UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A Parser With Something for Everyone

Permalink
https://escholarship.org/uc/item/6609c39]

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 3(0)

Author
Charniak, Eugene

Publication Date
1981

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/6609c39j
https://escholarship.org
http://www.cdlib.org/

A PARSER WITH SOMETHING FOR EVERYONE®

Eugene Charniak
Dept. of Computer Science. Brown University

ABSTRACT

We present a syntactic parser, Paragram, which tries
to accommodate three goals First it will parse, in a
natural way, urgrammatical senlences Secondly. it
aspires Lo ‘capture the relevant gencralizalions'’, as in
transformational grammar, and thus its rules are n
virtual one-lo-one correspondence wilth typical
transformatioral rules Firally, 1t promises to be rea-
sonably efliciert, especially giver certain limited
parallel processing capabilities

1. Introduction

Syntactic parsing in Artificial Intelligence (Al) has
always had its share of controversies Many in Al have
seen in this work "“much wasted effort’'[4] and suggested
that ‘‘the heavily hierarchical syntax analyses of
yesteryear may not be necessary” [6]. At the same
time, syntaclic parsers have been attacked by those in
linguistics as "'devoid of any principles which could serve
as even a basis for a serious scientific theory of human
linguistic behavior™ [2] And. while psychologists have
been kinder, any psychologist must be uncomfortable
with theories which, iIf taken literally, would predict that
people cannot understand ungrammatical sentences —a
prediction which are false.

In this paper we will propose a parser. named
“"Paragram’’, which goes some way to answering this cri-
ticism In particular

1) The parser is "semi-grammatical’ in the sense that
it takes a standard ‘‘correct’ grammar of Fnglish
and applies it so long as 1t can, but will accept sen-
tences which do not fit the grammar, while noting 1n
which ways the sentences arc deviant. Thus 1t will
parse (1) while still using grarmmatical rules for
subject/verb agreement to distinguish (2) from (3).

(1) *The boys is dying '
(2) The fish 1s dying
(3) The fish are dying

2) The rules of the parser are intended to capture the
relevant generahzations about language 1n much the
same way as a good transformational grammar
Paragram's rules are nearly 1n one-lo-one
correspondence with those proposed 1n some

versions of transformational grammar ? Despite the
fact that augmented transition network (ATN)
parsers are based upon transformational grammar,
when cxamined closely typical ATN grammars [7]
seem Lo be far from the above i1deal.

3) The parser 1s reasonably eflicient, (0.3
seconds/word for a group of lest sentences) and
would be very efTicient If implemented on a machine
with limited parallelism, so Lhat the rules of the
grammar all test the input 1n parallel, but only one
1s actually applied (eslimated .04 seconds/word)
BEfMiciency aspects will nol be discussed further in
this paper

*This 1s an rxtended abstract of a much longer paper by tne same
name, available from the author My 'hanks to Gracme Hirst, who com-
mented on the original paper This resca-ch was supvorted in part vy
the Office of Nava. Rescarcn under contract N00014-78-C-0592, and in
part by the Nationai Science Foundat:on under contrac' S7-8013688

'"Unless we expl.citly indicate tu *1e contrary, this and all othe-

examples in this papcr can be handled by Parspran: When an exemnple
's unprammatical, Parapram wi'' recopmize 1t as such, put produce a
reasonable ‘decp struc'ave  anyway arthern ore ' w.' 1nd.cate what

n the sentence it d d not ke

2We will be using a version of transformational g=nTmur which we
current in the late sixt.es. "he primary -ea<on ‘or s choice st
familiarity. It shoald not be assumed 'nai Paragram mus. necessarii
use a gremmar of this type

2. Handling Ungrammatical Sentcnces

2.1. Why We Nced a Deterministic Parser

Paragram is based upon Marcus's parser ‘‘Parsi-
fal''[3] We will explain Parsifal shortly, but first let us
explain why we chose it as a starting point

Probably the best known parser in Al today is
Woods' ATN parser [7]. However 1t would not be possible
to base a Paragram type parser upon the ATN parsing
model. To see why this i1s so, we need only consider that
when Paragram finds an ungrammatical situation, it
must simply recognize it as such. and continue as best it
can Al\'s simply do not work this way When an ATN
finds an ungrammatical situation it takes it as evidence
that 1t made an incorrect decision earlier in the sen-
tence, and hence backs up to find the correct path. So,
consider

(4) Jack sold the ball.
(5) Jack sold Sue the ball.

