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Abstract

Parasitic helminths release molecular effectors into their hosts and these effectors can

directly damage host tissue and modulate host immunity. Excreted/secreted proteins

(ESPs) are one category of parasite molecular effectors that are critical to their success

within the host. However, most studies of nematode ESPs rely on in vitro stimulation or cul-

ture conditions to collect the ESPs, operating under the assumption that in vitro conditions

mimic actual in vivo infection. This assumption is rarely if ever validated. Entomopathogenic

nematodes (EPNs) are lethal parasites of insects that produce and release toxins into their

insect hosts and are a powerful model parasite system. We compared transcriptional pro-

files of individual Steinernema feltiae nematodes at different time points of activation under

in vitro and in vivo conditions and found that some but not all time points during in vitro para-

site activation have similar transcriptional profiles with nematodes from in vivo infections.

These findings highlight the importance of experimental validation of ESP collection condi-

tions. Additionally, we found that a suite of genes in the neuropeptide pathway were downre-

gulated as nematodes activated and infection progressed in vivo, suggesting that these

genes are involved in host-seeking behavior and are less important during active infection.

We then characterized the ESPs of activated S. feltiae infective juveniles (IJs) using mass

spectrometry and identified 266 proteins that are released by these nematodes. In compar-

ing these ESPs with those previously identified in activated S. carpocapsae IJs, we identi-

fied a core set of 52 proteins that are conserved and present in the ESPs of activated IJs of

both species. These core venom proteins include both tissue-damaging and immune-modu-

lating proteins, suggesting that the ESPs of these parasites include both a core set of effec-

tors as well as a specialized set, more adapted to the particular hosts they infect.

Author summary

In this study we found a core set of 52 venom proteins conserved between two insect-par-

asitic nematodes Steinernema feltiae and Steinernema carpocapsae, that are released when

initially exposed to host tissue. Most of these proteins are conserved in mammalian-
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parasitic nematodes suggesting that this core set of proteins is important for parasitic

nematodes in general. We show that the relevance of in vitro model systems to in vivo
model systems needs to be optimized and experimentally measured. Using an in vitro
model of parasitic nematode activation, we stimulated protein release from S. feltiae and

evaluated its activity in vivo. This activation model was previously developed using S. car-
pocapsae and we conclude that this method is robust and can be generalized to other

EPNs (entomopathogenic nematodes). We found notable characteristics of S. feltiae
venom including time-dependent decreases in protein amount and toxicity after exposure

to host tissue, which differs from what has been previously reported for other EPNs, illus-

trating diversity in parasitic strategies among EPNs. Additionally, naïve S. feltiae infective

juveniles (IJs) not exposed to host tissue release considerable amounts of protein. These

proteins however are not toxic and differ in composition from those of activated IJs.

Introduction

Parasitic nematodes continue to be a major source of mortality and morbidity worldwide,

infecting nearly 25% of the global population [1, 2]. The molecules that are released by these

parasites, including the excreted/secreted proteins (ESPs), represent the major interface

between hosts and parasites, and directly influence the survival and health of the parasites as

well as the pathology they cause to the hosts [3, 4]. Despite an abundance of studies addressing

mechanistic aspects of host immune response to nematode parasites, there is a distinct paucity

of molecular information about most parasitic nematodes, where few secreted molecules have

been studied in detail. Further, the role of the parasite ESP composition in determining host

specificity is unknown. What is known relies largely on ESP studies where release of the ESPs

is stimulated and collected in vitro. An underlying assumption is that the ESPs collected under

these conditions are relevant and similar to the ESPs released in in vivo infections, though this

assumption has not been experimentally validated for most if not all such studies [3]. Obtain-

ing enough ESPs from nematodes that are actively involved in a host infection for subsequent

analysis is difficult if not impossible. However, sequencing the transcriptomes of individual

nematodes [5, 6], provides a way of comparing transcriptional profiles of parasites undergoing

in vitro activation and in vivo infection.

Entomopathogenic nematodes (EPNs) are parasites of insects that rapidly kill their hosts.

When EPNs deplete host nutrients the developing generation emerges from the cadaver as

infective juveniles (IJs), an alternative third-stage larval form (L3) that is developmentally

arrested, similar to the dauer juvenile stage in C. elegans [7]. The IJs are the only free-living

stage of these nematodes, and they actively seek hosts to infect [8, 9]. Upon entering a new

host, the IJs undergo the process of activation, or recovery from dauer, which entails resump-

tion of growth and development, along with changes in morphology and gene expression that

facilitate transition from a free-living form to an actively parasitic form [5, 10–12].

EPNs are being used as models for host-parasite interactions including ecology [13, 14],

host-seeking behavior [9, 15], neurobiology [8], parasite activation [5, 16, 17], and the role of

secreted products in parasitism [5, 18, 19]. There are more than 70 described species of EPNs

in the genus Steinernema, and these vary in their host range and specificity [20, 21], making

these nematodes a potential model for understanding the evolution of ESPs and their role in

niche partitioning among parasites. For example, S. carpocapsae is a generalist parasite capable

of infecting more than 250 different species of insects from at least 13 orders [22, 23], while

other species such as S. scapterisci and S. scarabaei are specialist parasites infecting a much
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narrower range of species [24, 25]. A recent study of the S. carpocapsae secretome found that

this generalist parasite releases more than 450 different proteins when initiating active parasit-

ism. Many of these proteins were hypothesized to be involved in tissue damage and immuno-

suppression of the host [5]. S. feltiae is another generalist EPN parasite but with a more limited

host range than S. carpocapsae and in a different clade within Steinernema [26, 27]. Several

studies have shown that S. feltiae IJs use their cuticle to suppress and evade host immunity

[28–30]. It has even been postulated that unlike S. carpocapsae, S. feltiae does not use secretion

processes or secreted proteins to induce host immunosuppression [31].

Here we utilized RNA-seq from individual S. feltiae nematodes throughout a time course of

in vitro and in vivo activation to compare the induction of ESPs under these different condi-

tions. We reported the secretome of S. feltiae and tested its activity in vivo. We showed that

activated S. feltiae IJs release a variety of proteins likely involved in tissue damage as well as

immune modulation. By analyzing the in vivo time course of activation, we identified putative

neuropeptide pathway genes likely to be involved in host-seeking behavior as the expression of

these genes decreased as the nematodes is activated. Further, using comparative analysis we

identified a core suite of 52 ESPs released by both S. feltiae and S. carpocapsae during active

parasitism, indicating that despite differences in host range and specificity, some proteins may

be broadly useful in parasitizing insect hosts. Most of these core proteins are conserved in

nematode parasites of mammals, suggesting that they have an important and conserved role in

parasitism.

Results

Steinernematids initiate active parasitism when exposed to host tissue

We utilized an in vitro activation method previously used for S. carpocapsae and S. scapterisci
[5, 17] to determine how S. feltiae IJs activate. We exposed S. feltiae IJs to insect homogenate

and found that they activated in a manner similar to what has been described for S. carpocapsae
and S. scapterisci (Fig 1). Expansion of the pharyngeal bulb was found to be a reliable indicator

of IJ activation [5, 16, 17] and this feature was used to quantify activation. In naïve IJs (IJs not

exposed to host tissue) the pharyngeal bulb is often difficult to observe at 400x magnification

(Fig 1A). At 1000x magnification (Fig 1B) the pharyngeal bulb can be seen, however the bulb is

typically more compressed, seemingly deflated, when compared to activated nematodes. As IJs

are exposed to host tissue over time they begin exhibiting partially-activated morphology char-

acterized by partial expansion of the pharyngeal bulb (Fig 1D) which, in contrast to naïve IJs, is

more expanded and can be readily observed at 400x (Fig 1C). These differences allow us to

quickly and efficiently differentiate between non-activated and activated IJs under 400x magni-

fication. After 6 hours of exposure to insect tissue, approximately 25% of IJs exhibit fully acti-

vated morphology with full expansion of the pharyngeal bulb, which is wider and appears

rounder than the oval shape of partially activated nematodes (Fig 1F and 1D). Similar to what

was observed for S. carpocapsae, S. feltiae exhibits high levels of activation (combined partial

and full activation) after only 6 hours of exposure to host tissues (Fig 1G). However, S. feltiae IJs

exhibited a higher percentage of fully activated morphology (approx. 25%) compared to S. car-
pocapsae (approx.15%) at 6 hours. And while both species displayed time-dependent increase in

activation rates, S. feltiae activation rates were often higher than S. carpocapsae with significantly

higher full activation rates after 6, 24, and 30 hours of exposure (Fig 1G, S1 Table).

Activated Steinernema IJs release toxic proteins into their hosts

After determining the activation dynamics of S. feltiae IJs, we collected the ESPs of activated S.

feltiae IJs to determine their effect in insects. S. feltiae IJs were activated in insect homogenate

Core EPN venom proteins
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for 0, 6, 12, 18, 24, or 30 hours, washed to remove the insect homogenate, and incubated in

PBS for 3 hours where they continued releasing ESPs. The PBS (with accumulated ESPs) was

then filtered through a 0.22 μm filter to remove the IJs and concentrated for further experi-

ments. The relative age of all the ESPs were the same; at most, they were 3 hours old. We

found that the profile of S. feltiae ESPs changed over time with proteins between 25 and 37

kDa being consistently present from 6–30 hours while proteins between 37–75 kDa peaked at

12 hours and diminished in abundance thereafter (Fig 2A). There was an overall time-depen-

dent decrease in proteins released by S. feltiae (S1 Fig). Comparing the protein band profiles of

S. feltiae and S. carpocapsae ESPs side-by-side shows that the majority of S. feltiae ESPs are

Fig 1. Activation of S. feltiae IJs. The left panel images are representative images of the head region of S. feltiae IJs exhibiting (A) naïve, (C) partially activated, and (E)

fully activated morphology (400x). The pharyngeal bulb, if observable, is indicated by a black arrow. The right panel images are 1000x representative images of the S.

feltiae IJs exhibiting activation morphology corresponding to the left panel images with (B) naïve, (D) partially activated, and (F) fully activated. (G) Time course

activation rates based on activation morphology of IJs exposed to insect homogenate for 0, 6, 12, 18, 24, and 30 hours. All activation rate data was taken from IJs

observed under 400x. The top graph is of S. feltiae activation and bottom graph is of S. carpocapsae activation (S. carpocapsae activation was reproduced from Lu. et al,

2017 with the addition of a 0-hour time point). Stars in the columns of the S. feltiae activation graph indicates a significant difference with p<0.05 between S. feltiae and

S. carpocapsae rates of the same category (e.g. S. feltiae 6 hr full activation compared to S. carpocapsae 6 hr full activation, data in S1 Table). Column bars represent the

mean with error bars representing standard deviation. Statistical analysis was done using a repeated measures two-way ANOVA with Sidak’s multiple comparisons test.

https://doi.org/10.1371/journal.ppat.1007626.g001
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between 25 and 75 kDa while S. carpocapsae ESPs are more concentrated in a narrower size

range, between 25 and 50 kDa (Fig 2B). Naïve S. feltiae IJs produced a relatively large amount

of ESPs, with most of these proteins below 37 kDa (Fig 2A and 2B) while naïve S. carpocapsae
IJs produced undetectable levels of ESPs (Fig 2B).

Next, we tested the activity of S. feltiae ESPs in insect hosts. We injected 20 ng of S. feltiae
ESPs into Drosophila melanogaster adults and monitored their survival. We found that the

ESPs from naïve (0 hour) IJs were not toxic (Fig 2C). ESPs collected from the early activation

time points (6 and 12 hours) exhibited the highest toxicity while ESPs from later activation

time points (18, 24, and 30 hours) decreased in toxicity (Fig 2C). This activation-dependent

toxicity is in stark contrast with S. carpocapsae ESPs, which maintained consistently high toxic-

ity levels, even for ESPs collected after 30 hours of activation (Fig 2D). Late stage L4 and early

adults were present at the later time points (24 and 30 hours) and since the more developed

nematodes are fragile it was possible that some of these nematodes were damaged and unable

to continue producing ESPs or were producing different ESPs. To address this possibility, we

quantified the number of damaged nematodes throughout activation using a vital stain (0.2%

trypan blue). Since it was the later time points (18, 24, and 30 hours) that exhibited notable

decreases in ESP amount and toxicity we compared the number of damaged nematodes in

these groups to that found among the 6-hour activated nematodes. The number of damaged

nematodes did increase at the later time points (as expected) but the only group that exhibited

a significantly higher percentage of damaged nematodes was the 30-hour time point, which

accounted for less than 5% of the population (S2 Fig and S2 Table). Further, to simulate harsh

experimental handling of the nematodes we repeated the activation time course but applied

manual crushing/pressing of the activation sponge before washing the nematodes out for

staining and observation. We found that manual crushing/pressing of the sponge caused sig-

nificant increases in the percentages of damaged nematodes, with the highest average just

below 12% at the 30-hour time point (S2 Fig and S2 Table). We also evaluated whether the tox-

icity we observed was primarily from nematode-derived ESPs or contamination from its sym-

biotic bacteria, Xenorhabdus bovenii. We compared ESPs from axenic S. feltiae IJs activated for

6 hours and found that the profile of ESPs and the toxicity (S3 Fig) were similar to those of

symbiotic IJs (Fig 2A–2C), leading us to conclude that the toxicity in these experiments is a

result of nematode-derived ESPs.

Comparative transcriptome analysis of in vitro and in vivo activated S.

feltiae IJs reveals a core set of genes expressed at 6 hours after activation

We performed single-nematode RNA-seq analysis [6] in order to identify the similarities and

differences between the activation of S. feltiae in vivo and in vitro. We collected RNA from 3

individual nematodes activated in vitro for 3, 6, and 9 hours and from nematodes dissected out

of infected waxworms (in vivo) at 3, 6, 9,12, and 15 hours. We performed differential expres-

sion (DE) analysis using edgeR [32] and found 5670 genes to be differentially expressed

between 6 hours in vitro activated IJs and naïve IJs (Fig 3A). Among these genes, 3 general

gene expression patterns were observed: Increasing expression over time, increasing first and

then decreasing over time, and high levels of expression in naïve IJs with expression decreasing

over time (Fig 3A).

