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Information retrieval techniques have been applied to biomedical research 

for a variety of purposes, such as textual document retrieval and molecular data 

retrieval. As biomedical research evolves over time, information retrieval is also 

constantly facing new challenges, including the growing number of available data, 

the emerging new data types, the demand for interoperability between data 
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resources, and the change of users’ search behaviors. To help solve the 

challenges, I studied three solutions in my dissertation: (a) using information 

collected from online resources to enrich the representation models for biomedical 

datasets; (b) exploring rule-based and deep learning-based methods to help users 

formulate effective queries for both dataset retrieval and publication retrieval; and 

(c) developing a “retrieval plus re-ranking” strategy to identify relevant datasets, 

and rank them using customized ranking models.  

 In a biomedical dataset retrieval study, we developed a pipeline to 

automatically analyze users’ free-text requests, and rank relevant datasets using 

a “retrieval plus re-ranking” strategy. To improve the representation model of 

biomedical datasets, we explored online resources and collected information to 

enrich the metadata of datasets. The rule-based query formulation module 

extracted keywords from users’ free-text requests, expanded the keywords using 

NCBI resources, and finally formulated Boolean queries using pre-designed 

templates. The novel “retrieval plus re-ranking” strategy captured relevant datasets 

in the retrieval step, and ranked datasets using the customized relevance scoring 

functions that model unique properties of the metadata of biomedical datasets. The 

solutions proved to be successful for biomedical dataset retrieval, and the pipeline 

achieved the highest inferred Normalized Discounted Cumulative Gain (infNDCG) 

score in the 2016 bioCADDIE Biomedical Dataset Retrieval Challenge.  

 In a biomedical publication retrieval study, we developed the eXtended 

PubMed Related Citation (XPRC) algorithm to find similar articles in PubMed. 

Currently, similar articles in PubMed are determined by the PubMed Related 
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Citation (PRC) algorithm. However, when the distributions of term counts are 

similar between articles, the PRC algorithm may conclude that the articles are 

similar, even though they may be about different topics. On the other hand, when 

two articles discuss the same topic but use different terms, the PRC algorithm may 

miss the similarity. For the above problem, we implemented a term expansion 

method to help capture the similarity. Unlike popular ontology-based expansion 

methods, we used a deep learning method to learn distributed representations of 

terms over one million articles from PubMed Central, and identified similar terms 

using the Euclidean distance between distributed representation vectors. We 

showed that, under certain conditions, using XPRC can improve precision, and 

helps find similar articles from PubMed. 

 In conclusion, information retrieval techniques in biomedical research have 

helped researchers find desired publications, datasets, and other information. 

Further research on developing robust representation models, intelligent query 

formulation systems, and effective ranking models will lead to smarter and more 

friendly information retrieval systems that will further promote the transformation 

from data to knowledge in biomedicine. 
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1 Introduction 

1.1 Problem statement 

Information retrieval techniques have been applied to biomedical research 

for decades1–3. As biomedical research evolves over time, information retrieval is 

also constantly facing new challenges. Here, I highlight four major challenges: the 

growing amount of available data; new emerging data types; the need for 

interoperability between data resources; and the constant change of users’ search 

behaviors. 

1.1.1 Growing number of literature and datasets 

 The number of publicly available biomedical publications and datasets has 

grown exponentially in the last decade (see Table 1). From 2007 to 2017, 

biomedical publications indexed in PubMed1 have increased more than 1.5 times, 

gene expression samples in the Gene Expression Omnibus database (GEO)2 

have grown 15 times, registered clinical trial studies in ClnicalTrials.gov3 four times, 

and macromolecular structures in the Protein Data Bank (PDB)4 database twofold.  

  

                                                
1 https:/ /www.ncbi.nlm.nih.gov/pubmed 
2 https://www.ncbi.nlm.nih.gov/geo 
3 https://www.clinicaltrials.gov 
4 http://www.rcsb.org/pdb/home/home.do	



	

	

2	

Table 1. The increasing number of biomedical publications and datasets. 

Database Data type 2007 2017 Release date 
PubMed literature 16,785,314 25,378,350 1997 

GEO gene expression 
samples 131,416 2,052,685 2002 

ClinicalTrials.gov registered studies 49,241 234,336 2000 

PDB macromolecular 
structures 47,616 125,795 1971 

 
1.1.2 Emerging data types 

 Over the last two decades, there were significant increases in the diversity 

of available biomedical data types for two reasons: (a) new technologies resulted 

in new types of data, such as the next generation sequencing (NGS) data4; (b) 

information technologies made biomedical data easier to access, such as medical 

images5,6 and documents7,8.  

 From late 1990s to early 2010s, microarray technology progressed rapidly 

and was applied for various purposes such as gene expression analysis, 

genotyping, and medical diagnosis9. However, upon the arrival of NGS 

technologies, DNA microarray has gradually faded away. For gene expression 

studies, a microarray can only inspect regions for which probes have been 

designed, while NGS can sequence the entire target genome. For genotyping 

studies, a microarray can only inspect SNPs they contain (mostly common 

variants), while NGS can inspect both common and rare variants. For diagnosis, 

given the ability to identify traces of cell-free DNA from blood samples, NGS is 

already clinically used for fetal trisomy screening during pregnancy10, while the 

microarrays have never been efficient for such tasks. 
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 Since the 2000s, medical images have become available for various 

purposes. For example, the Cancer Imaging Archive (TCIA)5 provides access to 

computed tomography (CT), magnetic resonance imaging (MRI), and positron 

emission tomography (PET) images for common cancer types; the Open Access 

Series of Imaging Studies (OASIS)6 provides access to neuroimaging MRI data for 

Alzheimer’s disease studies; the Open sharing of Functional Magnetic Resonance 

Imaging (OpenfMRI)7 provides access to raw functional MRI (fMRI) data.  

 Medical documents have also become more accessible in the last decade. 

In 2000, the National Library of Medicine (NLM) established ClinicalTrials.gov, a 

clinical trial database and online registry. Since then, more than 200,000 trials have 

been registered and the information has been made available to the public. 

PhysioBank8 is another effort to collect and share clinical data. It contains over 

90,000 recordings of digitized physiologic signals and time series, such as 

cardiopulmonary and neural signals, from healthy subjects and patients with a 

variety of conditions8.  

 Beyond the above examples, a variety of new data types have emerged in 

the biomedical domain, such as epigenetic data11, 3D genome structure (Hi-C 

data)12, and gene regulatory network13 data.  

                                                
5 http://www.cancerimagingarchive.net 
6 http://www.oasis-brains.org 
7 https://openfmri.org 
8 https://physionet.org/physiobank/about.shtml	
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1.1.3 Interoperability between resources 

 Biomedical datasets are stored in various data resources that fulfill different 

functions. The diversity makes it difficult for users to find these datasets. For 

example, a user who studies the role of p53 in breast cancer may have to search 

through various literature databases, genome databases, pathway databases, and 

pharmaceutical databases to collect the desired information because each 

database contains only a subset of the relevant information. To retrieve desired 

information from a data resource, users need to formulate effective queries, which 

require knowledge of the research domain and the retrieval system; the presence 

of more resources implies more work for users. Therefore, users sometimes avoid 

the use of multiple resources. 

1.1.4 Change of users’ search behaviors 

 Formulating queries used to be the work of professional librarians, but the 

traditional service is no longer as popular, since current users are often self-

sufficient14. In an NIH-wide survey15, 95% of the respondents agreed that the most 

common way they obtained information was through independent search; among 

them, 91% of respondents preferred to make self-guided queries. However, an 

early study showed that an average third-year medical student needs 14 separate 

queries to get the desired information16, while a recent querying behavior study 

showed that experienced health librarians need an average of three queries to 

answer a question17.  



	

	

5	

1.2 Solutions 

 The growing amount of heterogeneous data requires information retrieval 

systems to be effective in identifying relevant objects from a large set of candidates, 

and to be accurate in estimating the relevance of matched objects. Emerging new 

data types need compatible representation models to characterize the objects, and 

this may be achieved through expansion of existing models or development of new 

models. The interoperability needs and the constant change of users’ behavior 

require information retrieval systems to be more intelligent in understanding users’ 

requests and in helping users formulate effective queries. Together, these 

challenges call for a more robust and more intelligent information retrieval system 

for biomedical data than what is available today.  

 This dissertation provides a comprehensive review of current biomedical 

research applications of information retrieval techniques, and introduces some 

solutions to the above challenges by: 

1. Using information collected from external resources to enrich the 

representation of biomedical datasets, 

2. Exploring rule-based and deep learning-based methods to help users formulate 

effective queries for both dataset retrieval and publication retrieval, and 

3. Developing a “retrieval plus re-ranking” strategy to identify relevant datasets 

and rank them using customized relevance metrics.  

1.3 Dissertation organization 

 This dissertation is organized as follows. Chapter 2 covers the background 

of general information retrieval. Chapter 3 introduces the biomedical dataset. 
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Chapter 4 presents a retrieval strategy and a retrieval pipeline for biomedical 

datasets. Chapter 5 discusses the indexing of biomedical articles. Chapter 6 

presents a PubMed similar article retrieval method. Lastly, Chapter 7 summarizes 

the dissertation, proposes methods to solve two problems encountered in 

biomedical dataset retrieval, and concludes the dissertation.  
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2 Background of general information retrieval 

2.1 Overview 

 In the 1960s, Gerard Salton defined information retrieval as18: “a field 

concerned with the structure, analysis, organization, storage, searching, and 

retrieval of information.” Half a century later, this definition remains valid for 

modern information retrieval, as it covers all essential functions of an information 

retrieval system, despite expansion of retrievable information, such as genome 

sequences and 3D structures. Also in the 1960s, Cyril Cleverdon proposed  a new 

evaluation methodology that did not require exhaustive manual judgments of 

relevance for all resources for each information request19.  Relevance, the core 

concept of the evaluation methodology, measures how retrieved documents 

satisfy users’ information needs.  

 The emergence of the SMART retrieval system1 and the development of 

Cranfield evaluation methodology19 indicated the beginning of the rapid 

development of  automatic information retrieval methods20. Of course, the types of 

documents in information retrieval have vastly expanded to include web pages, 

emails, research articles, books, and news reports, as well as images, videos,  

gene sequences, etc.21. In particular, non-text objects have attracted plenty of 

attention, such as biomedical data22–24, image and video25–27, audio and music28,29, 

and geographical data30. While previous methods for retrieval of non-text objects 

relied on textual metadata, new approaches have turned to the contents 
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themselves for content-based retrieval. In this chapter, the retrieval objects should 

be considered textual documents, unless otherwise specified. 

2.2 Text transformation 

 Depending on the type, textual documents may be structured or 

unstructured. Structured textual documents such as electronic medical records 

(EMR) are composed of multiple fields and each field may contain controlled 

vocabulary terms. Unstructured text documents are independent of such 

semantically overt organization. 

 The unstructured nature of textual document contents makes text 

transformation an essential step in document retrieval. Text transformation parses 

documents to recognize structural elements, decide the document unit, and 

decode character sequences.  Frequently used text transformation techniques 

include tokenization, stop word removal, and stemming.  

2.2.1 Tokenization 

 A term is a word or phrase used to describe a thing or to express a concept. 

People create documents using terms as the building blocks. However, in 

information retrieval, token, rather than term is the atomic unit of documents and 

queries. Manning et al. provide a strict definition: “a token is an instance of a 

sequence of characters in some particular document that are grouped together as 

a useful semantic unit for processing”31.  

 Tokenization splits a character sequence into tokens. A trivial option is to 

split character sequences at the white space. There are many tricks in tokenization, 

and there is no universal solution for all applications. For example, in news report 
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texts, a period may indicate a split; in medical documents, the period may 

frequently appear inside tokens such as “Dr. Joe”. Various tokenization tools have 

been developed for different purposes, such as the Penn Treebank tokenizer32 for 

general English text and BioTokenizer33 for biomedical text. The same tokenization 

method must be applied to both the documents and the queries to enable the 

identification of matched documents.  

2.2.2 Stop word removal 

 Stop words are extremely common words in a document collection and 

“appear to be of little value in helping selecting documents matching a user need”31. 

The extremely common words are typically function words that help form sentence 

structure, but contribute little to the description of the topics of the text21. For 

example, “the”, “a”, and “of” are usually stop words in a collection of English news 

reports. While sorting terms by their frequencies can lead to the generation of a list 

of stop word candidates, manual effort is often required for an accurate list. 

Although certain high frequency words are commonly used in different fields, the 

complete list of stop words are different from domain to domain. For instance, a 

biomedical stop word list provided by the National Library of Medicine (NLM)9 may 

be very different from a list of stop words in legal documents10. The general trend 

of the size of stop words has been from 200-300 terms, to a very small list (7-12 

terms), or no stop list31. In fact, web search engines often do not use stop lists31.  

                                                
9 https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/ 
10 http://www.leginfo.ca.gov/help/stopwords.html	



	

	

10	

2.2.3 Stemming 

 Stemming reduces inflectional and derivationally related forms of a word to 

a common base form31.  For example: operating, operation, operational all become 

“operat”; democracy, democratic, democratization all become “democra”. 

Generally, a stemming algorithm (e.g. Potter’s algorithm34) uses heuristic methods 

to remove the end of words and the derivational suffixes. Stemming increases the 

likelihood that terms in queries and documents are matched, and generally 

produces small improvements in ranking effectiveness of matched documents21. 

However, aggressive stemming may result in ambiguity and mismatch.  

2.3 Information need and query 

Information need and query have been defined from multiple perspectives. 

Robert Taylor35 provided a definition in the scenario of “at the library reference 

desk”. The definition split an information need into four levels: (a) the visceral need, 

which is actual but vague, probably inexpressible; (b) the conscious need, which 

is ambiguous and rambling; (c) the formalized need, which is a qualified and 

rational statement of the question; and (d) the compromised need, which is the 

query presented to the information retrieval system.  

Nicholas Belkin36,37 defined information need using the Anomalous State of 

Knowledge (ASK) based on Taylor’s work35. An ASK is a situation where “the user 

realizes that there is an anomaly in that state of knowledge with respect to the 

problem faced”36. An information need is triggered off when a user has an ASK, 

i.e. “from a recognized anomaly in the user’s state of knowledge concerning some 
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topic and situation and that, in general, the user is unable to specify precisely what 

is needed to resolve that anomaly”37.  

Brenda Dervin38 explained information need using a “sense-making 

metaphor”: humans move along through time and space; when they encounter a 

gap, an information need arises.  

A query is the compromised need in Taylor’s35 definition. A query may not 

perfectly convey the actual information need; in fact, a query often must be refined 

repeatedly to help retrieve documents that satisfy a user’s information need.  

2.4 Manual indexing process 

 It is extremely inefficient to scan all the raw documents and then retrieve 

relevant answers to queries when provided with a large collection of text 

documents. Therefore, an efficient data structure is required to represent 

documents, and to enable fast retrieval. The indexing process is designed for the 

purpose of: representing documents using index terms, and enabling retrieval 

using inverted index, which is currently accepted as the most efficient structure for 

supporting ad hoc retrieval11 31. Figure 1 provides an overview of the indexing 

process.  

                                                
11 In an ad hoc retrieval task, a system aims to provide documents from within the 
collection that are relevant to an arbitrary user information need, communicated to the 
system by means of a one-off, user-initiated query31. 
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Figure 1. Indexing process. This is an overview of the indexing process for text documents. 
Text documents may be research articles, clinical notes, email, news reports, etc. The text 
collection module collects textual contents, the text transformation module applies various 
actions, such as stemming on the raw textual contents, to produce tokens. The index 
construction module builds the actual indices as the output of this pipeline.  

 The indexing process transforms documents using index terms, which are 

generated by the text transformation operations. The simplest index terms are 

single words in documents, and may be complicated objects rather than text 

strings. For example, an index term may come with its frequency in each document, 

its positions in each document, and the total number of documents that contain it. 

Such information is required for calculating term weights and ranking documents 

in the retrieval process. After the text transformation, the index terms are often in 

a set of stemmed, lower case, and non-stop-word tokens, called the index 

vocabulary. An index vocabulary can also include named entities identified from 

document contents and the metadata, such as dates, authors, and keywords. 

 When index terms are ready, the indexing process can build an inverted 

index by converting document-index term (doc-term) pairs into term-doc pairs. 

Figure 2 provides an example to illustrate this conversion. Therefore, given a term 

from a user’s query, the retrieval system can efficiently locate documents 

containing this term and avoid scanning all the documents. Various algorithms are 

available for constructing inverted indices, such as blocked sort-based indexing 
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(BSBI)31, single-pass in-memory indexing (SPIMI)39, and sort-based multiway 

merge40.  

 

Figure 2. An example of building an inverted index. Modified from Figure 1.4 in 
“Introduction to information retrieval”31. In the first step, doc-term pairs are transformed 
into term-doc pairs. After that, the document frequency of each term is counted. 
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2.5 Retrieval models 

 In an ad hoc retrieval task, which is the most standard information retrieval 

task, users generate queries from arbitrary information needs; a retrieval model 

takes the queries and returns relevant documents from the collection. 

 A retrieval model is a representation of the process of matching a query and 

a document41. Its basic function is to identify relevant documents for given queries. 

Moreover, most retrieval models also rank matched documents according to their 

relevance to the given queries.  

