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There is striking overlap between the spatial distribution of amyloid-b pathology in patients with Alzheimer’s disease and the

spatial distribution of high intrinsic functional connectivity in healthy persons. This overlap suggests a mechanistic link between

amyloid-b and intrinsic connectivity, and indeed there is evidence in patients for the detrimental effects of amyloid-b plaque

accumulation on intrinsic connectivity in areas of high connectivity in heteromodal hubs, and particularly in the default mode

network. However, the observed spatial extent of amyloid-b exceeds these tightly circumscribed areas, suggesting that previous

studies may have underestimated the negative impact of amyloid-b on intrinsic connectivity. We hypothesized that the known

positive baseline correlation between patterns of amyloid-b and intrinsic connectivity may mask the larger extent of the negative

effects of amyloid-b on connectivity. Crucially, a test of this hypothesis requires the within-patient comparison of intrinsic

connectivity and amyloid-b distributions. Here we compared spatial patterns of amyloid-b-plaques (measured by Pittsburgh

compound B positron emission tomography) and intrinsic functional connectivity (measured by resting-state functional magnetic

resonance imaging) in patients with prodromal Alzheimer’s disease via spatial correlations in intrinsic networks covering fronto-

parietal heteromodal cortices. At the global network level, we found that amyloid-b and intrinsic connectivity patterns were

positively correlated in the default mode and several fronto-parietal attention networks, confirming that amyloid-b aggregates in

areas of high intrinsic connectivity on a within-network basis. Further, we saw an internetwork gradient of the magnitude of

correlation that depended on network plaque-load. After accounting for this globally positive correlation, local amyloid-b-plaque

concentration in regions of high connectivity co-varied negatively with intrinsic connectivity, indicating that amyloid-b path-

ology adversely reduces connectivity anywhere in an affected network as a function of local amyloid-b-plaque concentration.
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The local negative association between amyloid-b and intrinsic connectivity was much more pronounced than conventional

group comparisons of intrinsic connectivity would suggest. Our findings indicate that the negative impact of amyloid-b on

intrinsic connectivity in heteromodal networks is underestimated by conventional analyses. Moreover, our results provide first

within-patient evidence for correspondent patterns of amyloid-b and intrinsic connectivity, with the distribution of amyloid-b

pathology following functional connectivity gradients within and across intrinsic networks.

Keywords: Alzheimer’s disease; amyloid-b plaques; intrinsic connectivity; resting-state functional MRI; PiB-PET

Abbreviations: ATN = attention network; DMN = default mode network; PiB = Pittsburgh compound B

Introduction
Alzheimer’s disease is tightly associated with amyloid-b pathology.

Aberrant clearance of amyloid-b precursor protein is thought to be

a critical initial event in the disease’s pathogenesis, leading to

amyloid-b peptide accumulation and plaque formation 20 to 30

years before cognitive symptoms arise (Selkoe, 2002; Jack et al.,

2010; Bateman et al., 2012). Typically, the deposition of plaques

has been associated with the default mode network (DMN;

Buckner et al., 2005; Sperling et al., 2009), a set of frontal and

parietal midline structures with high metabolic activity that are

coupled through high intrinsic functional connectivity (i.e. syn-

chronous ongoing activity, where regions that are more strongly

synchronized will exhibit higher connectivity). This association is

mostly due to the apparent spatial overlap between the DMN and

the average deposition of amyloid across the cortex (e.g. Buckner

et al., 2005, 2009; Vlassenko et al., 2010; Mormino et al., 2011).

The overlap has led to the proposal that in Alzheimer’s disease; (i)

amyloid-b-dependent neurodegeneration progresses along net-

work boundaries, spreading to functionally connected areas

rather than to spatially contiguous but less connected neighbours

(He et al., 2008; Seeley et al., 2009; Bero et al., 2012; Zhou et al.,

2012); and that (ii) amyloid-b pathology is accelerated by local

stress caused by a lifetime of increased metabolism and intrinsic

activity and connectivity (Greicius et al., 2004; Buckner et al.,

2005, 2009; Bero et al., 2011; Drzezga et al., 2011). Given the

widespread and well-known distribution of amyloid-b outside the

DMN (Lehmann et al., 2013a, b; Sepulcre et al., 2013), and the

well-characterized deficits in functional connectivity of other intrin-

sic networks covering heteromodal areas (Sorg et al., 2007; Brier

et al., 2012; Li et al., 2012; see also Sorg et al., 2012), the latter

point has been reformulated in a model that supposes effects of

amyloid-b in hetermodal (i.e. fronto-parietal) functional networks

in general (Jagust and Mormino, 2011). However, this revised

model has not been empirically validated.

Critically, the observed spatial overlap implies two concurrent

relationships between amyloid-b pathology and intrinsic connect-

ivity. On the one hand, animal studies have linked amyloid-b to

reduced intrinsic activity and connectivity (Busche et al., 2008;

Bero et al., 2011), a finding that has been repeatedly corroborated

in the human DMN (Sheline et al., 2010; Mormino et al., 2011;

for a review see Sheline and Raichle, 2013). On the other hand,

the spatial overlap also suggests the possibility of a more graded

‘positive’ relationship: wherever intrinsic connectivity is high, amyl-

oid-b pathology tends to be high as well. This has been

established for the spatial distribution of amyloid-b and intrinsic

connectivity across subjects (Buckner et al., 2009; Drzezga et al.,

2011; Bero et al., 2012), but should also apply intra-individually.