With the 5670 differentially expressed genes between 6-hour in vitro activated IJs and naïve

IJs, we then used MaSigPro to identify genes with significant expression differences and simi-

larities between in vitro and in vivo time courses and identified 3 major clusters (Fig 3B), simi-

lar to the result from edgeR analysis (Fig 3A) [33]. Cluster 1 consists of 366 genes that

demonstrate a distinct profile between in vitro (red) and in vivo (green) conditions (Fig 3B).
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While the 6-hour in vitro and 6-hour in vivo samples had similar gene expression levels, many

of these genes showed increasing expression up to 15 hours in vivo, whereas they showed

decreasing expression by 9 hours in vitro. GO terms for defense response (p-value 3.24e-7),

proteolysis (p-value 1.92e-5) as well as enzymatic activities such as peptidase (p-value 3.43e-

11) and hydrolase (p-value 3.36e-15) are enriched in cluster 1 (Fig 3C). Enzymatic activity is

also a feature of cluster 2 (815 genes) with enzymes such as oxidoreductase (p-value 1.73e-22)

and serine-type peptidase (p-value 4.44e-4) reaching a peak of expression at 6 hours in vitro
and in vivo. Lastly, cluster 3 consists of 2578 genes that decrease within 3 hours of activation.

GO analysis of cluster 3 genes found enrichments in terms involved with response to hydrolase

activity (p-value 4.56e-5), response to chemical (p-value 3.98e-4) and enzyme activity such as

phosphoric ester hydrolase activity (p-value 6.90e-6) and peptidase regulator activity (p-value

5.97e-4) (Fig 3C).

An analysis of changes in gene expression over the time course (3, 6, 9,12, and 15 hours

post infection) of in vivo activation also identified 3 major patterns of expression or clusters

Fig 2. Steinernema IJs release toxic proteins. (A) Silver stained protein gel of whole ESPs collected from S. feltiae IJs activated

for 0 (non-exposed), 6, 12, 18, 24, and 30 hours in insect homogenate. All time course activations were done with approximately

2.5 million IJs and the collected ESPs were concentrated to the same volume (300 μl) and the same volume (3 μl) was loaded to

each lane. (B) Silver stained protein gel of whole ESPs (1 μg) from S. feltiae (green) and S. carpocapsae (blue) activated for 0, 6, 12,

and 18 hours. (C) Survival curves of flies injected with 20 ng of whole ESPs from S. feltiae. (D) Survival curves of flies injected with

20 ng of whole ESPs from S. carpocapsae (S. carpocapsae survival curve was recapitulated from Lu. et al, 2017). Each survival curve

includes 3 or more biological replicates totaling at least 180 flies.

https://doi.org/10.1371/journal.ppat.1007626.g002
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(S4 Fig). Cluster 1 has 286 genes and GO terms for defense response (p-value 1.44e-5) and

enzymatic activity such as hydrolase (p-value 4.01e-9) and peptidase (p-value 6.49e-9) (S4 Fig).

Cluster 3 consists of 1,153 genes and GO analysis found enrichments in terms involved in

enzymatic regulation such as negative regulation of catalytic activity (p-value 4.71e-4), regula-

tion of serine kinase activity (p-value 2.21e-4) and regulation of protein phosphorylation (p-

value 2.18e-5). Cluster 2 has 1,353 genes which have a high expression in IJs and a sharp

decrease in gene expression by 3 hours with a minor peak at 6 hours (S4 Fig). GO analysis

reveals enzymatic activity is also a feature of cluster 2 with enzymes such as kinase (p-value

7.89e-5) and phosphoprotein phosphatase (p-value 5.8e-4). Interestingly, the GO analysis is

also enriched for neuropeptide signaling pathway (p-value 4.18e-10) (S4 Fig, Cluster 2). We

investigated further into the neuropeptide pathway genes and found that L889_g32029 (Sf-flp-
21), which is orthologous to C. elegans flp-21 and is a neuropeptide important for host-seeking

behavior [34], decreases 8-fold in expression (S4 Fig). Similarly, L889_g7374 (Sf-flp-11), which

is an ortholog of C. elegans flp-11, demonstrates strong expression at the IJ stage but has the

sharpest decrease by 15 hours (S4 Fig). Other neuropeptides such as L889_g30047 (ortholo-

gous to C. elegans flp-3), L889_g15885 (orthologous to C. elegans flp-18), L889_g27993 (ortho-

logous to C. elegans flp-14) and L889_g32992 (orthologous to C. elegans flp-7) are highly

expressed at the IJ stage and progressively decrease by 15 hours post infection (S4 Fig).

Overall, both in vivo and in vitro time courses showed significant downregulation of a set of

naïve IJ genes within 3 hours as well as equivalent activation of another set of genes by 6 hours

Fig 3. Genes differentially expressed during in vitro and in vivo IJ activation. (A) Heatmap showing the K-means of 5670 differentially expressed genes (FDR< 0.05)

in activated IJs in vitro and in vivo using K = 3. (B) MaSigPro profiles of gene clusters during the time course (in vitro red, in vivo green). (C) Representative GO terms for

each MaSigPro cluster.

https://doi.org/10.1371/journal.ppat.1007626.g003
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and differentially express similar sets of genes associated with proteolytic enzymes (pepti-

dases). The in vivo-only analysis is similar to the in vivo and in vitro DE analyses for both clus-

ters 1 and 3 but have a different profile for cluster 2. In cluster 2 of the in vivo-only time course

there is a decrease in the expression of neuropeptides (including ones thought to function in

host-seeking behavior) at the later time points, which is likely correlated with reduction of

host-seeking sensory functions after successful infection of a host.

Protein components of Steinernema ESPs

Because of the high toxicity of the ESPs collected at the 6-hour time point and the similarity in

gene expression between 6-hour in vitro and in vivo activated IJs, we chose to primarily focus

on the 6-hour ESPs along with further analysis of ESPs from naïve IJs. Using mass spectrome-

try, we identified 266 proteins (False Discovery Rate, FDR< 5%, S3 Table). To determine the

level of correlation between gene expression and relative protein abundance, an mRNA abun-

dance (TPM, transcripts per million) to protein abundance (emPAI, exponentially modified

protein abundance index) correlation analysis of the 266 proteins was performed. We found a

weak positive correlation between mRNA and protein abundance with Pearson’s correlation

value of 0.452 and Spearman’s rank value of 0.438 (S5 Fig).

We then analyzed the protein sequences for protein domains using Pfam, an online data-

base of protein families [35]. Fig 4A lists the 12 most abundant Pfam domains in S. feltiae ESPs

with peptidase domains being the highest in abundance followed by glycosyl hydrolases, lec-

tins, Ig-related (Immunoglobulin like), and peptidase inhibitors. VW (Von Willebrand)

domains and FAR domains were also found in relatively higher abundance (Fig 4A). A Merops

(peptidase and peptidase inhibitor database) analysis detected 92 peptidases and 17 peptidase

inhibitors with metallo and serine peptidase being the highest in abundance (Fig 4C). In ana-

lyzing the ESPs of naïve IJs we identified 682 proteins (FDR < 5%, S3 Table Sheet 2). Peptidase

domains were also the highest in abundance in the ESPs from naïve IJs, followed closely by

ribosomal, Ca-related (calcium interacting/regulating proteins) and ATPases (Fig 4B). A Mer-

ops analysis detected 79 peptidases and 28 inhibitors with both metallo and serine peptidases

in high abundance; with the number of metallo peptidases more than double of serine pepti-

dases (Fig 4D).

Comparison of S. feltiae and S. carpocapsae secreted venom proteins reveals

a small set of conserved catalytic enzymes

We confirmed that the mRNA of the 266 S. feltiae ESPs were detected at the 6-hour in vitro
time point, and that these are expressed similarly at 6, 9, 12, and 15 hours in vivo (Fig 5A). We

compared the gene expression of these 266 proteins between 6 hours in vitro and naïve IJs and

found that 54 genes are downregulated and 96 genes are upregulated upon activation (Fig 5B).

Gene ontology terms (GO) for the 96 upregulated genes show strong enrichment for enzymes

such as hydrolases (p-value 2.63e-25) and peptidases (p-value 4.96e-18) and endopeptidase (p-

value 3.71e-8), indicating that the activated nematodes increase the synthesis and release of

enzymes to degrade host components, including proteins, at early stages of infection. In con-

trast, the 54 downregulated genes are related to muscle cell development (p-value 3.09e-5),

protein complex assembly (p-value 4.13e-5) and morphogenesis (p-value 2.96e-5). These data

suggest that at 6 hours in vitro the nematodes are at peak production of venom proteins.

We then conducted a comparative gene expression analysis of ESPs from S. feltiae and S.

carpocapsae to understand the similarities and differences of genes involved in killing hosts.

Our orthology analysis between 266 ESPs in S. feltiae and 472 S. carpocapsae found 52 genes in

common (Fig 5C, S4 Table). This is a lower number than expected, given that 112 of the 266 S.
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feltiae ESPs have homologs in S. carpocapsae (S5 Table) and 183 of 472 ESPs found in S. carpo-
capsae have homologs in S. feltiae (Fig 5D, S6 Table). However, most of these homologs are

not detected in the ESPs of the other species even when they are expressed (Fig 5E) suggesting

that these enzymes might have been coopted over time to become part of the venom of either

species. Interestingly, both S. feltiae and S. carpocapsae have a high expression of the shared 52

genes. GO terms analysis of the 52 genes shows enrichment of peptidases (p-value 1.25e-7),

hydrolases (p-value 6.71e-10) and alpha-glucosidase activity (p-value 2.36e-5) (S7 Table).

Fig 4. Protein components of S. feltiae and S. carpocapsae. Top 12 most abundant Pfam protein domains (E-

value< 10−5) detected in ESPs of (A) S. feltiae activated for 6 hours and (B) S. feltiae naïve (0 hr) IJs. Peptidases and

inhibitors detected using the MEROPS peptidase database for (C) S. feltiae activated for 6 hours and (D) S. feltiae naïve

IJs (E-value< 10−5). (E) Pfam domains of core ESPs released by both S. feltiae and S. carpocapsae (E-value< 10−5).

https://doi.org/10.1371/journal.ppat.1007626.g004
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These results correlate with Pfam domains found in common between S. feltiae and S. carpo-
capsae (Fig 4A and [5]). We conclude that this small set of proteins form part of a core of

venom proteins within Steinernema. Next, we wanted to determine whether these 52 ESPs

from insect-parasitic nematodes were conserved in nematode parasites of vertebrates. We ran

blastp on the 52 proteins (E-value < 1e-3) and compiled the best non-Steinernema hits for

each protein. More than half (31 out of 52) of these genes have orthologs in mammalian-para-

sitic nematodes (S6 Fig) that include Strongyloides ratti, Toxocara canis, and Ancylostoma duo-
denale (S4 Table). The prevalence of these proteins in both insect- and vertebrate-parasitic

nematode species leads us to speculate that these proteins may play critical roles during host

infection and survival within the host for parasites in general.

Fig 5. Gene expression of S. feltiae venom proteins in vitro and in vivo and comparison with S. carpocapsae. (A) Heatmap of the

expression levels of 266 venom protein genes in both in vitro and in vivo activated IJs. (B) Volcano plot of 266 venom proteins

showing the differentially expressed genes in non-activated and 6 hours in vitro activated IJs. Red and blue boxes are representative

GO terms for significantly differentially expressed venom proteins. (C) Venn diagram illustrating the comparison of all S. carpocapsae
venom proteins with S. feltiae venom proteins. (D) Venn diagram of conserved venom proteins with homologs in both species. 52

conserved proteins were detected in the venom of both species. (E) Heatmap of expression of the conserved homologs in panel D.

https://doi.org/10.1371/journal.ppat.1007626.g005
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Discussion

Activation of infective juveniles

Many nematodes have an alternate L3 stage of development, known as the dauer juvenile in

free-living and necromenic species, or the infective juvenile for parasitic species [10, 36, 37].

The transition that parasitic IJs make when they enter a host and become actively parasitic and

resume development is known as dauer recovery or activation. For parasitic nematodes, suc-

cessful activation is critical to establishing a successful infection in their hosts [5, 11, 38, 39].

Similar to other EPNs, S. feltiae activation rates increased in a time dependent manner after

exposure to insect tissue in vitro [5, 17]. After 30 hours of exposure to host tissue, essentially all

the nematodes displayed some level of activation with non-activation rates being an average of

0.3% (S1 Table). Although S. feltiae and S. carpocapsae are in the same genus, they are mem-

bers of different clades within the genus [27, 40, 41]. The fact that these EPNs display similar

behavior and morphology during activation when exposed to insect tissue demonstrates that

the in vitro model of activation we used is a consistent and robust model of activation. We

found that when activated in vitro, the S. feltiae population does not exhibit synchronous acti-

vation. Some individuals are fully activated, some are partially activated, and a small number

are not activated at all. We found this resolution of activation quantification to be reliable and

consistent however we do note that these 3 categories of activation are broad; encompassing

different degrees of pharyngeal bulb expansion, and that the resolution could have been

increased by including other factors such as active pumping of the pharyngeal bulb or expan-

sion of the anterior gut. Along with this phased activation, the full activation rates seem to taper

off when the nematodes are activated for a long time (Fig 1G). Similar observations have been

made for S. carpocapsae and S. scapterisci activation [5, 17]. The phenomenon of non-synchro-

nous activation is similar to the phased infectivity reported in in vivo infections, wherein a certain

percentage of an IJ population is unable to infect insect hosts or displays reduced infectivity, but

over time more individuals become infectious [42, 43]. This characteristic is believed to be inher-

ent to the IJ itself and does not seem to be significantly affected by factors such as IJ population

or host population density. Studies have shown that phased infectivity correlates well with Hetero-
rhabditis EPNs but not as well with Steinernema EPNs [44, 45]. In contrast to H. bacteriophora,

where the infectious percentage of the population seems to start out low, previous research sug-

gests that a large percentage of a Steinernema IJ population is typically infectious [44]. It has been

suggested that the phased infectivity hypothesis is incomplete, and many other factors, such as

genetic/physical damage, attraction to infected vs non-infected hosts, and survival of the IJ within

the host, could affect population infectivity [46]. The age of the IJs could also be a contributing

factor and was previously shown to affect activation rates in steinernematids [16]. In our in vitro
model, the IJs do not actually infect a host, but rather are exposed to host tissue as if they had

already infected the host. In this context, all the IJs are exposed to host tissue at the same time

and though the majority of the population activate to some degree some individuals seem to

respond faster and become fully activated early on while another portion of the population acti-

vates slower. We did not test whether population density was a factor, nor did we strictly control

for age (IJs were between 2 weeks and 2 months post collection) but our findings are consistent

with previous studies of phased infectivity. Thus in vitro activation may be a useful tool in further

exploring the potential relationship between infectivity and activation.