 The Boolean retrieval model is the first information retrieval model42 based 

on Boolean logic and classic set theory. This retrieval model treats both a 

document and a query as the bag of words model, which ignores the ordering of 

the terms. Terms in queries are combined using Boolean logic operations AND, 

OR, and NOT. The Boolean retrieval model finds well-matched documents that 

contain terms in the queries, but it cannot rank matched documents. Despite the 

simplicity, the Boolean model was the main option for large collections of 

documents from the 1960s to the early 1990s31.  

2.5.1 The vector space model 

 The vector space model43 identifies documents that share terms with a 

query, then ranks the documents according to the cosine distance between the 

document and the query. In this model, documents and queries are represented 

using vectors in a Euclidean space, 𝑑
→
= 𝑡%, 𝑡', … , 𝑡) , where each value 𝑡* 

measures the relative importance of the associated index term, and 𝑚 is the size 
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of the index vocabulary. Both the documents and the queries are represented in 

the same space (i.e., a document  𝑑
→
= 𝑑%, 𝑑', … , 𝑑,  and a query  𝑞

→
=

𝑞%, 𝑞' … , 𝑞, ), therefore, a dot product between two vectors 𝑑
→
⋅ 𝑞
→
= 𝑑* ⋅ 𝑞*,

*/%  

produces the cosine distance between 𝑑
→

 and 𝑞
→

, which is an intuitive measure of 

similarity.  

 The major challenge for the vector space model is in determining the 

relative importance of an index term in a document or a query, i.e., term weighting. 

Finding a solution is non-trivial, and a significant number of term weighting 

methods have been studied since the 1970s42. Term frequency-inversed 

document frequency (TF-IDF)44,45 was the most successful term weighting method 

before 1990s. TF-IDF and its derived methods consider the frequency of a term 𝑡, 

in a document 𝑑 (i.e., term frequency, TF), and the number of documents in the 

collection that contains term 𝑡 (i.e., document frequency, DF). A typical TF-IDF 

formula is, 

𝑡𝑓 − 𝑖𝑑𝑓3,4 = 𝑡𝑓3,4×𝑖𝑑𝑓3 [1] 

𝑖𝑑𝑓3 = log	
𝑁
𝑑𝑓3

 [2] 

where 𝑡𝑓3,4 is the frequency of 𝑡 in 𝑑; 𝑖𝑑𝑓3	is the inversed document frequency of 𝑡 

in the collection; 𝑁 is the number of documents in the collection; and 𝑑𝑓3 is the 

number of documents containing 𝑡. The formula favors terms that are observed in 

a small number of documents, and that occur frequently in the given document. 
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Therefore, if a term appears in every document in the collection, it lowers the TF-

IDF score; if a term occurs many times in a document, it increases the score.  

2.5.2 Probabilistic retrieval models 

 The probabilistic retrieval model is another genre of retrieval models. The 

models are built on probability theory, and use different methods to calculate the 

probability of relevance between queries and documents.  

2.5.2.1 Okapi BM2546,47 

 Okapi BM25 is one of the most widely used probabilistic retrieval models. 

By the time BM25 had been developed, there were two main problems to be solved 

for probabilistic retrieval models. The first problem was the difficulty in including 

various variables that may affect the retrieval performance when dealing with 

models that specify exact formulas. The second problem was the lack of guidance 

in variable selection for the empirical ad hoc models46.  

 Okapi BM25 was designed to provide an exact but intractable formula, and 

to use it to suggest a simpler formula46,47. The model was built on the linked 

dependence assumption48, the eliteness assumption46, the Robertson/Sparck 

Jones term weighting formula49, and the 2-Poisson model50. Robertson and 

Zaragoza provide a comprehensive review on the development of BM2551. The 

standard BM25 formula47 is 

𝑠𝑐𝑜𝑟𝑒(𝑑
→
, 𝑞
→
) = 𝑤CDE×

𝑘% + 1 𝑡𝑓34

𝑘% 1 − 𝑏 + 𝑏 𝐿4
𝐿KLM

+ 𝑡𝑓34
×
𝑘N + 1 t𝑓3P
𝑘N + 𝑡𝑓3P3∈P

 [3] 
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𝑤CDE = 𝑙𝑜𝑔
(𝑟 + 0.5)(	𝑁 − 𝑛 − 𝑅 + 𝑟 + 0.5)
(𝑅 − 𝑟 + 0.5)(𝑛 − 𝑟 + 0.5)  [4] 

where YZ[% 3\]^

YZ %_` [` a^
abcd

[3\]^
 is the document term weight; Ye[% 3\]f

Ye[3\]f
 is the query term 

weight; 𝑘% 1 − 𝑏 + 𝑏 g^
gbcd

 is the document length normalization factor, where 

𝐿4  is the document length, and 𝐿KLM  is the average document length in the 

collection. Variable 𝑘%  is a positive tuning parameter for the document term 

frequency scaling, variable 𝑘N is a positive tuning parameter for the term frequency 

scaling of the query, and variable 𝑏 (0 ≤ 𝑏 ≤ 1) determines the scale of document 

length. 𝑤CDE is the Robertson/Sparck Jones term weight, where 𝑟 is the number of 

relevant documents that contain the term, 𝑅 is the number of relevant documents, 

𝑛 is the number of documents that contain the term, 𝑁 is the number of documents, 

𝑅 − 𝑟 is the number of relevant documents that do not contain the term, 𝑁 − 𝑛 −

𝑅 + 𝑟 is the number of non-relevant documents that do not contain the term, 𝑛 − 𝑟 

is the number of non-relevant documents that contain the term. 

 In summary, BM25 is an effective probabilistic term weighting model, and it 

has been widely used by the scientific community, e.g. in the Text Retrieval 

Conference (TREC)12. However, BM25 lacks theoretical support and is difficult to 

modify for further applications.  

                                                
12 http://trec.nist.gov 
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2.5.2.2 PubMed related citation algorithm (PRC)52  

 The PubMed related citation (PRC) algorithm is a probabilistic retrieval 

model designed for the MEDLINE records of biomedical articles indexed by 

PubMed. Given a MEDLINE record that a user has indicated interest in, the PRC 

algorithm retrieves other MEDLINE records that are similar in terms of the topics 

or concepts, and ranks them based on the probability of the user’s interest 52.  

 The PRC algorithm predicts 𝑃(𝑑'|𝑑%), which is the conditional probability 

that a reader will be interested in an unseen article 𝑑', given that the reader shows 

an interest in article 𝑑% . In the following scenario, 𝑑% is a query, and 𝑑'  is a 

document that is potentially relevant. According to the authors, “for computational 

tractability, we make the simplifying assumption that each term in a document 

represents a topic (that is, each term conveys an idea or concept)”. Also, the 

authors assumed “single-word terms, as opposed to potentially complex multi-

word concepts”, to satisfy the requirement that the set of topics be exhaustive and 

mutually-exclusive. 

 The weight of a term 𝑡 in either article 𝑑 is,  

𝑤3,4 =
𝑖𝑑𝑓3

1 + 𝜇
𝜆

Y_%
𝑒_ m_n o

 [5] 

where 𝑖𝑑𝑓3 is the inverse document frequency of 𝑡; 𝑘 is the term frequency of 𝑡 in 

𝑑; 𝑙 is the word count of 𝑑; 𝜆 is the expected occurrence of 𝑡 when 𝑡 is the topic of 

𝑑; 𝜇 is the expected occurrence of 𝑡 when 𝑡 is not the topic of article	𝑑. 𝜆 and 𝜇 

were calculated using an extensive tuning approach. Based on the exactly 
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matched terms (i.e., the same terms appear in two articles) and term weights, the 

similarity score of two articles 𝑑% and 𝑑' is, 

𝑃 𝑑' 𝑑% = 𝑤3,4Z ∗ 𝑤3,4q

r

3/%

 [6] 

where 𝑁 is the number of matched terms in 𝑑% and 𝑑'. 

 In summary, the PRC algorithm is a successful retrieval model for MEDLINE 

records, as it effectively captures the relatedness between articles.  

2.5.2.3 The term dependence model (TDM)53,54 

 Term dependencies are frequently observed in text. For example, in 

biomedical informatics literature, if “electronic” occurs in a sentence, it is likely that 

“medical records” will occur nearby. However, many retrieval models assume 

some form of independence among terms because it is not trivial to model term 

dependencies. The term dependence model provides a framework to model the 

dependencies among multiple terms in proximity.  

 TDM models term dependencies via Markov random fields53. It considers 

the unigrams, ordered bigrams, and unordered bigrams in text, and uses the 

bigram component to embed the context information of matched terms. 

Accordingly, the TDM score is composed of three parts, one for the match of 

unigrams, one for the match of ordered bigrams, and one for the match of 

unordered bigrams within a window of size 8 (details in Formula 7-10). The pre-

determined weights (𝜆s = 0.8,  𝜆u = 0.1, 𝜆v = 0.1) of the three parts are robust and 

near-optimal across a wide range of retrieval tasks 54.   
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𝑃 𝑑 𝑞 = 

𝜆s 𝑓s 𝑞*, 𝑑 + 𝜆u 𝑓u 𝑞*, 𝑞*[%, 𝑑 +
Pw,PwxZ∈P

𝜆v 𝑓v 𝑞*, 𝑞*[%, 𝑑
Pw,PwxZ∈PPw∈P

 
[7] 

 

𝑓s 𝑞*, 𝑑 = log
𝑡𝑓Pw,4 + 𝜇

𝑐𝑓Pw
𝐶

𝑑 + 𝜇  
[8] 

𝑓u 𝑞*, 𝑞*[%, 𝑑 = log	
𝑡𝑓#%(Pw,Pw[%),4 + µ

𝑐𝑓#%(Pw,PwxZ)
|𝐶|

𝑑 + µ  [9] 

𝑓v 𝑞*, 𝑞*[%, 𝑑 = log	
𝑡𝑓#|}~(Pw,Pw[%),4 + µ

𝑐𝑓#��~(Pw,PwxZ)
|𝐶|

𝑑 + µ  [10] 

 In Formula 7, 𝑑 is a document; 𝑞 is a query; 𝑞*, 𝑞*[% are two consecutive 

terms in the query; 𝑓s(𝑞*, 𝑑) is the weight of term 𝑞* in 𝑑; 𝑓u(𝑞*, 𝑞*[%, 𝑑) is the weight 

of the exact phrase “𝑞* 𝑞*[%” in 𝑑; 𝑓v(𝑞*, 𝑞*[%, 𝑑) is the weight of unordered terms 𝑞* 

and 𝑞*[% in a window of size eight in 𝑑. In Formulas 8, 9, and 10,  𝑡𝑓Pw,4  is the 

number of times 𝑞* has an exact match in 𝑑; 𝑐𝑓Pw is the number of times 𝑞* matches 

in the entire document collection; |𝑑| is the length of 𝑑; |𝐶| is the total length of the 

collection; 𝜇  is a hyper-parameter that is set to 2500; subscript 𝑡𝑓#%(Pw,Pw[%),4  in 

Formula 9 represents the number of times phrase “ 𝑞*  𝑞*[% ” appears in 𝑑 ; 

𝑡𝑓#|}~(Pw,Pw[%),4 in Formula 10 represents the number of times two terms 𝑞* and 𝑞*[% 

in a window of 8 terms in 𝑑 , no matter which term comes first, appear in a 
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document; similarly, 𝑐𝑓#%(Pw,PwxZ) and 𝑐𝑓#��~(Pw,PwxZ) are the number of times “𝑞* 𝑞*[%” 

matches in the entire collection.  

 In summary, the TDM provides a framework to model the dependencies 

over terms in proximity, resulting in more precise matches of relevant documents.  

2.6 Re-ranking methods 

2.6.1 Overview  

 Traditional retrieval models (e.g. TF-IDF, Okapi BM25) may not be always 

satisfying because they do not fully discover available information, from the text 

that they rely on to external knowledge bases.  

 Re-ranking is a widely-used strategy to solve the problem55–58. Re-ranking 

is the reordering of the results from retrieval systems, based on the initial search 

results or an external knowledge base55. In practice, a re-ranking method 

evaluates the relevance of each object in the initial search result that is typically 

achieved by a text-based retrieval system. Compared with term-weight based 

retrieval methods, re-ranking methods may employ more features, such as 

patterns identified from the initial list, but they also face the challenges from the 

low quality of initial retrieval results.  

 Re-ranking methods can be classified into four categories55: 

1. Self re-ranking uses the initial results from a retrieval system to refine the ranks 

of retrieved objects in next search. All of the information for re-ranking is 

provided by the initial results. 

2. Example-based re-ranking uses query examples, rather than keywords. 

3. Crowd re-ranking uses results from additional retrieval systems. 
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4. Interactive re-ranking involves user interaction.    

Table 2 provides highly cited examples of the re-ranking algorithms. 

Table 2. A summary of re-ranking algorithms by category. This content is mostly 
reproduced from Mei et al.55 

Category Examples Description 

Self  
re-ranking 

Cluster-based 
methods59–61 

Group the initially retrieved objects into different 
clusters and then re-rank objects inside each group. 

Pseudo 
relevance 
feedback62,63 

Label the top ranked objects as “positive” examples 
and other as "negative".  Learn a ranking model 
using labeled examples. 

Graph-based 
methods64–68 

Build a graph from the initial top-ranked documents 
from the entire document collection. 

Example-
based  
re-ranking 

Query-by-
example 
(QBE)25,56,69–71  

Understand the query provided by users using 
accompany examples. 

Concept-based 
re-ranking72–75 

Utilize the results from concept detection to aid 
search, thereby leveraging human annotation on a 
finite concept lexicon to help answer infinite search 
queries. 

Query 
expansion58,76 

Generated a new query by using the highly ranked 
documents. 

Crowd  
re-ranking 

Translingual 
Information 
Retrieval (TIR)77 

Provide a query in one language and search 
objects in one or more different languages. 

Metasearch78–81  
Find the representative patterns and relations in 
results of multiple search engines, and then 
combine the search result lists.  

Query 
expansion82 

Mine a knowledge base to select the most relevant 
and informative keywords for querying a different 
search engine. 

Interactive  
re-ranking 

Rerank-by-
example83 

A user is enabled to edit a part of the search results 
(i.e. delete and emphasis operations) 

Re-ranking 
using 
collaborative 
filtering84 

Learn the profiles of the users using machine 
learning techniques by making use of past browsing 
histories and then re-rank the results based on 
collaborative filtering techniques 

Relevance 
feedback85,86 

Users are required to annotate whether a subset of 
initial search results is relevant or not at each 
iteration 
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2.6.2 Learning-to-rank (LTR) algorithms 

 LTR algorithms are a family of ranking algorithms using similar algorithmic 

frameworks87. When compared with the traditional retrieval models (e.g. Okapi 

BM25, language models) that are created without training, LTR algorithms employ 

machine learning techniques to automatically learn the ranking models87.  As a 

supervised learning task, the LTR algorithms are provided with a set of queries 

and associated documents in the learning step. For each pair of query and 

document, ranking features are created as a function of the query-document pair. 

While the features are designed according to specific task requirements, there 

exist widely-used features that can perform in multiple tasks, such as BM25 and 

PageRank88. When the ranking models are learned, they are used in the same 

way as traditional retrieval models.  

 Let 𝒳 be the input feature space, and 𝒴 be the output space of ranking 

results. Further denote 𝑥 as an instance from 𝒳, and 𝑦 as an instance from 𝒴. 

Therefore, 𝑥 is a list of feature vectors, and every vector represents an instance to 

be ranked. 𝑦 is a list of outcomes from the ranking model. The goal of the LTR 

algorithm is to learn a ranking model 𝐹 that maps features to correct likelihoods. 

Given a training data set 𝑋 = { 𝑥%, 𝑦% , 𝑥', 𝑦' , … (𝑥�, 𝑦�)}, where 𝑥*	(𝑖 ∈ [1, 𝑛]) is a 

list of feature vectors and 𝑦* is a list of ranks, a ranking function is applied to all 𝑥*, 

and generates predicted ranking lists 𝐹 𝑥 = {𝐹 𝑥% , 𝐹 𝑥' , … , 𝐹(𝑥�)} . A loss 

function 𝐿(𝐹 𝑥 , 𝑦) is then defined on 𝐹(𝑥) and 𝑦 = {𝑦%, 𝑦', … , 𝑦�}. LTR minimizes 

the empirical loss  
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𝑅 𝐹 =
1
𝑚 𝐿(𝐹 𝑥* , 𝑦*)

,

*/%

 [11] 

where 𝑚 is the number of training instances in this study. 

 According to the loss function, LTR algorithms are classified into three 

categories: point-wise, pair-wise and list-wise. In the point-wise LTR algorithms, 

the loss function is defined on individual objects to be ranked. For example,  

𝐿��*�3�*�M 𝐹 𝑥 , 𝑦 = 𝐹 𝑥*� − 𝑦*�
'

�

�/%

,

*/%

 [12] 

where 𝑟 is the number of objects to be ranked in a training instance89.   

 The pair-wise LTR algorithms evaluate loss based on the difference 

between objects87. For example,  

𝐿�K*��*�M 𝐹 𝑥 , 𝑦 = 𝜙 𝑠𝑖𝑔𝑛 𝑦*� − 𝑦*Y , 𝐹 𝑥*� − 𝐹(𝑥*Y)
�

Y/�[%

�_%

�/%

,

*/%

 [13] 

where 𝜙 may be the hinge loss, exponential loss, or logistic loss functions.  

