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N-BODY FADDEEV EQUATIONS AND THE CEUSTER_EXPANSION* :

) Willy Bierter
: | . Lawrence Radiation Laboratory

University of California
Berkeley, California

February 19, 1968

ABSTRACT
~We'deriv¢ a set of integral equations of the Faddeév type fof
the N-particle scattering amplitude. This Faddeev theory'for the
N-body scattering problem then provides a closed thedry for.thé cluster
coefficients of an arﬁitrary‘quantum gas, which is free of convergénce

difficulties encountered in former series expansions.
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I, ‘INTRODUCTION |
'For a dilute, 1mperfect gas the equations of state for the
pressure P and the den81ty o} are glven by the follow1ng expan31ons
in termsvof ‘the fuga01ty_ z.l
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(1)

where B = (kT)-l. |
In the limit V — co the doefficients b (V,8) tend to the
volume-independent cluster coefficients bﬁ(ﬁ):

IBN(g) = %im bN(V,s)'. ' ' "., o (2)

The virial expansion of the equation of state is defined to berv

. Q.

: N S PR |
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2 N=1 R
N R where aN(s) is called the Nth v1rial coeff1c1ent We'can find the

: relatlonshlp between the v1r1al coefflclents aN and. the cluster

coefficients b

N by substituting (3) into (l) and requiring that the
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resulting equation be satisfied for every z. By equating the coeffi-

cient of each power of 2z we obtain

a, = b = 1,

ay = -by,

as = ubg_' - 2bg, B ' ‘

a, = -MbJ 1060, = 35#.' ) - ()

Thefeforé, in order to know the virial coefficients aN, which aré a
measure of the dynamical and statistical corielations; we have to
calculate the cdrresponding clustér,coefficients.‘ This calcuiation,
‘however, requires the solutiop of the N-body problem.

With the exceﬁtion of the expression for the second virial
coefficiént given'by:ﬁéth aﬁd Uhlenbeck,2 for.a long time ndimethodl
for the éctualfcéiéglatién Af ciuster céefficients for a givén inter-
particle interéctidn’waé known. Then Lee and Yang3 made a step
forwérd in a‘systematic approximation of higher cluster coefficients.
" These éuthors assume that only pair interactions'are present in the
N-body Hamiltonian Hy and éxpand the Nth cluster coefficient in f
terms of the binary collision operator

Bl,](B) = —Vij exp('BHlJ) »

where Hij is the total Hamiltonian of the isolated pair (ij). This
theory was applied to a calculation of the third virial coefficient by

Pais and Uhlenbeck}u
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' Later it ﬁae’recognized by‘Reiher5wthaf,'wifﬁ'thejhelp of
the Laplace transform‘relafioh~between'thefGreen’s function -
M),y o N S
GV /(z) = (z - HN) ~ and the statistical density operator
WN(B) =- exp(-BHN), it is possible to translate the Lee-Yang series

expansion in terms of the binary collision operators into Watson's
multipleescattefing.expansion of LG(N)(z). in ‘terms of the off-the=
energy~ shell two-particle scattering matrix.

Both formulations, however, are onlyvapplicable if 'no two~ or
mahyfbddy.bound statestare'présent,'since'whenevef the kernel
GO(Q)Vij has an eigehvalue eutside'the ﬁnitlcireie;“both sefies
ekpansionsvfeil to eonverge. This divergence can be cured with the'
vquasifarticie-method of'Weihberg;é |

But only sinee Faadeev7 proposed'his threeeparticle Séattering,.
theory. hes‘it become possible to circuﬁvent the dﬁbidue*Series
expenSions»end give a concise formulatien efvthe third virial
ceefficient. | |

The aim of this work is to derive the Faddeev equatieﬁs for"
any number ‘N of particles iﬁteracting by peirs enly.ehd‘thus.to-give..
- a completely consistent theory‘of‘éhe Nth cluster coefficient for an
arbitrary quenfum gas; |