Using in vitro activation to study in vivo infection

It is widely recognized that helminths modulate host immune system and cause pathology

mainly through the release of proteins and small molecules that interact with host cells and
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tissues, and that these molecules are key factors in disease pathology and parasite fitness [47,

48]. However, nearly all previous and current helminth secretome and ESP studies have been

done in vitro, due to the difficulty of detecting ESPs from helminth parasites in their hosts.

Additionally, there has been little if any experimental validation that the in vitro induction of

ESPs from various parasitic helminths accurately mimics in vivo conditions.

Here, we utilized single-nematode RNA-seq to compare the transcriptomes of nematodes

dissected out of waxworms after infection for 3, 6, 9, 12, and 15 hours and those of nematodes

activated in vitro for 3, 6, and 9 hours. We found that the transcriptional profiles of nematodes

activated in vitro were generally similar to those of nematodes from in vivo infections at each

time point (Fig 3A) however some time points were more similar than others. We identified

three major clusters of genes among the 5670 differentially expressed genes between activated

and naïve IJs and within these three clusters the transcriptome profiles of the 6 h in vitro and 6

h in vivo activated nematodes exhibited the most consistent correlation (Fig 3B). In contrast,

the gene expression profiles of nematodes activated in vitro and in vivo at 3h and 9h had signif-

icantly different profiles and did not correlate consistently (Fig 3B). Therefore, 3h and 9h in
vitro are not representative of their in vivo counterparts. These data suggest that (1) activation

of IJs in vitro can mimic in vivo infection and yield physiologically relevant results; (2) the

fidelity of the in vitro results needs to be experimentally validated rather than simply assumed;

and (3) selection of the timing of ESP collection should be based on the experimental evidence

of when the in vitro system best mimics the natural process. It is important to determine the

similarity of expression profiles for other parasites such as mammalian-parasitic nematodes

freshly dissected from hosts compared to those stimulated under in vitro ESP collection condi-

tions [49–51]. RNA-seq of individual nematodes, as we have done in this study, can be used to

determine the similarity in the nematodes’ response to in vitro and in vivo conditions in order

to optimize experimental in vitro conditions. This method is especially beneficial in parasitic

studies where low parasite yield is a limiting factor. In addition, gene expression similarity

should be optimized when using non-natural hosts, which are often used due to the difficulty

of obtaining or maintaining natural hosts or lack of tools and techniques in non-model hosts

compared to a model hosts such as a mouse.

EPNs release lethal venom during infection

In EPN research, the nematode has been traditionally assumed to act primarily as a vector for

the pathogenic bacterial symbiont. Once the bacterial pathogen is inside the host, it will kill the

host while multiplying and providing nourishment (the bacteria itself and the insect tissue) for

the nematode [10, 20, 52]. However, there is a growing body of research establishing the nema-

tode as an active contributor to pathogenesis, and in some cases such as with S. scapterisci, the

nematode may be the main driver of virulence [53]. It is clear that aside from serving as a vec-

tor for the bacteria they carry, EPNs contribute to pathogenesis in two ways: They directly

damage host tissue and they dampen host immunity, acquiring more time for themselves and

the bacteria they carry to overcome and kill the host. Past studies have shown that axenic S.

carpocapsae IJs can kill and reproduce in insect hosts [54–56] and individual effector mole-

cules from steinernematids have been characterized and shown to function in host immune

suppression and tissue damage [18, 19, 57–61]. More recently the secretome of S. carpocapsae
was shown to be a complex mixture containing many proteins and that collectively, this

venom is toxic to insects. ESPs collected from axenic S. carpocapsae IJs had similar protein

profiles as those from IJs associated with their bacterial symbiont, and the ESPs from both pop-

ulations were similarly toxic [5]. We have shown these findings to also be true for S. feltiae,
where S. feltiae IJs exposed to insect tissue become activated and produce ESPs (Fig 2A) that
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are toxic to insects (Fig 2C). ESPs collected from axenic S. feltiae IJs also displayed similar pro-

tein profiles and toxicity (Fig 2A and 2C; S3 Fig) compared to their symbiotic counterparts.

For EPNs in the genus Steinernema, the nematodes seem to play a much more active role in

contributing to pathogenicity during infection than previously thought.

We found that there are notable differences in ESP production and content among steiner-

nematids. Whereas the protein profiles of S. carpocapsae ESPs were previously shown to be

fairly constant after 6 to 30 hours of exposure to insect tissue [5] we found that the protein pro-

files and protein amount of S. feltiae ESPs change from 6 hours to 30 hours of exposure to host

tissue (Fig 2A; S1 Fig). Comparing the profiles of ESPs from S. feltiae and S. carpocapsae side

by side (Fig 2B), both have bands that are similar in size however the majority of intense S. car-
pocapsae bands are concentrated between 25–50 kDa while the majority of intense S. feltiae
bands are not as concentrated and distinctly more spread out between 25–75 kDa. We found

that there is a core suite of proteins found in the ESPs of both species and the differences in the

protein profiles could be a result of adaptation to different bacterial symbionts or perhaps a

result of host specialization. Another striking difference in ESP production between the two

species is that when measuring ESPs from naïve IJs, S. carpocapsae was shown to produce few

if any ESPs (not detectable by Bradford assay nor any notable bands by silver-staining (Fig

2B)) while naïve S. feltiae IJs produce a relatively large quantity of ESPs (Fig 2B). ESPs from

naïve S. feltiae IJs shared some similarities with those from 6-hour activated IJs; namely that

they were produced in relatively large quantities and included peptidases, peptidase inhibitors,

and glycosyl hydrolases (Fig 4B). However, the protein profiles are different from each other

(Fig 2A) where ESPs from naïve IJs contain a more diverse array of proteins (S3 Table sheet 2)

and there were generally more peptides detected for each protein domain (Fig 4B). Further,

the ESPs of naïve IJs were not toxic unlike their activated counterparts (Fig 2C).

The release of ESPs from naïve S. feltiae IJs without any stimulation from host cues seems

metabolically wasteful. We evaluated the possibility that the ESPs from naïve IJs we collected

were a result of damage from experimental handling rather than active release by the nema-

todes. We concluded that the contribution of ESPs from damaged nematodes is likely minimal

for the following reasons: (1) S. feltiae IJs were treated exactly as S. carpocapsae IJs in a previous

report [5], yet naïve S. carpocapsae IJs did not release detectable amounts of protein. (2) The

nematodes in these experiments, if exposed to host tissue, began producing ESPs with a con-

siderably different composition than naïve IJs (Figs 2B, 4A and 4B). (3) If allowed, the nema-

todes continued to develop into healthy, reproductive adults. Instead, our data reveals that

naïve S. feltiae IJs are capable of producing a different set of ESPs, which could be involved

with survival strategies including stress tolerance, lubrication and avoidance of desiccation, or

maintaining the cuticle and other bodily structures. These strategies may be more pertinent to

S. feltiae as it is categorized as more of a cruiser where it actively migrates in the soil seeking

new hosts, while ambushers like S. carpocapsae tend to wait in epigeal habitats [13, 15].

Another possibility for the role of naïve S. feltiae IJ ESPs is preparation of the IJ cuticle for host

infection since the cuticle of S. feltiae IJs has suppressive effects against host immune responses

[28, 30, 31]. Peptidases, peptidase inhibitors, and immunoglobin-like proteins are detected in

high abundance in the ESPs and they can be produced to potentially coat/adhere to the cuticle.

The production of ESPs from naïve S. feltiae IJs is an interesting find that differentiates S. fel-
tiae from S. carpocapsae and merits further study to understand the biology of this parasite.

The toxicity of activated S. feltiae ESPs was highest at the earliest time points tested (6 and

12 hours of exposure) and toxic activity decreased in a time-dependent manner with those col-

lected after 24 and 30 hours of exposure being significantly less toxic (Fig 2C). The change in

protein profiles (Fig 2A) and the reduced protein levels (S1 Fig) in S. feltiae ESPs over time

seem to be correlated with the time-dependent toxicity decrease. However, it is unlikely that
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the reduction of toxicity is due to the decreasing abundance of total ESPs since the flies were

exposed to the same amount of ESPs (20 ng per fly); instead, it is more likely that some low

abundance toxin(s) in the mixture decrease(s) over time, resulting in lower toxic activity. The

correlation between protein profiles/abundance and toxicity was not observed for S. carpocap-
sae ESPs: Later time points (42 and 54 hours of exposure) had similar protein profiles and pro-

tein abundance compared to earlier time points (6–30 hours of exposure), but were

significantly reduced in toxicity or were not toxic at all [5]. This suggests that the toxic activity

is due to low abundance proteins. Therefore, the toxins of both species are likely low abun-

dance proteins and not the most abundant ones (Fig 2A and 2B). Other proteins found in the

ESPs likely have non-toxic functions during infection such as immunosuppression or immune

evasion.

We considered the possibility that damaged nematodes could be an explanation for the

time-dependent decrease in ESP amount or toxicity and upon evaluation found a time corre-

lated increase in the number of damaged nematodes. However, the highest level of damage we

observed was less than 5% of the total population (S2 Fig). Even manually crushing the activa-

tion arena to simulate excessive force averaged less than 12% of the nematodes being damaged.

We believe that the percentage of damaged nematodes from our experimental handling alone

is insufficient to explain the dramatic changes we see in S. feltiae IJ ESP production and activ-

ity. It could also be argued that instead of (or in conjunction with) the nematodes being signifi-

cantly damaged, they become unhealthy at the later time points due to various factors such as

depletion of resources. We acknowledge this possibility however, it is unlikely the limiting fac-

tor as this was not observed in S. carpocapsae [5]. Instead, the time-dependent decrease in tox-

icity and amount of S. feltiae ESPs compared to the much slower decrease in toxicity and

amount of S. carpocapsae ESPs suggests that these nematodes utilize different strategies in

establishing themselves as parasites. S. feltiae may have a stronger reliance on its bacterial sym-

biont, X. bovienii, in order to overcome and kill the host. Soon after activation and release of

bacterial symbionts, the IJs may switch their priority from killing the host to survival, feeding,

and development. Axenic S. feltiae IJs have been shown to be capable of killing insect hosts,

however the studies are limited compared to studies of S. carpocapsae and they generally report

reduced efficiencies [62, 63]. We found no difference in activity between ESPs from axenic

compared with symbiotic S. feltiae IJs, however we tested the activity of the ESPs alone and did

not examine the larger context of an actual insect infection. It is possible that differences in

ESP profiles between S. carpocapsae and S. feltiae are involved in niche partitioning and differ-

ences in host range and specificity.

Core EPN venom proteins

We found 266 proteins in S. feltiae ESPs which is significantly fewer than the 472 proteins that

were detected in S. carpocapsae ESPs [5]. However, this difference may be due to the more

fragmented nature of the available S. feltiae genome, which has an N50 of 47.5kb compared to

the 300kb N50 of the S. carpocapsae genome [40] that was used in the previous study (N50 is

the length of the shortest contig that together with all the longer contigs cover 50% of the

genome assembly). Although it is likely that the ESPs from EPNs are complex mixtures con-

taining many different classes of molecules, we focused on analyzing the proteins. The most

abundant group of proteins in activated S. feltiae venom are peptidases with a high proportion

of serine and metallopeptidases (Fig 4A and 4C). This is similar to what was previously

reported in S. carpocapsae ESPs [5]. However, S. carpocapsae ESPs contained fewer metallo-

peptidases and significantly more serine peptidases. The high abundance of peptidases and

peptidase inhibitors in the ESPs of both species illustrate the importance of these enzymes for
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EPNs as well as other parasites. Many studies have implicated their potential use in vaccine

development and treatment [64–67]. Peptidases and peptidase inhibitors have been shown to

have multiple functions in parasite pathogenesis including suppressing/evading host immune

systems, host tissue damage, and parasite development [68]. Serine peptidases in particular

have been suggested to be used by many parasites including Trichinella spiralis, Ascaris suum,

and Brugia malayi, among others [69–71]. Some specific characterizations of nematode serine

peptidase functions include collagen degradation, suppression of melanization, inhibition of

blood clotting, and parasite sperm activation [72–74].

We analyzed the protein domains in the ESPs to determine the potential molecular func-

tions of the proteins. For S. feltiae, the second most abundant protein domain after pepti-

dases were domains associated with hydrolysis of glycosydic bonds. These enzymes are

hypothesized to have many potential functions, including cleavage of glycosolated proteins

and breakdown of structural components that contain glycosidic bonds, with many similar-

ities to peptidases. Some of the other protein domains detected in higher abundance in both

S. feltiae and S. carpocapsae ESPs are Ig (immunoglobulin) or Ig-like, Von Willebrand, and

FAR (fatty acid/retinol binding protein). The fact that both EPN species have high represen-

tation of these domains in their ESPs suggests their importance for EPN success. It is likely

that some of these proteins are involved in immunomodulation. For example, it has been

hypothesized that FAR proteins affect immune signaling [75], and while this has been

experimentally demonstrated in plants [76–78], it has yet to be shown in an animal system.

S. feltiae has been shown to modulate insect immunity using its cuticle but the use of spe-

cific excreted/secreted proteins in immune modulation by S. feltiae would be a novel find-

ing [28, 31].