 The list-wise LTR algorithms evaluate the loss on lists of objects87. For 

example, ListNet90 uses the function  

𝐿o*�3�*�M = 𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐹 𝑥* , 𝑦*)
,

*/%

 [14] 

 Cao et al.90 showed improved performance of list-wise LTR when compared 

to three major pair-wise LTR algorithms. Both list-wise LTR and pair-wise LTR 

algorithms capture more information than point-wise LTR algorithms due to the 

design of the loss function91. 
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2.7 Biomedical dataset retrieval systems 

2.7.1 Existing systems 

There exists a great number of biomedical dataset resources. Some 

resources simply use database management systems to retrieve datasets24, while 

some employ advanced retrieval systems dedicated to their datasets92,93. Such 

advanced retrieval systems often serve multiple biomedical databases and enable 

cross-resource and cross-domain search; the well-known systems are Entrez92 

and EMBL-EBI search93.   

Entrez is a search engine for biomedical databases built by the National 

Center for Biotechnology Information (NCBI, NLM). In 2012, Entrez provided 

access to 37 databases that contained 690 million records94. This system supports 

text search using simple Boolean queries, and can efficiently retrieve datasets in 

various formats such as sequences, structures, and references. Similarly, EMBL-

EBI search, developed by the European Bioinformatics Institute (EBI) enables 

users to retrieve data across all disciplines in biology and biomedicine, including 

sequences, genes, gene products, proteins, protein domains, protein families, 

enzymes and macromolecular structures, and life science literature.  

2.7.2 Data Discovery Index (DDI), bioCADDIE and DataMed 

In 2014, the NIH requested to develop a Data Discovery Index (DDI) to 

promote biomedical research95. As part of the NIH Big Data to Knowledge (BD2K) 

initiative, the Biomedical and Healthcare Data Discovery Index Ecosystem 

(bioCADDIE) project was launched with the aim of helping users find datasets from 

data repositories that they would be unlikely to encounter96. bioCADDIE has 
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developed a DDI prototype DataMed to support the findability and accessibility of 

datasets96. As of May 7, 2017, DataMed has covered 1,375,728 datasets from 66 

repositories, and has accommodated dozens of features to help users explore 

datasets. DataMed includes three components96,97: (a) a repository ingestion and 

indexing pipeline, which harmonizes disparate metadata from each repository into 

the Data Tag Suite (DATS) model97, a dataset representation model; (b) a 

terminology server to maintain the semantic consistency of the metadata; and (c) 

a Lucene-based dataset search engine to find datasets in the DDI.  

2.7.3 Data Tag Suite (DATS) model 

The Data Tag Suite (DATS)97 is a metadata schema for characterizing the 

metadata elements and the structure of biomedical datasets, as well as supporting 

the indexing and retrieving functionalities of DataMed. In DataMed, the metadata 

of datasets from various repositories are harmonized into the DATS model.  

DATS metadata elements could be divided into two parts: a core set of 

elements that are “generic and applicable to any type of datasets”, and cover the 

basic information of datasets97, and an extended set containing additional 

elements for specific data types, such as datasets from biomedical science and 

environmental science domains. The objective of DATS is to find and access 

datasets via key metadata descriptors. Based on this objective, the DAT model is 

designed around the Dataset element, and the key information about the Dataset 

element is its accessibility. 
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2.8 Evaluation 

 Precision and recall are still important measures in current information 

retrieval research, and both require exhaustive judgments. Precision measures the 

percentage of relevant documents in the all the retrieved documents,  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 [15] 

and recall measures the percentage of relevant documents among all relevant 

ones, 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑	𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑙𝑙	𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠  [16] 

 Derived from precision, 𝑃@𝑘 measures the precision of the top 𝑘 retrieved 

documents, 

𝑃@𝑘 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠	𝑖𝑛	𝑡𝑜𝑝	𝑘	𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑘  
 

[17] 

 Another commonly used measure is average precision (AP), which 

considers both precision and recall, 

𝐴𝑃 =
(𝑃(𝑖)×𝑟𝑒𝑙(𝑖))�

*/%

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠
 

 

[18] 

where 𝑃(𝑖) is the precision at the 𝑖3� document, and 𝑟𝑒𝑙(𝑖) is the relevance of the 

𝑖3�  document (0 for irrelevant, 1 for relevant), 𝑛  is the number of retrieved 

documents. 

When the relevance judgments are incomplete, 𝑃(𝑖)  is estimated using 

sampling methods98. Therefore, 𝐴𝑃 becomes inferred AP (𝑖𝑛𝑓𝐴𝑃), 
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𝑖𝑛𝑓𝐴𝑃 =
𝑃 𝚤 ×𝑟𝑒𝑙 𝑖�

*/%

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠
 

 

[19] 

where 𝑃(𝚤) is the expected precision at the 𝑖3�  document. More information is 

available in Yilmaz & Aslam’s work98.  

 Mean average precision (MAP) is the mean of average precision scores for 

every query, 

𝑀𝐴𝑃 =
𝐴𝑃r

𝑁 							 [20] 

where 𝑁 is the number of queries.  

 Macro-average precision is the average of precisions for every query, 

𝑀𝑎𝑐𝑟𝑜 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑃r

𝑁 							 [21] 

where 𝑁 is the number of queries.  

 Normalized Discounted Cumulative Gain (NDCG)99 is a family of measures. 

NDCG is based on Discounted Cumulative Gain (DCG)99, a weighted sum of the 

relevance of the ranked objects. The weight is a decreasing function of the rank of 

the object, therefore called discount100. The definition of DCG is,  

𝐷𝐶𝐺� =
𝑟𝑒𝑙*

log'(𝑖 + 𝑐𝑜𝑛𝑠𝑡)

�

*/%

 

 

[22] 

where 𝑛 is the number of retrieved objects, 𝑟𝑒𝑙� is the graded relevance (0 for not 

relevant, 1 for partially relevant and 2 for relevant) of the 𝑖3� retrieved object, and 

𝑐𝑜𝑛𝑠𝑡  is a smoothing constant. Both the base of the logarithm and 𝑐𝑜𝑛𝑠𝑡  are 

adjustable according to different needs. 
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 NDCG normalizes DCG by the ideal DCG, which is the DCG of the best 

ranking result (i.e. retrieved documents ordered by the relevance values)100,  

𝑁𝐷𝐶𝐺� =
𝐷𝐶𝐺�
𝐼𝐷𝐶𝐺�

 

 

[23] 

𝐼𝐷𝐶𝐺� =
𝑟𝑒𝑙*

log' 𝑖 + 𝑐𝑜𝑛𝑠𝑡

C g

*/%

 

 

[24] 

where 𝑅𝐸𝐿 is the best ranking list, and |𝑅𝐸𝐿| is the size of the best ranking list.  

When only the top 𝑖 documents are considered, NDCG is referred to as 

NDCG@i100. Therefore,  

𝑁𝐷𝐶𝐺@𝑖 =
𝐷𝐶𝐺*
𝐼𝐷𝐶𝐺*

 [25] 

 When judgments are incomplete, inferred NDCG ( 𝑖𝑛𝑓𝑁𝐷𝐶𝐺 ) is an 

estimation of NDCG, and both 𝐷𝐶𝐺�  and 𝐼𝐷𝐶𝐺�  are estimated using sampling 

methods101,  

𝑁𝐷𝐶𝐺� =
𝐷𝐶𝐺�
𝐼𝐷𝐶𝐺�

 [26] 

where 𝐷𝐶𝐺�  is the expected 𝐷𝐶𝐺� , and 𝐼𝐷𝐶𝐺�  is the expected 𝐼𝐷𝐶𝐺� . More 

information is available from Yilmaz et al.101  

 P@10, infAP, NDCG@10, and infNDCG are used in Chapter 4 to measure 

the performance of a biomedical dataset retrieval pipeline. Macro-average 

precision, AP and MAP are used in Chapter 6 to measure the performance of a 

PubMed similar article retrieval method. 
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3 The retrieval of biomedical datasets 

 Biomedical researchers and clinical professionals often need datasets to 

validate hypotheses. The datasets may be created in their work, obtained from 

collaborators, or downloaded from public resources. Creating a dataset is usually 

expensive. Therefore, sharing datasets is highly encouraged for promoting 

research efficiency, reducing costs and saving time. However, this is not a trivial 

task. Major technical challenges in a data discovery index include a common 

representation and indexing of datasets, interpretation of users’ requests, retrieval 

of the most relevant results, and proper display of results to users.   

 Biomedical datasets are generated from a wide variety of sub-domains in 

biomedicine. Datasets often have distinct attributes with different formats. Such 

distinctions make the dataset representation and the following indexing work 

difficult. Similarly, users of biomedical datasets may come from any sub-domain or 

even outside biomedicine and may have different background knowledge and 

search skills. Therefore, to achieve satisfying retrieval performance with such 

diverse datasets and users, helping users formulate effective queries is crucial. 

Also, like in any other information retrieval application, optimization of the ranking 

algorithm is a must for biomedical dataset retrieval. Finally, a good design for result 

display can help users efficiently identify the desired datasets. 

 This chapter introduces the background of biomedical dataset 

representation, the challenges and solutions in the indexing processes, and the 

users’ information-seeking behavior in biomedical information retrieval tasks. 
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3.1 Biomedical dataset heterogeneity 

 Biomedical datasets are naturally heterogeneous because they are serving 

different purposes, composed of diverse data types, and organized in multiple 

formats. For example, clinical trial records, nuclear magnetic resonance (NMR) 

images, genomic sequences, and proteomic spectra are all within the scope of 

biomedical datasets. However, they have little in common regarding the purpose, 

composition, and format. The diversity results in significant difficulty in extracting a 

set of universal features to represent biomedical datasets.  

 Metadata, which typically consists of text describing the datasets, have 

been widely used in biomedical dataset indexing and retrieval. However, there are 

two problems to be solved. First, when metadata are manually created, there exists 

the potential for inconsistent wording. For example, two creators may use different 

terms to refer to the same phenomenon. Second, there is not much space in 

metadata for elaboration. To deal with the space problem, controlled vocabularies 

are adopted to make sure the information is precisely and clearly conveyed. 

Section 3.1.1 introduces the definition of metadata, compositions and attributes. 

Section 3.1.2 introduces the motivation of developing controlled vocabularies, the 

definition, and a few examples.  

3.1.1 Metadata 

 Metadata is “the sum total of what one can say at a given moment about 

any information object at any level of aggregation”102, where an information object 

is “anything that can be addressed and manipulated as a discrete entity by a 
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human being or an information system”. In this chapter, an information object is a 

biomedical dataset, unless otherwise specified.  

 According to the function, metadata can be classified into the description, 

administration, and preservation types102,103. The description metadata are the 

most frequently discussed in this chapter because they are used to identify, 

authenticate, and describe collections of datasets102.  

 Typical metadata consist of three parts103: schema, language and instance. 

Metadata schema is a set of attributes with precise semantic definitions104, such 

as title, author, and subject. The meanings of attributes define the semantics of a 

schema. Metadata languages, such as XML Schema13, Web Ontology Language 

(OWL)105, and Resource Description Framework Schema (RDFS)106, define 

metadata schemas. Metadata instance is a set of metadata attributes and 

associated content values. 

 Of note, the metadata are not part of the dataset content; they are provided 

by either the dataset creators or database curators based on their understanding 

of the dataset. Therefore, the quality of metadata of biomedical datasets depends 

on the design of the schema, the curators who provide the content values of the 

schema attributes, the controlled vocabularies selected for the content values, and 

the quality the dataset content. 

                                                
13 https://www.w3.org/TR/xmlschema-1/ 
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3.1.2 Controlled vocabulary 

 Synonyms, polysemy, and acronyms are frequently observed in the 

metadata of biomedical datasets and they are caused by multiple factors. For 

example, a drug may have multiple commercial brand names, e.g. acetaminophen 

is commercialized under various names including Tylenol, Paracetamol, and 

Mapap. Diseases and syndromes can also have multiple names. For instance, 

Addisonian syndrome and primary adrenal deficiency refer to the same problem. 

Researchers who work on different topics may name independent discoveries 

using the same name or the same acronym. For example, NF2 is a protein as well 

as a gene encoding for the protein. Even if a concept has a standardized name, 

the name may also evolve over time. For example, HIV-1/HIV-2 was originally 

called Human T-Cell Leukemia Virus/HTLV/LAV in the 1980s. 

 These linguistic phenomena make the representation of biomedical 

datasets inconsistent, and thereby hamper efficient retrieval of users’ desired 

datasets. To deal with the phenomena, researchers have developed a variety of 

terminologies107,108, each of which is a set of organized terms that represent 

concepts and their relationships for a specific domain. According to the 

organization and complexity, terminologies could include subject headings list, 

thesaurus, ontology, etc109. These sub-types share common attributes but also 

have distinctions. For example, an ontology emphasizes strict semantic 

relationships among concepts and attributes with the goal of knowledge 

representation in machine-readable form, while a subject headings list is typically 
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arranged in alphabetical order and lacks complicated relationships that the 

ontology has109. However, in this chapter, these sub-types are interchangeable. 

 Widely used biomedical terminologies include Unified Medical Language 

System (UMLS)110, Medical Subject Headings (MeSH)111, International 

Classification of Diseases (ICD)112, SNOMED-CT113, and Gene Ontology114. 

 For example, MeSH is a hierarchical thesaurus that was designed by the 

NLM for indexing MEDLINE115 records (i.e. the metadata of biomedical articles). 

MeSH terms specify the topics of biomedical articles to easily find the articles. 

MeSH has constantly been updated, and has influenced the development of many 

other terminologies111. The number of MeSH terms was gradually increased: while 

the 1960 edition contains 4,400 terms, the 2016 edition contains 27,883 terms are 

hierarchically arranged in thirteen levels.  

3.2 Indexing process 

 Once the metadata of biomedical datasets are prepared, the datasets are 

ready for indexing. The indexing process of biomedical datasets resemble the 

process for textual documents, which has been studied for decades.  

 Like textual documents, a large portion of biomedical datasets are retrieved 

using text-based information retrieval systems because they are also represented 

with text. A major difference between the textual documents and the text-based 

biomedical datasets is the source of text: the textual documents primarily rely on 

the content, while the datasets typically depend on textual metadata for indexing 

and retrieval. From the creator’s perspective, the textual content must be created 

by the authors of textual documents, while text in metadata may be created by 
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others, such as database curators. Even if created by the authors of datasets, 

metadata do not necessarily comprehensively characterize the datasets from all 

perspectives because metadata are merely the creators’ perception of the dataset. 

From the data perspective, metadata are typically more brief than textual 

documents, but more complicated in the structure that may include more attributes 

and attribute types.   

 Even though there are many differences, the textual document is a good 

starting point for the indexing of biomedical datasets. The experience and lessons 

from the domain are likely to be useful for biomedical dataset.  In this section, we 

will compare the indexing processes for textual documents and biomedical 

datasets. 

3.2.1 Textual documents 

 In textual document retrieval, indexing means finding good representations 

for the document contents116. The indexing methods are mostly based on a term-

document matrix or an approximation of the matrix. Figure 2 provides an example 

to illustrate a basic indexing method, in which the elements of the term-document 

matrix represent the occurrence number of terms in documents. Other advanced 

methods have been developed to estimate the relationships between each pair of 

term and document, i.e. term weight, such as TF-IDF43,44 and Okapi BM2547. The 

term weight estimation may be empirical (e.g. TF-IDF43,44) or theory-based (e.g. 

Okapi BM2547, continuous language model117).  

 When the vocabulary of a document collection contains millions of terms, 

the size of the term-document matrix may be too large to be implemented 
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efficiently. Therefore, various methods were developed to reduce the dimension of 

vocabulary, thereby approximating the term-document matrix. A successful 

example is Latent Semantic Indexing (LSI)118 that uses Singular Vector 

Decomposition (SVD) to reduce the dimension of vocabulary before indexing 

documents. According to Manning et al.31, Dumais119,120 conducted experiments 

with LSI on TREC tasks and achieved precision at or above that of the median 

TREC participant. Later, Latent Dirichlet Allocation (LDA)121, which reduces the 

dimension by representing documents with topics, was incorporated into a 

language modeling framework for textual document indexing and retrieval122.  

3.2.2 Biomedical datasets 

 The metadata of biomedical datasets consist of various attributes, such as 

title and release date. Within each attribute, the indexing process includes text 

transformation, term-document matrix construction, and term weight computation 

following the selected weighting scheme. For details of text transformation, please 

refer to section 2.2. For an example of term-document matrix, please see section 

2.4. For weighting schemes, please see section 2.5.  

 Compared with metadata, linked information is an underused information 

source in biomedical dataset indexing. Linked publications, especially the primarily 

associated articles (i.e. articles that announce the existence of the datasets), 

contain abundant information of datasets. Another advantage is that they are often 

well-formatted and ready for analysis. MacMullen et al.123 reviewed early studies 

on the integration of linked publications and biomedical datasets.   
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3.3 User behaviors 

 A good retrieval result is the joint work of the retrieval system and the user. 

The work includes representation, indexing, formulating effective queries, 

retrieving satisfactory results, and properly displaying results, etc.  

 This section introduces the information needs of different user groups, users’ 

information-seeking behaviors, and the interface design for retrieval systems. We 

discuss users’ behaviors for both dataset and general biomedical information 

retrieval because these behaviors are similar. 