However, most studies to date have observed these two relation-

ships in isolation. This could have led to an overlooked confound:

assume Patient X with particularly high lifetime (or baseline) in-

trinsic connectivity is prone to stronger amyloid-b plaque accumu-

lation. In turn, the stronger accumulation leads to an increased

reduction in connectivity. Compared to Patient Y with lower base-

line connectivity (resulting in less plaque accumulation, with a less

severe impact on connectivity), the higher baseline connectivity in

Patient X could confound measures of that patient’s amyloid-b-

induced connectivity ‘reduction’, making them appear less severe

than they are. By ignoring the initial positive baseline correlation

between amyloid-b pathology and intrinsic connectivity, previous

studies therefore may have underestimated the resulting ‘negative’

impact of amyloid-b on connectivity. As a consequence, connect-

ivity reductions in amyloid-b-positive cohorts may only be robust

enough to be noticeable once the accumulation is already substan-

tial. This argument also applies to different brain areas: high life-

time connectivity in region X (compared to region Y) increases

amyloid-b plaque accumulation, leading to a larger connectivity

reduction (that is nevertheless masked by higher baseline connect-

ivity). On average, the DMN seems to show the highest amyloid-b
aggregation, making it the network in which amyloid-b-related

connectivity reduction is easiest to detect. This could therefore

lead to an overemphasis of this network in studying Alzheimer’s

disease, even though other networks are also affected.

Here, we addressed both of these issues using a novel meth-

odological approach that for the first time attempts to disentangle

the positive and negative relationship between amyloid-b and in-

trinsic connectivity within the same patient cohort. To this end, we

used multimodal imaging that estimated regional plaque load [via

Pittsburgh Compound B (PiB)-PET] and intrinsic connectivity (via

resting-state functional MRI) in patients with prodromal

Alzheimer’s disease harbouring significant amyloid-b-plaque path-

ology and in healthy controls. The use of within-patient statistics

was central to our approach for two reasons: for one, it would

otherwise be impossible to disentangle negative and positive rela-

tionships. Additionally, it allowed us to confirm previous studies

done in animal models (e.g. Bero et al., 2011, 2012) or using

intrinsic connectivity estimates from healthy controls (e.g.

Buckner et al., 2009, Seeley et al., 2009, Zhou et al., 2012)

that may not necessarily replicate in patients (Huang and

Mucke, 2012). In addition, we recruited a control group of healthy
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persons without significant amyloid-b-plaque pathology. Although

our within-subject approach does not strictly require a control

group, we wanted to ensure that any effects do in fact depend

on amyloid-b pathology. In the patient group, we found that the

distributions of amyloid-b plaques and intrinsic networks within a

number of heteromodal fronto-parietal networks are positively

correlated, confirming a relationship that had previously been es-

tablished only for the DMN. Critically, by taking this positive re-

lationship into account, we found that our approach led to a

substantial increase in the sensitivity of detecting the negative

impact of amyloid-b pathology on intrinsic connectivity, compared

to conventional group comparisons of connectivity.

Methods and materials

Participants
Twenty-four patients (10 female, age range 50–83 years) diag-

nosed with prodromal Alzheimer’s disease (using standard diag-

nostic criteria, see below) and 16 healthy controls (nine female,

age range 57–75 years) participated in the study (Table 1). All

participants provided informed consent in accordance with the

Human Research Committee guidelines of the Klinikum Rechts

der Isar, Technische Universität, München. Patients were recruited

from the Memory Clinic of the Department of Psychiatry, and

controls by word-of-mouth advertising. Examination of every par-

ticipant included medical history, neurological examination, in-

formant interview (Morris, 1993), neuropsychological assessment

by the neuropsychological assessment battery of the Consortium

to Establish a Registry for Alzheimer’s disease (CERAD, Morris

et al., 1989), structural MRI and PiB-PET. Prodromal Alzheimer’s

disease has recently been defined by the coincidence of both mild

cognitive impairment and the presence of at least one of five

supportive biological signs for Alzheimer’s disease, such as

medial temporal lobe atrophy or significant PiB uptake (Dubois

et al., 2007). Criteria for mild cognitive impairment include re-

ported and neuropsychologically assessed cognitive impairments,

largely intact activities of daily living, and excluded dementia

(Gauthier et al., 2006). Patients in our study met criteria for

mild cognitive impairment and demonstrated significant cortical

PiB-uptake (i.e. they were PiB-positive). We used a cut-off for

‘high’ or ‘low’ neocortical standardized uptake value ratios of

1.15, consistent with cut-off values used in previous PiB-PET stu-

dies (Drzezga et al., 2011). Patients with high PiB binding (i.e.

standardized uptake ratio 51.15) were classified as PiB-positive

and those with standardized uptake ratio 51.15 were classified

as PiB-negative, which was an inclusion criterion for healthy con-

trol subjects (see Supplementary material and Supplementary Fig.

4). Standardized PiB-uptake is measured for a pre-established large

cortical volume of interest including lateral prefrontal, parietal, and

temporal areas and the retrosplenial cortex (Hedden et al., 2009;

Drzezga et al., 2011). Exclusion criteria for entry into the study

were other neurological, psychiatric or systemic diseases (e.g.

stroke, depression, alcoholism), or clinically remarkable structural

MRI (e.g. stroke lesions) potentially related to cognitive impair-

ment. Fifteen patients and eight healthy control subjects were

treated for hypertension (beta-blockers, ACE-inhibitors, and cal-

cium channel blockers), and seven patients and five healthy con-

trol subjects were treated for hypercholesterolaemia (statins). Two

patients had diabetes mellitus, four patients received antidepres-

sant medication (mirtazapine, citalopram), and no patient received

cholinesterase inhibitors.

All participants underwent both MRI and PET imaging sessions.

The MRI session included structural MRI and resting-state func-

tional MRI acquisition. PET and MRI sessions were conducted

within 3.7 (�2.5) months for patients, and within 8 (�3.1)

months for healthy controls. One patient and four control partici-

pants were excluded from further analysis because of corrupted

PET data, resulting in all analyses being conducted on 23 patients

and 12 healthy control participants.

Pittsburgh Compound B-positron emis-
sion tomography imaging and data
analysis
PET-imaging with N-methyl-11C-2-(4-methylaminophenyl)-6-

hydroxybenzothiazole (Pittsburgh Compound B) and data analysis

followed standard protocols as described in a previous study

(Mosconi et al., 2008). All participants were injected with

370 MBq 11C-PiB at rest before entering the scanner 30 min

later. Forty minutes post-injection, three 10-min frames of data

acquisition were started and later summed into a single frame

(40–70 min). Acquisition was performed using a Siemens ECAT

HR+ PET scanner (CTI) in 3D mode and a transmission scan

was carried out subsequently to allow for later attenuation

correction.