In Chapter II we fevieW'briefiy»the relatidﬁ befween the gﬁh

cluster_coefficient and the Green's function G(N)(z) for N
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interacting particles. In Chaﬁter IIT wé derive the N-body Faddeev
. equations and in Chapter IV we give the general expression for the
Nth cluster coefficient and write down explicitly the third cluster

coefficient using the three-particle Faddeev equations.
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II. CLUSTER COEFFICIENTS AND GREEN'S FUNCTIONS

The cluster coefficients (2).are‘related_to dynamics. . through

~ the statistical density operator
Wy(B) = ex(-pHy) - o o 05)

_HNl isvthe Hamiltonian for N interacting particles of the form

S cemmEm
Beosoywte Yy ®

where 5; is the momentum of the ith particle and Vij'= V([F; - f}l)

is the potential energy of interaction between the ith and'gﬁh' ’
particle. The units B = 2m'= 1 are used throughout.
. The“partition‘function of a system of "N interaeting

éarticles.is
7y() = Ty y(e) = Ty exp(-piy) G

The‘index N at the trace s&mbbl_indicates thatvthé'trace hasbto be'
taken only in the space of N particlés.

For low particle densities cluster expansions are useful
perturbation approaches, since encounters of small numbers of particles
dominate and account approximately for the thermodynamic properties of
the N-partiélé system, Therefore, it'is,ﬁseful_- in.both classical

and gquantum stdtistical mechanics - to'consider directly the expansion
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of the partition function ZN' in terms of the cluster coefficients (2): .

»

N . ' .
ze(®) = ) TT ot () Y, . (®)
o £=1 - 'mg] . - ‘ o

where V is the volume occupied by the N-particle system. The
combined sum and product in (8) has.to be performed ip the following
way: The N pafticles are distributed according to some distribution
eof‘ mé clusters of £ particles each. For this given partition one
L : _,om . o

forms the product TT(VbZ) E/mﬂi and sums over all possible partitions

= N. -

of N -particles saﬁisfying' szz

There exists a relation between the probability operator W,

N
e, . (N) o Nl
and the Green's function G ’(z) = (z - HN) , which is given by
means of the inverse Laplace transfoi'm:8 -
' -1 (N), 1 ' z (N), :
,'WN(B) = L '_G( )(z) = 5= f d.z.e-f3 G (z) , - (9)

7

where the path of integration ¥ passes from oo + ie around the
leftmost . singularity of the integrand to 0o - ie.
The Green's function G(N)(z) is related to the scattering

),

operator T z) for N intéracting particles:”

) - W) 1+ W) W) W), o)
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lz‘-'z(ﬁf._ - - .'(1_1)

9

Bloch and De Dom1n1c1s have shown in thelr proof of the

‘llnked-cluster expansion that the partition function ZN' can be

written in the form

&y = Z TT E;-".'(Zz(c))mz s (12)

,z==vlk [mz} :VE R
where Zz(c) is the partition’function stemming from all connected

E-partlcle dlagrams.,

A comparlson of (12) with (8) ylelds the cluster coefficients
as the total contribution of all connected prartlcle dlagrams:

b (B) = lim vig <c)_= 1im vt ( Tr G(_N.)(z) ':)c

V-om N Voo

(13)
All connected diagrems appearing in (13) are understood to acquire'
»their meaning through the different‘termthdthe respective representation ‘
_of G(N) (z). '

In (13) the specific statistics enters through the symmetry of

the states used in the trace calculation. Therefore, QN(C) has the

following form for Bose-Einstein and Fermi-Direc statistics,

respectively:
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m o - ey fdz . ﬂZZ C2loreony)

5 P

M @) o py ) s (W)

:-VFD. -?-lzﬁ(c)' - ﬁ%fdpl.”dpl“ -é%l- fdz e ZGP (¢ P(pl ".h.pN)
| 7 P |

oWy ), (5)

‘whefe P denotes the permufaﬁion operatorvand- gé"is +iv(;1) for

an‘eveh (0dd) permutation of (pl-"pN)

We recognize from the relation (13) between the N.th cluster

(v)

~ coefficient and the total Green s function G on the one hand and- ’

- the connection (10) between thls ‘total Green's functlon G( ) dnd

(¥)

the scatterlng operator T on the other hand that we 1mmed1ately

have a consistenttheory for all cluster coeff1c1ents once ‘we -can write
down a coupled set of integral equations for the scattering amplitudes
N) |

T( for N interacting particles.