Suppose that an ATN parser initially decides to parse
“Sue” in (5) as a direct object, just like *'the ball'" 1n (4)
When it gets Lo the second noun phrase in (5), “"the ball"
it has no way to handle it, and hence 1t backs up and
tries making '‘Sue'’ into a dative which has been movecd
before the direct object. But suppose we had the
ungrammatical sentence,

*Jack sold Sue ball.

Here the ATN would back up as well, but Lo no avail. since
there 1s no way to get a grammatical sentence oul o
this®

In a deterministic parser (one which does not back
up) the parser may assume that it has parsed everything
correctly up lo the point where 1t runs into trouble
Thus Parsifal knows where the trouble lies. [t is this pro
perty which makes 1l an 1deal starting point [o)
Paragram
2.2. Parsifal

Parsifal has two basic data structures, a stack and a
buffer. The stack contains the sentence constituents on
which 1t 1s still working If a constituent 1s complete,
then it must reside in one of two places- first, it may sim-
ply hang off some larger constituent. So at the end of a
sentence there is only one item on the stack, the top-
most s node, and everything else hangs off it. Second,
Parsifal may have a complele constituent, but not know
yet where 1t should go. Such constituents are put in the
buffer which is a storage area of limited size. An obvious
example would be an individual word (which is clearly
complete). A less obvious example would be a noun
phrasc which, while complete, might be attached at any
one of several places in the tree.

Rules in Parsifal are of the typical situation/action
type To decide if it is applicable, a rule will most often
look to see what 1s in the buffer, although, with some him-
itations, rules may also look at the stack. I'wo positions
in the stack are special, the bottom of the stack, which
1s named ¢, and the lowest sentence node in lhe stack,
which is named s To take a simple example, in Parsifal
the rule for recogmzing passive constructions is this
;The rule 1s named passive-aurx
I=be|[=cn] » It looks at first two buffers
Atlach 1st Lo c It puts the "be" on the bollom-

as passive.) ,maost node of the stack

(rule passive-aux

urtncrmore the time it takes an ATN to decide that the sentenc:
18 ang-amrmatical should go up roughly exponentially with the numbe
of words ‘‘or some reason, those who tout ATNs as a model of huma
perfo-mance do not draw much attention to this “'prediction”

231



The two square-bracket groupings indicate what the rule
requires in the first and second bufler In particular, the
=" indicates that what appears in the corresponding
buffer must have the feature specified, such as being a
form of the verb ""be’’. Everything following the - is
the action portion of the rule. These actions are
specified in a language called "Pidgin', which 1s quite
restricted but formulated to look like English.

Suppose we were applying this rule in the course of
processing the sentence

Jack was taken to the house.

At the point where passive-aux is applicable, the state of
the parser would be as follows:

STACK BUFFERS

ap
Jack

u Lwas | [taken] [ to ]

Here the np '‘Jack’™ has been made a constituent of the
top level sentence. but 1t is hanging off to the side to
indicate that it 1s no longer on the stack. since it is a
completed constituent In the course of testing, Parsifal
will see that ““was’’ is a form of the verb "to be", while
“"taken” is an “‘en’ form of the verb *'to take' and thus
the buffers match the rule test. At this point the action
would be executed, which 1s to pul the ““was” on the aux
which is currently the node Parsifal is working on. This
will have the side effect of removing the “was' from the
buffer, at which point the words further along in the sen-
tence will move in to replace those which have been
removed from the buffer