The first step of imaging data analysis consisted of image re-

construction, correction of dead time, scatter and attenuation.

Statistical parametric mapping software (SPM 5, Wellcome

Department of Cognitive Neurology, London, UK) was used for

image realignment, transformation into standard stereotactic space

(MNI PET template), smoothing and statistical analysis (Mosconi

et al., 2008). For the spatial transformation of PiB data, standar-

dized uptake value images (40–70 min post injection) were co-

registered to each individual’s volumetric MRI and then

Table 1 Demographic and clinical-neuropsychological data

Groups

Patients Controls

n 23 12

Age 69.3 (7.4) 63.8 (5.15)*

Gender (F/M) 9/14 9/5

CDR global 0.5 (0) 0 (0)*

CDR-SB 1.6 (0.5) 0 (0)*

CERAD total 66.3 (10.8) 88.1 (6.8)*

CDR = Clinical Dementia Rating; CDR-SB = CDR sum of boxes;
CERAD = neuropsychological assessment battery of the Consortium to Establish a
Registry for Alzheimer’s disease; CERAD-total = summary of CERAD subtests;
group comparisons: �2 (gender), two-sample t-test (age, CDR global, CDR-SB,

CERAD-total).
*Significant group difference with P50.05.
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automatically spatially normalized to the MNI-template in SPM5

using warping parameters derived from previous individual struc-

tural MRI normalization (Mosconi et al., 2008). For each subject,

all voxel values were normalized to the cerebellar vermis.

Additionally, images were smoothed (Gaussian kernel of

10 mm � 10 mm � 10 mm) for the group comparisons. For the

regression and searchlight analyses, we used unsmoothed PET

images. Whole brain voxel-wise group comparisons (two-sample

t-test) were performed with a threshold of P50.0001 uncor-

rected and k = 100.

Magnetic resonance imaging data
acquisition and analysis
MRI was performed on a 3 T whole body MR scanner (Achieva)

using an 8-channel phased-array head coil. For co-registration, T1-

weighted anatomical data were obtained from each participant

using a MPRAGE sequence (echo time = 4 ms, repetition

time = 9 ms, inversion time = 100 ms, flip angle = 5�, field of

view = 240 � 240 mm2, matrix = 240 � 240, 170 slices, voxel

size = 1 � 1 � 1 mm3). Functional MRI data were collected using

a gradient echo echo planar imaging sequence (echo time = 35 ms,

repetition time = 2000 ms, flip angle = 82�, field of

view = 220 � 220 mm2, matrix = 80 � 80, 32 slices, slice thick-

ness = 4 mm, and 0 mm interslice gap, 300 volumes).

For each participant the first three functional scans of each

functional MRI session were discarded because of magnetization

effects. SPM5 (Wellcome Department of Cognitive Neurology,

London) was used for data preprocessing. First, we used affine

coregistration (to the first image) to motion-correct the resting-

state functional MRI data. We observed no excessive head motion

(i.e. cumulative translation or rotation 43 mm or 3� and mean

point-to-point translation or rotation 40.15 mm or 0.1�).

Framewise displacement (Power et al., 2012) or the root-mean-

square of translational parameters (Van Dijk et al., 2012) were not

different between groups (P40.05, two-sample t-tests). Further,

groups yielded no significant differences in signal-to-noise ratio of

functional MRI data (P40.05). The high-resolution structural

image was coregistered to the mean functional MRI image

(using affine registration), and normalized to a template in the

stereotactic space of the Montreal Neurological Institute (MNI)

with the ‘segment’ function (SPM5), which uses an iterative com-

bination of non-linear registration and cortical segmentation

(Ashburner and Friston, 2005). Normalization was then applied

to the functional images before smoothing with an

8 � 8 � 8 mm3 Gaussian kernel.

As described previously (Sorg et al., 2013), the preprocessed

data were decomposed into spatially independent components re-

flecting intrinsic networks in a group-independent component

analysis framework (Calhoun et al., 2001), which is implemented

in the GIFT software (http://icatb.sourceforge.net). Our independ-

ent component analysis approach consisted of a series of well-

established analysis steps (Kiviniemi et al., 2003; Erhardt et al.,

2011). We estimated data dimensionality using a minimum de-

scription length criterion, which gave an estimate of 35 compo-

nents (the mean of all individual dimensionality estimates). Data

from all participants were temporally concatenated into one data

set. The estimation of independent component analysis across

both groups was in line with previous research (e.g. Filippini

et al., 2009) and ensured a better correspondence of network

maps between groups. Concatenated data were reduced by

two-step principal component analysis to reduce computational

burden. Principal component analysis was followed by independ-

ent component analysis with the infomax-algorithm. We ran 40

independent component analyses (ICASSO) to ensure stability of

the estimated components. This results in a set of averaged group

components, which are then back-reconstructed into single-sub-

ject space. For each subject, each component was represented as a

combination of a network time course and a spatial map of

z-scores. The z-map reflects the component’s functional connect-

ivity pattern (i.e. the mixing weights) across the brain. Voxels

whose time courses are highly correlated with the component

time course receive high connectivity z-scores, whereas voxels

that are not part of the network have z-scores near 0.

Following previous findings of aberrant medial and lateral het-

eromodal frontoparietal networks in early Alzheimer’s disease

(Sorg et al., 2007, 2009; Neufang et al., 2011; Agosta et al.,

2012), the DMN and so-called attentional networks were of a

priori interest (Allen et al., 2011). To automatically select net-

works of interest, we applied multiple spatial regression analyses

of the 35 independent components on masks derived from a pre-

vious study (Allen et al., 2011): the anterior and posterior DMN

[aDMN IC 25, pDMN IC 53 of Allen et al. (2011)], attentional

networks (ATN; right ATN IC 60, left ATN IC 34, dorsal ATN IC

72, salience network SN IC 55), and, as a control, a network

around the primary auditory cortex (pAN; IC 17). Masks were

generated with the WFU-Pickatlas (http://www.fmri.wfubmc.

edu/).