, ' 2 , . ,
For N = 2, T( ) 'satisfies the Lippmann-Schwinger equation

o2 vy (2) () R BT ¢ )
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and for N = 3 TKB) satisfies the three-particle Faddeev eqﬁatiohs.
Therefore, we have to find a generslization of these Faddeev equations

to any number of particles interacting by pairs:
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TIT. N-BODY FADDEEV EQUATIONS

In this chapter we will give a general procedure forbyriting
down a set of integral equations for tﬁe N-particle scattefiﬁg -
amplitude. This set turns out to be a generalization of the Faddee&
equations for three-particle scattering. ILike the Faddeev equations
these equat;ons will be linear integral equations,of.the Fredholm type
for the off-the-energy~shell scattering amplitudg of N particles,
whosé kernels depend.only‘upon the scattering amplitudes for arlesser
number of particles. |

"The procedurefis based on a fundamental theorem of Hugenholtz
10

" with the following content:

Let T

" “and Ty be two disconnected graphs with N, and

A

NB' particle lines, respectively. The contribution of the graph PA

alone is denoted by (p,|(z - H )—lfp 'y . . The same holds for
_ A A A FA

T The theorem then states that the contribution of ail'graphs

B

r " that can be obtained by combining T

A+B. A and PB in sugh a way

- that the vertices of PA- and: FB appéar in all poSSible relative -

orders amounts to

( pppg | Gy p(2) l‘pA'pB' )

I

N | G, (2) | Py ) FA* (G | Gp(2) l Py Y -PB

2 IEXENECEIERE r, (Palog@leg’ ) .
(&4

(17)
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‘In operator language_(l?)vtékqs ﬁhe'formly. '

CG(e) = Gy(2) ¢ Gya) = o ljp' dc Gp(z = 0) Gyt),  (38)

where '

gl = (= = ) G(a) = (2 -5 0g(a) = o - i)™

The contour ¢ of integration encircles the spectrum of (¢ - HB)-
in a counterclockwise ﬁay or the spectrum of (Z -t - HA)-l in a
clockwise wai)

We want to formulate the above theorem for the scatterlng
operator T, .To thls end we 1ntroduce on both sides of (18) for the
different Green's functlon G(z) - according to (10) - the respective
connected parts Go(z) T(z) Go(z). After some operator algebra we .
" obtain |
TA+B(z) = TA(z) TB(Z)

0 -1

- &) 2—1— fdg Az -t) -TA(Z, _--c>'a§<z - )

kg (c)T(C)GO(c) i 1,y
= 2:11 fdg{G (z’ C) + G (C)

x 1,02 - 1) 1,0 {6, % AN )Y a9)
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where

)-l

| - 2
G (2) = (z-3p,° - ) ¢0(2) = (z-3p,)7,

)1

|

6, (z) = (z-2p).