However, not all rules of the grammar will actually
be tested at any given point. Indeed most of the rules
would be completely irrelevant; while parsing the auxi-
liaries of a verb we would hardly expect to find direct
objects. To prevent Parsifal from even looking, each of
its rules 1s found 1n one or more ‘‘packets’” and only the
rules which are in '‘active’’ packets will be tried. The
active packets are those which are attached to the bot-
tom node of the stack, ¢ Should this node be removed,
the packets on the next higher node will be active. The
1dea is that if Parsifal 1s working on a noun phrase, then
noun phrase rules will be active. Once Parsifal 1s done
with it, it will be removed from the stack, and the rules
on the next higher uncompleted constituent, say a verb
phrase, will become active once more. Which packets
are attached to a given node 1s explicitly controlled by
the grammar rules themselves.

There are complications to this scheme, but this
should due to give the reader a basic idea of how Parsifal
works

2.3. Parsing Ungrammatical Sentences

Naturally, Parsifal as currently constructed will only
parse grammatical sentences Should it be given an
ungrammatical sentence, it will eventually come to a
point where no rule applies, and it will simply give up

Paragram differs from Parsifal in numerous ways.
but allowing for ungrammatical input requires only a
comparatively minor modificalion. Whereas Parsifal
rules are tried sequentially until one works, active
Paragram rules are to be thought of as being tested in
parallel. Naturally, on current computers, they are
really being tried sequentially, but it is useful to think of
them as working in parallel Furthermore, unhke Parsi-
fal, the result of a test in Paragram is not a yes/no deci-
sion Rather it 1s a numerical ‘‘goodness rating’ which,
the higher the number, the betler the fit between the
rule and the buffer/stack. Paragram then takes the rule
with the highest number and runs it, allowing it to
change the stack and buffers It then repeats the pro-
cess.

232

The goodness rating of a rule 1s the sum of the
values returned by the rule's atomic tests. Each atomic
test will add to the score if it succeeds, and subtract if
not. No significance should be attached to the actual
numbers. The basic idea is that the more tests succeed-
ing, the higher the score, and failure 1s punished
severely.

Now the crucial point 1n all of this i1s that for an
ungrammatical sentence, the various ratings that we will
get at the point of ungrammaticahty will all be quite low,
since none of the rules of grammar will exactly match
the input. Newertheless, one Tule must still have the
highest score, and hence will apply, even though il does

not really approve of the sentence as given.* So, for
example,

*The boys is dying.

will be given a low rating when Paragram starts to parse
the auxiliary ‘1s"", at which point the best rule will be:

(rule subject-verb-agreement in parse-aux
[= verb] [test: The np of s agrees with 1st.] »
Create an aux. Activate build-aux.)

When applied to the above ungrammatical sentence this
rule will have a poor goodness-of-fit rating since there 1s
a match with verb, but the subject/verb agreement fails.
Nevertheless, this 1s the best value at that point, so the
rule is used anyway, and Paragram starts parsing the
auxiliary verb, as intuitively it should. Note however that
with sentences like

The fish is dying.
The fish are dying.

the above rule will succeed in each case, and 1n the pro-
cess specify that the word "“fish" is to be understood as
singular and plural respectively. Some other ungram-
matical sentences handled by Paragram are-

*Bill sold Sue book.
*Jack wants go to the store.

There are however, many ungrammatical, yet under-
standable, constructs which Paragram cannot currently
handle. For example, extra constituents give it a prob-
lem. So more work needs to be done.

3. Parsing the Relevant Generalizations

The second goal set out for Paragram is that it cap-
ture appropriate generalizations about language in much
the same way as a good transformational grammar. This
has proved an elusive goal 1n parsing programs. The
most well known of Al parsers, Woods's ATN parser, has
been based upon transformational grammar, and
Bresnan [1] points out that one could use the ATN frame-
work to provide the link needed between her ‘“‘realistic”
grammar of English and an actual performance model of
parsing. Nevertheless, while ATNs are inspired by
transformational grammar, the single extended ATN
grammar | have seen often required several special-case
rules to handle what is a single rule in transformational
grammar While we will not pursue this point in any
detail, let us take a single example, taken from the ATN
grammar for English given in [7].