Additionally, we evaluated the correlation between mRNA abundance and protein abun-

dance for these ESPs. The correlation was weak but positive with a Pearson’s correlation of

0.452 and Spearman’s rank correlation of 0.438 (S5 Fig). mRNA-protein abundance correla-

tions have consistently been weak in various studies including those involving nematodes

[79, 80] and our data support this trend. The discrepancies between mRNA and protein

abundance is likely due to post-transcriptional regulating systems that can include small

non-coding RNAs and microRNAs which has been postulated before [79]. It has been

pointed out that most studies of mRNA-protein abundance correlation have been focused

on transcriptome-wide data and a study specifically focused on upregulated transcripts

resulted in a higher distribution of strong correlations, but we did not evaluate this in the

present study [81].

In examining the 266 ESPs released by S. feltiae and the 472 ESPs released by S. carpocap-
sae, we found 52 proteins conserved in the ESPs of both species. This was unexpectedly low

since 112 of the 266 S. feltiae ESPs have homologs in S. carpocapsae and 184 of the 472 S.

carpocapsae ESPs have homologs in S. feltiae (Fig 5D). Both S. feltiae and S. carpocapsae
have a high expression of the shared 52 venom genes, representing a core of effector pro-

teins shared by these EPNs. Within this core set of ESPs there are peptidases, glycosyl

hydrolases, lectins as well as proteins likely to be involved in immune modulation such as

FAR proteins, immunoglobulins, and immunoglobulin-like proteins. The specific functions

of these core venom proteins are yet unknown, but their conservation between S. carpocap-
sae and S. feltiae, which are in different clades within the genus, suggests that they are

important effectors of parasitism and function in a variety of insect hosts. The genus Stei-
nernema is the oldest known lineage of EPNs, potentially coevolving with their insect hosts

for ~350 million years [26]. Determining the functions of the proteins in this core suite of

ESPs may elucidate important steps in the evolution of EPNs and even more broadly para-

sitic nematodes in general.
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Materials/methods

Insects

Galleria mellonella (waxworms) were purchased from CritterGrub (www.crittergrub.com).

Oregon-R Drosophila melanogaster flies were reared in round bottom 8 oz bottles with food

medium (129.4 g/L dextrose, 7.4 g/L agar, 61.2 g/L corn meal, 32.4 g/L yeast, and 2.7 g/L tego-

sept). The bottles were kept at 25˚C with 60% relative humidity on a 12 hr light/dark cycle.

Nematodes

S. feltiae IJs were cultured and propagated in vivo using waxworms as previously described [5].

Briefly,15 wax worms were placed into a 10 cm petri dish with filter paper pressed to the bot-

tom and 1 ml of tap water containing 750 S. feltiae IJs (50 IJs/worm) was dispersed onto the fil-

ter paper. The infection plates were incubated at 25˚C with 60% humidity in the dark for 10

days. Then, the waxworm cadavers were transferred to White traps [82]. After 2–3 days

(depending on IJ density) the IJs were collected and washed using a glass vacuum filter holder

(Fisher Scientific, 09-753-1C) with an 11 μm nylon mesh filter (Millipore, NY1104700). The

IJs were stored at 15˚C at a density of 7–10 IJs/μl.

Waxworm homogenate preparation

Insect homogenate was prepared as previously described [5]. Briefly, 25 g of waxworms were

frozen and grounded in liquid nitrogen with a mortar and pestle into a fine powder. The wax-

worm powder was then transferred quickly into a glass beaker and resuspended in 100 mL of

Phosphate Buffered Saline (PBS, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM

KH2PO4, pH 7.4). The mixture was then microwaved to a boil 7–8 times with stirring in

between. The homogenate was then aliquoted into 50 mL conical tubes and centrifuged for 5

minutes at 3200 rcf to pellet the solid debris of the waxworm. The supernatant, including the

top oil layer were transferred into a new container. PBS was then added to the 50 mL conical

tubes containing the waxworm pellets, mixed, centrifuged, and the supernatant was collected.

This was repeated until the desired volume and percent extract was reached. In this case, 25g

of waxworm was used to make 100 ml of 25% waxworm homogenate. The waxworm homoge-

nate extract was used immediately or aliquoted and stored at -20˚C.

Activation of IJs

IJ activation was done as previously described [5]. 100 mL of 25% waxworm homogenate was

thawed and supplemented with 1x triple antibiotic Pen/Strep/Neo (P4083, Sigma-Aldrich).

The homogenate was soaked into 8.2 g of autoclaved cut sponge pieces (approximately 3x3x10

mm). 2.5 million S. feltiae IJs were washed 4 times with autoclaved 0.8% NaCl solution and

excess liquid was removed from the washed IJs before gentle Pasteur pipette transferring/mix-

ing into the homogenate-soaked sponge. The container was covered with aluminum foil and

incubated in the dark at 25˚C with 60% relative humidity for a specified amount of time. For

most of the contents of this study, the IJs were incubated in waxworm homogenate for 6

hours. The IJs were then washed out of the sponge with 6–8 rounds of autoclaved 0.8% NaCl

solution and once separated from the sponge, further washed with 4–5 rounds of 0.8% NaCl

solution. Activations were replicated at least 3 times for each experiment.

Quantification of activation rates

IJ activation quantification was done as described [5, 16, 17]. Briefly, activated IJs were

observed under 400x magnification on a compound light microscope and scored for the
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activation phenotype based on expansions of the pharyngeal bulb. Fully activated phenotypes

(see Fig 1E), partially activated phenotypes (Fig 1 image C), and Non-activated phenotypes

(see Fig 1A) were scored. The difference between non-activated IJs from those that have been

partially or fully activated is easily visualized as the absence of a visible pharyngeal bulb at 400x

magnification. Differentiating between partially and fully activated IJs relies on the relative size

and shape of the pharyngeal bulb; fully activated IJs have a wider, round-shaped bulb whereas

partially activated IJs have a narrower, oval-shaped bulb. To minimize bias and double scoring

the same nematode, scoring started with viewing IJs at one corner of the coverslip. All IJs with

anterior/head region in view were scored before shifting the slide to view the next adjacent

region. This was repeated until all regions of the coverslip was viewed without viewing the

same region twice. Activations were done in 3 replicates for each time point (naïve/0 hr, 6 hr,

12 hr,18 hr, 24 hr, and 30 hr) and each replicate was scored 3 times to obtain averages. Signifi-

cant differences between S. feltiae and S. carpocapsae IJ activations were determined using the

Prism 8 by paired two-way ANOVA with (Prism recommended) Sidak’s multiple comparisons

between related groups (i.e. rates of partially activated S. feltiae IJs at 30 hrs of exposure com-

pared to rates of partially activated S. carpocapsae IJs at 30 hrs of exposure).

ESP collection

ESP collection from the EPN was done as previously described [5]. After IJs were activated and

thoroughly washed, they were transferred into a 1 L Erlenmeyer flask containing 100 mL of

autoclaved PBS supplemented with 1x triple antibiotic Pen/Strep/Neo. The flask was shaken at

220 rpm in the dark for 3 hours and the nematodes were then centrifuged (700–800 rcf for 1

minute) in 15 mL conical tubes to preliminarily separate the majority of the nematodes from

the PBS. The PBS supernatant was then collected and filtered through a 0.22 um syringe filter

(Fisher Scientific, 9719001) and concentrated to approximately 300 μL using a 3 kD cut-off

centrifuge column (Millipore, UFC900308). The protein concentration of the venom was

quantified using a Bradford assay (Bio-Rad, 500–0006).

Protein gel electrophoresis and silver staining

S. feltiae ESPs were prepared for gel electrophoresis by boiling for 5–10 minutes in 1x Laemmli

sample buffer supplemented with 50mM Dithiothreitol (DTT) (Bio-Rad, 1610747). The dena-

tured proteins were loaded into a Mini-PROTEAN TGX precast gels (Bio-Rad, 4561086) and

electrophoresed at 100 V for 60–90 minutes. Silver staining was done following the manufac-

turer’s protocol (Pierce, # 24600).

Testing S. feltiae IJ venom toxicity

S. feltiae ESPs toxicity was tested in vivo on Drosophila melanogaster flies as previously

described [5, 83]. Adult male flies 5–6 days old were anesthetized with CO2 and injected with

20 ng of ESPs in a volume of 50 nl using pulled glass needles and a highspeed pneumatic

microinjector (Tritech Research, MINJ-FLY). PBS was injected as a negative control. After

injection the flies were transferred to new vials containing food and stored at 25˚C with 60%

relative humidity on a 12hr light/dark cycle. Survival of the flies was recorded over 40 days or

until all the flies had died. ESP collection and toxicity testing were done in 3 biological repli-

cates for each time point (PBS, 0 hr, 6 hr, 12 hr, 18 hr, 24 hr, 34 hr) with 3 technical replicates

of each biological replicate. At least 60 flies were used for each technical replicate totaling at

least 180 flies for each biological replicate.
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Vital staining for nematode damage assay

Nematodes were activated in vitro as described in the “Activation of IJs” section of the

methods however scaled down to fit a 9 cm petri dish (0.082 g of sponge, 1 mL of 25%

insect homogenate, and approximately 25,000 S. feltiae IJs). The sponge pieces were each

pressed down 5 times before the nematodes were washed out and rinsed with 4 rounds of

autoclaved PBS. The nematodes were then stained by mixing an equal volume of nema-

todes with an equal volume of 0.4% trypan blue (Sigma-Aldrich) to give a final dye concen-

tration of 0.2%. The mixture was allowed to sit for 5 minutes before transferring the

nematodes to a microscope slide for viewing and counting. This was replicated 3 times for

each time point (6, 12, 18, 24, 30 hours of activation) with approximately 5000 counts each

replicate (15,000 total counts for each time point) Representative images are in S2 Fig and

raw counts in S2 Table.

Axenic nematode production and assay

Axenic nematode production and assaying was done as previously described [5] with some

slight modifications. Axenic S. feltiae IJs were produced in vitro by growing bleach sterilized

S. feltiae eggs on the colonizing defective mutant bacterial strain of Xenorhabdus nemato-
phila, HGB315 [84]. HGB315 is unable to colonize the nematodes however can still be a

food source. Phase I of the HGB315 bacteria colonies (blue) were obtained and verified

using NBTA agar plates (40 mg/L 2,3,5-triphenyltetrazolium, 25 mg/L bromothymol blue, 8

g/L nutrient agar, supplemented with 0.1% (w/v) sodium pyruvate) and double checked

with MacConkey Agar plates (reddish brown) (Difco MacConkey Agar, #212123, supple-

mented with 0.1% (w/v) sodium pyruvate). HGB315 was cultured in LB broth supplemented

with 0.1% (w/v) sodium pyruvate over night at 28˚C and shaking at 220 rpm.100–150 μl of

overnight HGB315 liquid culture was spread on lipid agar plates (4 ml/L corn oil, 7 ml/L of

corn syrup, 5 g/L of yeast extract, 2 g/L MgCl2, 8 g/L of nutrient broth,15 g/L of Bacto Agar,

supplemented with 0.1% (w/v) sodium pyruvate) and incubated at 28˚C overnight to form a

thin layer of bacterial lawn. Surface sterilized S. feltiae eggs in a minimal volume of sterile

Ringer’s solution (172 mM KCl, 68 mM NaCl, 5 mM NaHCO3, pH 6.1) was dropped onto

the lipid agar plates and allowed to develop into gravid females. This is the first round pass

to produce F1 generations of S. feltiae nematodes that were exposed only to the non-colo-

nizing HGB315. HGB315 is a strain of X. nematophila which is not the native symbiotic bac-

teria of S. feltiae (Xenorhabdus bovienii), therefore these nematodes develop and become

gravid much slower at approximately 5–6 days (versus ~4 days on X. bovienii) post seeding.

To obtain axenic eggs, gravid females were rinsed in autoclaved 0.8% NaCl solution for 3

times followed with rocking in axenizing solution (0.7% NaOCl (bleach)/0.5 M NaOH) for

7.5 minutes for 3 times. Brief vortexing was applied 2–3 times in the first two rounds of axe-

nizing to ensure mixing and degradation of adult nematode tissue. After the axenizing treat-

ment, the eggs were rinsed in autoclaved Ringer’s solution for 3 times followed by

incubation in a triple antibiotic solution (Penicillin, Neomycin, Streptomycin) for 30–45

minutes. The eggs were then rinsed with autoclaved Ringer’s solution for 3 times and centri-

fuged at 700 rcf for 1 min and the supernatant was removed to create a highly dense egg sus-

pension with minimal liquid volume. Approximately 500,000 eggs were gently dispersed

onto the lipid agar plates containing the HGB315 bacteria. When the bacteria were depleted,

the nematodes were washed off and split into 3–5 new HGB315 bacteria plates. The S. feltiae
nematodes were kept on the plates until they reached a high density and IJs can be seen

crawling up the sides of the plates. At this point the population was still a mix of different

life stages so the nematodes were transferred to White traps to collect axenic IJs.
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Axenic assay

To assay for non-colonization of bacteria inside S. feltiae IJs: approximately 1000 IJs were

rinsed 3 times with autoclaved Ringer’s solution, followed by surface sterilization with 4 mM

Hyamine 1622 solution (Sigma, 51126) for 30 minutes, and rinsed 3 times with Ringer’s solu-

tion. The IJs were then concentrated to a volume of 50 μl and homogenized with a tissue

grinder (Fisher Scientific, 12-141-363). The homogenate was then plated onto LB plates (sup-

plemented with 0.1% (w/v) sodium pyruvate) and incubated at 28˚C in the dark. The plates

were checked for bacterial growth for 5 days (S3 Fig). This was replicated 3 times for each

batch of axenic S. feltiae IJs.