If the NB ‘particles are .noninteracting, we have to convolute

the nonéonnqbted part GBO ~ instead of GBO TB

. 0 . :
GB - with the

connected part GAo TA GAO for the N, particles. We find

* K, .. K
T,(z)* T~ T

P b
1 NB

Gain (*) B, f T 6,06 - ) Ty(s - t) G4 (2 t) GBO(Q) |

0 -1
X Guip (z)
1 0 o
= -E—n’i- f d‘C TA(Z - C) GB (C)o . (20).
c .
If both the NA and'the NB. particles are noninteracting,
we have to convolute the two nonconnected parts GAO- and GBO,

respéctively. In this case we have
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T_ ¥eooe® T % T HeooX® T

ST N T
Cavs @ 5o f a 6z - ) Go(t) Gppr(z) = 6o tH(z) . (21)
. C . :

These relations (19), (20) and.(él),form thekwyWﬁoint of.our'general
procedure.

| Béfore we diécuss¢§héuderivationlofﬁthéwFaddégvi

.~equations fof.arbitrary ‘N, werfirsf exhibit the genefalvprdcedure ﬁith
‘-the example of- N.= 3. )

| | Le§ us consider the noﬁconnected graph, in which the particles

1 and 2 are interacting, whereas particle 3 is free:

3 — . - - (e2)
- Moreover we specify in this graph the leftmost . interaction,

i.e., V,.. Then we write down the contributioh to the three-particle

12

scattering amplitude in the following way:
2,0 v P Y W) - Y
7,00 =V, G M | (23)

.

We. now introduce what we call "reduced graphs" (y) over which
one must sum in order to obtain the contribution (23) from the

nonconnected diagram (22).
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1

"We define as: "reduced graphs all those graphs whlch when
.'combleted by the interactlon lz,essentlally glve againthe graph (22).
"Essentially" means that we do not care how many 1nteract10n lines
follow the flrst one in these 'reduced grephs;ﬁ Therefore, there are
ltwolpossible reduced graphs" for the nonconnected diagram (223' The
first reduced graph" is connected because several (at least one)

- interaction lines folloW'the first one and these are summed upcbyvthe
Lipbnann-Schwinger equation (16). The second one is'nonconnected,
because no interaction lines follow the flrst one, il.e., particles .

"1 and 2 move freely Now we can give the prescription of how one

.finds Z u(7),
) |

Convolute ‘the scattering amplitudes of all "reduced gfaphs"
of (22) with the partlcle llne ‘3 and sum up all these different

contrlbutlons. In dlagrammatlcal and algebraic form this reads as

- 1 1
ZM(”:’QII;z
- -3 | 3

_ g (2 *T<1>_

12 3

_(7)2

o @ Gn @ Ty

The "scattering'amplitudev of the "reduced graph', where particles. ' .

'l_and 2 are free, is formally denoted by -Ti(l)* Tg(l) and is given

by (21).
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The first term in (24) is easilyﬂeﬁalﬁatéd with the help ofi

(20). We have

r,@rr® L [a; (py =t pg) Co ' |
. . e ) c - p} » '

W @ (z )| v, 2, )

- (2) 200y
= 8(p3 - PB) < Pl P2 l T12 (Z = Ps)lpl Pz >°
(25)
In operator form this reads
e @) g (@) o ey
Tig "3 = Tt | N
For the second term in (24) we find from (21)
1, - @W. . 0(3)-1 -
Tl( )* TE( )* TB(E) = ¢ (3) . | . - (27)
Thus thé total contribution of the two "reduced gfaphs" of the
nonconnected,diagfam (22) to (23) is

12 = V1o 12 e T e ’
where in the 1ast'step we used the Lippmann-Schwinger equatiqn‘(l6) .

for T12(2) ‘with the argument (z - pg).
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Now we formulate tﬁe general procedure for findihg the'cbntribu-
_ tion of an arbitféry»noncbnnécted graph consistiﬁg of ’pn'subg}dphé

. (Bp) to the scattering’amblitude for N particles. | |

| First we specify for any.given noncqnnectedf@iagram,its lefpj.
most inte;aqtion' Vij' Wg assume that this leftmost: Vij ;ies ig':
the subgraph (&

1) consisting of M <N particles. Then we draw

~ g1l possible "reduced graphs" of (81) which are defined in such a

way as to essentially give again the givéri d.ia,gram,v when completed by
“the interaction Vij' These "reduced graphs" are either connected or
nonconnected diagrams. In case.they are connected,théyfhave”again

~ .a leftmost. interaction Vik,génd the' corresponding scattefing‘qmplitude

:iS:;Tik(M).: This scattgringxamplitudé can in principle be‘obtdined by
summing uﬁ all ihferaction'lines with the help of the Faddéév equations
for M <N partiéles; If the "reduced graph"‘is nongonnected it may

have & connected "reduced subgraph"-with L<M ‘particles and a left-

‘most interaction Vik' Thenbthe.éorresponding'scattering,amplitude.is ‘ _ .