3.3.1 User groups and information needs 

 The users of biomedical information and datasets have a wide range of 

information needs. While molecular biology researchers may seek in-depth 

information14,123, clinicians may require quick, concise information, frequently 

related to diagnosis and treatment14,15. Thus, understanding user needs would 

benefit the design of information retrieval systems and users’ retrieval experience. 

However, information need is case-dependent, and thus mapping a spectrum of 

all information needs in the biomedical research domain is non-trivial. Geer et al.124 

provided a new approach to study users’ information needs: by categorizing users 

according to their requested aids from libraries and bioinformatics centers based 

on 11 years of data collected from the NCBI User Service, and then inferring their 

information needs [see Table 3 and 4].  
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Table 3. User groups in biomedical researchers and their needs related to bioinformatics, 
based on Geer124. The table format and contents are adapted. bioCADDIE/DataMed users 
may have similar needs. Trainees of all levels and faculty share many common needs, 
e.g. identifying best-fit resources, efficiently retrieving the data needed, and identifying 
programming techniques for large-scale data retrieval and analysis. Genome labs and 
computational biologists have highly technical needs that may involve molecular biology 
resource developers, bioinformatics centers, and libraries.   

    User Groups 

    Undergrad Grad Postdoc Faculty 
PI 

Genome 
Labs 

Computational 
Biologists 

N
ee

ds
 fo

r a
ss

is
ta

nc
e 

w
ith

 b
io

in
fo

rm
at

ic
s 

re
so

ur
ce

s 

Resource 
Awareness 

Understand the range of resources 
available for a given information need 
or research problem beyond those 
commonly used. Select the resource(s) 
that best meet the need. 

Large-scale genome 
sequencing and 
computational biology labs 
generally include staff who 
are expert users of 
bioinformatics resources 
and are unlikely to need 
assistance in these areas. 
Their questions and needs 
are often highly technical 
and often require the 
involvement of molecular 
biology resource 
developers. 

Data 
Structure & 
Organization 

Understand (a) organization of various 
data types; (b) scope and nature of 
primary research databases and 
derivative, value-added databases, and 
the relationships between them; (c) 
database record content and format for 
each data type. 

Text Search 
Systems 

Apply knowledge of data organization 
and advanced features of search 
systems such as Entrez to efficiently 
retrieve the data needed. Use 
advanced tools such as Entrez Utilities 
for automated search updates and 
batch searching. 

Sequence 
Similarity 
Search 
Systems 

Apply knowledge of various analysis 
programs to select appropriate 
program(s), adjust search parameters, 
interpret results, etc. 

Other 
Sequence 
Analysis 
Programs 

Select and use programs for sequence 
analysis such as primer design, 
restriction mapping, multiple sequence 
alignment, phylogenetic analysis, 
identification of potential regulatory 
regions, analysis of mass spectra, 
structure prediction, and more. 
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Table 3. Continued. User groups in biomedical researchers and their needs related to 
bioinformatics, based on Geer124. The table format and contents are adapted. 
bioCADDIE/DataMed users may have similar needs. Trainees of all levels and faculty 
share many common needs, e.g. identifying best-fit resources, efficiently retrieving the 
data needed, and identifying programming techniques for large-scale data retrieval and 
analysis. Genome labs and computational biologists have highly technical needs that may 
involve molecular biology resource developers, bioinformatics centers, and libraries.   

		 		 User Groups 

		 		
Undergrad Grad Postdoc Faculty 

PI 
Genome 

Labs 
Computational 

Biologists 

N
ee

ds
 fo

r a
ss

is
ta

nc
e 

w
ith

 b
io

in
fo

rm
at

ic
s 

re
so

ur
ce

s 

Commercial 
Databases & 
Software 

Evaluate, select, and purchase licenses 
for the use of commercial products. 
Provide educational and end-user 
support, as needed. 

Depending on the 
resources available with 
the genome and 
computational biology 
labs, their institution's 
organizational structure, 
and benefits of research 
collaborations, some 
might work together with 
a bioinformatics center 
on data mining, lab data 
management, and 
programming, and with a 
library or bioinformatics 
center on leasing 
commercial products. 

Data Mining 

Many 
undergrads, 
except those 
in majors 
such as 
bioinformatics 
or computer 
science, are 
unlikely to be 
involved in 
these areas 

Large scale data retrieval 
and analysis. Requires a 
thorough understanding 
of data organization, 
scope and nature of 
user's input, and desired 
output in order to identify 
appropriate data 
sources, extract desired 
data elements, and 
identify relationships 
among them. 

Lab Data 
Management 

Develop, purchase, or 
customize hardware and 
software for 
management of data 
generated by specific 
laboratories or by a 
university's overall 
research program. 

Programming 

Write scripts for 
customized 
bioinformatics needs, 
such as data mining and 
lab data management. 
Development of new 
bioinformatics tools. 
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Table 4. User groups from the clinical community and their needs for genetic information, 
based on the work by Geer124. The table format is modified. biocaddie/DataMed users may 
have similar needs. Users from different groups have multiple common needs for different 
purposes. For example, these users may attempt to obtain concise information about 
genetic conditions to diagnose and manage those conditions or to identify relevant 
resources for clinical genetics research. 

    User Groups 

    
General 
Public 

Genetic 
Counselors Physicians Medical Faculty 

and Students 

N
ee

ds
 fo

r a
ss

is
ta

nc
e 

w
ith

 g
en

et
ic

s 
in

fo
rm

at
io

n 
re

so
ur

ce
s 

Resource 
Awareness 

Understand the range of resources available for a given information 
need and audience. Select the resource(s) that best meet the need. 

Patient 
Information 

Obtain clear and understandable background information on the 
molecular basis of genetic conditions, what to expect, how to cope, 
treatment options, advocacy groups, etc. Identify and use the 
appropriate resource(s) for a given information need, based on an 
understanding of the scope and nature of consumer health resources 
such as Genes and Diseases, Genetics Home Reference, Genetic 
Alliance. 

Diagnosis 
and 
Management 

Identify resources such as GeneTests and Gene Reviews to obtain 
salient clinical information about genetic conditions, including 
symptoms, differential diagnosis, genetic testing, management, and 
more. Use additional resources such as the clinical synopsis and 
allelic variants portions of Online Mendelian Inheritance in Man 
(OMIM) and drug response information in PharmGKB. 

Clinical 
Trials 

Identify ongoing clinical trials through the use of resources such as 
ClinicalTrials.gov to investigate the possibility of novel therapies. 

Basic 
Research 
Information 

Search for up-to-date information about basic 
research on genetic conditions, including journal 
literature in systems such as PubMed, literature 
summaries on human genes and genetic 
conditions in resources such as OMIM. 

Also retrieve, if 
appropriate, 
associated 
primary research 
data in molecular 
biology 
databases. 

Clinical 
Research 
Data 
Management 

Not 
Applicable 

Develop, purchase, or customized hardware and 
software for management and analysis of data from 
clinical research on genetic conditions. Integrate 
with data from basic research resources, if 
appropriate. For example, integrate data from 
clinical research on allelic variants and drug 
response with data from genetic variation and 
population study resources such as dbSNP and 
HapMap project, respectively. 
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3.3.2 User information-seeking behaviors 

 Users’ behaviors are complex. This section covers the awareness of 

resources and the search skills.   

3.3.2.1 Awareness of resources 

 Until the early 2000s, many researchers were not yet familiar with online 

biomedical information resources such as NCBI databases. By 2010, online 

information resources had been widely accepted and strongly preferred in the 

biomedical community14,15.Today, researchers have a wide array of options, 

including periodical websites, databases (e.g. NCBI GEO), literature databases 

(e.g. MEDLINE/PubMed), search engines (e.g. Google Scholar), publisher 

websites (e.g. the Highwire Press archive), table-of-contents alerts, and other 

miscellaneous resources14,15,125.  

3.3.2.2 User search skills 

 Modern biomedical information retrieval systems are complicated and 

require users to have some knowledge of the systems to maximize the potential of 

the retrieval system. Since users are not equally knowledgeable of these systems, 

we expect to observe great disparities in the ability to discover, understand, and 

proper use of information resources124. 

 The disparity starts with query formulation. Typical text-based biomedical 

information retrieval systems accept three types of queries126: keyword query, 

Boolean query, and long-text query.  Keyword queries can be named entities such 

as protein name, disease name, and protein database identifier. Boolean queries 

use Boolean operators (e.g. AND, OR, NOT) to combine keywords. Long-text 
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queries may be composed of any text, such as an article abstract or even a set of 

documents. Based on the NCBI user log data, Grefsheim et al.15 reported that 70% 

of the searches are keyword queries, 21% use Boolean operators, 13% use 

attribute specifiers, and 1% use the wildcard, range searching, and the History 

function. As for the dataset retrieval, keyword queries are even more frequent, 

such as 75% for the nucleotide and 89% for the protein15. 

 Clearly, users prefer keyword queries that do not require much knowledge 

about the information retrieval systems. However, keyword queries are likely to 

result in massive, irrelevant and redundant results. For example, searching Entrez 

with the simple query “p53” will bring datasets including expressed sequence tags, 

genes, proteins, SNP dataset, clinical phenotypes, etc15. According to the NIH 

survey15, although more advanced queries can often improve retrieval 

performance, users either do not like building complicated queries, or are not 

aware of how to build such queries. Fortunately, users often reformulate simple 

queries once they have gained a better understanding of the requests after 

reviewing the initial retrieval results. In fact, Jay et al.127 found that browsing is the 

key step in query reformulation and biomedical dataset discovery.  

3.3.3 Interface design of retrieval systems 

 A user-friendly design of the interface may improve user satisfaction. Yet 

there is no standard template for the design. For instance, the designer of a 

literature database dedicated to Alzheimer’s disease may tune the system toward 

users with prior knowledge by providing a complex query interface with optional 

fields to support the expert users. However, the cross-disciplinary nature of 
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biomedical research does not guarantee a user’s expertise on the subject 

domain127, as users outside of the subject domain may also be interested.  

 The search interfaces of existing biomedical dataset retrieval systems 

include the traditional design and single-field design. The traditional design (e.g. 

PubMed advanced search interface) provides multiple options, thus expects 

accurate queries127,128. In particular, it requires a precise conceptualization of the 

information need, and a good understanding of the information retrieval system to 

capture more relevant results127. In contrast, the single-field design (e.g. Google) 

is suitable for vague queries and users working under time constraints127,129. The 

single-field design does not require user expertise on the subject of query or on 

the information retrieval system, and may be advantageous in general data 

discovery: it is reported that biomedical researchers and clinical professionals 

favor the single-field interface for such purposes in two recent studies14,127. 

 The output interfaces of existing biomedical dataset retrieval systems are 

similar to those of document retrieval systems: a set of relevant datasets is 

retrieved because their metadata match the queries, and they are displayed 

according to the relevance. In a recent study, Jay et al.127 found that summarization, 

analytics, and visual presentation can help users better digest the results, and that 

descriptions of each result are the primary focus of users. The same study 

encouraged the use of faceted search and navigation to allow users to organize 

retrieved datasets hierarchically to help users reformulate queries. 
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3.4 Summary 

 The heterogeneity of biomedical datasets is a barrier for the extraction of 

representative features from the dataset contents. Therefore, researchers 

primarily use metadata to represent, index and retrieve the data. To convey precise 

information in the limited space of metadata, metadata creators intensively use 

controlled vocabularies to standardize the wording. The indexing process of 

biomedical datasets largely relies on the metadata, and indexing techniques for 

textual documents may be helpful. Lastly, the users of biomedical dataset retrieval 

systems have a wide variety of information needs. Therefore, it is essential to 

categorize users, understand their needs, and study their search strategies to build 

a more efficient dataset retrieval system. 
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4 Retrieval and re-ranking for biomedical datasets 

 The rapidly growing DataMed system faces important challenges, including 

dataset representation, query formulation, and ranking algorithm. First, the 

metadata do not always provide sufficient descriptions of corresponding datasets, 

such as the organism. Since the metadata have been harmonized into the DATS97 

model, detailed information that is specific to a particular data type may not be 

easily be transformed into DATS (e.g., free-text annotations and related biomedical 

articles). Second, DataMed is expected to take users’ free-text requests as inputs 

and reformulate them to comply with retrieval system syntax. The free-text search 

requires a two-step process of first capturing keywords from requests and then 

building queries from the keywords. Finally, identifying and appropriately ranking 

relevant datasets depend on the specific questions a researcher is trying to answer. 

Many optimization approaches remain to be explored. 

 We developed a pipeline and explored different approaches to overcome 

the abovementioned obstacles. Our pipeline consists of five main modules:  

1. Automatic collection of additional information beyond metadata for existing 

datasets, 

2. Dataset indexing using metadata and the additional information, 

3. Query formulation by analyzing users’ free-text requests, 

4. Dataset retrieval using Elasticsearch14, 

5. Elasticsearch result re-ranking using multiple re-ranking algorithms.  

                                                
14 https://www.elastic.co/ 
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 The 2016 bioCADDIE Dataset Retrieval Challenge130 provided us with an 

opportunity to evaluate our pipeline, and we achieved the highest infNDCG in the 

Challenge.  

 This chapter introduces the design of pipeline, the mechanism of each 

module, and its performance in the 2016 bioCADDIE Dataset Retrieval Challenge.   

4.1 Pipeline  

 To achieve real-time retrieval on the extensive collection of datasets, we 

employed a “retrieval plus re-ranking” strategy to improve the retrieval 

performance while maintaining efficiency. Our pipeline collects additional 

information for datasets to supplement the metadata, builds indices, automatically 

interprets free-text requests and generates Boolean queries, retrieves datasets 

using Elasticsearch, re-ranks top datasets from Elasticsearch, and evaluates the 

performance of datasets (Figure 3).  
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Figure 3. The pipeline for biomedical dataset retrieval. The pipeline consisted of five 
modules: additional field extraction, indexing, query generation, retrieval, and re-ranking. 
Additional information was collected as a supplement to the dataset metadata. Indices 
were built on the combination of metadata and additional information. Once a query was 
automatically generated from a user’s free-text request, the Elasticsearch system 
retrieved relevant datasets using the query. Next, these datasets were re-ranked using 
two different algorithms, the pseudo sequential dependence model and the distribution 
shift method. The re-ranked results could be further merged using the Ensemble method. 
Finally, re-ranked datasets were evaluated on the test set provided by the Challenge. 

4.1.1 Additional data collection 

 Retrieval systems depend on comprehensive metadata to obtain user-

desired datasets. However, metadata often contain limited information. For 

example, the metadata of a typical ArrayExpress15 dataset use a “description” field 

to summarize the study in a few sentences.  

                                                
15 https://www.ebi.ac.uk/arrayexpress/ 
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 However, at the same time, rich information embedded in related sources, 

such as related publications, is not fully explored. Therefore, we extended the 

original metadata of the datasets. We identified 158,963 datasets that have 

connections with GEO Series records, and collected the fields “Summary”, “Title”, 

and “Overall design” for these datasets from GEO. An example of these fields is 

provided in Figure 4. We named this collection of new fields and values “additional 

information”. 

 

Figure 4. An example of additional fields, including study title, study summary, and overall 
design. 

4.1.2 Indexing 

 The metadata and the additional information were indexed using 

Elasticsearch. We developed customized mapping schemas for Elasticsearch 
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based on the DATS model. In particular, we selected fields in the metadata as 

“standard fields”, which contains the most valuable information about the datasets 

from each database. The standard fields for each data repository are provided in 

the Appendix A. During the construction of indices, fields in the DATS model were 

classified into three groups: exact matching (e.g., MeSH terms), regular string 

matching (e.g., description) and others (e.g., release date). The text contents of 

metadata were analyzed using the standard tokenizer, English possessive 

stemmer, lower case filter, non-ASCII character filter, stopword16 filter, and the 

Elasticsearch light English stemmer. However, all MeSH terms and their 

associated entry terms (i.e. synonyms) were protected against the stemmer. 

4.1.3 Query generation 

 To enable automatic query generation, we built a module to analyze users’ 

free-text requests, extract keywords, and generate Boolean queries. One example 

of the free-text request is “find data of all types related to TGF-beta signaling 

pathway across all databases”. In the module, a rule-based filter removed less 

informative words from questions and kept key concepts. The less informative 

words include the English stopwords from Natural Language Toolkit (NLTK 17 

(module detail: nltk.corpus.stopwords.words(“english”)) and self-defined 

stopwords: “database”, “databases”, “datasets”, “dataset”, “data”, “related”, “relate”, 

“relation”, “type”, “types”, “studies”, “study”, “search”, “find”, “across”, “mention”, 

“mentions”, “mentioning”, “i”, and “a”.  

                                                
16 https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/ 
17 http://www.nltk.org/	
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 Next, the remaining words (e.g. TGF-beta signaling pathway) were passed 

to PubMed for concept expansion using NCBI E-utilities 18 . In this step, key 

concepts were identified and then expanded. In the example, two concepts, “TGF-

beta” and “signaling pathway”, were identified in the above request. Then, the 

“TGF beta” was expanded as two representations, “TGF beta” and “transforming 

growth factor beta”, while the concept “signaling pathway” was expanded to “signal 

transduction” and “signaling pathway”. Queries generated based on expanded 

concepts enabled ElasticSearch to search all fields and retrieve relevant datasets 

that would be likely missed by the search based on queries without expansion. 

See Figure 5 for an illustrative example. 