To evaluate statistically the spatial z-maps of selected compo-

nents, we calculated voxel-wise one-sample t-tests on participants’

reconstructed spatial maps for each group, using SPM5 (P50.05,

family wise error (FWE) corrected at cluster level, voxel-level

height threshold P5 0.001). To analyse group differences, corres-

ponding spatial z-maps were entered into two-sample t-tests, re-

stricted to appropriate one-sample t-test masks (P5 0.01

uncorrected, calculated prior to group comparison) across all sub-

jects (P50.05, FWE cluster level, voxel-level height threshold

P50.001). As a more conservative test of group differences,

for each subject and network we also identified all network

voxels (as voxels with a connectivity z-score 41) and calculated

the median (log-transformed) z-score across the entire network.

Resulting network connectivity scores were then submitted

to two-way mixed-effects ANOVA with factors group and

network.

Multimodal analyses
Figure 1 gives an overview of our multimodal analysis approach. In

a first step, we analysed the extent of PiB-uptake in the different

intrinsic networks. For each subject and network, we identified all

voxels belonging to the network (i.e. with a z-scored connectivity

weight of 51 in the individual back-projected maps). We then

calculated (for each subject) the median PiB-uptake across all

Ab and intrinsic connectivity in Alzheimer’s disease Brain 2014: 137; 2052–2064 | 2055
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voxels in the network. To control for the potential effects of net-

work-wise grey matter density, age or gender, we then regressed

these variables out of the median PiB data (Supplementary mate-

rial, Supplementary Fig. 2 and Supplementary Table 8). For each

network and separately for each group, we fit to the median PiB

values a linear model consisting of three regressors: median grey

matter density (in that network), age and gender. None of the

three covariates had a notable effect on PiB-uptake (or on rGLOBAL

or rLOCAL, see below). We subtracted model-predicted PiB values

from the real data to obtain residuals that were independent of

Figure 1 Overview of analysis approach. For each individual, voxel-wise PiB-uptake was determined as a measure of amyloid plaque

density. For each intrinsic network j (as determined by resting-state functional MRI and independent component analysis independent

component analysis) in each individual k, we identified the voxels belonging to that network (top right) and extracted the intrinsic

functional connectivity (iFC) values of those (�10 000) voxels. We also extracted that individual’s PiB-uptake values for the same voxels.

To determine average plaque load in each network, we then calculated the median PiB-uptake (shown in Fig. 2A and B). We then

calculated global and local correlations between both modalities across the entire network and confined to neighbouring voxels. To

determine the global spatial correlation between intrinsic functional connectivity and PiB-uptake, we calculated the Pearson correlation

coefficient across all selected voxels in the network (rGLOBAL, bottom left and Fig. 2C). After correcting for rGLOBAL (via orthogonalization,

see ‘Materials and methods’ section), we then used a searchlight approach to calculate local spatial correlation in the neighborhood

surrounding each voxel in the network (rLOCAL, bottom right and Fig. 3). Ab = amyloid-b.
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the three covariates. These residual PiB values were evaluated with

a mixed between- and within-subject effects ANOVA (with factors

group (patient/control) and network) and post hoc two-sample t-

tests.

Next, we tested for spatial correlations between PiB-uptake and

network connectivity across the entire network (rGLOBAL). Again,

for each subject and network we identified network voxels as all

voxels with a connectivity z-score 41. For all voxels, we extracted

PiB-uptake and connectivity values. We log-transformed connect-

ivity values to reduce the skew in their distribution, which was

induced by including only values 41 (although analyses using

untransformed connectivity values gave qualitatively and statistic-

ally comparable results). For each subject and network, we calcu-

lated the Pearson correlation coefficient between PiB-uptake and

connectivity z-values, and Fisher-transformed the resulting

r-values. The resulting rGLOBAL values were again (as with PiB-

uptake, above) corrected for grey matter density, age, and

gender, and the residuals were submitted to a mixed-effects

ANOVA and post hoc t-tests (as above).

To investigate the local impact of amyloid-b pathology on in-

trinsic connectivity, we used local spatial correlations between PiB-

uptake and connectivity (rLOCAL) via a searchlight approach.

Searchlight approaches (Kriegeskorte et al., 2006) are multivariate

analysis methods that step through all voxels of interest in se-

quence (in our case, all voxels in a given network) and examine

voxel values in a ‘searchlight’ region of interest surrounding the

current voxel. The measure of interest is then recorded in that

voxel, resulting in a spatial map of local multivariate measures.

We again identified the same set of voxels for each subject and

network. As for this analysis we were explicitly interested in local

variability between PiB-uptake and connectivity that was not al-

ready accounted for by the global positive correlation (rGLOBAL),

we first decorrelated PiB-uptake and connectivity values across the

whole network. To this end (see Supplementary Fig. 3), we used

Gram-Schmidt orthogonalization to decorrelate PiB uptake with

respect to connectivity z-values across the entire network

(ensuring a network correlation of 0). This approach has been

used to remove zero-lag correlations when connectivity is calcu-

lated in magnetoencephalographic data (see Brookes et al., 2011;

Hipp et al., 2012). As orthogonalization is an asymmetric oper-

ation (modifying one vector while leaving the other unchanged),

we repeated the orthogonalization and subsequent searchlight

analysis, but this time decorrelating connectivity z-values with re-

spect to PiB-uptake. The searchlight results of the two analyses

were then averaged.

Next, for each voxel in the network, we identified all voxels in

its immediate neighbourhood (i.e. within a 6-mm radius, typically

�100 voxels). To avoid unreliable estimates of rLOCAL at network

boundaries, all voxels with less than 25 voxels in their neighbor-

hood were skipped. Then we calculated the Pearson correlation

between PiB-uptake and connectivity z-values in that neighbour-

hood, and recorded the (Fisher-transformed) correlation coefficient

in the neighbourhood’s central voxel, resulting in a spatial map of

rLOCAL values for each subject and network. For each group and

network, we submitted these maps to one-sample t-tests using

SPM. In addition, for each subject and network we extracted

the median rLOCAL value across all voxels, and submitted the

corrected values (after regressing out covariates of no interest)

to a mixed-effects ANOVA and post hoc t-tests (as above).