‘ ‘M
7 (D) TT* Tv(l,)' ;

ik If the "reduced graph" is totally nonconnected the

v=L+1

1" . ' 'M (l) : g » e
scattering amplitude' is ‘||.* Tv . Finally we convolute the
. . =l . . ) i :

scétteping amplitude of eachv"reduced_graph" wifh_the scattering

amplitude of the subgraphs Sé,~--,5P and sum up all these contributiqns.
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We'caniexpfess this procedu;e as a“tﬁeorem in fhe foilowing
way: |
Theorem 1:

For any given noncoﬁnected diagram consisting of p subgraphs

(8-)” with a leftmost . interaction V,, lying (supposedly) in (81),

i3
1ts contrlbutlon to the scatterlng amplltude for N partlcles is
r. M _ oy W) Z o) g 2)*“°*T(8) o (29)
= + (7) -

where the sum extends over all "reduced graphs" (y) of (81).

Next ﬁe formuiafé'the generai procedure'fqr finding the
éohtributionrof anAarbitfaiy connected graph to the scattering amplitude
for N particles as a theéorem. |
Theorem 2:

Cut any given connected diegram into twehdieeonnected subdiagrams
such that one of them is the nonconnected diagram '(61) wiﬁh the left-
most interactioﬁ V 1 of. Theorem 1. We denote the other sﬁbdiagram ‘
by (8). Then apply Theorenm 1, 1.e.,convolute the scattering amplitudes
of all "reduced graphs" (y) of (61) with the scatterlng amplitude

O(N)

of (8). Go on to the right with a free propagation G and

finally connect (d,) _and (5) pairwise by le(N) with £ e (8)),

k €(3). In an algebraic form thls reads

T .(N) = V,, O(N) Z V7 *T(S) o(w) 2 . (30)

= TG ey g
' k 6(6)
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Relations (29) and (30), summed up for all those different types
of nonconnected.and connectéd dicgrams (with the leftmost . interaction
‘V ) whlch yield a dlfferent valuefbriz, (7), constitute the equatlons

which determine the N-particle scattering amplitude Tij .

kernels depend only upon the scattering amplitudes fofvlesé'than N

Their

particles.:dSince thesquaiés.df these kernels have no d-functions, these
equétions are of the Fredholm type.
“ We proceed w1th the example N 3 and cbnsider theffollowing

connected graph

—L | N )
. According tobTﬁeOfem 2 we cut thc>intéractioﬁ line V23:7and:gét back

~ the nonconnecfed.diagram (22). Then we apply‘Thédrém 1 andvuse-(SO)
..to obfain thé followipg codtiibution to the thrée-parficle scattering'-

amplitude:

B L) 2( )% T, (1) 0(3)(: 13 & T23(3f>

127 T 12

iy ©O) ()*T (1)*T(1> 0(3)( T (3))

(32)
With the help of the operator relations (26) and (27) we obtaln

Tla(;}) - 1, 00 (2,0 4 n, (3)) o

The tptql’cohtribution of the.nonCOnnected and the connected diagrams

 (22) and (31) with the leftmost interaction Vi, yields the well-known

three-particle Faddeev equations:

4 -
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_Tl'.2<3> - n (B g @ Go(s)(TB(s) +T23(5>>. (s

Two similar equations can be derived for the diagrams with a different_
leftmost . interaction.

