Recently Work

Title
Charge Distribution on S and Intercluster Bond Evolution in Mo6S8 during the Electrochemical Insertion of Small Cations Studied by X-ray Absorption Spectroscopy.

Permalink
https://escholarship.org/uc/item/660168vs

Journal
The journal of physical chemistry letters, 10(6)

ISSN
1948-7185

Authors
Yu, Pengfei
Long, Xinghui
Zhang, Nian
et al.

Publication Date
2019-03-01

DOI
10.1021/acs.jpcllett.8b03622

Peer reviewed
Charge distribution on S and intercluster bond evolution in Mo\textsubscript{6}S\textsubscript{8} during the electrochemical insertion of small cations studied by X-ray absorption spectroscopy

Pengfei Yu†, *, Xinghui Long†, Nian Zhang†, Xuefei Feng§, Jiamin Fu†⊥, Shun Zheng†, Guoxi Ren†, Xiaosong Liu†⊥*, Cheng Wang§, Zhi Liu†⊥

†State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, China
§Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
⊥School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, China

KEYWORDS: X-ray absorption, rechargeable magnesium batteries, Chevrel phases, charge distribution, bond evolution

ABSTRACT: Chevrel phase Mo\textsubscript{6}S\textsubscript{8} has aroused special interest as promising cathode material in rechargeable Mg batteries since 2000. Despite extensive studies on the mechanism of cation accommodation, some fundamental questions are still unclarified, including but not limited to the origination of the chemical stability, key factors inducing the structural evolution and the factors related to the electrochemical reversibility. Here, the Mo L\textsubscript{2,3} and S K-edge X-ray absorption spectroscopy were utilized to study the charge distribution on S and intercluster bond evolution in Mo\textsubscript{6}S\textsubscript{8} during the cation insertion. S K pre-edge features can be assigned to two kinds of S with different nuclear effective charge by the 2nd derivatives, indicating the non-uniform charge distribution on S. With one cation inserted, the disappearance of the feature of S K-edge centered around 2468.1 eV indicates the charge distribution on S becomes homogeneous, which is related to the chemical stability and electrochemical reversibility. The evolution of certain Mo L\textsubscript{2,3} and S K pre-edge features with the insertion of different types of cations indicates that the structural evolution should result from the change of bond length induced by delocalization of inserted cations, which gives a support to the “matrix effect”. Moreover, drastic change of the intensity of S K pre-edge centered around 2469.4 eV mainly results from the evolution of intercluster Mo-Mo bond length, which is closely related to the electrochemical reversibility. We hope this study sheds light on the afore-mentioned questions and guides the rational design of Mg cathode material.

INTRODUCTION

Chevrel phases Mo\textsubscript{6}T\textsubscript{8} (T=S, Se, Te), where the Mo\textsubscript{6}-octahedral clusters inside T\textsubscript{8} cubes are linked by Mo-Mo and Mo-T bonds to form a three-dimensional network, can accommodate almost 40 varieties of cations to form Mn+,Mo\textsubscript{6}T\textsubscript{8}. According to the size of cation M, a rough classification was proposed: type I, Chevrel phases with one large cation (> 1 Å, M = Pb, Sn and rare-earth metal, etc.) occupied the center of the largest cavity, and type II, Chevrel phases with small cations (< 1 Å, M = Li, Cu, Na, etc.) inserted where the maximal amount was thought to be limited by the accommodation capability of accompanied electron. Type I was studied widely because of its superior superconductive properties such as high superconductive transition temperatures and high critical fields.1-7 However, type II was comparatively less studied although it could be used for electrochemical energy storage owing to the novel mobility of cation M under electromotive force.5-14

Until 2000, the excellent performance of Mo\textsubscript{6}S\textsubscript{8} as a cathode in rechargeable Mg batteries reported by Aurbach et.al15 triggered great interest on insertion of small cations into Chevrel phases.16-21 From then on, many theoretical22-27 and experimental studies from the point view of electrochemistry18, 28-30 and structure31-36 have been performed to illustrate the reaction mechanism. However, the fact that Chevrel phases are still the unique reversible cathodes up
to now reminds us many fundamental issues still need to be clarified.