 Finally, the key concepts and the expanded associations were formulated 

into nested Boolean queries based on their relationships. Specifically, the 

representations of the same concept were connected by “OR” operator and the 

different concepts were also linked by “OR” operator. A concept is recognized as 

present if the original concept or the expanded associations are observed in the 

metadata of a dataset, and a dataset is retrieved if at least one concept is present. 

We performed the search by first retrieving datasets with all concepts present, then 

obtaining datasets with one less concepts matching, etc. Datasets with more 

concepts matched were ranked higher. Lastly, we only kept (at most) the top 5,000 

documents for each query. 

 

                                                
18 https://www.ncbi.nlm.nih.gov/books/NBK25497/ 
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Figure 5. Query interpretation: from a free-text request to a query. The query expansion 
used the same method as PubMed does, relying on NCBI E-utilities. 

4.1.4 Retrieval and re-ranking 

 We implemented a two-step “retrieval plus re-ranking” strategy. In step 1, 

Elasticsearch retrieved datasets from the entire collection. In this step, we 

attempted to capture as many relevant or partially relevant datasets as possible in 

the top 5,000 retrieval results, with less focus on the ranking performance within 

the top 5,000. In step 2, we applied re-ranking algorithms to the top 5,000 results 

and aimed at higher infNDCG. We explored multiple re-ranking algorithms, and 

finally adopted a pseudo sequential dependence (PSD) model, a distribution shift 

method, and an ensemble method. 
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4.1.4.1 Pseudo sequential dependence (PSD) model  

 The PSD model was derived from the sequential dependence (SD) model 

developed by Metzler et al.53 and Bendersky et al.54 The original SD models rank 

documents in consideration of the unigrams (i.e. single words), ordered bigrams 

(i.e. two consecutive words), and unordered bigrams (i.e. two words not 

necessarily consecutive) in the documents. In our scenario, the documents refer 

to the metadata of datasets to be re-ranked. In the experiments, we found that 

neither ordered bigrams or unordered bigrams provided contributions to the 

performance improvement. One possible explanation is that most keywords were 

independent of each other. For example, “chromatin modification” contains more 

specific information than “chromatin” and “modification”, while “flu car” is as 

informative as “flu” and “car”. Bigrams may benefit the former example, but not the 

latter case. Therefore, we removed the bigram components from the original 

formula, and modified the unigram component to make it compatible for dataset 

retrieval tasks, i.e., making ‘whether a word appears in the metadata’ more 

important than ‘how many times a word appears’. 

 Provided with a query and a list of candidate datasets from Elasticsearch, 

PSD scores every candidate dataset and re-ranks them accordingly. The PSD 

score is defined in Formulas 26 and 27 based on Metzler and Croft’s work53,131.   

𝑃 = 𝑓 𝑞*, 𝐷
Pw∈¢

	 [27] 
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𝑓 𝑞*, 𝐷 = 𝑙𝑜𝑔	
𝐼(𝑡𝑓Pw,£ > 0)(𝑡𝑓Pw,£ + 𝛿) + 𝜇

𝑐𝑓Pw
𝐶

𝐷 + 𝜇 					 [28] 

 In Formula 26, 𝑃 is a sortable quantifier of relevance.  𝐷 is a dataset, 𝑄 is 

an input (e.g. a free-text request), 𝑞* are words in the input, 𝑓 𝑞*, 𝐷 	 is the weight 

of word 𝑞* in the metadata of dataset 𝐷.  

 In Formula 27, 𝑡𝑓Pw,£  is the number of times word 𝑞*  matches in the 

metadata of dataset 𝐷, 𝑐𝑓Pw  is the number of times word 𝑞*  has matches in the 

metadata of the entire collection of datasets, 𝐷  is the word number of the 

metadata of dataset 𝐷,	 𝐶  is the total word number of the collection, and 𝜇 is a 

hyper-parameter that is set to 2500, following Bendersky et al.54 Different from the 

original algorithm, we added a constant 𝛿 = 5, an empirical parameter to 𝑡𝑓Pw,£ if it 

was greater than 0, where 𝐼(𝑡𝑓Pw,£ > 0) is an indicator function. This modification 

puts more weight on the existence of a word in the metadata than on the times the 

word appears.  

 The default version of the PSD model took as input the original 𝑄, i.e., the 

free-text request. Therefore, we named this version “PSD-allwords”. We further 

developed a “PSD-keywords” version that analyzed only keywords extracted from 

𝑄. To identify valuable keywords from free-text requests, PSD-keywords firstly 

calls MetaMap132, a biomedical named entity recognizer, to identify the UMLS 

concepts from 𝑄, and then uses the UMLS concept set 𝑄′ as input to PSD, with 

the aim to exclude the impact of less informative words in requests. In the 
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experiments, we used the default setting of MetaMap, collected all recognized 

UMLS concepts, and removed the duplicated concepts. 

4.1.4.2 Distribution shift method 

 Hiemstra stated that in order to search a document collection, the user 

should first prepare a document that is similar to the needed documents42. The 

idea has been widely accepted and implemented, such as in relevance feedback 

methods1.  

 If documents are represented by words, the closer the word distribution of 

a document is to that of the user’s document, the more likely the document will be 

relevant to the user’s query. However, neither Elasticsearch or PSD consider the 

difference of word distributions in users’ requests and the dataset metadata.  

 Based on this idea, we developed a method to find Google returned 

documents according to users’ requests, and then transformed these documents 

into queries for relevant datasets. This way, we shifted the words distribution of 

requests with the aim of approaching the word distribution of the metadata of 

relevant datasets. Requests were sent to Google using an in-house script, and 

then the top 10 retrieved text documents (not limited to datasets) were 

concatenated into a document as a query for the re-ranking algorithm. Next, the 

Elasticsearch retrieved datasets were re-ranked based on the concatenated 

documents using the PSD-allwords model.  

4.1.4.3 Ensemble method 

 This method was developed on an assumption that no single method works 

for all tasks. Our ensemble method averaged the reciprocal of ranks from different 
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methods, and re-ranked datasets according to the mean of rank reciprocals. We 

experimented with combinations of different re-ranking algorithms, and finally 

chose the combination of PSD-allwords and PSD-keywords. The performance of 

different combinations is provided in Section 4.3.5, Table 7.  

4.1.5 Evaluation  

 The only required metrics in the Challenge announcement was infNDCG,  

but infAP98, NDCG@10101, and two different precisions (one considered partially 

relevant as relevant, while the other considered partially relevant as irrelevant) 

were also evaluated. The definitions of these metrics are available in section 2.8. 

The infNDCG was computed using a tool19 from the National Institute of Standards 

and Technology (NIST), NDCG@10 was evaluated using TREC_EVAL20  from 

NIST, and the two types of precision were evaluated using a tool provided by the 

Challenge.  

4.2 Data and information from the Challenge 

 The Challenge provided a collection of metadata21 from 794,992 biomedical 

datasets collected from 20 repositories. The metadata followed the DATS97 model. 

 The Challenge also provided relevance criteria, six sample requests with 

annotated judgments, 30 sample requests without judgments, and 15 requests for 

evaluation133. The requests were artifacts fashioned after TREC topics 22  that 

                                                
19 http://www-nlpir.nist.gov/projects/t01v/trecvid.tools/sample_eval/sample_eval.pl 
20 http://trec.nist.gov/trec_eval/ 
21 The Challenge data: https://biocaddie.org/benchmark-data 
22 TREC topics: http://trec.nist.gov/data/topics_eng	
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emulated the tasks to professional librarians, such as “search for gene expression 

data that mention E2F cell line in cellular differentiation across all databases”. 

 The judgments followed TREC evaluation procedures for ad hoc retrieval 

tasks post-hoc assessment, but without pooling134. A dataset was judged “relevant” 

if it met all the constraints in the request, or “partially relevant” if it met part of the 

constraints. Judgements were pre-determined but released after the submission 

deadline.  

 Participants could submit up to five automatic or manual runs, although 

automatic runs were preferred.  

4.3 Results 

4.3.1 Implementation  

 The pipeline was coded in Python, Java, and Perl23 . The metadata of 

datasets were indexed using Elasticsearch. Third-party libraries were also used in 

the implementation, including MetaMap for biomedical concept recognition. 

4.3.2 Computation performance  

 The experiments were completed on an iDASH135 cloud virtual machine with 

16 processors (Intel(R) Xeon(R) CPU E7-4870 v2) and 32 GB RAM. Indexing all 

datasets took up to 3 hours. PSD-allwords and PSD-keywords each required 4 

minutes to re-rank 5,000 dataset candidates on 45 requests. 

                                                
23 All scripts are available from https://github.com/w2wei/dataset_retrieval_pipeline 
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4.3.3 Annotated requests 

 To facilitate the pipeline development, we annotated 943 datasets for the 

provided 30 unannotated requests described below. Also, the annotation is 

available from our github repository24. The self-made gold standard was used for 

optimizing configurations, tuning parameters, and selecting models before we 

submitted our results.  

 We created rules to implement the provided relevance criteria. First, we 

defined key concepts as biomedical concepts that are included in UMLS. Given a 

request, if fewer than 50% key concepts appear in the metadata of a dataset, the 

dataset is labeled irrelevant. Among the remaining datasets, if the components of 

key concepts scatter in one or more sentences in the metadata, and individual 

components have lost the meaning of the original key concepts, the dataset is 

labeled partially relevant. If exact key concepts are found in the metadata, but have 

different meanings (i.e., polysemy), the dataset is labeled partially relevant. If all 

the exact key concepts appear in the metadata, and the metadata answer the 

request, this dataset is labeled relevant. If all the key concepts appear in the 

metadata, but some concepts are partially matched, this dataset is labeled relevant 

as long as the metadata answer the request. 

4.3.4 Performance in the Challenge 

 We submitted results from five methods (see Table 5), Elasticsearch, PSD-

allwords, PSD-keywords, the distribution shift method, and the ensemble method. 

                                                
24 Annotations are available from https://github.com/w2wei/dataset_retrieval_pipeline 
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These methods were evaluated on the test set of 15 requests and all 794,992 

datasets.  

Table 5. Results of five methods. The indices were built on the provided metadata and the 
additional information. All methods used automatically generated queries. Method 
Elasticsearch did not use any re-ranking methods. The other four methods used re-ranking 
algorithms accordingly. infAP is inferred average precision, infNDCG is inferred NDCG, 
NDCG@10 is the NDCG score on top 10 results, P@10(+partial) is the precision on top 
10 results and counts partially relevant as relevant, P@10(-partial) is the precision on top 
10 results and counts partially relevant as irrelevant. 
 

Category Method infAP infNDCG NDCG@10 P@10 
(+partial) 

P@10 
(-partial) 

No re-ranking Elasticsearch 0.2446 0.4333 0.4228 0.5200 0.2733 

Re-ranking 

PSD-allwords 0.2792 0.4980 0.6152 0.7600 0.3267 
PSD-keywords 0.2391 0.4490 0.4088 0.5200 0.1667 

Distribution Shift 0.3309 0.4783 0.6504 0.7467 0.3600 
Ensemble 0.2801 0.4847 0.5398 0.6800 0.2400 

 

 Among the five methods, PSD-allwords achieved the highest infNDCG and 

the highest P@10 (+partial) (precision on top 10 results and counting partially 

relevant as relevant), and Distribution Shift was the best method for infAP, 

NDCG@10, and P@10 (-partial) (precision on top 10 results and counting partially 

relevant as irrelevant).  

 When compared with methods from other teams in the Challenge, PSD-

allwords achieved the top infNDCG score among 45 submissions from 10 teams. 

The Ensemble method and Distribution Shift placed second and third infNDCG in 

the Challenge. PSD-allwords also tied for third place in P@10 (+partial). The full 

results of the Challenge are available from Appendix B.  
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4.3.5 Breakdown analysis 

 The retrieval step of the pipeline includes three key features: additional 

information collected from external resources, standard fields in the mapping 

schema, and query expansion using NCBI E-utilities. To understand the 

contribution of each feature, we evaluated the infNDCG scores of the pipeline with 

settings of different combinations of three features (Table 6) on the 15 test request 

and the associated judgements. When all of the three features were included, the 

retrieval step achieved the highest infNDCG score. Removing query expansion 

(row 4) resulted in a larger decrease when compared with either additional fields 

(row 2) or standard fields (row 3). This observation indicates that the contribution 

from query expansion is more significant than the other two features. When looked 

into individual features, we noticed that additional fields alone (row 5) or standard 

fields (row 6) alone did not improve infNDCG when compared with using no feature 

(row 8). Combined this observation with row 1, row 2 and row 3, we inferred that 

there exist interactions between the features and the interactions also help improve 

the infNDCG performance.  
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Table 6. Comparison of the pipeline with settings of combinations of four different features 
(Additional Fields, Standard Fields, and Query Expansion). Y indicates the feature is 
included, and N indicates the feature is not included. infNDCG measurements are scored 
in the rightmost column. 
 

 Additional Fields Standard Fields Query Expansion infNDCG 
1 Y Y Y 0.4333 
2 N Y Y 0.4164 
3 Y N Y 0.4159 
4 Y Y N 0.3961 
5 Y N N 0.3868 
6 N Y N 0.4015 
7 N N Y 0.4084 
8 N N N 0.4019 

 

 For the ensemble method, we explored all combinations of PSD methods 

and the Distribution Shift method (Table 7) using reciprocal vote (see Section 

4.1.4.3 for the voting method details), and evaluated their performance on the 15 

test requests. The combination of PSD-allwords and PSD-keywords methods 

achieved the highest infNDCG. 

Table 7. The performance of the Ensemble methods. Y indicates the feature is included, 
and N indicates the feature is not included. 

PSD- 
allwords 

PSD- 
keywords 

Distribution 
Shift infAP infNDCG NDCG@10 P@10 

(+partial) 
P@10 

(-partial) 
Y Y Y 0.3120 0.4560 0.6089 0.7267 0.3067 
N Y Y 0.3120 0.4442 0.5649 0.6800 0.2800 
Y N Y 0.3216 0.4735 0.6439 0.7733 0.3333 
Y Y N 0.2801 0.4847 0.5398 0.6800 0.2400 

 

4.4 Discussion 

 In the study, we collected additional fields “Summary”, “Title”, and “Overall 

design” for 158,963 datasets from Arrayexpress, Gemma, and GEO databases to 
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enrich the metadata of the datasets. In a breakdown analysis, we found that 

contribution from the additional information was positive, but not significant. There 

were at least two underlying causes: (a) only approximately 20% of all datasets 

had additional information fields, and (b) the additional information was too noisy, 

containing information that was not immediately related to the dataset, such as the 

study background. Identifying additional information for more datasets and filtering 

out irrelevant information may make linked evidence more valuable for dataset 

retrieval. 

 Another aim of the Challenge was to automatically generate queries from 

users’ requests to narrow the gap between users’ requests and queries. In our 

pipeline, we defined rules to extract keywords from requests, selected keywords 

using MetaMap, and expanded keywords using the NCBI E-utilities. Finally, we 

built Boolean queries on the expanded keywords. Since the rules are pre-defined, 

it is inevitable that information is lost when requests are converted into queries. 

Machine learning methods will provide new solutions for this problem. For example, 

using deep learning methods, requests may be translated into sentence 

embeddings to preserve all key information, and the sentence embeddings could 

act as queries for more effective dataset retrieval.  

 The distribution shift method used the commercial search engine Google to 

collect relevant documents, and then identified relevant datasets using the top 

retrieved results. The rationale is that commercial search engines have been well 

optimized, and we may use their results as features in our ranking methods. We 

used only unigrams as features in this study. Therefore, the performance of this 
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re-ranking method may be further improved if better features are extracted and 

noisy information is removed.  

 There are also several limitations in this project. Before indexing, concepts 

in both the metadata and additional information were not normalized. For example, 

transforming growth factor beta could be written as tgf-beta, tgf beta, or tgf-𝛽. A 

query containing only tgf-beta will miss datasets that only have tgf-𝛽  in the 

metadata. In addition, the re-ranking algorithms did not consider complicated 

features such as named entities, which can also help filter out ambiguous results. 

Finally, disambiguation methods could also have been applied to the query 

expansion to avoid retrieval of irrelevant datasets. 

Chapter 4, in part, has been submitted for publication of the material as it 

may appear in Finding Relevant Biomedical Datasets: the UC San Diego Solution 

for the 2016 bioCADDIE Retrieval Challenge. Wei, Wei; Ji, Zhanglong; He, Yupeng; 

Zhang, Kai; Ha, Yuanchi; Li, Qi; Ohno-Machado, Lucila, Database(Oxford), 2017. 

The dissertation author was the primary investigator and the author of this paper. 
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5 Biomedical articles 

 There are many ways to index datasets. Even though not all datasets are 

associated with articles, many of them are (e.g., articles describing studies in which 

the data set was used). For this reason, indexing of articles may indirectly 

contribute to indexing of data. Lessons learned from article indexing can also help 

us pave the way towards better data indexing.  

 Biomedical publication retrieval is a traditional domain of information 

retrieval research. The NLM hosts the largest collection of citations and abstracts 

for biomedical literature (i.e. MEDLINE), and provides retrieval service via PubMed. 

To help users identify desired articles from such a massive collection, the NLM 

assigns MeSH terms to specify the topics of the articles.  

 Historically, the NLM indexers manually assigned MeSH terms following a 

set of rules25. As the number of biomedical articles started growing rapidly in the 

1990s, the indexers reached the limit of their processing capability. A statistical 

analysis from the NLM customer service showed that 25% of the articles were 

indexed within 30 days of receipt, 50% within 60 days, and 75% within 90 days136. 