Results

Reduced intrinsic connectivity in the
default mode and right attention net-
works in patients with prodromal
Alzheimer’s disease
Using independent component analysis of resting-state functional

MRI data, we identified six fronto-parietal heteromodal networks

(Fig. 2 and Supplementary Fig. 1). These networks included the

posterior and anterior DMN, the left, right and dorsal attention

networks (all covering the lateral parietal and prefrontal cortex),

and the fronto-limbic salience network, covering the insula and

anterior cingulate cortex. As a control, we also selected a primary

sensory network (the primary auditory network). Group compari-

sons revealed regionally reduced z-scored connectivity values in

the prodromal Alzheimer’s disease group (two-sample t-tests,

P50.05 FWE cluster corrected for multiple comparisons) only in

posterior parietal regions of the posterior DMN and right attention

networks, replicating previous results (e.g. Sorg et al., 2007; see

Supplementary Fig. 1).

Pittsburgh Compound B uptake in pro-
dromal Alzheimer’s disease extends to
lateral fronto-parietal attention network
In patients with prodromal Alzheimer’s disease, we found signifi-

cantly increased PiB-uptake (compared to controls) in a large

number of cortical regions, including areas of the DMN, but ex-

tending to the lateral parietal and frontal lobes (Fig. 2A), corres-

ponding well with characteristic distribution patterns previously

described in patients with Alzheimer’s disease and mild cognitive

impairment (Drzezga et al., 2011).

Next, we tested quantitatively how PiB-uptake overlaps with

intrinsic connectivity networks. We extracted the median PiB-

uptake in each of these networks. After correcting for grey

matter density, age and gender, we compared the network-wise

PiB-uptake between prodromal Alzheimer’s disease and control

subjects (with ANOVA and two-sample t-tests). As already sug-

gested by visual inspection (Fig. 2A), the patient group had sig-

nificantly increased PiB-uptake [Fig. 2B: main effect of group

across seven networks, F(1,33) = 23.94, P510�4]. Importantly,

patients showed a gradient of plaque deposition across networks

[F(6,132) = 3.83, P = 0.001], with the highest PiB-uptake in the

posterior DMN [significantly increased compared to left ATN and

right ATN, all t(22)43.12, corrected P5 0.035], and strong

trends compared to anterior DMN [t(22) = 2.95, corrected

P = 0.052], and to posterior auditory cortex network

[t(22) = 2.77, corrected P = 0.078].
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Figure 2 Amyloid-b deposition is increased in a number of heteromodal networks and correlates with intrinsic functional connectivity.

(A) Each image shows a group-level intrinsic functional connectivity (iFC) network map (cold colours) at a FWE-corrected threshold of

P50.05, superimposed on the group-level difference map in amyloid-b deposition (warm colors), thresholded at P5 0.0001, minimum

cluster extent of 100 voxels. The pattern of amyloid-b (Ab) deposition overlaps noticeably with a number of fronto-parietal networks

(lATN = left lateral frontoparietal ATN; rATN = right frontoparietal ATN; dATN = posterior parietal dorsal ATN; SN = salience network)

besides the DMN [split into a posterior (pDMN) and anterior (aDMN) component], and even with regions of primary sensory cortex, such

as the primary auditory network (pAN). Notably, in some networks amyloid-b plaque deposition appears limited to network hubs (as in the

left ATN and dorsal ATN, where frontal network regions lack significant amyloid-b burden at the group level). (B) Patients showed

significantly increased PiB-uptake in all tested networks [main effect of group across seven networks, F(1,33) = 22.11, P510�4]. There

was also a main effect of network that interacted with group [main effect of network for patient group, F(6,132) = 5.37, P510�4],
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Spatial patterns of Pittsburgh
compound B uptake correlate
positively with those of intrinsic
connectivity in default mode and
attention networks
After confirming the presence of amyloid-b-pathology in a number

of fronto-parietal networks, we examined the relationship be-

tween amyloid-b-pathology and intrinsic connectivity. For each

network and subject, we calculated the spatial correlation

coefficient between PiB-uptake and connectivity-reflecting

z-values over all network voxels, i.e. rGLOBALiFC [amyloid-b, intrin-

sic functional connectivity (iFC)] (see Supplementary Fig. 5 for a

representative scatterplot of voxel-wise PiB-uptake against con-

nectivity in one patient). For each network (except the auditory

network, posterior AN), we found a modest but robust positive

correlation between amyloid-b and connectivity in patients

[Fig. 2C, main effect of group, P5 10�7, mean correlation coef-

ficients ranging from 0.134 (posterior DMN) to 0.078 (left ATN),

corrected P50.002 in all networks except for the auditory net-

work, mean r = 0.034, t(33) = 2.26, non-significant]. Correlations

in the control group did not deviate from 0 (mean r5 �0.024,

P = 0.136).

In analogy to the observed gradient in PiB-uptake across net-

works (Fig. 2A and B), we found a gradient of rGLOBAL across

networks [F(6,132) = 10.72, P510�7] as the six default and at-

tention networks showed a stronger rGLOBAL than the auditory

network [all t(22)4 3.45, corrected P50.014]. rGLOBAL was also

stronger in the pDMN than in any of the other networks except

the aDMN [all t(22)43.31, corrected P50.019, paired t-test

between posterior DMN and anterior DMN, t(22) = 1.81, uncor-

rected P = 0.084]. Finally, average PiB-uptake was positively cor-

related with rGLOBAL in patients, but not in controls (Fig. 2D,

posterior DMN in patients, r = 0.64, P50.01, median r = 0.47

for patients, median r = 0.06 for control subjects). In contrast,

rGLOBAL did not correlate with mean intrinsic connectivity in

any network of either group (all uncorrected P4 0.12),

indicating that the correlation was mainly driven by variability in

PiB-uptake.