One of the main debates lies in structural evolution with the insertion of cations ranging in charge and radius. Yvon demonstrated for the first time that the charge and concentration of cations were the only two factors determining the size and distortion of Mo₆ cluster due to the charge transfer from cation to Mo₆ cluster. They proposed “cluster valence electron concentration” (cluster-VEC) to evaluate the effect of charge transfer on the distortion of Mo₆ octahedron along with the insertion of cations. With the cluster-VEC close to the theoretical maximum 24, the shape of the Mo₆ octahedron became much more regular, leading a structural stability. By virtue of this model, we could understand why pure Mo₆S₈ (cluster-VEC = 20) could only be prepared by chemical or electrochemical corrosion while Mo₆Si₈ and Mo₆S₈Br₂ (cluster-VEC = 23.67) could be synthesized directly. However, the model was not able to explain some other cases. For cations like Li⁺, Na⁺, Mg²⁺, and so forth, the Chevrel phases with nx = 1 or 2 (cluster-VEC = 21 or 22) could be obtained relatively easily by the direct high-temperature-synthesis, but compounds with nx = 4 (cluster-VEC = 24) could only be prepared by cation insertion chemically or electrochemically. Moreover, electrochemical studies revealed that cation insertion with nx up to 4 was possible for both the Mo₆Se₈ (cluster-VEC = 21) and Mo₆Te₈ (cluster-VEC = 22), exceeding the theoretical maximum 24 of the model.

The cluster-VEC model was criticized by Corbett. Instead, he proposed the key role of “matrix effect” on the Moₓ cluster shape. More specifically speaking, cation insertion could decrease repulsive interaction between the anion closed shells associated by a loosening of Mo-T intercluster bonds and thus lead to the decrease of Mo₆ elongation. In his study, the Pauling strength, which is the cornerstone of the modern bond valence (BV) model, was used to compare the metal-metal bonds for Chevrel phases and other similar compounds. A more systematical BV analysis on Chevrel phases was performed by Levi and Aurbach. They argued the intrinsic instability of the binary Chevrel phases did not result from the Moₓ-cluster anisotropy, but rather from the severe non-uniform charge distribution on anions. The charge distribution on anions changed drastically with cation insertion, leading to the structural stabilization. However, all the conclusions obtained by Corbett and Aurbach were theoretical prediction based on BV model. Direct experimental evidence is still lacking. Although Kubel and Yvon once made a study on “matrix effect”, it mainly focused on large cations (> 1 Å) but not on small cations inserted electrochemically.

X-ray absorption spectroscopy (XAS) is one of the most powerful methods to provide insight into the electronic structure of selected absorbing atoms. In particular, transition metal L-edge and ligand K-edge XAS can give detailed information on unoccupied states right near the Fermi level, such as ligand field, spin states and hybridization, which are the key factors to regulate the fundamental properties and practical performances of materials. The information on chemical bonds can also be obtained as the chemical bonds are actually the interaction between the electrons near the Fermi level. Therefore, the transition metal L-edge and ligand K-edge XAS have made their wide application in studying lithium/sodium ion batteries. The technique has already been applied to study Chevrel phase as Mg cathode. However, deep discussion on the above debates has not been involved.

In this work, we will study the charge distribution on anions and intercluster bond evolution in a typical Chevrel phase Mo₆S₈ with the insertion of cation in different radius and charge (i.e. Li⁺, Mg²⁺ and Cu⁺) or in different amount. This study aims to weigh the role of charge effect and “matrix effect” in structural evolution in electrochemical process, provide a direct experimental evidence for charge distribution on anions and intercluster bond evolution during cation insertion, and discuss their relationship with electrochemical reversibility. This study will shed light on the mechanism of Mg storage in Mo₆S₈ and help to guide the development of reversible Mg cathode material.