As an illustration Sf the genergl prbcedure, in the Appendix,
we use Theérems.l and 2 to derive the four-body Faddeev equatiéns.

The total séattering amplitude for N_ interacting particies
is the contribution of all nonconnected and connected diagrams with
different leftmost. interactions V,

1j:
N

o) _ Z Ti;j:(iN)v.. | (35)
i<y '
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IV. CLUSTER COEFFICIENTS FOR A BOSON GAS

The Faddeev theory for the N-body Scattering problem thus
provides a closed formulation of the d&namiéal correlation problem..
We can now express the total Green s function G( )(z), appearlng ‘in
the express¢on (13) for the Nth cluster coefficient in terms of the

-

scattering amplltudes TlJ( ) for N 1nteract1ng partlcles, whlch
satisfy the N-body Faddeev equations. Consequently, we have a completely
consiStent theory for the cluster cbefficients, whichlis'free of converF
' gence dlfflcultles encountered in serles expan51ons in terms of a two-
body scatterlng matrix or a blnary collls1on matrlx._

‘We can write (13)'in the general form

o (p) = 1im v (o X °<N)( )+ GO(N)(Z) Z T, (N)( )GO(N)(Z) y
o V-m L l<O
(36)
Where Iij(N) is given by the remark aftér: Theorem.2. ' The first term
in (36),
(o) v o=l =1 o(N NN o -
0 ) = vt (w W)y o, (37)
- V=00 : . : ' ' :
leads to the cluster coefficient of an ideal boson gas, since‘ GQ(N).
does not contain»the interaction We have to select only connected

diagrams. rnls ‘is achieved by 1ntroduc1ng (n - l) B-functlons,ln

37). Thls can be done in (n - l) p0551ble ways.. By taking into
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account the usual factor VV/(Bn)B we obtain the well-known result for

’ - 1
a boson gas in terms of the thermal de Broglie wavelength A = (4xB)2:
(0) -z .5/p " ) : o ‘
(g = P2 o (38)

With this result we can,write our general expression (36) in

the form

by(B) = bN(O)(B) + %r.ff.ov-'l Lt (o 'Go'(N)V(Z) Z Tij(N)(z)GQ(N)(z) ) on
i<j .

(39)
"For N =2 the sum. :z: Tij(N)(zL is replaced by the two-
: _ & ; , »
particle scattering amplitude T<2)(z)"and_the;result for the second
term in (39) is the well-known Uhlenbeck~Beth expression in terms of

the bouﬁd»state energies 'ené “and tﬁephase;shifts Mys
, o ' o

(1) _ 2 .-3 |

S = (20207 ) (20 + DT emp(epey,)

' £=0 oo

® 2 aﬂﬂ(k) o 2 '
/ dk k° —5— exp(-2gk7)) , (40)
O )

N L

where tﬁe sum extends only over even values of £ in the case of a
boson gas.
The third cluster coefficient can be written with the help of

the Faddeev equations (34) in the foilowing form:
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 fn . (0) 1L 0(3) (2)
b {(3) = (B) + 11m V { TG (z) T, (z)
> 9 _V—-)O) ‘ ];

o 3 (2 .
¥ OGNy o GO(:)(Z)ZT]..J(_)(Z') 003) ()
o K,d S

e <Ti'k(3>“+ r, O) Gy |

0 2 o
”(a) - b”m) ‘ b”(s) o (81)
where 53( )(B)' is given by'(58).

~ The term b5(1>(6) takes into account all correlatlons due to
a 31ngle pair 1nteractlon and a thlrd partlcle, being only statlstlcally
¢orrelated to the pair. It is immaterial which term Ti.(e) we take
in the‘sum'for b5<l)(a) in. (41) provided we include a factor 3j 
to account for the three other equivaient choices. The connectedness
of the diagram is insured by the introduction of a sum of two S-functions.