In network cores of higher connectivity,
amyloid-b pathology has a negative
impact on functional connectivity
Next we focused on the concomitant ‘negative’ impact of amyl-

oid-b load in local network regions: specifically, after accounting

for the variability in amyloid-b-pathology that is attributable to

rGLOBAL, the neurotoxic effects of higher pathology should lead

to a ‘relative decrease’ in intrinsic connectivity, especially in net-

work cores with high connectivity (where amyloid-b pathology

presumably has been accumulating for longer; Bero et al.,

2012). To account for the diluting effects of rGLOBAL, we regressed

out the impact of intrinsic connectivity on plaque deposition at the

whole-network level and used a searchlight approach to calculate

the local spatial correlation of the residuals around each voxel (see

Fig. 1); we called this measure rLOCAL(Ab,iFC) to indicate that here

we calculated correlations in small (6-mm radius), homogeneous

neighbourhoods around each voxel (in every network and sub-

ject), yielding a local measure of amyloid-b pathology impact

that could potentially vary ‘within’ networks.

In patients (Fig. 3A), all networks except for the pAN showed

significant negative rLOCAL across large parts of the network, peak-

ing in network cores. For example, in the dorsal attention network

(Fig. 3A), rLOCAL was significantly below zero in the superior par-

ietal core of the network, but not strongly negative in peripheral

regions such as the frontal eye fields (compare to network distri-

bution in Fig. 2A or Supplementary Fig. 1). rLOCAL did not deviate

from 0 in the control group (Fig. 3A). In addition to comparing

voxel-wise maps, we also examined the median rLOCAL values

across all voxels in a network (Fig. 3B). rLOCAL was significantly

below 0 for all networks [all t(22)5 �6.73, corrected P510�5]

except the auditory network [t(22) = �0.04]. Direct comparisons

between patients and controls revealed a strong main effect of

group [F(1,33) = 44.21, P5 10�6, all t(33)5 �3.65, corrected

P50.006], with the exception of the posterior auditory network,

which showed no difference in median rLOCAL [t(33) = 0.68, non-

significant]. As suggested by the spatial distribution of rLOCAL in

Fig. 3A, we also found a correlation between PiB-uptake and

rLOCAL. In other words, local regions with higher amyloid-b path-

ology overall (where plaques have presumably been accumulating

Figure 2 Continued
indicating that there is a gradient of amyloid-b deposition across networks in patients. (C) A number of networks in the patient group

exhibited a positive network-wide correlation between voxel-wise intrinsic functional connectivity and voxel-wise PiB-uptake (i.e.

rGLOBAL), indicating that voxels in the network core (i.e. voxels with high intrinsic functional connectivity) were burdened with higher

amyloid-b deposition than the network periphery (voxels with low intrinsic functional connectivity). This correlation was modest in

magnitude but consistently positive [main effect of group, F(1,33) = 47.19, P510�7, t-tests of Fisher-transformed Pearson correlation

coefficients against control group, all t(33)43.61, Bonferroni-corrected P5 0.01, except for the auditory network, t(33) = 1.87, non-

significant]. Correlations in the control group were negligible. There was a gradient of correlation strength across networks as the six

default and attention networks showed a stronger correlation than the posterior auditory network. Also, the amyloid-b–intrinsic functional

connectivity correlation was stronger in the posterior DMN than in any of the other networks except the anterior DMN. Error bars indicate

standard error of the mean. ***P5 0.001, **P50.01, *P5 0.05, all Bonferroni-corrected, ns = not significant. (D) Median PiB-uptake is

positively correlated with rGLOBAL in patients (left), but not in controls (right). Each point in the scatter plot represents one network in one

individual, with network identity denoted by colour. The regression lines are derived from a linear fit across all individuals and networks in

each group. Nevertheless, correlations were also performed separately for each network.
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for longer and may have had a stronger connectivity-reducing

effect on neurons) also exhibit a stronger negative impact of amyl-

oid-b pathology on connectivity (Supplementary Fig. 3). Together,

our results show that after accounting for the globally positive

relationship between amyloid-b and intrinsic connectivity, local

neighbourhoods exhibit a strong negative influence of plaques

on connectivity, even in networks where typical estimates do

not yet indicate connectivity reductions (see Supplementary Fig.

1 and Supplementary Tables 1–7 for direct comparisons of con-

nectivity between groups).

Control analyses
Finally, we tested whether either differences in group size or any

methodological steps (such as orthogonalization of PiB-uptake and

intrinsic connectivity) could have influenced our results. To control

for the difference in group size, we used a subsampling approach that

repeatedly selects a random subgroup of patients, matched in size

with the control group, and re-computed statistics for this smaller,

matched data set (Supplementary material and Supplementary

Table 9). All relevant comparisons remained significant (with the

exception of rGLOBAL and rLOCAL in the salience network and left

ATN, and rLOCAL in right ATN, which nevertheless are highly signifi-

cant at an uncorrected threshold). Further, control analyses (e.g.

concerning orthogonalization, see Supplementary material and

Supplementary Fig. 3) showed that negative rLOCAL does not

depend on specific steps of our analysis approach.

Discussion
In patients with prodromal Alzheimer’s disease, spatial correlations

revealed two distinct effects of PiB-uptake on intrinsic connectivity

within individual persons and in several heteromodal intrinsic net-

works. First, at the global network level, patterns of amyloid-b
plaques correspond spatially with patterns of connectivity, with

the highest correlation in networks carrying the highest plaque

load. Second, at the local network level, plaques are negatively

associated with connectivity, especially in regions of high connect-

ivity. These results extend previous findings by demonstrating the

Figure 3 Local negative impact of amyloid-b on intrinsic connectivity. (A) Searchlight analysis demonstrated negative correlations be-

tween amyloid-b plaques (Ab) and intrinsic functional connectivity (iFC) in small neighbourhoods with generally homogeneous con-

nectivity strength. After accounting for the impact of intrinsic functional connectivity on PiB-uptake across an entire network (i.e. rGLOBAL

described in Figs 1B and 2) through orthogonalization, we calculated at each network voxel the local amyloid-b–intrinsic functional

connectivity (Ab,iFC) correlation rLOCAL across surrounding voxels in a 6-mm radius. For each group, we submitted the subject-level maps

of correlation coefficients to t-tests, using FWE to correct for multiple comparisons. In the prodromal AD group (top), all networks except

for the auditory network (pAN) showed significant negative rLOCAL across large parts of the networks, focusing on network hubs. There

were no such correlations in the control group (bottom). Colour scale indicates t-statistics at the group level. A t-value of 3.5 corresponds

to P = 0.001, uncorrected. (B) In patients, median rLOCAL values were significantly below 0 for all networks except the auditory network.