EXPERIMENTAL

Battery test and sample preparation

Mo₆S₈ and CuMo₆S₈ chevrel phases were synthesized firstly according to the previous report. The corresponding XRD patterns and SEM images are shown in Figure S1. The cathode was composed of Mo₆S₈, carbon black (AB) and polyvinylidene difluoride (PVDF) in the weight ratio of 8: 1: 1. Solution of 0.25 M MgAlCl₂BuEt₂ in anhydrous THF was used as the electrolyte for Mg batteries. The electrochemical window was tested by CV as shown in Figure S2. The electrolyte for the Li⁺ insertion comprised 1mol/L LiClO₄ mixed in ethylene carbonate (EC)/diethyl carbonate (DMC) in the volume ratio of 1: 1. The half-cells were assembled with the corresponding pure Li or Mg sheet as anodes. All the operations were done in a pure Ar-filled glovebox with O₂ and H₂O content lower than 0.1 ppm.

All the cells were tested by using the Arbin battery test system. The cells were discharged or charged at the rate of 0.1 C to certain voltage or for certain time to obtain cathodes with specific
amount of cations inserted. Typical discharge/charge profiles are shown in Figure S3. When the tests finished, the cells were transported to Ar-filled glovebox and disassembled at Ar atmosphere. The cathode samples were washed for three times by using anhydrous DMC or THF to decrease the interference from electrolyte. To avoid any possible interference from atmosphere during transportation to Taiwan Light source (TLS), the samples were sealed in aluminum-plastic bags.

Tender X-ray absorption spectroscopy

Sulfur K- and Mo L\(_{2,3}\)-edge XAS were collected on beamline 16A1 at the TLS in Hsinchu. The solid reference samples (MoS\(_2\) and MoS\(_2\)-2H\(_2\)O) were brushed on S-free Kapton tape. All the samples were mounted to a sample holder in a dry glovebox with inert atmosphere (N\(_2\)). A 6 \(\mu\)m thick, sulfur-free mylar film was used as front window to prevent the exposure to air when transferring air-sensitive samples from glovebox to test chamber despite that the whole exposure time was no more than 20 s. The sample holder was placed in front of the X-ray beam at a 45° angle. Before collecting data, the chamber was purged with He at least for 30 min. Spectra were collected in bulk sensitive fluorescence yield mode by using a Lytle detector. The photon energy was calibrated with the maximum in the 1\(^{st}\) derivative at the L\(_3\)-edge of pure Mo foil set to 2520 eV. Background subtraction and normalization were performed by using the Athena software program.\(^{51}\)

RESULTS AND DISCUSSIONS

The contribution from Mo-Mo bonds

![Figure 1](image)

Figure 1. (a) Mo L\(_2\)-edge spectra and (b) the corresponding 2\(^{nd}\) derivatives of references including MoS\(_2\)-2H\(_2\)O, MoS\(_8\) and MoS\(_2\).