' Together with the usual factor V/(8n)5 we obtain -

(l)(B) = 2(8ﬂ)3;['dpldpédp3 5%{ 1erz e'Bz[b(pj- Pl) +,8(p3- PE)]
: ’ L c t C
2

@)(2) lplpep3 )iz - Z pl2

% A P1PPs Ty

(42)
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\

Dynamicai and statistical three-particlé correlations are contained in

b3(2). Taking into account (14) and again the factor V/(8n)3, we

find

(2) | 1 f o1 f -8z,
b B) = —= .| édp.dp.dp, 5% dz e
3 (6 ; R Bl J %

e

% (o 2},3,)" S 7, @@ (2, + Tjke)‘ |
i - .

B,

. ) -2 )
X pip2p3> o ( ip-l)‘- (43)

We note that the correlation term b (l)(B) can be calculated without

3

any approximation and is thus valid for any temperature. In order to

know the correlation term bj(g)(g) we have to solve the three-particle

Paddeev equations, which can be done only approximately with.thé piesent‘
computers.

We wish.to outline briefly the necessary éteps in an actual
calculation of_(h}). Béfore‘sdlving the ¢oupled‘sét of infegral
equations, we héve to choose first a réasonable feprésentation of the
two-particle scattering matrix 'asséciat‘ed with the interpartici.e
' potenfia;. Thi§ choice is even more crucial here than in a description

- of nucleon-deuteron scattering,etc., since one has to perform as a
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final step an infegration over all energy variables. Therefore the

chosen representation for T. (2) should be close to the exact one

over a very large energy 1nterval. Elsewhere we have discussed
extensively the merits of the Wélnbergdquas1partlcle-representat10n6
of Tiﬁ( 2) which we used in the Faddeev equations for deuteron-

potential;; and deuteron-nucleon12 scattering. We believe that here

also this‘representation gives a reasonable deécription for higher

values of the energy parameters than the usual pole-approx1matlon
representatlon of T, 3(2) 13 and that the calculatlons for b3(2)
will be.valid in a much'wider'temperature region;‘ “
As was already boiﬁted 6uf in the introduction, Reiner”
6btained.a theory for the @ﬁh'clﬁSter COefficieﬁt - eqﬁivélent'to-the
binary éolliéiohxexpansibﬁ'of Lee and Yang - by:ﬁsing Watson!s multiple

scattering expansion of G(N)(z) in (13):

7!

[0}
G(N)(z) _ GQ(N)(z) E: z: (2)( ) GO(N)(Z) , (44)
, : \ i<j .
where the prime at the summation overipairs (ij) forbids the
occurrence of two consecutive identical indiéésvih the expansion..
In our formulatlon we get thls multiple scatterlng expans1on result
for the Nth cluster coeff1c1ent directly from (1) by repeatedly

iterating the Faddeev equatlons and replacing all indices 3 by N.
!
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- APPENDIX

In this appendix we derive the four-body Faddeev equations with
the procedureoutlined.in Chapter IIT. For;convenience we write all
'relations in_operator form.

First we considef,all nonconnected'diagrqms with the ieftmost'

interaction V. and evaluate them acéording”to Theorem liyn

12

F W

(A1)

T12§&) =V, GO(u? {ilz(E)**Ta(l)*'Th(l)

. o (), Tg(‘l),;-T}(i)* Th(l)} ‘

1
| (a2)
With the help of relations A(QQ)Tandv<21}?}Wevfind“
, &) . (2 : : VN
Ti2n 7 0= T - | (43)

E R

(ak)
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W o) ). ), 5. .
%;)=Wﬁﬂ<)¢m¢nﬂﬂ>+ﬁwpu%(>
¢ e 42, 00 00

The index after the semicolon in the three-particle scattering

amblitudes T(S) denotés the spectator pdrticle. All the three-

particle scattering amplitudes are given by the homogeneous Faddeev

equations (33). Using (34) and (20),we obtain for (A5)