Mass spectrometry of S. feltiae ESPs

To prepare S. feltiae ESPs for mass spectrometry analysis, the proteins were first precipitated

with 80% acetone (-20˚C pre-chilled) at 4:1 acetone to sample volume. The mixture was vor-

texed for 5 seconds 3 times and stored at -20˚C overnight. The mixture was then centrifuged at

15,000 rcf for 10 minutes at 4˚C to pellet the precipitated proteins. The supernatant was care-

fully removed, followed by addition of fresh -20˚C chilled 80% acetone, and mixing by pipett-

ing. The mixture was then centrifuged at 15,000 rcf for another 10 minutes. This process was

repeated one more time and after removal of the 2nd 80% acetone wash the protein pellet was

allowed to air dry for 5 minutes. The protein pellet was then digested using the Trypsin/Lys-C,

Mass Spec Grade kit (Promega, V5071) following the manufacturer’s Two-Step In-Solution

Digestion protocol. Briefly, the protein pellet was suspended in 7 M urea/50 mM Tris-HCl (pH

8), followed by addition of DTT to a final concentration of 5 mM, and incubated at 37˚C for 30

minutes. Iodoacetamide was then added to a final concentration of 15 mM, and incubated at

room temperature for 30 minutes in the dark. The Trypsin/Lys-C protease mix was added at a

ratio of 25:1 (protein: protease (w/w)) and incubated at 37˚C for 4 hours. The mixture was then

diluted with 50 mM Tris-HCl (pH 8) to reduce the urea concentration to approximately 0.5 M

and continued incubation at 37˚C overnight. Trifluoroacetic acid (TFA) was added to a final

concentration of 0.5–1% to terminate digestion and the mixture was centrifuged at 15,000 rcf

for 10 minutes to pellet particulate matter. The supernatant containing digested protein was

cleaned using a C18 spin column (Pierce, 89873) following the manufacturer’s protocol.

Mass spectrometry

Online 2D-nano LC/MS/MS was used to perform MudPIT mass spec analysis of S. feltiae ESPs.

The mass spec apparatus consisted of a 2D nanoAcquity UPLC (Waters, Milford, MA) config-

ured with an Orbitrap Fusion MS (Thermo Scientific, San Jose, CA). LC solutions/fractionation

and MS parameters were as previously described [5]. The raw mass spec data was processed/ana-

lyzed with the Proteome Discoverer 2.2 software (Thermo Scientific, San Jose, CA) with the

Sequest HT search engine running against the S. feltiae protein profile, steinernema_feltiae.

PRJNA204661.WBPS11.protein.fa (Parasite.Wormbase.org). Duplicate genes were removed and

only genes with FDR<5% were considered for further analysis. The raw mass spec data have

been uploaded to the ProteomeXchange repository and can be accessed with the following links.

0 hr: ftp://massive.ucsd.edu/MSV000082993

6 hr: ftp://massive.ucsd.edu/MSV000082997

Protein domain and peptidase analyses

Protein/peptide sequences of S. feltiae ESPs obtained from mass spec and the protein domain

families were analyzed using the Pfam database and the hmmscan program (E-value < 10−5)
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of the HMMER software 3.0 as described [85]. Peptidase types based on the catalytic center

amino acid (Serine, Metallo, Aspartic, etc.) and peptidase inhibitors were identified by BLAST

+ against the MEROPS Peptidase database [86] from https://www.ebi.ac.uk/Tools/sss/

ncbiblast/. Only hits with an E-value of<10−5 were further analyzed.

Single nematode transcriptome sequencing

S.feltiae single nematode transcriptome sequencing was done as previously described [5, 6]. In
vitro activated IJs were activated as described in the Activation of IJs section of the methods

but scaled down to fit in a 6 cm petri dish with 1 ml of insect homogenate, 0.08 g of sponge,

and 25,000 IJs [16, 17]. The IJs were activated for time points 3, 6, and 9 hrs. After activation

the IJs were washed out of the sponge with autoclaved 0.8% NaCl and transferred to 1.5 ml

eppendorf tubes. The IJs were cleaned by spinning down and removing/replacing the NaCl

supernatant 4 times. We used only IJs that displayed fully activated morphology (confirmed by

microscope) for each time point. This method, though arguably not highly representative of

the entire population, was used in order to consistently select for individuals that were activat-

ing the fastest for each time point and minimize variation from nematodes with different levels

of activation. The IJs were then transferred to RNase-free water before lysis. Naïve (0 hr) IJs

were not exposed to any insect tissue and washed before proceeding to lysis. In vivo activated

S. feltiae IJs were activated by infecting live waxworms at 50 IJs/waxworm. After 30 minutes

the waxworms were gently rinsed in autoclaved 0.8% NaCl to wash off IJs that were on the sur-

face of the waxworms but had not entered the waxworm. The infected waxworms were then

stored in the dark at 25˚C with 60% relative humidity for 3, 6, 9, 12, or 15 hrs. After the speci-

fied hours, the waxworms were individually placed in 6 cm petri dishes with autoclaved 0.8%

NaCl and the activated IJs were dissected out. The IJs were washed by transferring them to

new 6 cm petri dishes with fresh autoclaved NaCl 5x until being transferred to RNase free

water before lysis. Activated IJs for each time point/condition (6 hr in vitro, 12 hr in vivo, etc.)

were individually isolated in RNase-free water, cut into 3–4 pieces, and immediately trans-

ferred to lysis buffer containing RNAse inhibitor Proteinase K. The sample was placed on ice

and observed periodically until the nematode tissue had been digested (typically 45–60 min-

utes). The sample was then incubated in a thermocycler at 85˚C for 3 minutes to deactivate

proteinase K. dNTP/ Oligo-dT30VN (50-AAGCAGTGGTATCAACGCAGAGTACT30VN-30)

was added to the sample and poly-A RNA was reverse transcribed in a reaction solution of 100

U Superscript II RT (Thermo Fisher Scientific, 18064014), 10 U RNase inhibitor (Promega,

N2611), 1x Superscript II first-strand buffer, 5 mM DTT, 1 M Betaine, 6 mM MgCl2, 1 μM

TSO (LNA-modified TSO 50-AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-30, Exi-

qon.com), and RNase-free water. The reverse transcription program was set to 1) 42˚C 90

min, 2) 50˚C 2 min, 42˚C 2 min (repeat 14x), 3) 70˚C 15 min, and 4) 4˚C Hold. The cDNA

was then added to a cDNA amplification mix with final concentrations of 1x KAPA HiFi Hot-

Start ReadyMix (Kapa Biosystems, KK2602), 0.1 μM IS PCR primer (50-AAGCAGTGGTAT-

CAACGCAGAGT-30, ordered from idtdna.com), and RNase-free water. The cDNA

amplification program was set to 1) 98˚C 3 min, 2) 98˚C 20 sec, 67˚C 15 sec, 72˚C 6 min

(repeat 17x), 3) 72˚C 5 min, and 4) 4˚C Hold. To clean the amplified cDNA, it was mixed with

Ampure XP beads at a ratio of 1:1 (v/v). The mixture was then placed on a magnetic bead

stand to magnetize the cDNA-bound beads to side-wall of the tube and washed with 3 rounds

of 80% ethanol. After removal of the final ethanol wash the beads were air dried for 3–4 min-

utes and observed frequently under a microscope. At the first sign of a dry crack in the beads,

17.5 μl of elution Buffer (EB, 10 mM Tris-Cl, pH 8.5) was added, and incubated for 2 minutes.

The sample was placed back on the magnetic bead stand for 2–3 minutes to separate the beads
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from the EB solution (now containing clean cDNA) and the EB solution was collected. cDNA

concentration was measured by Qubit Fluorometer (Thermo Fisher Scientific) and the quality

was analyzed by BioAnalyzer (Agilent).

The cDNA was tagmented using the Nextera DNA library prep kit (Illumina, FC-121-1030)

following the protocol in L. Serra, et al 2018. Briefly, 20 ng of cDNA in 8 μl was mixed with

10 μl of Tagment DNA buffer and 2.2 μl of Tagment DNA enzyme from the kit. The mixture

was incubated at 55˚C for 5 minutes and cleaned up using the QIAquick DNA cleanup column

(QIAGEN, 28104). The tagmented cDNA was then amplified using the Phusion High Fidelity

PCR master mix (New England Biolabs, M0531L) with 30 μl of tagmented cDNA, 2.5 μl of

Primer-1 (Ad1_no MX), 2.5 μl of Primer-2(Ad2.#), and 35 μl of Phusion High Fidelity PCR

master mix buffer. The amplification program was set to 1) 72˚C 5 min, 2) 98˚C 30 sec, 3)

98˚C 10 sec, 63˚C 30 sec., 72˚C 1 min (repeat 10x), and 4) 4˚C Hold. The sample was then

cleaned up with Ampure XP beads as described above except, scaling up to use 30 μl of EB and

collecting 27.5 μl of the supernatant. Libraries were prepared and sequenced as paired-end, 43

base pair reads on the Illumina Nextseq 500.

Gene expression quantification

Unstranded, paired-end 43 bp RNA-seq reads for each worm were mapped to the S. feltiae
transcriptome downloaded from WormBase ParaSite (WS263) using Bowtie 1.0.0 with the fol-

lowing options: -X 1500 -a -m 200—S—seedlen 25 -n 2—offrate 1 -p 64 -v 3 [87]. After Bowtie,

gene expression was quantified with RSEM with the following options: rsem-calculate-expres-

sion—bam—paired-end. Gene expression for S. carpocapsae were performed as previously

described [5] and reported in Transcripts Per Million (TPM). We used counts for differential

gene expression analysis. Reads for single worm RNA-seq samples were submitted to Gene

Expression Omnibus (GEO) under the accession number GSE119223.

Normalization and batch correction

The Transcript per million (TPM) generated by rsem-calculate-expression for S. feltiae sam-

ples were normalized according to groups using the R package limma [88] because samples

were collected, processed and sequenced in different batches. Samples were batched corrected

between 3 and 9 hours in vitro to 6 hours in vitro, 3,6,9,12,15 hours in vivo with edgeR package

removebatcheffects with log2 of TPM matrix. Normalization and batch correction for S. carpo-
capsae were done as previously described [5].

MRNA and protein correlation

Log2 of the average TPM+1 (transcripts per million, RNA levels) and Log2 of the emPAI (pro-

tein abundance levels) for the 266 genes of S. feltiae ESPs was plotted in Rstudio using the

package ggplot2 [89]. Pearson’s correlation and Spearman’s rank correlation were calculated

using Excel.

Gene expression analysis and GO enrichment analysis

Differential gene expression was determined using edgeR [32]. Counts were normalized by

library size using calcNormFactors. Genes were called differentially expressed if FDR < 0.05

and fold change> 2. The list of genes that were differentially expressed (DE) using edgeR were

used to create a TPM matrix.

Gene expression in TPM were clustered using Cluster 3.0 [90] with the following options:

log transformed, mean centered, normalized. Then genes were hierarchically clustered with
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center correlation. Heatmap were visualized with Java TreeView [91]. Heatmap for Fig 5C

were done using the R package heatmap.2 with centroid hierarchical clustering by row.

MaSigPro was run as a two-time series to evaluate the differences and similarities of gene

expression between in vitro and in vivo time course with 5670 differentially expressed genes

found with edgeR between 6 hours in vitro activated and naïve IJs. Gene ontology enrichment

analyses was calculated using Blast2GO Fisher’s exact test and considered statistically signifi-

cant if FDR< 0.05 [92]. List of genes used in Blast2GO were differentially expressed according

to edgeR or dynamically expressed according to maSigPro.

Venom orthology analysis

We obtained a list of N:N orthologs and paralogs between S. feltiae and S. carpocapsae from

WormBase ParaSite Biomart. List were obtained by choosing S. feltiae genome as query to find

orthologs and paralogs in S. carpocapsae. List of venom proteins for S. carpocapsae were

obtained from Lu et al. 2017 and compared to list of S. feltiae venom proteins. Orthology anal-

ysis was done with edgeR with function “match”. In determining the orthology of S. feltiae
L889_g32029 (Sf-flp-21) to C. elegans flp-21, we relied on the predicted sequence of the mature

peptide [34, 93]. Using this method, we determined that, similar to Sc-flp-21, Sf-flp-21 has an

identical predicted mature peptide as the flp-21 from C. elegans.

Supporting information

S1 Fig. Average concentrations of ESPs collected from different batches of S. feltiae IJs acti-

vated over time. All batches were activated the same way as described in the IJ activation section

of the methods and a final volume of 300 μl was collected for each time point. Each time point

was repeated 3 times and the protein concentrations were determined by a Bradford assay.

(PDF)

S2 Fig. Damaged nematodes from sponge activations. Representative pictures of damaged

(indicated by trypan blue staining, 0.2% final concentration) and undamaged nematodes at

various time points (A) 6 hours, (B) 18 hours, (C) 24 hours, (D) 30 hours of activation. Image

B shows a view of undamaged nematodes at 18 hours while the rest show instances of damaged

nematodes. (E) Percentages of the nematode population that exhibited stained damaged tissue

from (uncrushed) normal sponge activation experiments. (F) Percentages of the nematode

population that exhibited stained damaged tissue from manual crushing of sponge activations

(pink) combined with data from panel E (blue). Bars represent the mean of 3 biological repli-

cates with 5000 counts each and error bars represent standard deviation. ���� represent statisti-

cal significance with P<0.0001. Statistical analysis was done using Graphpad Prism 8.0

software running unpaired one-way ANOVA with (recommended) Dunnett’s multiple com-

parisons test. The raw data counts can be found in S2 Table.

(PDF)

S3 Fig. Axenic S. feltiae Assay, ESP, Activity. A) Schematic of how IJs were plated to assay

for axenic IJs. A1) Grounded bleach surface sterilized S. feltiae IJs (symbiotic or axenic) on an

NBTA plate supplemented with sodium pyruvate. Blue colonies on NBTA plates represent pri-

mary phase X. bovenii. A2) Grounded Hyamine surface sterilized S. feltiae IJs on an NBTA

plate supplemented with sodium pyruvate. A3) Grounded bleach surface sterilized S. feltiae IJs

(symbiotic or axenic) on an LB plate supplemented with sodium pyruvate (SP). A4) Grounded

Hyamine surface sterilized S. feltiae IJs on an LB plate supplemented with sodium pyruvate.

This was repeated 3 times using approximately 1000 IJs for each batch of S. feltiae IJs.