The Mo L-edge of MoS\(_2\)-2H\(_2\)O, MoS\(_8\) and MoS\(_2\), which further splits into L\(_2\) and L\(_3\)-edge because of the 2p core-hole spin-orbital coupling, were firstly studied. It has been reported that the multiplet effect is so small for the L\(_{2,3}\)-edge of 4d elements that the intensity ratio between L\(_2\) and L\(_3\)-edge is closed to 2:1 (see the details of Mo L-edge in Figure S4).\(^{52, 53}\) Moreover, the L\(_2\) edge has been thought to be more related to the single-particle model due to the less weight of intensity transfer between peaks at L\(_2\)-edge than that at L\(_3\)-edge.\(^{52, 53}\) In addition, Mo L\(_2\)-edge is also less interfered by the S K-edge than L\(_3\)-edge, which makes the normalization more correctly. Therefore, Mo L\(_2\)-edge are mainly used for comparison in Figure 1 (a) while L\(_3\)-edge can be found in Figure S5. Generally, each L\(_2\)-edge has two obvious features, which are marked as C\(_2\)' and D\(_2\) for MoS\(_2\), B\(_2\)' and D\(_2\) for MoS\(_8\) and E\(_2\)' and D\(_3\) for MoS\(_2\)-2H\(_2\)O, respectively. The peaks D\(_1\), D\(_2\), and D\(_3\) lie above the ionization potential and have been assigned to the multiple scattering resonance\(^{54}\) or transition to quasi-bound states\(^{55}\). Peak B\(_2\)', C\(_2\)' and E\(_2\)' are assigned to the transition from 2p\(_{1/2}\) to 4d states, which will be focused in our study. The energy position of B\(_2\)' is a bit lower than C\(_2\)' while much lower than E\(_2\)'. One of the main contributions to the peak position comes from the effective charge of transition metal. Thus, it might indicate the effective charge of Mo in MoS\(_8\) is very close to that in MoS\(_2\) while smaller than that in MoS\(_2\)-2H\(_2\)O though the peak position was more or less impacted by ligand field.\(^{56, 57}\) It can be well supported by the comparison of spectra of Mo K-edge as shown in Figure S6. Besides, the profile of peak B\(_2\)' is a bit broader than the peak C\(_2\)' and this can be found according to the 2\(^{nd}\) derivatives in Figure 1(b). As the peak valley of the 2\(^{nd}\) derivatives represents the peak position and can be used to distinguish the refined features in the spectrum, it reveals the L\(_2\)-edge of MoS\(_8\) contains three peaks (a\(_2\)', b\(_2\)', and b\(_2\)\,') while the peak C\(_2\)' can be divided into two peaks marked as c\(_1\)' and c\(_1\)' . Moreover, the peak intensity (the absolute value) of a\(_2\)', b\(_2\)', and b\(_2\)\,') are much lower than that of c\(_1\)' and c\(_1\)' and that of e\(_1\)' and e\(_2\)' for MoS\(_2\)-2H\(_2\)O overall. The intensity of peak valley can tell the curvature of the corresponding XAS feature, mainly related to the peak width if not much intensity change of the XAS feature. Therefore, the obvious lower peak intensity indicates the broader peak width of the XAS features of MoS\(_8\) as well. As the peak width is thought to be related to the width of energy bands, it indicates that the energy bands of MoS\(_8\) are generally broader than those of the other two. The broadening of energy bands of MoS\(_8\) should consist of the contribution from Mo-Mo bonds, which has been predicted in theoretical studies.\(^{3, 6}\)
The S K pre-edge while the notable reduction of MoS
Mo L-edge respectively. 3 peaks for MoS refined peaks (a spectrum studies on S K-edge. which has been proved to be a useful way in be obtained according to the 2nd bands in the LUMO. More details of pre-edge can be obtained according to the 2nd derivatives, which has been proved to be a useful way in spectrum studies on S K-edge. As shown in Figure 2 (b), the pre-edge of MoS contains 4 refined peaks (a1, a2, b1, b2) in the range of 4 eV, while 3 peaks for MoS in the range of 2.6 eV and 3 peaks for MoS2:2H2O in the range of 3 eV, respectively.

Charge distribution

Figure 3. Alignments of 2nd derivatives of S K with Mo L-edge pre-edge features for (a) MoS2. (b) MoS8, (c) MoS2:2H2O, respectively.