The control group showed no significant correlations. Hence, direct comparisons between patients and controls revealed a strong main

effect of group [F(1,33) = 43.25, P510�6, all t(33)5�3.17, corrected P50.025], with the exception of the auditory network, which

showed no difference in median rLOCAL [t(33) = 0.54, ns]. Error bars indicate standard error of the mean. a/pDMN = anterior/posterior

DMN; l/r/dATN = left/right/dorsal ATN; SN = salience network.

2060 | Brain 2014: 137; 2052–2064 N. Myers et al.

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu103/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu103/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu103/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu103/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu103/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu103/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu103/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu103/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu103/-/DC1


negative impact of amyloid-b pathology on intrinsic connectivity

beyond the DMN and by showing a general pattern of correlations

between plaques and connectivity within and across intrinsic

networks.

In heteromodal intrinsic networks,
patterns of plaques correspond with
patterns of intrinsic connectivity
In several heteromodal fronto-parietal networks, including the

DMN and lateral attention networks, we found within-patient spa-

tial correlations between amyloid plaque distributions and intrinsic

connectivity (Fig. 2C). We had anticipated this outcome, based on

previous findings (at the group level) of positive correlations

centred on the DMN (Buckner et al., 2009). This finding was

specific for heteromodal networks, as we saw no effect in the

primary auditory network (Fig. 2C). The dissociation between het-

eromodal and primary networks is in line with findings that pri-

mary sensory and sensorimotor regions are relatively spared in

earlier stages of Alzheimer’s disease (Braak and Braak, 1991). In

all of the networks exhibiting a significant spatial correlation, pa-

tients with prodromal Alzheimer’s disease had significant plaque

load (Fig. 2A and B), with the highest load in the posterior DMN.

Generally, the correlation between plaques and connectivity was

higher in networks of higher median plaque load (Fig. 2C and D).

Inclusion of control variables confirmed that these findings were

not influenced by grey matter atrophy, age, or gender, and that

they were specific to heteromodal networks, since we did not find

comparable results in the primary auditory network (Fig. 2).

Our observations are in line with recent results by Drzezga et al.

(2011), who found that patterns of both plaques and hubness (i.e.

the average connectivity of any one region or voxel to the rest of

the brain, irrespective of network boundaries; see also Buckner

et al., 2005, 2009) overlap in patients with significant plaque

load. These studies focused on effects in the DMN, as their meth-

odological approach did not differentiate between networks and

therefore emphasized areas with the highest hubness, which tend

to be in the DMN. Here, we extended these studies by confirming

that the plaque/connectivity correlation exists at the level of indi-

vidual intrinsic heteromodal networks beyond the DMN, and by

showing that it does not rely on network-unspecific hubness. Our

finding provides strong evidence for the previously stated hypoth-

esis (Jagust and Mormino, 2011) that high levels of connectivity in

heteromodal areas are associated with increased levels of amyloid-

b pathology, potentially due to nodal stress incurred by a lifetime

of increased intrinsic activity (Bero et al., 2011).

Accounting for network level plaque–
connectivity correlations reveals the
widely distributed negative impact of
amyloid-b pathology on intrinsic
connectivity
After accounting for global plaque-connectivity correlations across

a network, we found negative correlations (rLOCAL, in small

neighbourhoods of �100 voxels) between the local plaque distri-

bution and intrinsic connectivity in several heteromodal networks,

particularly in regions of high intrinsic connectivity (Fig. 3). These

negative correlations were stronger in networks of high plaque

load (Supplementary Fig. 3), suggesting a detrimental impact of

amyloid-b pathology on intrinsic connectivity. This finding is in line

with results of previous studies, which found intersubject correl-

ations between amyloid-b load and intrinsic connectivity in the

DMN in individuals with significant plaque pathology (Hedden

et al., 2009; Sheline et al., 2010; Mormino et al., 2011).

Our results extend these findings in two ways. First, we showed

the negative impact of pathology on connectivity within single

patients, instead of across patients. Second, we found significant

results in heteromodal networks beyond the DMN. With respect

to the latter point, our approach appears to be more sensitive than

conventional methods used to detect connectivity reductions

(Supplementary Fig. 1). Although our spatial correlation approach

revealed strong and widespread effects in several networks, simple

group comparisons of voxel-wise connectivity found reduced con-

nectivity only in the posterior DMN and the right attention network

(Supplementary Fig. 1). Control analyses (Supplementary Fig. 3 and

Supplementary material) confirmed that removing the globally posi-

tive whole-network baseline correlation between plaques and con-

nectivity is critical for this increase in sensitivity. Approaches that

neglect baseline plaque/connectivity correlations potentially under-

estimate disease effects on intrinsic connectivity. Given that signifi-

cant PiB-uptake is measurable in the DMN even in early preclinical

stages of Alzheimer’s disease (Jack et al., 2010; Bateman et al.,

2012), where conventional measures of connectivity do not report

robust connectivity reductions, the method presented here may help

detect early, subtle reductions in connectivity. Future studies or re-

analyses are necessary to test these suggestions.