L ok 2 A . &
MG )_{}12;u<3> c1,® e, O g

' (3) . (2 .
| (46)

.Using'ohce more the Faddeev equations (34) for Tlé'h(B) and the

Lippmann-Schwinger equation for Tlg(g),'welfinally have

. - le;h(s) - 2, - : (47)
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S S I

W
: This'diagram has the same structure as (AlL) except that particle 3 is:

now the spectator 'particle.'~ In analogy to (A7) we get the contribution

T T R ()
.
2
- |
o < (a10)

MO IR CTC' | (R IR € BN ¢ D I ¢ IR 51 | -
Ty, = V}12 G Typ % T5h | S SR O T;u - (a11)
For the evaluation of the first term in (All) we have to use relation

(19):

T12(2).* TBu(E) - 2_1'1. [dg [(Z -t - Hleo);.l_ + (C '_ HB‘)..;O)_:L]'. v.

O)-l +'(C,; HEhO)-;] ’

x 1,0 -0 2,00 [-t -w,
| ’ (a12)
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where

il

.2 Lo g
o ST .2 . 0 .2
Hp = Z pi s Hyo = Z Py -
. .=l . i=3 -

We define the following amplitudes Uij(u) in terms of the two-

particle scattering aﬂplitudes Tij(2):‘

'Uij(lt) : Tij(g) + 5-31-:_. fdg TlJ(g)(C) (z _.C'_ -Huo)-l

k3

1,06 - 06,0 e Boe - a0

- 0,-1 . (2
NI FORE SIS
| (a13)
One can easily show that these amplitudes Uij(u) obey the following |

set of equations:

qij(h)_ _ Tij(e) - Tij(e)_Go(h) Ukz(u')_-

U}Q“» B Tké(g). N Tkz(E).GO(U) Uij()-_t)' . : - (ALL)

 Using the definition (Al3) for Uij(h), and the fact that therein the

pairs of indices (ij) and (k#) are interchangeabie,we find for

(aw)
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12 1 3 3L

W) g O W, @,y W) @, @

- ‘ (A15)
Usingvthé above equatioﬁs'(Aih) for Uig(h)rand ﬁﬁe Lippmann-Schwinger ,
( ) o

_equatlon for T

)

Ts we flnally have

o W) W)

C w12 R ¥ - T1et (Alé)
Now we consider all connected diagrams.and make;usé of
: . . N L . , }?
Theorem 2. ’
1
2
3 ~ - . | . ,
b S (am

We cut the 1nteract10n 11ne V3h and then we haveagaln the nonconnected o
vdlagram (AL). Applylng Theorem 1, with the result (A7), and using the

relation (30), we flnd

e ) (o o) o () L. s MY
r, ¥ - (le;um - Tle(E)) ) (Tlu( ) . Teu(_) . T}ﬁ( ')) -

=0 e
-\ |

| (A19) ,
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- The same procedure as for (A17) - except fhat we use the result (A9)-

leads to
o ) ) L (@) o) ) ), L ()
Tp W = Ql?;j -1, ) G @13 g Tt Ty, )-
‘ ~ (A20)
1
5
3
L (A21)
: Cut ting the 1nteractlon line V23 and using the result (Al6),we get
o (8 () () gok) () | (&) (uj (B)
Typ: * = @12 " e )G @15-- R T Ty T Ty )
(A22)

The tofal contribution of all-noncohnectéd and connected
diagrams yields the four-body Faddeev equatlons (see the remark-after

Theorem 2). In a general form, they read

y) (2 (3) 2) y - 2 4
I R S PR C IO

(2 ' | L O B\
- Tij( ), <§ij;k(5) "Tij(2{> O (%) (éik(_) +'Tjk( ) . Tkz( {)

Gy - <e§> o(k) (? g, 00 g 00)

NSO och) ) @ v a, o ¢jk<u5 O
o (a23)

1k

The same set of equations (A23) was also derived by Alessandrini,

usinz complicated operator algebra.
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