B) Silver stained protein gel of ESPs collected from symbiotic (S) and axenic (A) S. feltiae IJs
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activated for 6 hours. C) Survival curve of D. melanogaster fruit flies injected with 20 ng of

ESPs collected from axenic S. feltiae IJs activated for 6 hrs. This was repeated 3 times with at

least 90 flies for reach replicate.

(PDF)

S4 Fig. Genes differentially expressed during in vivo IJ activation. (A) maSigPro profiles of

genes clusters during in vivo time course activation. (B) Representative GO terms for each

maSigPro cluster. (C) heatmap of neuropeptide pathway enriched genes from cluster 2.

(PDF)

S5 Fig. mRNA-Protein Correlation of S. feltiae ESPs. Correlation plot of mRNA abundance

(log2 of TPM+1) to protein abundance (log2 of emPAI).

(PDF)

S6 Fig. Core venom orthologs in non-Steinernema organisms. Pie chart of the 52 core ESPs

which had orthologs in genera other than Steinernema and categorized into either vertebrate-

parasitic nematodes, non-parasitic nematodes, or non-nematodes. The list of best orthologs

found in non-Steinernema organisms can be found in S4 Table, which was produced using

Blast2Go blastp default settings (E-value <1x10-3).

(PDF)

S1 Table. S. feltiae IJ time course activation rates and statistical comparison to S. carpocap-
sae rates. 1A) Table with the counts of S. feltiae IJs that were either fully activated, partially

activated, or non-activated. Activation rates were quantified for each time point 3 times. The

average percent of activation was calculated with standard error of the mean (SEM) and stan-

dard deviation (SD) shown below. The activation rate data for naïve/0-hour S. carpocapsae is

also included as this data was obtained in this study. P-values from paired two-way ANOVA

with (Prism recommended) Sidak’s multiple comparisons test comparing S. feltiae activation

time points/categories relative to S. carpocapsae (S. carpocapsae activation rates used in statisti-

cal analyses (except naïve/0 hour) are not shown and were obtained from Lu et al, 2017[5]).

(XLSX)

S2 Table. Damaged nematode count data. Raw data assessing the number of damaged nema-

todes shown in S2 Fig.

(XLSX)

S3 Table. ES proteins from S. feltiae 6 hr and 0 hr symbiotic. Table of ESPs identified by

mass spec from naïve (0 hr) or 6 hr activated S. feltiae IJs used in our analyses. Duplicate genes

were removed and only genes with FDR<5% are included in these lists. This filter resulted in

266 total proteins from 6 hr activated IJs and 682 total proteins from naïve IJs. The raw mass

spec data (which includes proteins not used in our analyses) have been uploaded to the Proteo-

meXchange repository and can be accessed with the following links.

0 hr: ftp://massive.ucsd.edu/MSV000082997.

6 hr: ftp://massive.ucsd.edu/MSV000082997.

(XLSX)

S4 Table. Core venom proteins. List of 52 core venom protein gene IDs shared between S. fel-
tiae (L889) and S. carpocapsae (L596) as well as their associated blast descriptions.

(XLSX)

S5 Table. 112 S. feltiae venom orthologs to S. carpocapsae. List of 112 S. feltiae (L889)

venom gene IDs with homologs in S. carpocapsae (L596) venom [5].

(XLSX)
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S6 Table. 183 S. carpocapsae venom orthologs to S. feltiae. List of 183 S. carpocapsae (L596)

venom gene IDs [5] with homologs in S. feltiae (L889) venom.

(XLSX)

S7 Table. Core venom GO terms. List of enriched GO terms associated with the 52 core

venom proteins between S. feltiae and S. carpocapsae.
(XLSX)

Acknowledgments

We thank Songqin Pan and the UCR Proteomics core facility for help with the mass spectrom-

etry analyses.We thank Tiffany Baiocchi for help with axenic nematode production, and both

Valentina Alonso and Martin Lopez for propagation/maintenance of nematodes and flies. We

thank Johnathan Dalzell for providing insights on the homology of neuropeptides, and

WormBase.

Author Contributions

Conceptualization: Dennis Z. Chang, Lorrayne Serra, Dihong Lu, Ali Mortazavi, Adler R.

Dillman.

Data curation: Lorrayne Serra, Adler R. Dillman.

Formal analysis: Dennis Z. Chang, Lorrayne Serra, Dihong Lu, Ali Mortazavi, Adler R.

Dillman.

Funding acquisition: Adler R. Dillman.

Investigation: Dennis Z. Chang, Lorrayne Serra, Dihong Lu, Ali Mortazavi, Adler R. Dillman.

Methodology: Dennis Z. Chang, Lorrayne Serra, Dihong Lu, Ali Mortazavi, Adler R. Dillman.

Project administration: Ali Mortazavi, Adler R. Dillman.

Supervision: Dihong Lu, Ali Mortazavi, Adler R. Dillman.

Writing – original draft: Dennis Z. Chang, Lorrayne Serra, Dihong Lu, Ali Mortazavi, Adler

R. Dillman.

Writing – review & editing: Dihong Lu, Ali Mortazavi, Adler R. Dillman.

References
1. Hotez PJ, Alvarado M, Basanez MG, Bolliger I, Bourne R, Boussinesq M, et al. The global burden of dis-

ease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop

Dis. 2014; 8(7):e2865. https://doi.org/10.1371/journal.pntd.0002865 PMID: 25058013; PubMed Central

PMCID: PMCPMC4109880.

2. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil

transmitted helminth infections in 2010. Parasites & Vectors. 2014; 7:19. https://doi.org/10.1186/1756-

3305-7-37 WOS:000334641400001. PMID: 24447578

3. Cuesta-Astroz Y, de Oliveira FS, Nahum LA, Oliveira G. Helminth secretomes reflect different lifestyles

and parasitized hosts. International Journal for Parasitology. 2017; 47(9):529–44. https://doi.org/10.

1016/j.ijpara.2017.01.007 WOS:000408076200003. PMID: 28336271

4. Stoltzfus JD, Pilgrim AA, Herbert DR. Perusal of parasitic nematode ’omits in the post-genomic era.

Molecular and Biochemical Parasitology. 2017; 215:11–22. https://doi.org/10.1016/j.molbiopara.2016.

11.003 WOS:000405049100003. PMID: 27887974

Core EPN venom proteins

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007626 May 1, 2019 24 / 29

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007626.s012
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007626.s013
https://doi.org/10.1371/journal.pntd.0002865
http://www.ncbi.nlm.nih.gov/pubmed/25058013
https://doi.org/10.1186/1756-3305-7-37
https://doi.org/10.1186/1756-3305-7-37
http://www.ncbi.nlm.nih.gov/pubmed/24447578
https://doi.org/10.1016/j.ijpara.2017.01.007
https://doi.org/10.1016/j.ijpara.2017.01.007
http://www.ncbi.nlm.nih.gov/pubmed/28336271
https://doi.org/10.1016/j.molbiopara.2016.11.003
https://doi.org/10.1016/j.molbiopara.2016.11.003
http://www.ncbi.nlm.nih.gov/pubmed/27887974
https://doi.org/10.1371/journal.ppat.1007626


5. Lu DH, Macchietto M, Chang D, Barros MM, Baldwin J, Mortazavi A, et al. Activated entomopathogenic

nematode infective juveniles release lethal venom proteins. Plos Pathogens. 2017; 13(4):31. https://doi.

org/10.1371/journal.ppat.1006302 WOS:000402555700018. PMID: 28426766

6. Serra L, Chang D, Macchietto M, Williams K, Murad R, Lu D, et al. Adapting the Smart-seq2 Protocol for

Robust Single Worm RNA-seq. Bio-protocol. 2018; 8(4):e2729. https://doi.org/10.21769/BioProtoc.

2729 PMID: 29564372

7. Cassada RC, Russell RL. The dauer larva, a post-embryonic developmental variant of the nematode

Caenorhabditis elegans. Developmental Biology. 1975; 46(2):326–42. https://doi.org/10.1016/0012-

1606(75)90109-8. PMID: 1183723

8. Hallem EA, Dillman AR, Hong AV, Zhang Y, Yano JM, DeMarco SF, et al. A sensory code for host seek-

ing in parasitic nematodes. Curr Biol. 2011; 21(5):377–83. https://doi.org/10.1016/j.cub.2011.01.048

PMID: 21353558; PubMed Central PMCID: PMC3152378.

9. Dillman AR, Guillermin ML, Lee JH, Kim B, Sternberg PW, Hallem EA. Olfaction shapes host–parasite

interactions in parasitic nematodes. 2012. https://doi.org/10.1073/pnas.1211436109 PMID: 22851767

10. Kaya HK, Gaugler R. Entomophathogenic Nematodes. Annual Review of Entomology. 1993; 38:181–

206. https://doi.org/10.1146/annurev.en.38.010193.001145 WOS:A1993KF69700009.

11. Crook M. The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. Int J

Parasit. 2014; 44(1):1–8. https://doi.org/10.1016/j.ijpara.2013.08.004 WOS:000331415400001. PMID:

24095839

12. Hawdon JM, Jones BF, Perregaux MA, Hotez PJ. Ancylostoma-Caninum—Metalloprotease Release

Coincides with Activation of Infective Larvae in-Vitro. Experimental Parasitology. 1995; 80(2):205–11.

https://doi.org/10.1006/expr.1995.1025 ISI:A1995QP93400005. PMID: 7895832

13. Campos-Herrera R, Barbercheck M, Hoy CW, Stock SP. Entomopathogenic Nematodes as a Model

System for Advancing the Frontiers of Ecology. Journal of Nematology. 2012; 44(2):162–76.

WOS:000320451700010. PMID: 23482825

14. Hodson AK, Siegel JP, Lewis EE. Ecological influence of the entomopathogenic nematode, Steiner-

nema carpocapsae, on pistachio orchard soil arthropods. Pedobiologia. 2012; 55(1):51–8. https://doi.

org/10.1016/j.pedobi.2011.10.005 WOS:000300211100007.

15. Lewis EE, Campbell J, Griffin C, Kaya H, Peters A. Behavioral ecology of entomopathogenic nema-

todes. Biological Control. 2006; 38(1):66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007

WOS:000238596600006.

16. Alonso V, Nasrolahi S, Dillman A. Host-Specific Activation of Entomopathogenic Nematode Infective

Juveniles. Insects. 2018; 9(2):59. https://doi.org/10.3390/insects9020059 PMID: 29865224

17. Lu DH, Sepulveda C, Dillman AR. Infective Juveniles of the Entomopathogenic Nematode Steinernema

scapterisci Are Preferentially Activated by Cricket Tissue. Plos One. 2017; 12(1):14. https://doi.org/10.

1371/journal.pone.0169410 WOS:000391612300184. PMID: 28046065

18. Balasubramanian N, Hao YJ, Toubarro D, Nascimento G, Simoes N. Purification, biochemical and

molecular analysis of a chymotrypsin protease with prophenoloxidase suppression activity from the

entomopathogenic nematode Steinernema carpocapsae. Int J Parasit. 2009; 39(9):975–84. https://doi.

org/10.1016/j.ijpara.2009.01.012 ISI:000267569000004. PMID: 19249304

19. Toubarro D, Avila MM, Montiel R, Simoes N. A Pathogenic Nematode Targets Recognition Proteins to

Avoid Insect Defenses. Plos One. 2013; 8(9):13. https://doi.org/10.1371/journal.pone.0075691

WOS:000325423500086. PMID: 24098715

20. Lewis EE, Clarke DJ. Nematode Parasites and Entomopathogens. In: Vega FE, Kaya HK, editors.

Insect Pathology, 2nd Edition. San Diego: Elsevier Academic Press Inc; 2012. p. 395–424.

21. Hunt DJ, Nguyen KB, Spiridonov SE. Steinernematidae: species descriptions. Advances in entomo-

pathogenic nematode taxonomy and phylogeny: Brill; 2016. p. 111.

22. Poinar GO Jr. Nematodes for biological control of insects. 1979.

23. Hodson AK, Friedman ML, Wu LN, Lewis EE. European earwig (Forficula auricularia) as a novel host

for the entomopathogenic nematode Steinernema carpocapsae. Journal of Invertebrate Pathology.

2011; 107(1):60–4. https://doi.org/10.1016/j.jip.2011.02.004 WOS:000289831300008. PMID:

21356215

24. Nguyen KB, Smart GC. Steinernema scapterisci n. sp. (Rhabditida, Steinernematidae). Journal of Nem-

atology. 1990; 22(2):187–99. WOS:A1990CY91100007. PMID: 19287709

25. Stock SP, Koppenhofer AM. Steinernema scarabaei n. sp (Rhabditida: Steinernematidae), a natural

pathogen of scarab beetle larvae (Coleoptera: Scarabaeidae) from New Jersey, USA. Nematology.

2003; 5:191–204. https://doi.org/10.1163/156854103767139680 WOS:000184809500004.