Because of the decisive role of Mo 4d bands on the S K pre-edge while the notable reduction of multiplet effect on Mo L-edge. Mo L-edge is thought to correspond more explicitly to S pre-edge. Such correlations can be further confirmed by the alignments of 2nd derivatives of the Mo L-edge with those of the corresponding S K pre-edge for MoS8, MoS2 and MoS2:2H2O in Figure 3 (a), (b) and (c), respectively. For MoS8, all the refined S K pre-edge features except a1 at lower energy correspond to different features at Mo L-edge well. It indicates the origination of a1 is different from the others. As MoS8 is conductive, peak a1 is assigned to the transition from a more shallow 1s core level to the delocalized unoccupied states than the other three. The more shallow S 1s core level results from less effective nuclear charge (Z_eff), indicating at least two kinds of S with different Z_eff in MoS8. It is in agreement with the viewpoint from crystal structure. There are two kinds of S existing in MoS8, where two S at the ternary axis are respectively coordinated with 3 Mo atoms while six peripheral S are coordinated with 4 Mo atoms, respectively. Moreover, the peak a1 is assigned to S and thus more electrons stay around S because the low intensity of peak a1 can be understood by the less amount of S and lower Mo coordination. Our conclusion is in agreement with the previous theoretical calculation. The increase of the local valence electrons on ligand with less cation coordination has already been reported in the other previous XAS study. On the contrary, the electron concentration on S has been reported to be lower by using the BV analysis. Therefore, more discussions on the charge distribution are needed. Nevertheless, our result is the first experimental evidence on the non-uniform charge distribution on S in MoS8. The reliability of our analysis can be further confirmed by the case of MoS2:2H2O. The 2nd derivatives of S K-edge of MoS2:2H2O in Figure 3 (c) also has a small peak e' at lower energy which cannot match with the features of the Mo L-edge. If our analysis were reliable, the feature e' should demonstrate there were also two kinds of S in MoS2:2H2O. Actually, it has been demonstrated by XPS and Mo K EXAFS that the formulation of MoS3 can be written as Mo4(S2)1/2(S3)2.
Figure 4. (a) The absorption spectra and the corresponding 2nd derivatives of S K-edge for CuMo\textsubscript{6}S\textsubscript{8}, LiMo\textsubscript{6}S\textsubscript{8} and MgMo\textsubscript{6}S\textsubscript{8}. (b) The absorption spectra and the corresponding 2nd derivatives of S K-edge for Mo\textsubscript{6}S\textsubscript{8} charged to 3.5 V vs. (Li/Li+) and Mo\textsubscript{6}S\textsubscript{8} charged to 1.8 V vs. (Mg/Mg2+). The data of original Mo\textsubscript{6}S\textsubscript{8} shown in short dash line is used for comparison.

The charge distribution during cation insertion was further studied by monitoring the evolution of peak a\textsubscript{1}. As shown in Figure 4(a), peak a\textsubscript{1} disappears with one Cu2+, Li+ or Mg2+ inserted into Mo\textsubscript{6}S\textsubscript{8}. According to the discussion above, the absence of peak a\textsubscript{1} indicates that all the S atoms stay in similar environment and own similar Z\textsubscript{eff}, indicating the homogeneous charge distribution on S. The similar coordinated environment might result from the interaction between S\textsubscript{8} and the inserted cations. According to the previous BV analysis, the homogeneous charge distribution on anions can be fulfilled with the entrance of the first two electrons.42 Our results provide the first direct experimental evidence with more details, where the charge distribution becomes homogenous only with the entrance of one electron. Furthermore, the uneven charge distribution on S has been argued to be the origin of chemical instability of Mo\textsubscript{6}S\textsubscript{8}.42 If the conclusion is reliable, our result could give an explanation on the experimental fact that some Chevrel phases with nx = 1 can be obtained relatively easily by the direct high-temperature-synthesis.76

The evolution of charge distribution was further checked during electrochemical extraction process. As shown in Figure 4(b), when charged to 1.85 V vs. Mg/Mg2+, peak a\textsubscript{1} cannot re-appear. It is known that 0.5 Mg2+ were still trapped. However, when charged to 3.5 V in lithium ion batteries, where all Li+ were extracted reversibly, peak a\textsubscript{1} is able to re-appear. It tells charge distribution becomes non-uniform with the extraction of the last Li+. Thus, the electrochemical reversibility corresponds well to the reversible evolution of charge distribution. Given that the chemical stability decreases with a more non-uniform charge distribution,42 we can conclude that electrochemical reversibility is not only related to chemical stability but also other factors.

