prediction is lost, KK modes of standard model particles, as well as those of X and Y gauge

2 Those of Ref. [11] are not invariant under the SU(5) gauge transformations discussed above.
3 Grand unified theories at the TeV scale were considered in Ref. [17] with a different mechanism of suppressing

proton decay from the SU(5) gauge interactions.

14



bosons and fermions, could be produced at high energy colliders. In such grand unified theories

at the TeV scale, supersymmetry could be broken by the orbifold via a large α parameter, and

there could be one or two Higgs quasi zero-modes. Above the compactification scale the running

of the gauge couplings is dominated by SU(5) symmetric power law running [12, 18]. Thus,

for this scheme to be viable, there must be some large new exotic contributions to the gauge

couplings either at or beneath the compactification scale.

5 SU(3) × SU(2) × U(1) Model with One Higgs Doublet

In this section, we investigate radiative electroweak symmetry breaking in one Higgs doublet

theories with G = SU(3) × SU(2) × U(1). We consider the case where all three generations of

matter and a single Higgs propagate in the 5d bulk. The most general orbifold boundary condi-

tions are given by Eqs. (22, 23), so that we have a 1 parameter family of theories parameterized

by a real number θ (0 ≤ θ < 1/2). For any member of this family, the Higgs effective potential

depends on only one free parameter 1/R, so that the physical Higgs boson mass mh and the

compactification scale 1/R are calculable. The θ = 0 case corresponds to the model in Ref. [7].

The KK mass spectrum for the θ = 0 case is given by

m, h,Aµ : n/R

m̃, m̃c, h̃, h̃c, λ, λ′ : (n + 1/2)/R (31)

mc, hc, σ : (n + 1)/R,

where n = 0, 1, 2 · · · and m represents q, u, d, l, e. A non-zero value for θ modifies the above mass

spectrum such that the scalar and gaugino masses are shifted by θ/R. In particular, the Higgs

boson h obtains a tree-level mass θ/R, and the two linear combinations of m̃ and m̃c have split

masses of (n+1/2± θ)/R. As a result, the Higgs effective potential depends on θ and the values

for mh and 1/R also depend on θ.

Radiative electroweak symmetry breaking occurs only when θ is small. Since the tree-level

Higgs mass squared is given by θ2/R2 and one-loop negative contribution through the top Yukawa

coupling is ∼ −(1/π4)(y2
t /R

2), θ <∼ 1/π2 is required to break electroweak symmetry. This small

θ perturbs the field dependent masses of the top and stop KK towers as

mFn
=

{

n+
1

π
arctan(πytHR)

}

1

R
, (32)

mB±
n

=
{

n± θ +
1

π
arccot(πytHR)

}

1

R
, (33)

where n = −∞, · · · ,+∞, H ≡ |h|, and there are one Dirac fermion (Fn) and two complex scalars

(B±
n ) at each level n. With these masses, we can calculate the one-loop Higgs effective potential
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Figure 2: The physical Higgs boson mass mh as a function of θ.

Vt(H) from the top-stop loop, using calculational techniques in Ref. [19]:

Vt(H) =
9

16π6R4

∞
∑

k=1

{

cos[2k arctan(πytRH)]

k5
− cos[2πkθ]

cos[2k arccot(πytRH)]

k5

}

. (34)

Then, together with the tree-level Higgs potential

VH,0(h) =
θ2

R2
H2 +

g2 + g′2

8
H4, (35)

we can derive the values for mh and 1/R by requiring that 〈H〉 = 175 GeV.

In Figures 2 and 3, we have plotted the predicted values for mh and 1/R as a function of θ,

including one-loop gauge contributions to the quadratic term in the potential. They are both

monotonically increasing functions with respect to θ. The θ = 0 case reproduces the values

obtained in Ref. [7]: mh = 127 GeV and 1/R = 731 GeV. Note that the definition of R here is

different from that in Ref. [7] by a factor of 2, so that it corresponds to 1/R = 366 GeV in the

notation of Ref. [7]. (A slight increase of 1/R compared with the previous value comes from an

improved treatment of higher order effects. This also changes the central value for the estimate

of the lightest stop mass to mt̃− = 211 GeV.) As θ is increased to θ >∼ 0.1, 1/R approaches

infinity meaning that electroweak symmetry breaking does not occur beyond that value of θ.