To handle the ever-growing biomedical literature, NLM developed an automatic 

system, Medical Text Indexer (MTI)137,138, to help the indexers select MeSH terms. 

In the meantime, researchers from across the world also contributed to the 

automation of MeSH term assignment136,139–147. Like biomedical dataset retrieval, 

                                                
25 https://www.nlm.nih.gov/bsd/disted/pubmedtutorial/015_010.html 
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the external information provides useful information to help improve the 

assignment performance136.  

 This chapter provides a comprehensive review on the MeSH term 

assignment methods (string matching, machine learning, hybrid methods), and a 

NLM-performed benchmark study136 that proved the significance of external 

information.  

5.1 Introduction to MeSH term assignment methods 

Widely used MeSH term assignment methods include string matching, 

machine learning-based methods, and hybrid methods.   

5.1.1 String matching 

 Given an article and a set of MeSH terms, string matching counts common 

words or phrases in the article and MeSH terms, and chooses the MeSH term 

containing the largest overlap as most relevant148. This strategy was popular 

before the 1990s, but the success rate was low (typically 15%-20%)149 due to two 

problems: (a) the method cannot capture synonyms; and (b) the method 

recognizes irrelevant words and phrases that partially share components with the 

desired MeSH terms148. To handle these problems, linguistic knowledge was 

applied to modify the common words or phrases. An example is MetaMap132, an 

NLM developed tool for named entity recognition. MetaMap parses the article into 

sentences (utterances), utterances into phrases, and finds UMLS concepts in the 

phrases.  
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5.1.2 Machine learning 

 The machine learning-based approaches generally formulate MeSH term 

assignment as a classification question, such as a binary classification task on 

each MeSH term or a multi-label classification task on a list of MeSH terms. Many 

well-recognized models have been applied to classify MeSH terms, including 

support vector machine (SVM), Bayesian networks, 𝑘-nearest-neighbor (KNN), 

neural networks, naïve Bayes, logistic regression, decision tree, etc.  

 SVM is popular for binary classification of MeSH terms. It can work alone 

on individual MeSH terms150,151, but more often it provides relevance probabilities 

for individual MeSH terms in a pipeline, such as the Meta-Labeler152 framework. 

For example,  Mao et al.153, Tsoumakas et al.154,  Papanikolaou et al.155,156 

employed different SVM models to estimate the probabilities of MeSH term 

candidates and then used these estimations as features in downstream models.  

 Bayesian networks are a natural choice for modeling the hierarchical 

structure of the MeSH thesaurus. For example, Ribadas et al.157 built a Bayesian 

network based on a top-down hierarchical classification scheme.  

 Deep learning methods have been proved to capture features previously 

undiscovered. Rios et al.158 and Xu et al.159 both applied convolutional neural 

networks to classify a set of MeSH terms that are difficult to assign. Peng et al.160 

utilized Word2Vec161 and Document2Vec162 packages to transform documents 

into embeddings, on which they trained classifiers.  Jimeno-Yepes142 explored the 

deep belief network that stacks restricted Boltzmann machine models.  
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 K nearest neighbors (KNN) methods are widely accepted for identifying 

MeSH term candidates. For example, Mao et al.153, Kamineni et al.163, Ribadas et 

al.164, Trieschnigg et al.141, Liu et al.165 and Yu et al.166 all adopted KNN methods 

to find the most similar articles and then employed different strategies to identify 

MeSH term candidates from these articles. 

 Ensemble methods are another attractive option. Jimeno-Yepes et 

al.144,145,167 compared multiple models (e.g. naïve Bayes, logistic regression, SVM, 

decision tree, Rocchio, and AdaBoostM1), and concluded that the models 

complemented each other. The group developed a voting algorithm to select the 

most appropriate methods for individual MeSH terms, which improved the 

performance. 

 Machine learning-based methods have shown outstanding performance, 

and dominated the field for two decades. They also face challenges, including the 

sparseness of the training data and the individual variations in tem assignment. 

The entire MEDLINE corpus or its subset are typical training data for MeSH term 

assignment. However, the number of articles indexed with a MeSH term (positive 

examples) is always much smaller than the number of articles not indexed with it 

(negative examples), i.e., an imbalanced data problem. Sohn et al.139 explored an 

optimal training set strategy to solve this problem. On the evaluation side, the 

consistency of the gold standard is a problem. First, MeSH terms evolve over time: 

new MeSH terms become popular, while some fade away. Second, an early study 

suggests the inconsistency of indexers’ selection of MeSH terms168. Therefore, if 

a model were trained on a set of MEDLINE records from the 1990s, it would 
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probably not perform well on a more recent test set.  This is an argument for 

training in the recent years.  

5.1.3 Hybrid 

 The hybrid strategy combines UMLS-based term recognition and machine 

learning-based methods137,138,164,169. This strategy can form complex systems such 

as MTI, which includes named entity recognition tool MetaMap170, a machine 

learning module52, KNN as in PubMed related citations, and a series of post-

processing modules, which includes learning to rank and SUM-based ranking of 

candidate terms171. 

 Given the title and abstract of a new article, MetaMap recognizes UMLS 

concepts and maps them to MeSH terms using ontology-based restrict-to-MeSH110. 

In parallel, the machine learning module uses the PubMed Related Citations (PRC) 

algorithm52 to identify similar articles from the entire MEDLINE corpus, then 

collects MeSH terms assigned to the similar articles. A third machine learning 

module is used to improve performance on some of the most frequently used 

MeSH terms, such as “Human”172. The post-processing module merges MeSH 

term from the three modules, creates a candidate set, and determines their order 

based on the scores and rules146. Finally, the top-ranked candidates are 

recommended to the human indexers for review. Figure 6 illustrates the workflow 

of MTI.  
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Figure 6. The workflow of MTI137,138,146,172, modified from Mork et al.146,172. The MetaMap 
indexing captures MeSH terms from the target articles, PubMed Related Citation (PRC) 
module collects MeSH terms from k Nearest Neighbor articles, and a supervised machine 
learning method recommends candidates for most frequently used MeSH terms. 
Candidates from the three sources are pooled and ranked following pre-designed rules.  

 MTI proved to be a success for MeSH term assignment. In 2014, over 1.5 

million articles were indexed at NLM; MTI provided MeSH term suggestions to 

NLM indexers for every incoming article, resulting in approximately 4,000 new 

MeSH assignments per day.  

5.2 A benchmark study 

 In a retrieval task, a query is submitted and a ranking model computes a 

relevance score for each candidate document, and then all candidate documents 

are ranked based on the scores. This strategy also applies to MeSH term 
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assignment. When an article is provided, a set of MeSH term candidates are 

prepared (e.g., collected from MetaMap and the PRC module of MTI), then a 

ranking model computes a relevance score for every MeSH term candidate. 

Similarly, all MeSH term candidates are ranked based on the scores, and the top 

ranks are recommended to the NLM indexers.  

 In recent years, learning-to-rank (LTR) algorithms have been a popular 

choice for building relevance score functions in MeSH term assignment 

tasks136,160,165,173. Huang et al.136 made one of the earliest attempts to approach 

MeSH assignment using a learning-to-rank algorithm. The method outperformed 

the MTI system, and was further experimented with more learning-to-rank 

algorithms147 (e.g. RankNet174, AdaRank175, and LambdaMART176) to be 

developed into a new system MeSH Now153, which won the 2014 BioASQ 

Challenge177, and served as the baseline model in the 2015 BioASQ Challenge169.  

5.2.1 List-wise learning-to-rank 

 Like many other models at that time, Huang et al.136 collected MeSH term 

candidates from similar articles for each target article. In particular, they modified 

the PRC algorithm52 to retrieve KNN articles from the MEDLINE database for each 

target article. However, instead of simply summing the affinity scores between the 

target article and its neighbors, the group adopted a list-wise learning-to-rank 

algorithm ListNet90 to estimate the relevance of candidates. 

 Given a target article 𝐷 in a training set, a list of 𝑟 MeSH term candidates 

{𝑥%, 𝑥', … , 𝑥�} is prepared, where every candidate 𝑥* is represented by a feature 

vector 𝑥* = (𝑥%* , 𝑥'* , … , 𝑥Y* ), where 𝑘 is the number of features. Every candidate 𝑥* 
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has a label 1 or 0; 1 means 𝑥* is assigned by the human indexer while 0 means 

not. Therefore, labels form a list 𝑌 = {𝑦%, 𝑦', … , 𝑦�} . The ranking function 𝑓(𝑥) 

assigns a score list 𝐹 = {𝑓%, 𝑓', … , 𝑓�} based on {𝑥*}. Every element in 𝑌 and 𝐹 is a 

relevance score of a MeSH term candidate estimated by the human indexer and 

the ranking function. Based on the relevance scores, the authors proposed two 

empirical distributions  

Pr	(𝑦*) ∝
exp	(𝑦*)
exp 𝑦��

�/%
 [29] 

and 

Pr 𝑓* ∝
exp	(𝑓*)
exp 𝑓��

�/%
 [30] 

 The distance between Pr	(𝑦*) and Pr	(𝑓*) was minimized to also minimize 

the cross-entropy between the two distributions, 

𝐿 𝑌, 	𝐹 = − Pr 𝑦* ∗ log	 Pr	(𝑓*))
,

*/%

 [31] 

𝑓* = 𝑓 𝑥* = 𝑤o

Y

o/%

∗ 𝑥o* [32] 

where 𝑚 is the number of training instances, and 𝑤o is the weight of every feature 

learned from the training data. 

5.2.2 Similar articles for MeSH term assignment 

 Features for MeSH term assignment have two important sources that have 

been widely used in MeSH term assignment studies136,160,165: the target article (i.e., 

the article needs MeSH terms), and external sources including articles similar to 
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the target article, and knowledge bases. Huang et al.136 adopted five categories of 

11 features that form a wide feature spectrum (Table 8). Among the five categories, 

neighborhood features are from similar articles, synonym features are from 

external knowledge bases, and the rest are from target articles.  

Table 8. Five categories of 11 features. The content of the table is cited from Huang et 
al.136 Among the five categories, neighborhood features are from similar articles, synonym 
features are from external knowledge bases, and the rest are from target articles.  

Category Feature 
Neighborhood 
features 

Number of neighbor documents in which a candidate MeSH term appears 
Summed document similarity scores 

Overlap 
features 

Number of unigrams overlapping between the MeSH term and the title or 
the abstract 
Number of bigrams overlapping between the MeSH term and the title or 
the abstract 

Translation 
probability 
features 

Probability of translating the title into a set of MeSH terms 
Probability of translating the abstract into a set of MeSH terms 
The assumption behind the features is that title and abstract is written in 
the authors’ language, while MeSH terms are indexers’ language. A  
translation model evaluates the translation probability, 

Pr 𝑀𝐻 𝑡𝑒𝑥𝑡 =
1
𝑛,

Pr	(𝑡*|𝑠�)
�

�±∈3M²3;�/%

,

3w∈´µ;*/%
 [33] 

where MH is a MeSH term, text is either a title or an abstract, 𝑚 is the 
number of words in the MeSH term, 𝑛 is the number of words in the text, 
𝑡* and 𝑠� are single words in the MeSH term and in the text respectively. 

Query-
likelihood 
features  

Two translation-based likelihood scores between a MeSH term and the 
title and abstract of an article when using the MeSH term as a query 
The Okapi scores between a MeSH term and the title and abstract of an 
article when using the MeSH term as a query 

Synonym 
features  

Whether one of the entry terms can be exactly matched to the title and 
abstract 
Whether there exists an entry term whose unigram words have all been 
observed in the document text 

 

 Although most features come from the target article, Huang et al.’s analysis 

showed that the two features from similar articles dominated the results (Table 9). 

This result suggested that the algorithm for selecting similar articles has substantial 

impact on the performance of MeSH term assignment.  



	

	

72	

Table 9. Feature ablation study cited from Huang et al136. The asterisks indicate significant 
differences from ‘All features’. After removing the neighborhood features, all scores 
dropped significantly.  

Feature set Precision Recall F score MAP 
All features 0.39 0.712 0.504 0.626 
 Neighborhood features 0.315* 0.575* 0.407* 0.435* 
 Unigram/bigram features 0.389 0.711 0.503 0.626 
 Translation probability features 0.389 0.711 0.503 0.626 
 Query likelihood features 0.385 0.704 0.498 0.626 
 Synonym features 0.385 0.703 0.497 0.618 
Only neighborhood features 0.370* 0.677* 0.478* 0.602* 
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6 Retrieval and similarity determination for biomedical 

articles 

6.1 The importance of neighborhood features 

6.1.1 Overview 

 Inspired by the results from Huang et al.136, we employed Convolutional 

Neural Networks178,179 (CNN) to extract features (CNN features) from target 

articles, and aimed at capturing information that was not covered by the manually 

created features in Huang et al.136. In our study, we analyzed the performance of 

CNN features in a point-wise learning-to-rank91 framework for all of the MeSH 

terms. Also, we combined CNN features with features from similar articles, and 

studied the performance in the same framework. For each target article, the 20 

most similar articles were identified from the entire MEDLINE collection using the 

PubMed Related Citation (PRC) algorithm52, which was also employed by Huang 

et al.136. Since PRC is a 𝑘-Nearest-Neighbor (KNN) algorithm, we called similar 

articles from PRC KNN articles. Accordingly we called the features from KNN 

articles, KNN features (e.g. neighborhood features in Huang et al.136).  

6.1.2 Methods 

 This section describes the methods used in CNN-based MeSH term 

assignment, including document model, CNN model, and point-wise learning-to-

rank framework. 
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6.1.2.1 Document model 

 A document, such as an abstract, consists of a sequence of words. Using 

a distributed representation180, a word is represented by a unique 𝑘-dimensional 

vector 𝑥 ∈ ℝY of real numbers. All words from the training, validation, and test sets 

form a vocabulary 𝑉 ∈ ℝr¸×Y , where 𝑁¹  is the size of the vocabulary. Given a 

document 𝐷 of 𝑁£ words, it is represented as a 𝑁£×𝑘 matrix, where row 𝑖 is a 𝑘 

dimensional vector for the word 𝑥* in i-th position of 𝐷. In our work, each MeSH 

term candidate was appended by its entry terms, which were given in the MeSH 

thesaurus, and the list of terms was treated as a document.  

6.1.2.2 CNN model 

 We adopted the CNN model (Figure 7) from Kim178 to extract features from 

target articles. In the model, a convolution layer extracted distributed 

representation features from the input article. The layer consisted of three 

components: the convolution operation, the non-linearity operation and the pooling 

operation.  

 In the convolution operation, we used wide convolution filters to recognize 

patterns (wide means padding the input matrix if it does not match the shape of a 

filter91). For each filter 𝑤 ∈ ℝ�Y , where ℎ  is a window size, i.e. number of 

consecutive words this filter covers, a new matrix is generated after the convolution 

operation. For example, given a document fragment 𝑥*:*[�_% (the consecutive ℎ 

words from the 𝑖-th position in a document), the convolution 𝑤 ∙ 𝑥*:*[�_% generated 

a real number output.  
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 After the convolution operation, a non-linearity operation (a.k.a. activation 

function) is applied to the output of the convolution filters. We chose the hyperbolic 

tangent as the non-linear function. Therefore, an outcome 𝑐* is generated as 𝑐* =

tanh	(𝑤 ∙ 𝑥*:*[�_% + 𝑏), where 𝑏 is a bias term for every filter. When a filter slides 

through all of the available windows in an input text matrix, the filter generates a 

list of features 𝑐 = [𝑐%, 𝑐', … , 𝑐rÁ]. The size of the feature list is 𝑁£, because we 

chose the wide convolution. 

 When filter outcomes were ready, we applied a pooling operation over the 

outcomes to aggregate the information, and generated features for ranking 

algorithms. We chose the max pooling method, which is frequently used to capture 

the most important feature. 𝑐 = max	{𝑐} was taken as the feature corresponding to 

the filter, and it was the input to the learning-to-ranking algorithm.  

6.1.2.3 Point-wise learning-to-rank framework 

 We adopted a point-wise learning-to-rank framework from Severyn et al.91 

to integrate CNN features and KNN features for MeSH term assignment (Figure 

8). When CNN feature vectors and KNN feature vectors were ready, we 

concatenated the vectors and fed them into the point-wise learning-to-rank 

algorithm to learn a ranking model. The ranking model was learned using 

stochastic gradient descent with a Python package Theano181. When the learning 

process was completed, we applied the ranking model to compute probabilities of 

MeSH term candidates for given target articles. 
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Figure 7. An illustration of Kim's CNN model178 for sentence classification. We adopt the 
feature generation part in the black box. This figure is a modification of Figure 1 in Kim178. 
An example document “safety computerized … support systems” consists of 11 words. 
Every word is represented by a six-dimensional vector of random real numbers. The 
convolution layer extracts information from input texts using the multiple convolution filters 
and the non-linearity operation. The extracted information is aggregated by the max 
pooling operation.  

 

Figure 8. CNN features and KNN features are applied to learn a ranking model in a point-
wise learning-to-rank framework. When KNN features are included, they are concatenated 
with the CNN features.   
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6.1.3 Data and evaluation  

 We made Huang et al.136 the baseline model, and trained and tested our 

models on the same article collection that Huang et al. used. Every article came 

with a title, abstract, MeSH terms, and the 20 most similar articles.  