The correlation between bond evolution and electronic structure

Figure 5. (a) The absorption spectra and the corresponding 2nd derivatives of Mo L\textsubscript{2}-edge for Mo\textsubscript{6}S\textsubscript{8}, CuMo\textsubscript{6}S\textsubscript{8}, LiMo\textsubscript{6}S\textsubscript{8} and MgMo\textsubscript{6}S\textsubscript{8}, and (b) energy shift and intensity evolution of peak a at Mo L\textsubscript{2}-edge and peak A at S K-edge with cation delocalization.

Another obvious change with Cu2+, Li+ and Mg2+ insertion or extraction involved the intensity and energy position of peak A. The evolution of peak A of S K-edge (in Figure 4(a)) as well as the corresponding peak A‘ of Mo L\textsubscript{2}-edge was studied. Figure 5 (a) shows the spectrum and the corresponding 2nd derivatives of Mo L\textsubscript{2}-edge. The evolution of peak A‘ can be distinguished only by the 2nd derivatives. It reveals that the position of peak A (a) and a’ shifts to lower energy while the intensity of peak A and a’ (the absolute value) decreases with the insertion of Cu2+, Mg2+ and Li+ in sequence, which are not proportional to the amount of charge transfer. The inserted small ions have been reported to delocalize from the center of the inner site, leading a structural distortion. The values of delocalization have been reported: 0.94 for LiMo\textsubscript{6}S\textsubscript{8}, 0.91 for MgMo\textsubscript{6}S\textsubscript{8} and 0.82 for CuMo\textsubscript{6}S\textsubscript{8}.66 The correlation between the evolution of peak A and a’ and delocalization values are revealed in Figure 5(b). The intensity decreases while position shifts to lower energy with the increase of the cation delocalization. As the pre-edge features are closely related to the Mo-Mo and Mo-S bond, it indicates that the delocalization of the inserted cations is the main cause of the bond evolution, i.e. changes of local structure. In other words, the deformation of Mo\textsubscript{6}S\textsubscript{8} should result from the change of bond length induced by delocalization of inserted cations but not from the stabilization of the bonding states through gradual filling of electrons. This gives a support to the “matrix effect”.

Figure 6. S K-edge X-ray absorption spectra and their corresponding 2nd derivatives for (a) Mo\textsubscript{6}S\textsubscript{8}, MgMo\textsubscript{6}S\textsubscript{8} and Mg\textsubscript{2}Mo\textsubscript{6}S\textsubscript{8}, and (b) Mo\textsubscript{6}S\textsubscript{8}, LiMo\textsubscript{6}S\textsubscript{8} and Li\textsubscript{2}Mo\textsubscript{6}S\textsubscript{8}