The rule of there-insertion in transformational
grammar relates sentences like these:

There were barnacles on the ship
Were there barnacles on the ship?
The ship on which there were barnacles sank

The ship there were barnacles on sank °
The statement of the rule 1s something like this:

‘There 1s still the possibility of ties. However in practice this has
not come up, and it can be argued that baring problems with the basic
1dea of determunistic parsing, ties should simply not occur.

5Stylistically tlus ain't so hot, but presumably it is grammatical.
At any rate, the ATN grammar has a rule to handle it.



np{-del) exist-verb
This rule handles all cases of unstressed ‘'there’ (as
opposed to the “there” in "There 1s Jack'). However,
¥oods's ATN has [our separate rules for Lthere-insertion
one for handling each of the above cases So, despite Lhe
inspiration of transformalional grammar. this A1\ gram-
mar has not done as well as one would like in the
elegance of the rules it embodies ®

+ There exist-verbnp . .

Now in many respects, Parsifal does better In par-
ticular, 1t needs only one rule of there-insertion But
this 1s not to say that all of Parsifal's rules are this
elegant /ndeed, of the 57 or so riles which | have
looked at in depth from the detauled grammar at the end
of Marcus' book [3|. only twenty or so correspond lo
transformational rules Of the rest, they may be
categorized inlo three groups. depending on the particu-
lar deficiencies which required them to appear in the
grammar

Miscellancous problems Six of the rules are
needed because of various pecularities of the grammar
and the parser While some of these arc interesting in
their own right, (particularly two, which deal with the
rule of raising. a controversial rule in Linguistics) we
shall say no more about them here

Phrase Structure Rules The majority of the 31
other rules, 21 in all, are there because Parsifal must
have explicit rules in its grammar for Lhe placemnent of
phrase structure constituents Thus, a rule like

s » np vp
1s implemented by four separate rules in the grammar
one for creating an 8 when necded, one for attaching the
np at the right spot. another for the vp. and finally one
which says to stop parsing the s Not only would it would
be preferable to have a single rule, but Lhe packet
mechanism 1n Parsifal 1s really a phrase structure
mechanism 1n disgwse, thus these twenly one rules are
redundant, at least 1n principle

Paragram solves this problem by explicitly using
phrase structure rules to handle packet switching., as
well as replace many of the aforementioned rules. How-
ever, it has not proved possible as of yet to replace the
rules which create new constituents of the appropriate
type This 1s because such rules typically differ widely
from one another in what they are looking for in the
buffer to clue them in that the new constituent s
needed These crealion rules are currently the only
rules which are nol in one-to-one correspondence with
typical transformational rules )

Wh-movemenl. Next, the ten remaining rules are
involved 1n the implementation of the wh-movement
rule, as used in

Who did Jack give the ball to?

Some of these rules arc nceded because Parsifal has two
sets of verb-phrase rules There 1s a normal set, which
handles most verb phrases, but as soon as we must worry
about gaps. we have a completely different set This
sccond set differ from the firsl I1n two ways First,
because Lthey must worry about gaps, this second set
continually checks the semantics to insure that it has
not gone astray In fact, there are cases where it 1s only
semantics Lhat can tell the parser whal Lo do For exam-
ple

What did Bob give the girl?