 The article collection includes three subsets: SMALL200, NLM2007, and 

L1000. SMALL200 is a set of randomly selected 200 article that received MeSH 

terms between 2002 and 2009.  NLM2007 is a test set obtained from the NLM 

indexing initiative137 created in 1997. L1000 includes randomly selected 1000 

articles that received MeSH terms between 1961 and 2009.  

 The performance was measured using mean average precision (MAP), 

which is detailed in section 2.8. For each target article, the gold standard was the 

set of associated MeSH terms assigned by NLM, and the predicted MeSH terms 

were the top 25 MeSH terms from the point-wise learning-to-rank algorithm trained 

ranking model. The predictions were compared with the gold standard to compute 

MAP scores.  

6.1.4 Implementation 

 Python package Theano181 is employed for implementing CNN and the 

point-wise learning-to-rank algorithm. The scripts are available from 

https://github.com/w2wei/deep-qa. A virtual machine on the iDASH135 cloud with 

32 CPU (Intel(R) Xeon(R) 2.30GHz) and 32 GB RAM was used.  

6.1.5 Results 

 In the baseline method136, the ranking model was trained on SMALL200, 

and was evaluated on NLM2007 and L1000 separately. All articles in these 
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datasets were represented by 11 manually generated features. KNN features 

included the number of neighbor documents, in which a candidate MeSH term 

appears, and summed document similarity scores.  

 We also trained ranking models on SMALL200 and tested them on 

NLM2007 and L1000. However, articles are represented by CNN features alone 

or together with a KNN feature, i.e. the number of neighbor documents in which a 

candidate MeSH term appears. The results (Table 10) show that the performance 

of the combination of CNN features and one KNN feature approaches all manually 

generated features. However, CNN features alone cannot compete with all manual 

features. In fact, the two feature types demonstrate approximately equal 

contributions to the performance. The results are consistent with the observation 

in Huang et al.136 that the KNN feature is critical for improving MeSH term 

assignment performance.  

Table 10. MAP scores from different features. Ranking models were trained on SMALL200, 
and tested on NLM2007 and L1000 separately. The baseline method uses all eleven 
features in Huang et al.136 The decimals are the mean average precision scores. The 
percentages correspond to the differences from the baseline values.  

Feature set NLM2007 L1000 
All features in Huang et al.136 (baseline) 0.626 0.615 

CNN 0.335 (-46.4%) 0.307 (-50.1%) 
CNN + KNN 0.602 (-3.8%) 0.584 (-5.0%) 

 

6.2 Finding similar PubMed articles 

6.2.1 Introduction 

 Based on the results from the above CNN study and the work by Huang et 

al136., we realized it is critical to find the most appropriate KNN articles from 
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PubMed for MeSH term assignment. Therefore,  I studied the PubMed Related 

Citations (PRC) algorithm52 developed by the NLM, which recommends related 

articles that may be of interest to users. A brief introduction to the PRC algorithm 

is available in section 2.5.2.2. For more comprehensive information, please refer 

to Lin and Wilbur52 and PubMed Help182. 

 Even though it is widely used, the PRC algorithm may not accurately 

recommend desired articles to the reader. In particular, two articles of different 

topics may have similar distributions of term counts; in such case, the PRC 

algorithm may conclude that the two articles are related and recommendable. For 

example, if two articles share descriptions of experimental techniques and related 

genes, but differ in the topic of disease mechanisms, the articles may have a large 

number of terms in common. On the other hand, if two articles discuss the same 

topic, but use different terms, the PRC algorithm is likely to miss this 

recommendation. 

 Our objective was to improve the PRC algorithm and to promote the 

selection of articles related to the same research topic. This was not the first 

attempt to do so, and much effort has been spent to improve the retrieval 

performance of related MEDLINE citations. For example, Fontaine et al.183 

developed MedlineRanker, which is a system that identifies the most discriminative 

words in query articles, and uses the words as query terms to retrieve related 

citations. Poulter et al.184 developed a system named MScanner that trains a naïve 

Bayes classifier on MeSH terms and on journal identifiers extracted from a set of 

user-provided articles, and uses the classifier to select and rank related citations. 
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Both performed well when compared on nine topics, in terms of the area under the 

ROC curve183. However, these approaches were not very practical because both 

systems required users to provide a set of articles related to a query topic, rather 

than a few keywords or a short description. eTBLAST185 is a method similar to 

PRC, but it determines similarity based on word alignment. Therefore, the length 

of the query text has significant impact on the retrieval performance. Boyack et 

al.186 investigated the accuracy of five similarity metrics (PRC, BM25, topic 

modeling, latent semantic analysis, and term frequency-inversed document 

frequency) for clustering two million biomedical articles. The group concluded that 

PRC generated the most coherent and the most concentrated cluster solution. 

Aside from suggesting related articles to PubMed users, the PRC algorithm is used 

for other purposes as well. For example, Huang et al.136 collected MeSH terms 

from articles recommended by the PRC algorithm for assignment of MeSH terms 

to a new article.  

6.2.2 Methods 

6.2.2.1 An extension of the PRC algorithm 

 Our approach extends the PRC algorithm by considering similar terms. In 

the PRC algorithm, a topic is associated with a single unique term. We relaxed the 

assumption in the modified algorithm, and allowed a topic to be associated with 

multiple similar terms. Similar terms were considered as important as the original 

term. We prepared similar terms for the vocabulary of TREC data using 
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Word2Vec26, a package based on the Skip-gram model161. We trained distributed 

vector representations of terms with Word2Vec (vector size 100, minimum word 

count 40, window size 10) on three million MEDLINE citations that are available 

from the 2014 BioASQ Challenge177, and derived similar terms by comparing 

cosine distances between associated vectors. Training takes a few hours on a 

computer with four 2.67GHz processors and 16 GB of RAM. The trained model 

and derived similar terms can be reused for other PubMed article retrieval tasks. 

 We expanded terms in the query article to a set that includes the original 

term and the five most similar terms according to the trained Skip-gram model. The 

expansion allows approximate term matching: for a particular term in the article, if 

one of its similar terms occurs in a candidate related article, then the similar term 

is treated as the original one, and the contribution of this pair of terms is included 

in the similarity score. Therefore, articles that focused on the same topic but used 

different terms had a higher chance of being connected. 

 Given an article 𝑐 for a particular query article	𝑑, in the term weight function 

𝑤Ã,Ä we changed the term frequency 𝑘 to 𝑝 𝑘** , where 𝑘**   is count of term 𝑡 and 

its similar terms in article 𝑐, and 𝑝 is the ratio of the count of term 𝑡 in article	𝑑 over 

the count of all terms in article 𝑑.  

𝑤Ã,Ä =
𝑖𝑑𝑓3

1 + 𝜇
𝜆

� (Yw)w _%
e_ m_n o

										 [34] 

                                                
26 https://code.google.com/p/word2vec/ 
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The term weights in article 𝑑  are not changed. Therefore, the similarity score 

𝑃 𝑐 𝑑 = 𝑤3,4 ∗ 𝑤3,År
3/%  is asymmetric, and depends on the set of terms in query 

article	𝑑.  

6.2.2.2 Experimental design 

 We evaluated the performance of our eXtended PRC algorithm (XPRC) on 

two datasets separately: (1) 4,584 articles (utilizing only title, abstract and MeSH 

terms) from the TREC 2005 Genomics Track evaluation dataset (Genomics data)27, 

and (2) 3034 articles (utilizing only title and abstract) from the TREC 2014 Clinical 

Decision Support Track evaluation dataset (CDS data) 28 . Among the 4,584 

Genomics articles, we identified 4,234 valid ones for evaluation29. The valid articles 

were assigned to 50 TREC official topics (i.e. information needs); the 3,034 CDS 

articles were assigned to 30 topics; one article could be assigned to multiple topics. 

If an article was labeled as “possibly relevant” or “definitely relevant” to a topic, we 

assigned the article to the topic. If two articles had topics in common, we 

considered them to be “similar” in our evaluation. 

 In the evaluation step, within each dataset, each article served as a query 

article, and the remaining articles were ranked according to the PRC or XPRC 

similarity30. For each query article, the PRC algorithm recommended articles that 

                                                
27 http://skynet.ohsu.edu/trec-gen/data/2005/genomics.qrels.large.txt 
28 http://trec-cds.appspot.com/qrels2014.txt 
29 Among the 4584 PMID in the TREC evaluation dataset, 92 PMIDs appear multiple times, 
1 PMID no longer exists, 248 PMIDs have no abstract, 6 PMIDs have problems with PRC 
(i.e., the most similar article is not itself), 2 PMIDs have problems with Lucene, the indexing 
software. After removing all these articles, 4234 articles were used for the experiments.	
30 Code is available from https://github.com/w2wei/XPRC.git 
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were assigned into the true positive (TP) group or the false positive (FP) group 

according to the TREC gold standard. If the recommended article and the query 

article shared the same topic, this was considered a TP result. If the recommended 

article and the query article had no topics in common, this was considered a FP 

result.  

 We processed all of the text following NLM Help182. For example, we split 

the abstract and title of each article into terms following the PRC tokenization rules. 

In addition, terms were stemmed using the Porter stemmer. To understand why 

the PRC algorithm had false positives, we compared the number of matched terms 

in the sets of TP and FP articles under multiple conditions, and measured the 

Kullback–Leibler (K-L) divergence of normalized weight distributions between 

articles and corresponding recommended articles obtained using the PRC 

algorithm. The term matching was based on string comparison, and the weights 

were calculated using the formula described in the NLM fact sheet187. When 

comparing two articles, matched terms were kept and the associated weights were 

normalized. 

6.2.2.3 Evaluation measures 

 We used precision at the threshold of five articles in the same way as 

described for the development of the PRC algorithm. In addition, we also 

measured average precision (AP) and mean average precision (MAP) at the same 

threshold. The definitions of precision, AP and MAP are available in section 2.8.  



	

	

84	

6.2.3 Results 

6.2.3.1 Evaluation of the PRC algorithm 

 We recorded some characteristics of TP articles and FP articles. First, as 

expected, the average number of matched terms in TP articles is different from the 

number in FP articles. The average number of matched terms in TP was 29, and 

the average number in FP was 24. We used an independent two sample t-test on 

the 4,234 Genomics articles to test the null hypothesis that the average number of 

matched terms in TP was equal to the number in FP. The p value was 9e-139, 

hence the hypothesis was rejected, as expected. 

 Next, we considered the normalized weight distributions of matched terms 

in TP and FP articles. The average K-L divergence between a query article and 

the TP articles from the PRC algorithm recommendations was 0.18, while the 

divergence between a query article and its FP recommendations was 0.21. Using 

an independent two sample t-test and the Genomics dataset, we tested the null 

hypothesis that the average K-L divergence between query articles and their TP 

articles was equal to the average K-L divergence between query articles and the 

FP articles. The p value was 3e-93, hence the hypothesis was rejected, as 

expected. 

 Finally, we analyzed PRC’s capability to match terms at various PRC weight 

thresholds, for TP and FP articles. We used a series of independent two sample t-

tests to test the null hypothesis that the count of matched high-weight terms in the 

set of TP articles was equal to the count of high-weight terms in the set of FP 

articles at different weight thresholds on the Genomics dataset. As we increased 
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the threshold from 0 to 1.8, there was a significant change in the counts of matched 

high-weight terms in the two groups (Figure 9), except for a small region in which 

the null hypothesis of equal counts could not be rejected. When the weight 

threshold was lower than 0.75, TP articles matched significantly more high-weight 

terms than FP articles. However, when the threshold was over 0.8 (i.e., only terms 

with weight over 0.8 were considered in computing the similarity score), FP articles 

matched significantly more terms than TP articles. This result conflicts with our 

intuition that TP articles should always share more meaningful and important terms 

with the query article than FP articles. In the experiments, we observed that PRC 

high-weight terms were not necessarily the critical terms in an article (i.e., terms 

directly related to the focus of the article, such as disease names, gene names). 

High-weight terms were often general terms, such as “gene”, “protein” and 

“disease”. When critical terms are missing from matched terms, terms that are less 

relevant to the focus of the article make major contributions to the similarity score. 

If there are large numbers of such high-weight matched terms, a FP article is 

recommended. For example, the PRC algorithm recommends article 

PMID11480035 as related to article PMID10226605, although the two articles are 

not of the same topic according to the TREC evaluation dataset. The articles match 

in high-weight terms, such as “mucosa”, and “mRNA”, but PMID11480035 lacks 

critical terms, such as “APC”, “colon” and “colorectal”. 
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Figure 9. A comparison of the number of matched term counts at different PRC weight 
thresholds. The red curve is the smoothed trend of matched terms in TP articles. The blue 
curve is the smoothed trend of matched terms in FP articles. The two curves cross 
between X= 0.76 and X=0.8. The green curve illustrates the p-value of the difference 
between TP and FP for the null hypothesis that the count of matched terms in TP is equal 
to the count of terms in FP above different weight thresholds. When 0.76<X<0.8, we 
cannot reject the null hypothesis of equal counts. Only 0.14% of all term occurrences have 
weights over 1.8. Therefore, we do not show these special cases in this figure. 

6.2.3.2 XPRC: eXtended PRC algorithm 

 Term expansion is an effective approach to improve the performance of the 

PRC algorithm. The expansion helps the PRC algorithm recognize articles on 

related topics, even though they do not have matched critical terms. We wanted to 

understand in which situations XPRC could potentially enhance the results of PRC. 

First, we stratified the articles according to precision and AP of the PRC algorithm. 

After that, we ran XPRC on every stratum of data and compared its performance 

with PRC. The results of XPRC and the comparisons stratified by precision and 

AP are shown in Figures 10 and 11, and in Tables 11, 12, 13 and 14. The results 
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show that the XPRC algorithm achieves better performance than the PRC 

algorithm for certain categories of cases.  



	

	

88	

 

 

Figure 10. A comparison of PRC and XPRC at five precision levels determined by the 
PRC algorithm on the Genomics dataset and CDS datasets. For the Genomics articles in 
which PRC does not achieve perfect precision, XPRC has better overall performance in 
all but one group. For the CDS articles, XPRC achieved better performance in PRC’s low 
precision articles. Values associated with every data point are available in Tables 11 and 
12. The error bars indicate standard errors.   
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Figure 11. A comparison of PRC and XPRC at five average precision (AP) levels 
determined by the PRC algorithm on the Genomics dataset and CDS dataset. For the 
Genomics articles in which PRC does not achieve perfect AP, XPRC has better 
performance in all but one group. For the CDS articles, XPRC achieved better 
performance in PRC’s low precision articles. Values of every data point are available in 
Tables 13 and 14. The error bars indicate standard errors. 
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Table 11. A comparison of PRC and XPRC at different precision levels determined by the 
PRC algorithm on the Genomics dataset. The cumulative article count is the number of 
articles with PRC precision below a given precision level. For example, there are 158 
articles that result in PRC precisions lower than 0.2. PRC has precision 0.0 on all the 58 
articles in the 0.0 group, so its macro-average precision and standard error are also 0. 
XPRC has better performance on these articles. p-value shows the significance of the 
difference between PRC and XPRC at different precision levels. 

Precision levels 0.0 0.2 0.4 0.6 0.8 1.0 

Cumulative article counts 58 158 314 603 1215 4234 

PRC  
macro-average 
precision 0 0.127 0.262 0.424 0.613 0.889 

standard error 0 0.008 0.009 0.008 0.007 0.003 

XPRC  
macro-average 
precision 0.338 0.443 0.523 0.614 0.705 0.864 

standard error 0.048 0.028 0.019 0.013 0.009 0.004 

p-value 3e-09 3e-21 3e-30 2e-31 2e-16 4e-07 

 

Table 12. A comparison of PRC and XPRC at different precision levels determined by the 
PRC algorithm on the CDS dataset. The format of this table is the same as that of Table 
11. 

Precision levels 0.0 0.2 0.4 0.6 0.8 1.0 

Cumulative article counts 87 268 539 1000 1670 3034 

PRC  
macro-average 
precision 0 0.135 0.268 0.421 0.573 0.765 

standard error 0 0.006 0.006 0.006 0.006 0.005 

XPRC  
macro-average 
precision 0.172 0.248 0.315 0.410 0.509 0.645 

standard error 0.024 0.015 0.011 0.009 0.007 0.005 

p-value 2e-10 2e-11 3e-4 0.294 4e-12 6e-57 
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Table 13. A comparison of PRC and XPRC at five average precision (AP) levels 
determined by the PRC algorithm on the Genomics dataset. The cumulative article count 
is the number of articles with PRC AP below the given AP level. XPRC has better 
performance at all levels except for 1.0. p-value shows the significance of difference 
between PRC and XPRC at different AP levels. 

Average precision levels 0.0 0.2 0.4 0.6 0.8 1.0 

Cumulative article counts 58 231 420 687 1215 4234 

PRC  
MAP 0 0.09 0.198 0.324 0.504 0.858 

standard error 0 0.005 0.007 0.007 0.007 0.004 

XPRC  
MAP 0.274 0.417 0.493 0.555 0.633 0.827 

standard error 0.045 0.024 0.018 0.014 0.01 0.004 

p-value 1e-07 8e-31 2e-45 2e-45 2e-25 1e-07 

 

Table 14. A comparison of PRC and XPRC at five average precision (AP) levels 
determined by the PRC algorithm on the CDS dataset. The format of this table is the same 
as that of Table 13. 