Core EPN venom proteins

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007626 May 1, 2019 25 / 29

https://doi.org/10.1371/journal.ppat.1006302
https://doi.org/10.1371/journal.ppat.1006302
http://www.ncbi.nlm.nih.gov/pubmed/28426766
https://doi.org/10.21769/BioProtoc.2729
https://doi.org/10.21769/BioProtoc.2729
http://www.ncbi.nlm.nih.gov/pubmed/29564372
https://doi.org/10.1016/0012-1606(75)90109-8
https://doi.org/10.1016/0012-1606(75)90109-8
http://www.ncbi.nlm.nih.gov/pubmed/1183723
https://doi.org/10.1016/j.cub.2011.01.048
http://www.ncbi.nlm.nih.gov/pubmed/21353558
https://doi.org/10.1073/pnas.1211436109
http://www.ncbi.nlm.nih.gov/pubmed/22851767
https://doi.org/10.1146/annurev.en.38.010193.001145
https://doi.org/10.1016/j.ijpara.2013.08.004
http://www.ncbi.nlm.nih.gov/pubmed/24095839
https://doi.org/10.1006/expr.1995.1025
http://www.ncbi.nlm.nih.gov/pubmed/7895832
http://www.ncbi.nlm.nih.gov/pubmed/23482825
https://doi.org/10.1016/j.pedobi.2011.10.005
https://doi.org/10.1016/j.pedobi.2011.10.005
https://doi.org/10.1016/j.biocontrol.2005.11.007
https://doi.org/10.3390/insects9020059
http://www.ncbi.nlm.nih.gov/pubmed/29865224
https://doi.org/10.1371/journal.pone.0169410
https://doi.org/10.1371/journal.pone.0169410
http://www.ncbi.nlm.nih.gov/pubmed/28046065
https://doi.org/10.1016/j.ijpara.2009.01.012
https://doi.org/10.1016/j.ijpara.2009.01.012
http://www.ncbi.nlm.nih.gov/pubmed/19249304
https://doi.org/10.1371/journal.pone.0075691
http://www.ncbi.nlm.nih.gov/pubmed/24098715
https://doi.org/10.1016/j.jip.2011.02.004
http://www.ncbi.nlm.nih.gov/pubmed/21356215
http://www.ncbi.nlm.nih.gov/pubmed/19287709
https://doi.org/10.1163/156854103767139680
https://doi.org/10.1371/journal.ppat.1007626


26. Adams BJ, Peat SM, Dillman AR. Phylogeny and evolution. In: Nguyen KB, Hunt DJ, editors. Entomo-

pathogenic nematodes: Systematics, phylogeny, and bacterial symbionts. Nematology monographs

and perspectives. 5. Leiden-Boston: Brill; 2007. p. 693–733.

27. Spiridonov SE, Reid AP, Podrucka K, Subbotin SA, Moens M. Phylogenetic relationships within the

genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITSI-5.8S-

ITS2 region of rDNA and morphological features. Nematology. 2004; 6:547–66. https://doi.org/10.1163/

1568541042665304 ISI:000226415300008.

28. Dunphy GB, Webster JM. Partially characterized components of the epicuticle of dauer juveniles Stei-

nernema feltiae and their influence on hemocyte activity in Galleria mellonella. Journal of Parasitology.

1987; 73(3):584–8. https://doi.org/10.2307/3282140 WOS:A1987J343300020.

29. Brivio MF, Pagani M, Restelli S. Immune suppression of Galleria mellonella (Insecta, Lepidoptera)

humoral defenses induced by Steinernema feltiae (Nematoda, Rhabditida): involvement of the parasite

cuticle. Experimental Parasitology. 2002; 101(2–3):149–56. https://doi.org/10.1016/s0014-4894(02)

00111-x WOS:000179436600009. PMID: 12427469

30. Brivio MF, Mastore M, Moro M. The role of Steinernema feltiae body-surface lipids in host-parasite

immunological interactions. Molecular and Biochemical Parasitology. 2004; 135(1):111–21. https://doi.

org/10.1016/j.molbiopara.2004.01.012 WOS:000221489500012. PMID: 15287592

31. Brivio M, Mastore M. Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same

War. Insects. 2018; 9(3):117. https://doi.org/10.3390/insects9030117 PMID: 30208626

32. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression

analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139–40. https://doi.org/10.1093/

bioinformatics/btp616 PMID: 19910308; PubMed Central PMCID: PMC2796818.

33. Conesa CA, Nueda J. maSigPro: Significant Gene Expression Profile Differences in Time Course Gene

Expression Data. 1.52.0 ed: R package; 2018.

34. Morris R, Wilson L, Sturrock M, Warnock ND, Carrizo D, Cox D, et al. A neuropeptide modulates sen-

sory perception in the entomopathogenic nematode Steinernema carpocapsae. Plos Pathogens. 2017;

13(3):17. https://doi.org/10.1371/journal.ppat.1006185 WOS:000398120300047. PMID: 28253355

35. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families data-

base: towards a more sustainable future. Nucleic Acids Research. 2016; 44(D1):D279–D85. https://doi.

org/10.1093/nar/gkv1344 WOS:000371261700038. PMID: 26673716

36. Hu PJ. Dauer. WormBook. 2007. https://doi.org/10.1895/wormbook.1.144.1 PMID: 17988074

37. Viney ME, Lok JB. The biology of Strongyloides spp. WormBook. 2015. https://doi.org/10.1895/

wormbook.1.141.2 PMID: 26183912

38. Bonner TP. Initiation of Development In vitro of Third-Stage Nippostrongylus brasiliensis. The Journal

of Parasitology. 1979; 65(1):74–8. https://doi.org/10.2307/3280205 PMID: 448602

39. Hawdon JM, Volk SW, Pritchard DI, Schad GA. Resumption of Feeding Invitro by Hookworm Third-

Stage Larvae—a Comparative Study. Journal of Parasitology. 1992; 78(6):1036–40. https://doi.org/10.

2307/3283226 ISI:A1992KL32200013. PMID: 1491295

40. Dillman AR, Macchietto M, Porter CF, Rogers A, Williams B, Antoshechkin I, et al. Comparative geno-

mics of Steinernema reveals deeply conserved gene regulatory networks. Genome Biol. 2015; 16:200.

https://doi.org/10.1186/s13059-015-0746-6 PMID: 26392177; PubMed Central PMCID:

PMCPMC4578762.

41. Adams BJ, Peat SM, Dillman AR. Phylogeny and evolution. Entomopathogenic Nematodes: Systemat-

ics, Phylogeny and Bacterial Symbionts. 2007; 5:693–733. ISI:000301864200007.

42. Hominick WM, Reid AP. Perspectives on entomopathogenic nematology. Boca Raton, FL 33431:

CRC Press Inc.; 1990. p. 327–45.

43. Griffin CT. Effects of prior storage conditions on the infectivity of Heterorhabditis sp (Nematoda: Hetero-

rhabditidae). Fundamental and Applied Nematology. 1996; 19(1):95–102. ISI:A1996TP25100014.

44. Campbell JF, Koppenhofer AM, Kaya HK, Chinnasri B. Are there temporarily non-infectious dauer

stages in entomopathogenic nematode populations: a test of the phased infectivity hypothesis. Parasi-

tology. 1999; 118 (Pt 5):499–508. PMID: 10363283.

45. Dempsey CM, Griffin CT. Phased activity in Heterorhabditis megidis infective juveniles. Parasitology.

2002; 124:605–13. https://doi.org/10.1017/S0031182002001609 ISI:000177212400005. PMID:

12118716

46. Grewal PS, Lewis EE, Gaugler R. Response of infective stage parasites (Nematoda: Steinernematidae)

to volatile cues from infected hosts. Journal of Chemical Ecology. 1997; 23(2):503–15. https://doi.org/

10.1023/B:Joec.0000006374.95624.7e ISI:A1997WR84600018.

Core EPN venom proteins

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007626 May 1, 2019 26 / 29

https://doi.org/10.1163/1568541042665304
https://doi.org/10.1163/1568541042665304
https://doi.org/10.2307/3282140
https://doi.org/10.1016/s0014-4894(02)00111-x
https://doi.org/10.1016/s0014-4894(02)00111-x
http://www.ncbi.nlm.nih.gov/pubmed/12427469
https://doi.org/10.1016/j.molbiopara.2004.01.012
https://doi.org/10.1016/j.molbiopara.2004.01.012
http://www.ncbi.nlm.nih.gov/pubmed/15287592
https://doi.org/10.3390/insects9030117
http://www.ncbi.nlm.nih.gov/pubmed/30208626
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
https://doi.org/10.1371/journal.ppat.1006185
http://www.ncbi.nlm.nih.gov/pubmed/28253355
https://doi.org/10.1093/nar/gkv1344
https://doi.org/10.1093/nar/gkv1344
http://www.ncbi.nlm.nih.gov/pubmed/26673716
https://doi.org/10.1895/wormbook.1.144.1
http://www.ncbi.nlm.nih.gov/pubmed/17988074
https://doi.org/10.1895/wormbook.1.141.2
https://doi.org/10.1895/wormbook.1.141.2
http://www.ncbi.nlm.nih.gov/pubmed/26183912
https://doi.org/10.2307/3280205
http://www.ncbi.nlm.nih.gov/pubmed/448602
https://doi.org/10.2307/3283226
https://doi.org/10.2307/3283226
http://www.ncbi.nlm.nih.gov/pubmed/1491295
https://doi.org/10.1186/s13059-015-0746-6
http://www.ncbi.nlm.nih.gov/pubmed/26392177
http://www.ncbi.nlm.nih.gov/pubmed/10363283
https://doi.org/10.1017/S0031182002001609
http://www.ncbi.nlm.nih.gov/pubmed/12118716
https://doi.org/10.1023/B:Joec.0000006374.95624.7e
https://doi.org/10.1023/B:Joec.0000006374.95624.7e
https://doi.org/10.1371/journal.ppat.1007626


47. Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: The role of parasite secreted pro-

teins in modulating host immunity. Molecular and Biochemical Parasitology. 2009; 167(1):1–11. https://

doi.org/10.1016/j.molbiopara.2009.04.008 ISI:000268049600001. PMID: 19406170

48. Lightowlers MW, Rickard MD. Excretory Secretory Products of Helminth-Parasites—Effects on Host

Immune-Responses. Parasitology. 1988; 96:S123–S66. ISI:A1988M840500009. PMID: 3287288

49. Holland MJ, Harcus YM, Riches PL, Maizels RM. Proteins secreted by the parasitic nematode Nippos-

trongylus brasiliensis act as adjuvants for Th2 responses. European Journal of Immunology. 2000; 30

(7):1977–87. https://doi.org/10.1002/1521-4141(200007)30:7<1977::AID-IMMU1977>3.0.CO;2-3

ISI:000088262300020. PMID: 10940887

50. Healer J, Ashall F, Maizels RM. Characterization of Proteolytic Enzymes from Larval and Adult Nippos-

trongylus brasiliensis. Parasitology. 1991; 103:305–14. https://doi.org/10.1017/S0031182000059588

ISI:A1991GH06800016. PMID: 1745556

51. Hewitson JR, Harcus YM, Curwenb RS, Dowle AA, Atmadja AK, Ashton PD, et al. The secretome of the

filarial parasite, Brugia malayi: Proteomic profile of adult excretory-secretory products. Molecular and

Biochemical Parasitology. 2008; 160(1):8–21. https://doi.org/10.1016/j.molbiopara.2008.02.007

ISI:000257024600002. PMID: 18439691

52. Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, et al. An Entomopatho-

genic Nematode by Any Other Name. Plos Pathogens. 2012; 8(3):4. https://doi.org/10.1371/journal.

ppat.1002527 WOS:000302225600003. PMID: 22396642

53. Aryal SK, Lu D, Le K, Allison L, Gerke C, Dillman AR. Sand crickets (Gryllus firmus) have low suscepti-

bility to entomopathogenic nematodes and their pathogenic bacteria. J Invertebr Pathol. 2019; 160:54–

60. Epub 2018/12/12. https://doi.org/10.1016/j.jip.2018.12.002 PMID: 30528638.

54. Han RC, Ehlers RU. Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora

and Steinernema carpocapsae under axenic in vivo conditions. Journal of Invertebrate Pathology.

2000; 75(1):55–8. https://doi.org/10.1006/jipa.1999.4900 WOS:000085395100009. PMID: 10631058

55. Poinar GO, Thomas GM. Significance of Achromobacter nematophilus Poinar and Thomas (Achromo-

bacteraceae—Eubacteriales) in Development of Nematode DD-136 (Neoaplectana sp Steinernemati-

dae). Parasitology. 1966; 56:385–&. WOS:A19667764600015. PMID: 4960247

56. Sicard M, Le Brun N, Pages S, Godelle B, Boemare N, Moulia C. Effect of native Xenorhabdus on the fit-

ness of their Steinernema hosts: Contrasting types of interaction. Parasitology Research. 2003; 91

(6):520–4. https://doi.org/10.1007/s00436-003-0998-z WOS:000187993700016. PMID: 14557877

57. Burman M. Neoaplectana carpocapsae: Toxin production by axenic Insect Parasitic Nematodes.

Nematologica. 1982; 28(1):62–70. WOS:A1982PU84500006.

58. Walter TN, Dunphy GB, Mandato CA. Steinernema carpocapsae DD136: Metabolites limit the non-self

adhesion responses of haemocytes of two lepidopteran larvae, Galleria mellonella (F. Pyralidae) and

Malacosoma disstria (F. Lasiocampidae). Experimental Parasitology. 2008; 120(2):161–74. https://doi.

org/10.1016/j.exppara.2008.07.001 WOS:000259659600006. PMID: 18656470

59. Hao YJ, Montiel R, Nascimento G, Toubarro D, Simoes N. Identification and expression analysis of the

Steinernema carpocapsae elastase-like serine protease gene during the parasitic stage. Exp Parasitol.

2009; 122(1):51–60. https://doi.org/10.1016/j.exppara.2009.01.014 WOS:000265463600009. PMID:

19545520

60. Jing YJ, Toubarro D, Hao YJ, Simoes N. Cloning, characterisation and heterologous expression of an

astacin metalloprotease, Sc-AST, from the entomoparasitic nematode Steinernema carpocapsae.

Molecular and Biochemical Parasitology. 2010; 174(2):101–8. https://doi.org/10.1016/j.molbiopara.