The correlation between the spectrum and bond evolution during the electrochemical reaction was further studied. As shown in Figure 6(a), with one Mg2+ inserted, the intensity of peak A decreases
by nearly 50%; with two Mg\(^{2+}\) inserted, it almost disappears. The intensity of the pre-edge peak of S K-edge is mainly affected by the dipole integral of transition from 1s to 3p states, Mo-S covalency and number of hole in the corresponding Mo\(_8\) energy bands.\(^{39, 57, 58, 61, 63}\) Due to the invariable number of S atoms per Mo\(_8S_8\) unit and the small decrement of the dipole integral from 1s to 3p transition (less than 10% according to ref.\(^{60}\)) with each Mg\(^{2+}\) inserted, the nearly 50% decrement of intensity is thought to result from the Mo-S covalency and the number of holes in specific energy bands. Considering the dominant role of "matrix effect", the covalency could be influenced by Mo-S bond length while the hole number in specific Mo\(_8\) energy bands could be tuned by Mo-Mo and Mo-S bond length. It was reported that the bond length of intercluster Mo-Mo increased the most seriously while that of intercluster Mo-S increased the second most seriously with cation insertion.\(^{42, 43}\) In contrast, the length of intracluster Mo-Mo and Mo-S bond changes only a little. Therefore, the intensity of peak A should be related to the intercluster Mo-Mo and/or intercluster Mo-S bond length. The disappearance of peak A for Mg\(_2MoO_6S_8\) indicates at least one of the two bonding interactions is nearly extinct. Intercluster Mo-Mo bond is the only one that might be break as its bond length increases to 3.365 Å in Mg\(_2MoO_6S_8\),\(^{31}\) which is also supported by the insulating property of Mg\(_2MoO_6S_8\).\(^{23, 25}\) Thus we conclude intercluster Mo-Mo bond length, which mainly affects the hole number of specific Mo\(_8\) bands, plays a key role in the intensity of peak A. The similar evolution can be seen with Li\(^+\) inserted in Figure 5 (b). The decrease of peak A with one Li\(^+\) inserted is contributed by the increase of intercluster Mo-Mo bond length while the disappearance results from the bond length increasing up to 3.408 Å.\(^{13}\) Besides, the other pre-edge feature B is thought to be mainly related to the intracluster Mo-Mo and/or Mo-S bonds, where the slight changes of peak B is consistent with the little changes of intracluster bond length. Furthermore, as shown in Figure 4 (b), the intensity of peak A can be better related to the electrochemical reversibility than that of peak B. Therefore, it indicates that the electrochemical reversibility should be more closely related to intercluster Mo-Mo bonds than intracluster Mo-Mo bonds, which needs more detailed study in future.

CONCLUSIONS

We studied the charge distribution on S and intercluster bond evolution by comparing the XAS spectra of Mo\(_8S_8\) with the insertion of cations in different types (i.e. Cu\(^{2+}\), Li\(^+\) and Mg\(^{2+}\)) or in different amount. Pure Mo\(_8S_8\) is proved to have a non-uniform charge distribution on S, which results from the difference in coordination number of Mo around S. The charge distribution on S becomes homogeneous with one cation inserted, which might result from the interaction between S\(_2\) and inserted cations. The electrochemical reversibility is found to correspond well to the reversible evolution of charge distribution. Given the correlation between chemical stability and charge distribution, the complete reversibility for Li storage indicates the electrochemical reversibility should be not only related to chemical stability. The evolution of certain Mo L\(_2,3\) and S K pre-edge features with the insertion of different types of cations indicates that the deformation of Mo\(_8S_8\) should result from the change of bond length induced by delocalization of inserted cations. This gives an experimental support to the "matrix effect". Further analysis indicates the intensity of peak A is mainly affected by intercluster Mo-Mo bond length. The electrochemical reversibility is demonstrated to be more closely related to intercluster Mo-Mo bond although the role and evolution of the bond need more detailed study. This study helps to clarify some fundamental debates and shed light on the mechanism of Mg storage in Mo\(_8S_8\), which will inspire the development of Mg cathode material.

ASSOCIATED CONTENT

Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org.

Additional details about XRD pattern and SEM image of the as-prepared Mo\(_8S_8\) and CuMo\(_6S_8\) typical electrochemical test, XAS of Mo L3-edge and XANES of Mo K-edge.

AUTHOR INFORMATION

Corresponding Author

E-mail: ypfq@mail.sim.ac.cn and xliu3@mail.sim.ac.cn

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

The authors thank Fudong Han and Chunsheng Wang at University of Maryland for fruitful discussion on Mo\(_8S_8\) synthesis and electrochemical experiments. The authors also thank Shih-Tien Tang, Ling-yun Jang and Ting-Shan Chan for helpful discussions about XAS experiment and analysis and synchrotron TLS for providing beamtime at the 16A beamline. This work was supported by the National Natural Science Foundation of China (Grant Nos. 21503263, U1632269, 21473235, and 11227902).

ABBREVIATIONS
VEC, valence electron concentration; BV, bond valence; XAS, X-ray absorption spectroscopy; Zeff, effective nuclear charge, TLS, Taiwan light source; LUMO, lowest unoccupied molecular orbital.

REFERENCES