Average precision levels 0.0 0.2 0.4 0.6 0.8 1.0 

Cumulative article counts 87 363 663 1079 1670 3034 

PRC  
MAP 0 0.094 0.201 0.325 0.471 0.709 

standard error 0 0.004 0.005 0.006 0.006 0.006 

XPRC  
MAP 0.103 0.181 0.253 0.317 0.408 0.565 

standard error 0.020 0.011 0.010 0.009 0.008 0.006 

p-value 2e-6 3e-12 8e-6 0.446 2e-10 6e-62 

 

6.2.3.3 The scalability of XPRC 

 We compared the time and memory usage for running queries using PRC 

and XPRC (Table 15). We ran queries on different sizes of corpora and recorded 

the time and maximum memory usage. The algorithm and its implementation can 

still be further optimized. 
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Table 15. Time and memory usage of PRC and XPRC. The corpora were randomly 
selected from the Genomics dataset. For each algorithm, we ran 10 queries on every 
corpus. The time shown in this table is the average value of all queries on every corpus. 
The memory in this table is the maximum value for all queries on every corpus. 

  PRC XPRC 

Corpus Size Time (s) Maximum Memory (MB) Time (s) Maximum Memory (MB) 

10 0.08 65 2.1 590 

100 0.15 68 2.2 591 

1000 0.7 144 2.6 601 

 

6.2.4 Discussion 

 The gold standard is critical in the measurement of model performance. In 

this study, the gold standards were provided in the 4584 annotated articles in the 

TREC 2005 Genomics Track data and the 3034 TREC 2014 Clinical Decision 

Support Track data. One issue with the gold standard is that there were a large 

number of articles under every topic. The average number of articles per topic in 

the Genomics dataset was 815 and this number was 1264 in the CDS dataset. 

This issue sometimes makes PRC and XPRC indistinguishable in terms of 

precision and AP: PRC and XPRC make different recommendations for the same 

query, but all of their recommendations are true positives.  

 Our data-driven approach provided similar terms that could not be found in 

traditional synonym dictionaries. One limitation of the XPRC algorithm is that the 

expansion was applied to every term in the query article. This may introduce 

undesired expansion to non-critical terms. In addition, the parameters were not 

optimized for our experimental setting. We used the 𝜇	and 𝜆 proposed by Lin and 

Wilbur52. To further improve the performance of the XPRC algorithm, we could 
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develop targeted term expansion and optimize the parameters on the TREC 

evaluation dataset. However, the algorithm needs to be applied to more annotated 

corpora so we can confirm our results and evaluate its scalability. From the 

analysis of the PRC algorithm, we confirm that TP articles and FP articles have 

different distributions of term weights, and that the majority of articles achieve 

perfect precision, but a significant number of them still result in low precision, 

leaving some room for improvement.  

 We could explore heuristic methods to select when to use the PRC or XPRC 

results, but there is no simple solution. An empirical method188 achieved good 

performance on the Genomics dataset (i.e., better performance than PRC in all 

conditions) but it did not perform as well on the CDS dataset.  

 The principle of extending a set of terms to assess similarity can be utilized 

in other problems in which the goal is to find related objects. For example, XPRC 

can be used to find a set of articles that report on analyses on a particular data set 

of interest (i.e., articles that are related to the one that first described or utilized the 

data set). These articles may point to derived data or new and related data sets of 

interest. Term expansions could also be used for meta-data in the same way we 

used them for embedded terms in titles and abstracts. 

Chapter 6, in part, is a reprint of the material as it appears in Finding Related 

Publications: Extending the Set of Terms Used to Assess Article Similarity. Wei, 

Wei; Marmor, Rebecca; Singh, Siddharth; Wang, Shuang; Demner-Fushman, 

Dina; Kuo, Tsung-Ting; Hsu, Chun-Nan; Ohno-Machado, Lucila, AMIA Summits 
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on Translational Science Proceedings, 2016. The dissertation author was the 

primary investigator and author of this paper. 
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7 Conclusions 

7.1 Dissertation summary 

 Biomedical dataset indexing is an emerging, fertile area for information 

retrieval research. Making use of external resources (e.g. additional linked 

information) to enrich the characterization of the data objects has the potential to 

improve the effectiveness of biomedical dataset retrieval. 

 In the biomedical dataset retrieval study (Chapter 4), I developed a pipeline 

to collect additional linked information for datasets, transform users’ free-text 

requests to queries, and rank relevant datasets using a “retrieval plus re-ranking” 

strategy. To improve the representation of biomedical datasets, we explored online 

resources and collected information to enrich the metadata of datasets. In 

particular, we experimented with three key fields (title, description, and overall 

design) of the studies associated with datasets. The results showed that removing 

noise is critical to make use of online resources. The rule-based query formulation 

module extracted keywords from users’ free-text requests, expanded the keywords 

using NCBI resources, and finally formulated Boolean queries using pre-designed 

templates. The module is not yet robust to handle all types of free-text requests, 

but it has laid a foundation for intelligent query generation mechanisms when user 

query logs are available. The novel “retrieval plus re-ranking” strategy captured 

relevant datasets in the retrieval step, and ranked datasets using the customized 

relevance scoring functions that models unique properties of the metadata of 
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biomedical datasets. The “retrieval plus re-ranking” strategy is open to various 

retrieval and ranking models, thus there remains much to be explored.  

Linked information can exist in the form of articles that cite datasets. 

Therefore, understanding and improving upon methods to index articles may 

indirectly help with the difficult task of indexing datasets. We thus extended our 

work to explore improvements to automated MeSH assignment and article 

similarity determination. During a MeSH term assignment study, we realized that 

similar articles determination is a key external resource for MeSH term candidates. 

Therefore, we studied the retrieval of biomedical publications, and developed an 

algorithm to find similar articles in PubMed (Chapter 6). Currently, similar articles 

in PubMed are determined by the PRC algorithm52. However, the PRC algorithm 

may not always find correct articles. In particular, when the distributions of term 

counts are similar, the PRC algorithm is likely to conclude that the articles are 

similar, even though they may be about different topics. For example, if two articles 

detailing the mechanisms of different diseases describe similar techniques and 

mention related genes, the articles may have a large number of terms in common. 

On the other hand, when two articles discuss the same topic but use different terms, 

the PRC algorithm is likely to miss the similarity. For the above problem, we 

implemented a term expansion method to improve the PRC algorithm, dubbed the 

eXtended PRC (XPRC). Unlike popular ontology-based expansion methods, we 

used the Word2Vec model161 to learn distributed representations of terms over one 
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million articles from PubMed Central 31 , and identified similar terms using the 

Euclidean distance between distributed representation vectors. We showed that, 

under certain conditions, using the query expansion based on a distribution 

representation can improve precision, and helps find similar PubMed articles. 

7.2 Future work 

 A natural extension of the dissertation is to develop advanced 

representation models for biomedical objects. Token normalization and 

information integration are two fundamental tasks in representation model design. 

Token normalization helps match character sequences when they are not identical 

but are expected to be matched, and information integration helps enrich the 

representation of objects. In this section, I propose future work on improving token 

normalization and information integration.  

7.2.1 Token normalization 

 When an information retrieval system receives a query, the system breaks 

the query into tokens, and identifies documents containing the tokens for potential 

relevance to the query.  

 Manning et al.31 discussed two widely-used strategies to implement token 

normalization: creating equivalence classes and maintaining relations between 

unnormalized tokens; and “the most standard way to normalize is to implicitly 

create equivalence classes, which are normally name after one member of the set”. 

For example, ‘anti-discriminatory’ and ‘antidiscriminatory’ are mapped to the latter. 

                                                
31 https://www.ncbi.nlm.nih.gov/pmc 
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However, the equivalence class strategy excels at removing characters from 

tokens, but is mediocre at adding characters (e.g. mapping ‘antidiscriminatory’ to 

‘anti-discriminatory’).  

 A deep learning-based solution may enable character addition in the 

equivalence classing strategy. The deep learning methods can transform tokens 

into distributed representation vectors (i.e. embeddings, embedding vectors) of 

high dimensions, such as Word2Vec161. Based on the distributed representation 

vectors, it is possible to identify related tokens according to the Euclidean 

distances between vectors. Once related tokens are identified, rule-based 

algorithms (e.g., editing distance based methods) may be applied to find 

morphologically similar tokens among the related tokens, and find tokens with 

more characters (i.e. character addition). Moreover, a recent deep learning model, 

the transE model189 and its derivative models improve upon the Word2Vec by 

further encoding the manually defined hierarchical relations among terminologies 

into distributed representation vectors. The equivalent tokens inferred from the 

transE model family will naturally include the hierarchical relations, and thus 

potentially provide more benefits to token matching in the retrieval.   

7.2.2 Data-literature integration 

 In this dissertation, we studied retrieval tasks for datasets and articles in an 

independent fashion. In the future, it will be important to develop methods in which 

the tasks are combined in a systematic fashion. Citing articles are one way to 

approach this. Cited articles may be another. Associated articles, especially 

primarily associated articles (i.e. articles that announce the existence of the 
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datasets), are expected to help enrich metadata, and to make datasets more 

discoverable. However, it is not yet clear how to make efficient use of the 

associated articles.  

 Articles are complex objects, rather than mere texts. At the text level, 

articles are split into multiple sections including title, abstract, main text, references, 

appendix, etc. The sections may be further split into sub-sections, such as 

introduction, background, methods, results, and conclusions. Beyond the text, 

latent features, such as topics, can be extracted from text using machine learning 

methods or manually labeled according to certain controlled vocabularies.  

 To maximize the contribution of associated articles, I propose the 

integration of associated articles with metadata in two ways.  

 First, one can expand the metadata schema. In this approach, dedicated 

metadata attributes are designed for selected parts of articles, such as the title, the 

conclusion in abstract, and the topic distribution of the main text. Moreover, the 

approach does not change the retrieval process. In Chapter 4, we discussed the 

contribution of additional information to the retrieval of biomedical datasets. The 

results showed that the additional information itself slightly improved the infNDCG, 

potentially due to the noise. This issue may also apply to the associated articles, 

which may contain more irrelevant information, such as the background. Therefore, 

it is worthwhile to study the contribution of each sub-section of the abstract.  

 Second, one can build a separate index for selected parts of articles. In this 

approach, a separate index can be built for each section (e.g. title) or their 

combination (e.g. title and abstract), and the results from each index will be merged 
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with the results from the metadata index. The approach is flexible in weighting the 

contribution from each section of article. For example, if the title and the 

conclusions in abstract were the most informative part of articles, we would assign 

or learn larger weights for results from the corresponding indices. Accordingly, the 

final ranking list of relevant datasets receive more impact from the highly-weighted 

parts of articles. Compared with the first approach, it is also easier to interpret the 

final results when using multiple indices for each section of the associated articles.  

7.3 Final remarks 

 Information retrieval techniques have advanced across the entire field, in 

the form of representation models fulfilling the requirements of different 

applications, indexing strategies of higher efficiency in space or time, retrieval 

models with improved performance in identifying the most relevant objects, and 

evaluation metrics designed for a variety of purposes. In biomedical research, 

information retrieval techniques have helped researchers find desired publications, 

datasets, and other information with ease. Further research on developing more 

robust representation models, more intelligent query formulation systems, and 

more scalable, efficient, and accurate ranking models will lead to smarter and more 

friendly information retrieval systems for biomedical research, and further advance 

the transformation from data to knowledge in biomedicine. 
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Appendix A. The standard fields for 20 data repositories 
 
YPED 
"dataset.title","dataset.description", "organism.name" 
 
ProteomeXchange 
"dataset.title", "keyword","organism.name" 
 
PhysioNet 
"dataset.title","dataset.description","organism.name" 
 
Phenodisco 
"topic", "MESHterm", "phenCUI"(UMLS concepts), "title", "Demographics", 
"demographics","inexclude", "desc","disease", "phenDesc", "gender", 
"organism.name" 
 
Peptideatlas 
"dataset.title","dataset.description","treatment.description", 
"organism.name","organism.strain" 
 
PDB 
"materialEntity.name", "dataItem.keywords", "dataItem.title", 
"dataItem.description","citation.title", "gene.name", 
"organism.source.scientificName", "organism.source.strain", 
"organism.host.scientificName", "organism.host.strain" 
 
Openfmri 
"dataset.title","dataset.description", "organism.name" 
 
Nursadatasets 
"publication.description", "dataset.keywords", "dataset.title","dataset.description", 
"organism.name" 
 
Neuromorpho 
"dataset.title", "dataset.note", "treatment.title", 
"organism.strain","organism.scientificName","organism.name", 
"organism.gender", "anatomicalPart.name" 
 
MPD 
"dataset.title","dataset.description", 
"organism.strain","organism.scientificName","organism.name", "dataset.gender" 
 
GEO 
"dataItem.description","dataItem.title", "organism", "source_name" 
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Gemma 
"dataItem.title","dataItem.description", "organism.source.commonName" 
 
Dryad Data Repository 
"dataset.title", "dataset.keywords" 
 
Dataverse Network Project 
"publication.description", "dataset.title","dataset.description" 
 
CVRG 
"dataset.title","dataset.description" 
 
CTN  
"dataset.title","dataset.description", "organism.scientificName", "organism.name"  
 
Clinicaltrials 
"Study.recruits.criteria" (inclusion and exclusion criteria), "Treatment.description", 
"Dataset.briefTitle", "Dataset.keyword", "Dataset.title","Dataset.description" 
 
CIA 
"disease.name", "dataset.title", "anatomicalPart.name", 
"organism.scientificName", "organism.name"  
 
Bioproject 
"dataItem.description","dataItem.title","dataItem.keywords", 
"organism.target.species" 
 
Arrayexpress 
"dataItem.description","dataItem.title" 
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Appendix B. The full results of 2016 bioCADDIE Challenge.  
 

Group Submission infAP infNDCG NDCG@10 P@10 
(+partial) 

P@10 
(-partial) 

University of 
California, 
San Diego 

Elasticsearch 0.2446 0.4333 0.4228 0.5200 0.2733 

PSD-allwords 0.2792 0.4980 0.6152 0.7600 0.3267 

PSD-keywords 0.2391 0.4490 0.4088 0.5200 0.1667 
Distribution 

Shift 0.3309 0.4783 0.6504 0.7467 0.3600 

Ensemble 0.2801 0.4847 0.5398 0.6800 0.2400 

University of 
Melbourne 
 

1 0.202 0.3657 0.5200 0.6733 0.2067 

2 0.1985 0.3664 0.5129 0.6867 0.2000 

3 0.1815 0.3843 0.5298 0.7067 0.2000 

4 0.2568 0.4017 0.5366 0.7000 0.2733 

5 0.2436 0.3838 0.6325 0.7733 0.3333 

Elsevier 

1 0.2789 0.4292 0.5271 0.7000 0.2667 

2 0.2963 0.3925 0.5242 0.7067 0.2667 

3 0.2810 0.4219 0.5514 0.7133 0.3667 

4 0.3049 0.4368 0.6861 0.8267 0.4267 

5 0.3283 0.4235 0.6011 0.7133 0.3400 

Emory 
University 

1 0.2314 0.3985 0.4761 0.6267 0.2067 

2 0.2278 0.4011 0.4891 0.6000 0.2333 

3 0.2471 0.4241 0.5296 0.6933 0.2200 

4 0.2818 0.4173 0.5538 0.7200 0.2667 

Harbin 
Institute of 
Technology 

1 0.0998 0.3000 0.2043 0.2933 0.0533 

2 0.0683 0.2539 0.0991 0.1467 0.0333 

3 0.1957 0.3710 0.5265 0.6467 0.2800 

4 0.1185 0.2810 0.1512 0.2333 0.0867 

5 0.2576 0.3850 0.5472 0.7000 0.2800 
Poznan 
University of 
Technology 

1 0.0876 0.3580 0.4265 0.5333 0.1600 
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Group Submission infAP infNDCG NDCG@10 P@10 
(+partial) 

P@10 
(-partial) 

Mayo Clinic 

1 0.1393 0.3485 0.5735 0.7267 0.2600 

2 0.1424 0.3516 0.5726 0.7467 0.2533 

3 0.1077 0.3006 0.4406 0.5333 0.2267 

4 0.1423 0.3253 0.4453 0.5400 0.2333 

5 0.1628 0.3933 0.5243 0.6667 0.2600 

Oregon Health 
& Science 
University 

1 0.3193 0.3965 0.6006 0.7467 0.3333 

2 0.1396 0.4024 0.3953 0.4800 0.1933 

3 0.1921 0.4405 0.5345 0.6533 0.2800 

4 0.2862 0.4454 0.6122 0.7600 0.3333 

5 0.083 0.3156 0.2531 0.3400 0.1133 

Swiss Institute 
of 
Bioinformatics 
 

1 0.3006 0.3898 0.5736 0.7067 0.3200 

2 0.2997 0.3864 0.5726 0.7067 0.3267 

3 0.3008 0.3875 0.5718 0.7067 0.3267 

4 0.3458 0.4258 0.5237 0.6600 0.3267 

5 0.3664 0.4188 0.6271 0.7533 0.3467 

University of 
Illinois 
Urbana-
Champaign 

1 0.3054 0.4207 0.4877 0.6400 0.2667 

2 0.2246 0.3877 0.4724 0.5733 0.2333 

3 0.304 0.4185 0.4659 0.6133 0.2600 

4 0.2569 0.3959 0.4675 0.5800 0.2333 

5 0.3228 0.4502 0.5569 0.7133 0.2867 
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