Who did Bob give the book??
Second, this second set contain many rules. each looking
for a different configuration of things in the buffer which,
in turn, will suggest where to locate the '‘gap” left
behind by wh-movement

%t 18 important, however, to keep in mind the dist netion Hetween
himitations 1in the parser and hmitations in the particalar grammar. [t
18 possible that a more @ ever grammar writer might have avoded this
problem Indeed Woods nas clarned (personal communication) that

Par:sfai is simply one kind of ATN  Th s may e so, but only m the unin-
teresting sense Lthal both are one kind of Turing machine In particular,
the on'y ways | can see of wimulating Pa-si"n’ with an ATN would com:-
pletely pnore ail of the buiii-.n features that make A"A\s what ey are.
AL any rate, if 1t 's true that Parsifa’ is one kind of A N then i mas:
surcly be the case that any :mprovement in Pars [al's grammar over a
particular AN grammar must only indicale defic'encies i “11e ATN
grammar

"{here are ‘wo exceptions, due to problems n our Aand. g of
dative-movement

Paragram does without all of this by making two
changes in the parsing mechanism The first 1s a techni-
cal change in the way the parser decides to postulate
that « wh might have becn moved from a particular loca-
tion The second, and perhaps more interesting change,
1s to avoid needing two sets of verb-phrase rules (with
and without calls to semantics) Paragram always
checks to see if a constiluent 1s semantically reasonable
before 1t will add 1t to the syntactic tree Note that the
user need not explicitly specify that a call to semantics
1s required here Rather. Paragram automatically adds
such calls to Lhe testing section of any rule which adds a

constituent to the tree’

4. Conclusion

While we have given no reason to take Paragram
seriously as a model of human cognition, if we were to do
so we would want answers to two important questions
First and foremost. how does syntax fits into the overall
parsing process? Paragram essentially takes the conser-
vative view that syntax is the initial mechanism which
takes the word string and produces as its output some
"'deeper’’ represcntation that has properties that make
1t uscful for Lhe furlher pragmatic processing. L differs
slightly from this however in Lhat it requires that seman-
tics be performed on a constituent before 1t can be
attached to the tree.

Once we have decided to adopt a model in which
syntactic analysis 1s done, and done as a separate pro-
~ess, we must then answer the second major question
what is the relation of the syntactic parsing process to
standard ‘“compelence’ models of syntax? Again,
Paragram takes the old fashion view that this relation-
ship 1s reasonably direct Paragram argues that it may
be possible lo have a one-to-one correspondence
between parsing rules and rules of grammar in a parser
which 1s computationally eflicient

These views were, of course, very common in the
sixties. They are less common now, 1n part because of
various psychological results such as those of Slobin 5]
It is not my intent to try to refute the interpretation
placed upon these results. Rather | hope that tLhe
existence of Parsers like Paragram can reopen the
debate on these crucial subjects

References

1. Joan Bresnan, ‘A Realistic Transformational Gram-
mar.," \n Linguistic Theory and Psychological Reali-
ty, ed M. Halle, J. Bresnan, and G Miller, M.IT
Press, Cambridge Mass. (1978)

2. B. Elan Dresher and Norbert Hornslein, “‘On Some
Supposed Contributions of Artificial Intelligence to
the Scientific Study of lLanguage,” Cognition, (4) pp.
121-398 (1976).

3. Mitchell P. Marcus, A Theory of Synlactic Recogni-
tion for Nalural Language, M.I.T. Press, Cambridge,
Vass. (1980).

4. Christopher K. Riesbeck, '‘Computational Under-
standing,” pp 11-15 in FProceedings of the First
Workshop on Theoretical Issues in Natural language
Processing, cd. R. Schank and B [ Nash-Webber,
(1975).

5. Dan | Slobin, ""Grammatical Transformations and
Sentence Comprehension in Childhood and Adult-
hood,” Journal of Verbal Learning and Verbal
Behawvor 5 pp 219-227 (1966).

6  Yorick Wilks, "An Intelligent Analyzer and Under-
stander of English." Communications of the ACM
18(%) pp 264-274 (1975)

7. Wilham A Woods, ""An Experimental Parsing System
for Transition Network Grammars,” pp. 113-154 n
Natural longuage Processing, ed R Rustin, Algo-
rithmies Press, New York (1972)

233


http://Issu.es

	cogsci_1981_231-233