Gradients of plaques along intrinsic
connectivity across and within networks
furnish an extended network degenera-
tion model for Alzheimer’s disease
Our results suggest a view of Alzheimer’s disease that goes

beyond previous models that focus on both the DMN and its

associated amyloid-b-plaque accumulation while ignoring other in-

trinsic networks and the complex relationship between connectiv-

ity-mediated amyloid-b-increases on a network scale and local

amyloid-b-mediated connectivity decreases. Although we con-

firmed that PiB-uptake and its effects on intrinsic connectivity

were strongest in the posterior DMN (as measured both by

rGLOBAL and rLOCAL; Figs 2 and 3), we focused on the well-

known but somewhat neglected finding that, even in prodromal

Alzheimer’s disease, amyloid-b-plaques accumulate outside the

DMN (Fig. 2A and B). We found that PiB-uptake was higher in

the network core, where network connectivity (and, presumably,

neural activity and metabolism) is higher than in the periphery.

A speculative model (Fig. 4) summarizes our results and illustrates

the graded (but temporally overlapping) effects of amyloid-b-

pathology across networks (that are strongest in the posterior

DMN, but robust in other networks as well).
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We propose that the within-network effects of amyloid-b-path-

ology will be similar in all affected networks (but possibly shifted in

time depending on how early amyloid-b plaques aggregate in a

particular network).

One speculative explanation for our findings is that in general,

plaque accumulation follows connectivity (leading to the positive

correlation). In addition, wherever plaque load is high, plaques

have been accumulating longer, and have exerted a negative in-

fluence on local intrinsic activity and connectivity for longer.

Viewed in this light, our findings are in line with animal and com-

putational studies linking amyloid-b pathology to increased con-

nectivity in early stages (i.e. increased rGLOBAL) and decreased

connectivity (i.e. negative rLOCAL) in later stages of Alzheimer’s

disease (Bero et al., 2012; de Haan et al., 2012). In contrast

with many previous models that describe the temporal staging

of Alzheimer’s disease as a fixed progression, our model acknow-

ledges that some brain networks (and areas within those net-

works) will be affected by pathology before others. A hub

within a network that was affected early on might already show

neural effects reminiscent of late Alzheimer’s disease, while at the

same time another network might show only the neural effects

associated with early Alzheimer’s disease.

Importance of within-patient spatial
correlations between Pittsburgh com-
pound B uptake and connectivity scores
In contrast to previous studies, which tested amyloid-b-propaga-

tion models in healthy controls and compared them with patient

atrophy data (Buckner et al., 2009; Seeley et al., 2009; Raj et al.,

2012; Zhou et al., 2012), or which correlated amyloid-b plaques

with DMN connectivity across subjects (Drzezga et al., 2011),

here we developed a methodological frame that allowed us to

analyse the within-subject relationship between amyloid-b path-

ology and functional connectivity. Although the importance of

animal models and connectivity measures in healthy subjects is

unquestionable, it is essential to transfer findings from disease

models to patients. For instance, mouse models show clear differ-

ences in amyloid-b aggregation and clearance compared with pa-

tients, and the effect of amyloid-b plaques on cognition is not

necessarily comparable (Hall and Roberson, 2012; Huang and

Mucke, 2012). By looking at within-subject-correlations, we can

reduce the possibility that third variables (such as disease state in

general) are mediating the correlation between amyloid-b and in-

trinsic connectivity. More importantly, it allows us to estimate the

impact amyloid-b has had on functional connectivity at the single

subject and single-network level. This increase in sensitivity com-

pared to conventional measures of intrinsic connectivity may fa-

cilitate earlier detection of the functional impact of amyloid

accumulation in incipient disease. In future studies, it may add-

itionally help to differentiate patients with prodromal Alzheimer’s

disease from patients whose mild cognitive impairment was

caused by another form of neurodegeneration. The correct differ-

ential diagnosis is an essential component of developing more

sensitive biomarkers for the earliest stages of Alzheimer’s disease.

Nevertheless, this study was cross-sectional, and examined only

the prodromal stage of Alzheimer’s disease. Longitudinal studies

are required to examine more carefully the temporal progression

of network impairments that our model proposes, and to test

whether the relationship between amyloid-b-pathology and intrin-

sic connectivity holds in later stages of the disease.

Figure 4 Proposed model of graded network degeneration. Graded network degeneration hypothesis of amyloid-b propagation in

Alzheimer’s disease (AD). Left: In spite of a predominant focus on amyoid-b pathology accumulation and spread along intrinsic con-

nectivity in the DMN [top bar, with colour indicating the (putatively amyloid-related) connectivity decrease over time], amyloid-b plaques

are also found in other cortical regions that typically have lower resting-state metabolism and connectivity than the DMN (e.g. left and

right ATNs). In an average person with prodromal Alzheimer’s disease, amyloid-b pathology deposition and connectivity-based spread will

start in the DMN, followed in close succession by a number of other heteromodal networks, leading to a cross-network gradient (i.e. along

the vertical grey lines cutting across networks). We propose that the same principle is at work ‘within’ networks (right), where the network

core will accumulate amyloid-b and show signs of disruption sooner than areas in the periphery.
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Conclusion and outlook
In this study, we show evidence that amyloid-b-plaques accumu-

lating in medial and lateral heteromodal fronto-parietal networks

in prodromal Alzheimer’s disease have a robust impact on intrinsic

functional connectivity at the local scale, and that their accumu-

lation focuses on network cores and declines toward the periphery

of networks. These results led us to an extension of the network

degeneration hypothesis. It supposes that amyloid-b deposition

and functional impairment spread by the same mechanism in

many networks, but that the onset is graded such that it affects

the DMN more strongly than others, and affects cores more

strongly than (and possibly before) peripheries. Since our model

predicts that the same mechanism governs amyloid-b-related neu-

rodegeneration, irrespective of the affected network, it should also

apply to other variants of Alzheimer’s disease, such as posterior

cortical atrophy or logopenic primary progressive aphasia

(Lehmann et al., 2013a, b). In this framework, amyloid-b path-

ology would spread out by the same mechanism, but begin in

different networks. Future studies examining this possibility could

help in the development of mechanistic accounts of

neurodegeneration.
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