2010.07.004 WOS:000283697900002. PMID: 20670659

61. Toubarro D, Avila MM, Hao YJ, Balasubramanian N, Jing YJ, Montiel R, et al. A Serpin Released by an

Entomopathogen Impairs Clot Formation in Insect Defense System. Plos One. 2013; 8(7):12. https://

doi.org/10.1371/journal.pone.0069161 WOS:000322064300088. PMID: 23874900

62. Ehlers RU, Wulff A, Peters A. Pathogenicity of axenic Steinernema feltiae, Xenorhabdus bovienii, and

the bacto-helminthic complex to larvae of Tipula oleracea (Diptera) and Galleria mellonella (Lepidop-

tera). Journal of Invertebrate Pathology. 1997; 69(3):212–7. https://doi.org/10.1006/jipa.1996.4647

WOS:A1997WZ20900003. PMID: 9170346

63. Dunphy GB, Webster JM. Influence of Steinernema feltiae (Filipjev) Wouts, Mracek, Gerdin and Bed-

ding DD136 strain on the humoral and haemocytic responses of Galleria mellonella (L.) larvae to

selected bacteria. Parasitology. 1985; 91(2):369–80. Epub 2009/04/01. https://doi.org/10.1017/

s0031182000057437

64. Odaly JA, Cabrera Z. Immunization of hamsters with TLCK-killed parasites induces protection against

Leishmania infection. Acta Tropica. 1986; 43(3):225–36. WOS:A1986E140800004. PMID: 2877549

Core EPN venom proteins

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007626 May 1, 2019 27 / 29

https://doi.org/10.1016/j.molbiopara.2009.04.008
https://doi.org/10.1016/j.molbiopara.2009.04.008
http://www.ncbi.nlm.nih.gov/pubmed/19406170
http://www.ncbi.nlm.nih.gov/pubmed/3287288
https://doi.org/10.1002/1521-4141(200007)30:7<1977::AID-IMMU1977>3.0.CO;2-3
http://www.ncbi.nlm.nih.gov/pubmed/10940887
https://doi.org/10.1017/S0031182000059588
http://www.ncbi.nlm.nih.gov/pubmed/1745556
https://doi.org/10.1016/j.molbiopara.2008.02.007
http://www.ncbi.nlm.nih.gov/pubmed/18439691
https://doi.org/10.1371/journal.ppat.1002527
https://doi.org/10.1371/journal.ppat.1002527
http://www.ncbi.nlm.nih.gov/pubmed/22396642
https://doi.org/10.1016/j.jip.2018.12.002
http://www.ncbi.nlm.nih.gov/pubmed/30528638
https://doi.org/10.1006/jipa.1999.4900
http://www.ncbi.nlm.nih.gov/pubmed/10631058
http://www.ncbi.nlm.nih.gov/pubmed/4960247
https://doi.org/10.1007/s00436-003-0998-z
http://www.ncbi.nlm.nih.gov/pubmed/14557877
https://doi.org/10.1016/j.exppara.2008.07.001
https://doi.org/10.1016/j.exppara.2008.07.001
http://www.ncbi.nlm.nih.gov/pubmed/18656470
https://doi.org/10.1016/j.exppara.2009.01.014
http://www.ncbi.nlm.nih.gov/pubmed/19545520
https://doi.org/10.1016/j.molbiopara.2010.07.004
https://doi.org/10.1016/j.molbiopara.2010.07.004
http://www.ncbi.nlm.nih.gov/pubmed/20670659
https://doi.org/10.1371/journal.pone.0069161
https://doi.org/10.1371/journal.pone.0069161
http://www.ncbi.nlm.nih.gov/pubmed/23874900
https://doi.org/10.1006/jipa.1996.4647
http://www.ncbi.nlm.nih.gov/pubmed/9170346
https://doi.org/10.1017/s0031182000057437
https://doi.org/10.1017/s0031182000057437
http://www.ncbi.nlm.nih.gov/pubmed/2877549
https://doi.org/10.1371/journal.ppat.1007626


65. Redmond DL, Knox DP. Protection studies in sheep using affinity-purified and recombinant cysteine

proteinases of adult Haemonchus contortus. Vaccine. 2004; 22(31–32):4252–61. https://doi.org/10.

1016/j.vaccine.2004.04.028 WOS:000224758200016. PMID: 15474716

66. Ruiz A, Molina JM, Gonzalez JF, Conde MM, Martin S, Hernandez YI. Immunoprotection in goats

against Haemonchus contortus after immunization with cysteine protease enriched protein fractions.

Veterinary Research. 2004; 35(5):565–72. https://doi.org/10.1051/vetres:2004032

WOS:000224585800005. PMID: 15369659

67. Knox D. Proteases in blood-feeding nematodes and their potential as vaccine candidates. In: Robinson

MW, Dalton JP, editors. Cysteine Proteases of Pathogenic Organisms. Advances in Experimental Med-

icine and Biology. 712. Berlin: Springer-Verlag Berlin; 2011. p. 155–76.

68. McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M. Proteases in parasitic diseases. Annual Review of

Pathology-Mechanisms of Disease. Annual Review of Pathology-Mechanisms of Disease. 1. Palo

Alto: Annual Reviews; 2006. p. 497–536.

69. Todorova VK, Stoyanov DI. Partial characterization of serine proteinases secreted by adult Trichinella

spiralis. Parasitology Research. 2000; 86(8):684–7. https://doi.org/10.1007/pl00008552

WOS:000088738100013. PMID: 10952270

70. Cwiklinski K, Meskill D, Robinson MW, Pozio E, Appleton JA, Connolly B. Cloning and analysis of a Tri-

chinella pseudospiralis muscle larva secreted serine protease gene. Veterinary Parasitology. 2009; 159

(3–4):268–71. https://doi.org/10.1016/j.vetpar.2008.10.036 WOS:000264038400019. PMID: 19054614

71. Rees-Roberts D, Mullen LM, Gounaris K, Selkirk ME. Inactivation of the complement anaphylatoxin

C5a by secreted products of parasitic nematodes. International Journal for Parasitology. 2010; 40

(5):527–32. https://doi.org/10.1016/j.ijpara.2009.10.006 WOS:000277107400004. PMID: 19874826

72. Zhao YM, Sun W, Zhang P, Chi H, Zhang MJ, Song CQ, et al. Nematode sperm maturation triggered by

protease involves sperm-secreted serine protease inhibitor (Serpin). Proceedings of the National Acad-

emy of Sciences of the United States of America. 2012; 109(5):1542–7. https://doi.org/10.1073/pnas.

1109912109 WOS:000299731400044. PMID: 22307610

73. Drake LJ, Bianco AE, Bundy DAP, Ashall F. Characterization of peptidases of adult Trichuris muris. Par-

asitology. 1994; 109:623–30. https://doi.org/10.1017/s0031182000076502 WOS:A1994PV35900010.

PMID: 7831097

74. Hotez PJ, Cerami A. Secretion of a proteolytic anticoagulant by Ancylostoma hookworms. Journal of

Experimental Medicine. 1983; 157(5):1594–603. https://doi.org/10.1084/jem.157.5.1594 WOS:

A1983QQ38700018. PMID: 6343546

75. Kennedy MW, Corsico B, Cooper A, Smith BO. The Unusual Lipid-binding Proteins of Nematodes:

NPAs, nemFABPs and FARs. In: Kennedy MW, Harnett W, editors. Parasitic Nematodes: Molecular

Biology, Biochemistry and Immunology, 2nd Edition. Wallingford: Cabi Publishing-C a B Int; 2013. p.

397–412.

76. Iberkleid I, Vieira P, Engler JD, Firester K, Spiegel Y, Horowitz SB. Fatty Acid-and Retinol-Binding Pro-

tein, Mj-FAR-1 Induces Tomato Host Susceptibility to Root-Knot Nematodes. Plos One. 2013; 8(5):14.

https://doi.org/10.1371/journal.pone.0064586 WOS:000320362700159. PMID: 23717636

77. Vieira P, Kamo K, Eisenback JD. Characterization and silencing of the fatty acid- and retinol-binding

Pp-far-1 gene in Pratylenchus penetrans. Plant Pathology. 2017; 66(7):1214–24. https://doi.org/10.

1111/ppa.12664 ISI:000409374900017.

78. Phani V, Shivakumara TN, Davies KG, Rao U. Meloidogyne incognita Fatty Acid- and Retinol- Binding

Protein (Mi-FAR-1) Affects Nematode Infection of Plant Roots and the Attachment of Pasteuria pene-

trans Endospores. Frontiers in Microbiology. 2017;8. https://doi.org/10.3389/fmicb.2017.00008

ISI:000414123500001.

79. Abreu RD, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNA expression lev-

els. Molecular Biosystems. 2009; 5(12):1512–26. https://doi.org/10.1039/b908315d

WOS:000271727600013. PMID: 20023718

80. Grun D, Kirchner M, Thierfelder N, Stoeckius M, Selbach M, Rajewsky N. Conservation of mRNA and

Protein Expression during Development of C.elegans. Cell Reports. 2014; 6(3):565–77. https://doi.org/

10.1016/j.celrep.2014.01.001 WOS:000331168400014. PMID: 24462290

81. Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially

expressed mRNA and mRNA-protein correlations in a xenograft model system. Scientific Reports.

2015; 5:9. https://doi.org/10.1038/srep10775 WOS:000356137300001. PMID: 26053859

82. White GF. A method for obtaining infective nematode larvae from cultures. Science. 1927; 66

(1709):302–3. https://doi.org/10.1126/science.66.1709.302-a PMID: 17749713.

83. Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed immune response in Drosoph-

ila is dependent on phagocytes. Plos Pathogens. 2007; 3(3):8. https://doi.org/10.1371/journal.ppat.

0030026 WOS:000248495200006. PMID: 17352533

Core EPN venom proteins

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007626 May 1, 2019 28 / 29

https://doi.org/10.1016/j.vaccine.2004.04.028
https://doi.org/10.1016/j.vaccine.2004.04.028
http://www.ncbi.nlm.nih.gov/pubmed/15474716
https://doi.org/10.1051/vetres:2004032
http://www.ncbi.nlm.nih.gov/pubmed/15369659
https://doi.org/10.1007/pl00008552
http://www.ncbi.nlm.nih.gov/pubmed/10952270
https://doi.org/10.1016/j.vetpar.2008.10.036
http://www.ncbi.nlm.nih.gov/pubmed/19054614
https://doi.org/10.1016/j.ijpara.2009.10.006
http://www.ncbi.nlm.nih.gov/pubmed/19874826
https://doi.org/10.1073/pnas.1109912109
https://doi.org/10.1073/pnas.1109912109
http://www.ncbi.nlm.nih.gov/pubmed/22307610
https://doi.org/10.1017/s0031182000076502
http://www.ncbi.nlm.nih.gov/pubmed/7831097
https://doi.org/10.1084/jem.157.5.1594
http://www.ncbi.nlm.nih.gov/pubmed/6343546
https://doi.org/10.1371/journal.pone.0064586
http://www.ncbi.nlm.nih.gov/pubmed/23717636
https://doi.org/10.1111/ppa.12664
https://doi.org/10.1111/ppa.12664
https://doi.org/10.3389/fmicb.2017.00008
https://doi.org/10.1039/b908315d
http://www.ncbi.nlm.nih.gov/pubmed/20023718
https://doi.org/10.1016/j.celrep.2014.01.001
https://doi.org/10.1016/j.celrep.2014.01.001
http://www.ncbi.nlm.nih.gov/pubmed/24462290
https://doi.org/10.1038/srep10775
http://www.ncbi.nlm.nih.gov/pubmed/26053859
https://doi.org/10.1126/science.66.1709.302-a
http://www.ncbi.nlm.nih.gov/pubmed/17749713
https://doi.org/10.1371/journal.ppat.0030026
https://doi.org/10.1371/journal.ppat.0030026
http://www.ncbi.nlm.nih.gov/pubmed/17352533
https://doi.org/10.1371/journal.ppat.1007626


84. Heungens K, Cowles CE, Goodrich-Blair H. Identification of Xenorhabdus nematophila genes required

for mutualistic colonization of Steinernema carpocapsae nematodes. Molecular Microbiology. 2002; 45

(5):1337–53. https://doi.org/10.1046/j.1365-2958.2002.03100.x WOS:000177750400015. PMID:

12207701

85. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic

Acids Research. 2011; 39:W29–W37. https://doi.org/10.1093/nar/gkr367 ISI:000292325300006.

PMID: 21593126

86. Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their

substrates and inhibitors. Nucleic Acids Research. 2014; 42(D1):D503–D9. https://doi.org/10.1093/nar/

gkt953 WOS:000331139800075. PMID: 24157837

87. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biology. 2009; 10(3):10. https://doi.org/10.1186/gb-2009-

10-3-r25 WOS:000266544500005. PMID: 19261174

88. Ritchie ME, Phipson B, Wu D, Hu YF, Law CW, Shi W, et al. limma powers differential expression analy-

ses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015; 43(7):13. https://doi.

org/10.1093/nar/gkv007 WOS:000354722500005. PMID: 25605792

89. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Ggplot2: Elegant Graphics for Data Analysis.

2009:1–212. https://doi.org/10.1007/978-0-387-98141-3 WOS:000269437100014.

90. de Hoon MJL, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics. 2004; 20

(9):1453–4. https://doi.org/10.1093/bioinformatics/bth078 WOS:000222125600013. PMID: 14871861

91. Saldanha AJ. Java Treeview-extensible visualization of microarray data. Bioinformatics. 2004; 20

(17):3246–8. https://doi.org/10.1093/bioinformatics/bth349 WOS:000225361400039. PMID: 15180930

92. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for anno-

tation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21(18):3674–6.

https://doi.org/10.1093/bioinformatics/bti610 PMID: 16081474.

93. Li C, Kim K. Family of FLP peptides in Caenorhabditis elegans and related nematodes. Frontiers in

Endocrinology. 2014; 5. https://doi.org/10.3389/fendo.2014.00150 WOS:000209749800149. PMID:

25352828

Core EPN venom proteins

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007626 May 1, 2019 29 / 29

https://doi.org/10.1046/j.1365-2958.2002.03100.x
http://www.ncbi.nlm.nih.gov/pubmed/12207701
https://doi.org/10.1093/nar/gkr367
http://www.ncbi.nlm.nih.gov/pubmed/21593126
https://doi.org/10.1093/nar/gkt953
https://doi.org/10.1093/nar/gkt953
http://www.ncbi.nlm.nih.gov/pubmed/24157837
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1186/gb-2009-10-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/19261174
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1093/bioinformatics/bth078
http://www.ncbi.nlm.nih.gov/pubmed/14871861
https://doi.org/10.1093/bioinformatics/bth349
http://www.ncbi.nlm.nih.gov/pubmed/15180930
https://doi.org/10.1093/bioinformatics/bti610
http://www.ncbi.nlm.nih.gov/pubmed/16081474
https://doi.org/10.3389/fendo.2014.00150
http://www.ncbi.nlm.nih.gov/pubmed/25352828
https://doi.org/10.1371/journal.ppat.1007626