It is interesting that we can obtain larger values for 1/R by perturbing the model of Ref. [7]

with small non-zero θ. It reduces the amount of tuning required to obtain phenomenologically

acceptable value of the ρ parameter, since the contribution from KK towers to the ρ parameter

scales as (1/R)−2.
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Figure 3: The compactification scale 1/R as a function of θ.

6 Conclusions

In this paper we have given the most general form for the orbifold breaking of symmetries from

a single extra dimension. While the structure of gauge and flavor symmetry breaking is very

rich, the breaking of supersymmetry is described by a single free parameter. The supersymmetry

breaking from all 5d theories is therefore guaranteed to have a simple form. We have explicitly

exhibited the form of the local supersymmetry transformations which are left unbroken by the

orbifolding. All ultraviolet divergences of the theory must correspond to local operators which

respect this unbroken local supersymmetry. It is this symmetry that results in the ultraviolet

finiteness of the Higgs mass in certain theories.

We have explicitly constructed the most general orbifold symmetries for N = 1 supersym-

metric, 5d models with gauge group SU(3) × SU(2) × U(1) and SU(5), having either one or

two Higgs hypermultiplets in the bulk. There are very few such theories. There is a unique one

parameter family of SU(3)×SU(2)×U(1) theories with a single Higgs hypermultiplet. We have

studied radiative electroweak symmetry breaking in this family of theories, and the Higgs boson

mass and the compactification scale are shown as a function of this parameter, θ, in Figures 2

and 3, respectively. The special case θ = 0 gives a central value for the Higgs mass of 127 GeV

[7].

There is a unique two parameter family of SU(3) × SU(2) × U(1) theories with two Higgs

hypermultiplets. One parameter breaks supersymmetry and the other breaks Peccei-Quinn sym-

metry. This family was first constructed by Pomarol and Quiros [5] where the compactification

scale was taken to be in the TeV region. To obtain a zero-mode Higgs boson, the two orbifold

parameters were taken equal, giving a one dimensional parameter space. After radiative elec-
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troweak symmetry breaking, the Higgs boson was found to be lighter than 110 GeV throughout

this one dimensional parameter space, almost excluding the theory. Theories with a heavier

Higgs boson might result when the two parameters are allowed to differ by a small perturbation.

Another possibility is that the compactification scale is taken much larger than the TeV scale,

and both parameters are taken very small [14]. In this case the theory below the compactification

scale is the MSSM with a constrained form for the soft supersymmetry breaking operators as

shown in Eq. (26). Radiative electroweak symmetry breaking requires that the compactification

scale be in the interval 106 − 109 GeV.

There is a unique two parameter family of SU(5) theories with two Higgs hypermultiplets,

where the orbifolding breaks SU(5) → SU(3) × SU(2) × U(1). In the special case that the two

free parameters vanish, the orbifolding corresponds to that introduced by Kawamura [10] and

developed in Ref. [12]. The theory including the two free orbifold parameters gives a unified

origin for SU(5), supersymmetry and Peccei-Quinn breaking [14].

These three families of theories are the only ones in 5d with the stated gauge groups and

bulk Higgs modes. While each family has variants depending on the location of the quarks and

leptons, we have stressed the tightly constrained form of orbifold symmetry breaking. In all

cases, the group theoretic structure of the symmetry breaking is given by Eqs. (27, 28), where Z

is the orbifold parity and T the translation symmetry. If there is no SU(5) unification the last

space is removed in these equations with appropriate sign changes in the second space. If there

is a single Higgs doublet, then in the second space Z is +1 and T is −1.
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